JP6481991B2 - Radio wave absorber - Google Patents

Radio wave absorber Download PDF

Info

Publication number
JP6481991B2
JP6481991B2 JP2014033958A JP2014033958A JP6481991B2 JP 6481991 B2 JP6481991 B2 JP 6481991B2 JP 2014033958 A JP2014033958 A JP 2014033958A JP 2014033958 A JP2014033958 A JP 2014033958A JP 6481991 B2 JP6481991 B2 JP 6481991B2
Authority
JP
Japan
Prior art keywords
layer
radio wave
magnetic
wave absorber
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014033958A
Other languages
Japanese (ja)
Other versions
JP2015159228A (en
Inventor
田所 眞人
眞人 田所
正 佐野
正 佐野
伊東 正浩
正浩 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
New Industry Research Organization NIRO
Yokohama Rubber Co Ltd
Original Assignee
Osaka University NUC
New Industry Research Organization NIRO
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, New Industry Research Organization NIRO, Yokohama Rubber Co Ltd filed Critical Osaka University NUC
Priority to JP2014033958A priority Critical patent/JP6481991B2/en
Publication of JP2015159228A publication Critical patent/JP2015159228A/en
Application granted granted Critical
Publication of JP6481991B2 publication Critical patent/JP6481991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、板状の損失層と導体とが積層された電波吸収体に関する。   The present invention relates to a radio wave absorber in which a plate-like loss layer and a conductor are laminated.

電波吸収体は、入射する電波のエネルギーを磁性損失及び誘電損失により熱エネルギーに変換することで機能する。この場合、電波の表面反射を抑制するべく電波吸収体表面のインピーダンスを空気の波動インピーダンスに近似させるには、電波吸収体の電気長が、吸収対象とする電波長の1/4になる共振時のみに限定される。従って、均一材料系の電波吸収体においては、その対応周波数帯域が非常に狭いことが問題であった。そこで、広帯域での電波吸収を可能とするために、積層型又はピラミッド型の形状を有する電波吸収体が開発されたが、インピーダンスを緩やかに傾斜させているために厚手の材料となるという欠点があった。インピーダンスを緩やかに傾斜させる電波吸収体として、特許文献1には、磁性粉の充填密度が電波の進行方向に沿って連続的又は段階的に増加する様に分散させた磁性粉/樹脂複合体を導体反射板の前に配置したものが提案されている。   The radio wave absorber functions by converting incident radio wave energy into heat energy by magnetic loss and dielectric loss. In this case, in order to approximate the impedance of the surface of the radio wave absorber to the wave impedance of air in order to suppress the reflection of the surface of the radio wave, the electrical length of the radio wave absorber is at resonance when the electromagnetic wavelength to be absorbed is ¼. Limited to only. Therefore, in the uniform material type radio wave absorber, the corresponding frequency band is very narrow. Therefore, in order to enable radio wave absorption in a wide band, a radio wave absorber having a laminated type or pyramid type has been developed. However, since the impedance is gently inclined, there is a disadvantage that it becomes a thick material. there were. As a radio wave absorber that gently slopes the impedance, Patent Document 1 discloses a magnetic powder / resin composite that is dispersed so that the packing density of the magnetic powder increases continuously or stepwise along the traveling direction of the radio wave. The thing arrange | positioned in front of a conductor reflector is proposed.

また、全体の層厚をより低減する目的で、特許文献2には、電磁波の入射方向から見て多孔磁性体層、抵抗体層(抵抗体)、多孔磁性体層、及び導体層の順に積層された構造を持つ電波吸収体が提案されている。かかる板状の電波吸収体における入射面インピーダンスZiは、特許文献2に、下記のように、式(1),(2)として記載されている。   For the purpose of further reducing the overall layer thickness, Patent Document 2 describes that a porous magnetic layer, a resistor layer (resistor), a porous magnetic layer, and a conductor layer are stacked in this order as viewed from the incident direction of electromagnetic waves. An electromagnetic wave absorber having a structured structure has been proposed. Incidence surface impedance Zi in such a plate-shaped wave absorber is described in Patent Document 2 as equations (1) and (2) as follows.

式(1)において、Zは大気の波動インピーダンスで377Ωであり、μは電波吸収体の材料の複素透磁率で、μ=μ’−jμ”であり、εは電波吸収体の材料の複素誘電率で、ε=ε’−jε”であり、λは入射する電磁波の波長である。そして、式(1)において扱いを単純化するために、j√(με)を(α+jβ)とすると、式(1)は、式(2)のように表される。ここに、αは電波吸収体の単位厚さ当たりの損失項、βは電波吸収体の単位厚さ当たりの位相項である。また、特許文献2では、式(1)、式(2)から、単一の材料からなる電波吸収体の単位厚さ当たりの損失項αを、α=√(μ”ε”)と近似している。以下、電波吸収体の単位厚さ当たりの損失項α及び位相項βを単に損失項α、位相項βと略記する。さらに、式(2)中のTanh{(2π/λ)・(α+jβ)}は、損失項α、すなわち√(μ”ε”)を増大させると、その挙動が抑制されて、およそ「1」に収束することから、入射面インピーダンスZiの周波数依存性が低減され、広い周波数範囲に亘って入射面インピーダンスZiと大気の波動インピーダンスZとを近似させた状態を維持することができ、広帯域に亘って電波吸収体における減衰量を増大させることができると説明している。 In equation (1), Z 0 is the atmospheric wave impedance, 377Ω, μ r is the complex permeability of the material of the wave absorber, μ r = μ′−jμ ″, and ε r is the wave absorber The complex permittivity of the material, ε r = ε′−jε ″, and λ is the wavelength of the incident electromagnetic wave. Then, in order to simplify the handling in Equation (1), if j√ (μ r ε r ) is (α + jβ), Equation (1) is expressed as Equation (2). Here, α is a loss term per unit thickness of the radio wave absorber, and β is a phase term per unit thickness of the radio wave absorber. Further, in Patent Document 2, the loss term α per unit thickness of the radio wave absorber made of a single material is approximated by α = √ (μ ”ε”) from the equations (1) and (2). ing. Hereinafter, the loss term α and the phase term β per unit thickness of the radio wave absorber are simply referred to as a loss term α and a phase term β. Further, Tanh {(2π / λ) · (α + jβ)} in the expression (2) increases its loss term α, that is, √ (μ ”ε”), and its behavior is suppressed to about “1”. from converges to the frequency dependence of the incidence surface impedance Zi is reduced, it is possible to maintain the state of being approximated and wave impedance Z 0 of the incident surface impedance Zi and the atmosphere over a wide frequency range, to a wide band It is explained that the attenuation in the radio wave absorber can be increased.

この実施例として、特許文献2には、多孔磁性体層の厚さ10mm、多孔磁性体層の厚さ5mm、かつ全体の厚さが約15mmとしたものが記載されている。この実施例では、両多孔磁性体層の間に挟持された抵抗体層の材料は、カーボン等を用いて構成された抵抗値370Ωの抵抗シートであり、その厚さは、特許文献2の図5からも判るように、両多孔磁性体層と比べても薄層である。かかる構成により、2GHz〜10GHzの周波数帯域で、10dB程度以上の減衰量が達成されている。なお、特許文献2の実施例中には、抵抗体層を設けず、両多孔磁性体層を一体にしたものに例えばカーボン等の抵抗体の微粉末を混入分散することで、損失項αを増大させてもよいとの記載が見られる。   As an example of this, Patent Document 2 describes a porous magnetic layer having a thickness of 10 mm, a porous magnetic layer having a thickness of 5 mm, and an overall thickness of about 15 mm. In this embodiment, the material of the resistor layer sandwiched between the two porous magnetic layers is a resistor sheet having a resistance value of 370Ω formed using carbon or the like, and the thickness thereof is shown in FIG. As can be seen from FIG. 5, it is a thin layer compared to both porous magnetic layers. With such a configuration, an attenuation of about 10 dB or more is achieved in a frequency band of 2 GHz to 10 GHz. In the examples of Patent Document 2, a loss layer α is not obtained by mixing and dispersing a fine powder of a resistor, such as carbon, in an integrated body of both porous magnetic layers without providing a resistor layer. There is a statement that it may be increased.

特開2009−188322号公報JP 2009-188322 A 特開2007−59456号公報JP 2007-59456 A

特許文献1に記載の電波吸収体では、磁性粉の充填密度が電波の進行方向に沿って連続的又は段階的に増加する様に分散させた磁性粉/樹脂複合体を製造する必要がある。   In the radio wave absorber described in Patent Document 1, it is necessary to manufacture a magnetic powder / resin composite dispersed so that the packing density of the magnetic powder increases continuously or stepwise along the traveling direction of the radio wave.

また、特許文献2に記載された、カーボン等の抵抗体の微粉末が混入分散された薄層の抵抗シートからなる抵抗体層を備えた電波吸収体では、10dB以上の減衰量が広帯域で得られているものの、実用性においてより有意な15dB以上の減衰量が得られている範囲は、2.5GHz〜3.5GHzの1GHzに過ぎない。また、λ/4波長との関係から、例えば厚み15mm程度とされており、汎用性向上の点から更なる薄層化が要請される。さらに、各図によれば、両多孔磁性体層の厚さ分でほぼ全体を占め、抵抗体層は不使用、あるいは寸法値の記載もない薄層として記載されている。   In addition, in the radio wave absorber provided with a resistor layer made of a thin resistor sheet mixed with fine powder of a resistor such as carbon described in Patent Document 2, an attenuation of 10 dB or more is obtained in a wide band. However, the range in which attenuation of 15 dB or more that is more significant in practical use is obtained is only 1 GHz from 2.5 GHz to 3.5 GHz. In addition, the thickness is, for example, about 15 mm from the relationship with λ / 4 wavelength, and further thinning is required from the viewpoint of improving versatility. Furthermore, according to each figure, the thickness of both porous magnetic layers occupies almost the whole, and the resistor layer is described as a thin layer that is not used or has no dimensional value.

本発明は、上記に鑑みてなされたもので、誘電損失層と磁性損失層の間に空気類似層を設け、かかる空気類似層乃至は空気類似層と接する磁性損失層の形状の電波吸収能の周波数依存性に鑑みて、軽量化、薄層化されながら吸収周波数に対する吸収能の調整並びに広帯域化が可能な電波吸収体を提供するものである。   The present invention has been made in view of the above. An air-like layer is provided between the dielectric loss layer and the magnetic loss layer, and the air-absorbing ability of the shape of the air-like layer or the magnetic loss layer in contact with the air-like layer is improved. In view of frequency dependence, an object is to provide a radio wave absorber capable of adjusting the absorption capacity for the absorption frequency and making the band wider while being reduced in weight and thickness.

本発明は、電波の入射方向から損失層と導体とが積層された板状の電波吸収体において、前記損失層は、前記電波の入射方向から誘電損失層と磁性損失層とが積層され、かつ、前記誘電損失層と前記磁性損失層との間に空気類似層が介在されていることを特徴とするものである。   The present invention provides a plate-shaped radio wave absorber in which a loss layer and a conductor are laminated from the incident direction of radio waves, wherein the loss layer is a laminate of a dielectric loss layer and a magnetic loss layer from the incident direction of the radio waves, and An air-like layer is interposed between the dielectric loss layer and the magnetic loss layer.

本発明によれば、吸収体内部において、電波が共振状態にあるとき、導体層近傍の電流が最大となる面では電磁波の磁界成分が最大となる。一方、入射面近傍では90°位相がずれた電界が最大となる。かかる電磁界の振る舞いに着目して、磁界が最大となる面には磁性損失により効率よく熱エネルギーに変換するべく、磁性粉を充填乃至は高充填した樹脂成形体である磁性損失層が配置され、入射面近傍には誘電損失を有する材料を含有した樹脂成形体である誘電損失層が配置される。さらに、両層の間に、空気と類似の特性を有する材料である空気類似層を介設して共振周波数を目的の周波数に合致させるようにすることで、軽量化、薄層化しながら、吸収周波数に対する吸収能の調整並びに広帯域化が可能となる。   According to the present invention, when the radio wave is in a resonance state inside the absorber, the magnetic field component of the electromagnetic wave is maximized on the surface where the current near the conductor layer is maximized. On the other hand, the electric field whose phase is shifted by 90 ° is maximized in the vicinity of the incident surface. Focusing on the behavior of the electromagnetic field, a magnetic loss layer, which is a resin molded body filled with or highly filled with magnetic powder, is arranged on the surface where the magnetic field is maximized in order to efficiently convert it into heat energy by magnetic loss. In the vicinity of the incident surface, a dielectric loss layer which is a resin molded body containing a material having dielectric loss is disposed. Furthermore, an air-like layer, which is a material having characteristics similar to air, is interposed between the two layers so that the resonance frequency matches the target frequency, thereby reducing absorption while reducing weight and thickness. It is possible to adjust the absorptivity with respect to frequency and widen the bandwidth.

また、前記空気類似層は、吸収する電波の帯域幅に対応した厚さを有することを特徴とするものである。空気類似層は材料乃至は構成(例えばハニカム構造)が決定されると、層の厚さに応じて帯域幅が広狭変化する。すなわち、層の厚さが増大するにしたがって、吸収周波数に対する吸収能が漸次増大すると共に、帯域は漸次狭くなる傾向を示すことから、適用する対象、用途に合わせて層厚を設定することで、適用対象等に応じた好適な電波吸収体を得ることが可能となる。   The air-like layer has a thickness corresponding to the bandwidth of the radio wave to be absorbed. When the material or the structure (for example, honeycomb structure) of the air-like layer is determined, the bandwidth varies depending on the thickness of the layer. That is, as the thickness of the layer increases, the absorption capacity with respect to the absorption frequency gradually increases, and the band tends to gradually narrow, so by setting the layer thickness according to the target to be applied and the application, It is possible to obtain a suitable radio wave absorber according to the application target.

また、前記磁性損失層は、厚さ方向の孔を有するものである。この構成によれば、電磁波の共振が生じ易くなり、電磁波の吸収能が上がって反射損失が高まる。   The magnetic loss layer has a hole in the thickness direction. According to this configuration, electromagnetic wave resonance easily occurs, the electromagnetic wave absorption ability increases, and reflection loss increases.

また、前記孔は、断面形状に角部を有するものである。この構成によれば、電磁波の共振がさらに生じ易くなり、電磁波の吸収能が上がって反射損失が高まる。   Moreover, the said hole has a corner | angular part in cross-sectional shape. According to this configuration, the resonance of the electromagnetic wave is more likely to occur, the electromagnetic wave absorption ability is increased, and the reflection loss is increased.

また、前記孔は、電波入射方向から錐形状の孔を有するものである。この構成によれば、軽量化、吸収周波数をシフトさせることが可能となり、汎用性が向上する。   Moreover, the said hole has a cone-shaped hole from the electromagnetic wave incident direction. According to this configuration, it is possible to reduce the weight and shift the absorption frequency, thereby improving versatility.

また、前記孔の錐形状の斜壁角度は電波入射方向に対して数10度以上である。この構成によれば、角度が大きいほど、大きなシフト量を得ることが可能となる。   Further, the cone-shaped inclined wall angle of the hole is several tens of degrees or more with respect to the radio wave incident direction. According to this configuration, the larger the angle, the larger the shift amount can be obtained.

本発明によれば、軽量化、薄層化されながら、吸収周波数に対する吸収能の調整並びに広帯域化が可能な電波吸収体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electromagnetic wave absorber which can adjust the absorptivity with respect to an absorption frequency and can be broadened while being reduced in weight and thickness can be provided.

本発明に係る電波吸収体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electromagnetic wave absorber which concerns on this invention. 本発明の第1実施例に係る電波吸収体と、比較例としての従来のインピーダンス傾斜型積層電波吸収体との反射損失特性を示す特性図である。It is a characteristic view which shows the reflection loss characteristic of the electromagnetic wave absorber which concerns on 1st Example of this invention, and the conventional impedance gradient type laminated | stacked electromagnetic wave absorber as a comparative example. 第2実施例として、空気類似層にアラミドハニカムを用いた場合の反射損失特性を示す特性図である。FIG. 6 is a characteristic diagram showing reflection loss characteristics when an aramid honeycomb is used for an air-like layer as a second embodiment. 第3実施例として、誘電損失層と磁性損失層の母材である樹脂に同一材料を使用した際の反射損失特性を示す特性図である。It is a characteristic view which shows the reflection loss characteristic at the time of using the same material for resin which is a base material of a dielectric loss layer and a magnetic loss layer as 3rd Example. 第4実施例として、空気類似層の厚さを変化させた場合の反射損失特性を示す特性図である。FIG. 10 is a characteristic diagram showing reflection loss characteristics when the thickness of the air-like layer is changed as a fourth embodiment. 第5実施例において、磁性損失層に孔が形成されていない場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In 5th Example, it is a figure explaining the simulation result of the intensity distribution of the electromagnetic field in case the hole is not formed in the magnetic loss layer, (A) is the image perspective view for demonstrating the structure of a radio wave absorber, (B) is a plan view for explaining an electric field component, and (C) is a plan view for explaining a magnetic field component. 第5実施例において、磁性損失層に円形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In a 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a circular hole is formed in a magnetic loss layer, (A) is an image perspective view for demonstrating the structure of a radio wave absorber. (B) is a top view explaining an electric field component, (C) is a top view explaining a magnetic field component. 第5実施例において、磁性損失層に正方形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a square hole is formed in a magnetic loss layer, (A) is an image perspective view for demonstrating the structure of a radio wave absorber. (B) is a top view explaining an electric field component, (C) is a top view explaining a magnetic field component. 第5実施例において、磁性損失層に六芒星形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In a 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a hexagonal star-shaped hole is formed in a magnetic loss layer, (A) is an image perspective view for demonstrating the structure of a radio wave absorber. FIG. 4B is a plan view for explaining the electric field component, and FIG. 4C is a plan view for explaining the magnetic field component. 第5実施例において、図6〜図9における各電波吸収体の反射損失特性をそれぞれ示す特性図である。In 5th Example, it is a characteristic view which shows the reflection loss characteristic of each electromagnetic wave absorber in FIGS. 6-9, respectively. 第5実施例において、磁性損失層に六角形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In a 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a hexagonal hole is formed in a magnetic loss layer, (A) is the image perspective for demonstrating the structure of a radio wave absorber. FIG. 4B is a plan view for explaining the electric field component, and FIG. 4C is a plan view for explaining the magnetic field component. 第5実施例において、磁性損失層に三角形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a triangular hole is formed in a magnetic loss layer, (A) is an image perspective view for demonstrating the structure of a radio wave absorber. (B) is a top view explaining an electric field component, (C) is a top view explaining a magnetic field component. 第5実施例において、磁性損失層に十字形の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するためのイメージ斜視図、(B)は電界成分を説明する平面図、(C)は磁界成分を説明する平面図である。In a 5th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a cross-shaped hole is formed in a magnetic loss layer, (A) is the image perspective for demonstrating the structure of a radio wave absorber. FIG. 4B is a plan view for explaining the electric field component, and FIG. 4C is a plan view for explaining the magnetic field component. 第5実施例において、図6、図11〜図13における各電波吸収体の反射損失特性をそれぞれ示す特性図である。In 5th Example, it is a characteristic view which shows the reflection loss characteristic of each electromagnetic wave absorber in FIG. 6, FIG. 第6実施例において、磁性損失層に円錐状の孔が形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するための断面図、(B)は電界成分を示す断面図、(C)は磁界成分を示す断面図である。In a 6th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a conical hole is formed in a magnetic loss layer, (A) is sectional drawing for demonstrating the structure of a radio wave absorber. (B) is sectional drawing which shows an electric field component, (C) is sectional drawing which shows a magnetic field component. 第6実施例において、図15の電波吸収体における反射損失特性を示す特性図である。In a 6th Example, it is a characteristic view which shows the reflection loss characteristic in the electromagnetic wave absorber of FIG. 第6実施例において、磁性損失層が円錐状の突起を有する形状に形成された場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するための断面図、(B)は電界成分を示す断面図、(C)は磁界成分を示す断面図である。In a 6th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when a magnetic loss layer is formed in the shape which has a conical protrusion, (A) is for demonstrating the structure of a radio wave absorber. (B) is sectional drawing which shows an electric field component, (C) is sectional drawing which shows a magnetic field component. 第6実施例において、図17の電波吸収体における反射損失特性を示す特性図である。In a 6th Example, it is a characteristic view which shows the reflection loss characteristic in the electromagnetic wave absorber of FIG. 第6実施例において、磁性損失層に孔を設けない場合の電磁界の強度分布のシミュレーション結果を説明する図で、(A)は電波吸収体の構成を説明するための断面図、(B)は電界成分を示す断面図、(C)は磁界成分を示す断面図である。In 6th Example, it is a figure explaining the simulation result of the intensity distribution of an electromagnetic field when not providing a hole in a magnetic loss layer, (A) is sectional drawing for demonstrating the structure of a radio wave absorber, (B) Is a sectional view showing an electric field component, and (C) is a sectional view showing a magnetic field component.

図1は、本発明に係る電波吸収体の一実施形態を示す断面図である。電波吸収体は、矢印で示す電磁波の入射方向から順に、誘電損失層1、空気類似層2、磁性損失層3及び導体層4の順に積層された構成を有する。導体層4は、板状の導電体、例えばアルミニウム金属板等により構成された反射導体である。   FIG. 1 is a cross-sectional view showing an embodiment of a radio wave absorber according to the present invention. The radio wave absorber has a configuration in which a dielectric loss layer 1, an air-like layer 2, a magnetic loss layer 3, and a conductor layer 4 are laminated in this order from the incident direction of an electromagnetic wave indicated by an arrow. The conductor layer 4 is a reflective conductor made of a plate-like conductor, such as an aluminum metal plate.

また、図1において、入射した電磁波の電界成分は、破線で示す電界強度特性線Leに示すように、導体層4によって短絡されるため、その表面においてゼロとなり、導体層4の表面からλ(波長)/4だけ離れた位置において最大となる。一方、磁界成分は、破線で示す磁界強度特性線Lhに示すように、導体層4の表面において最大となる。   Further, in FIG. 1, the electric field component of the incident electromagnetic wave is short-circuited by the conductor layer 4 as indicated by the electric field strength characteristic line Le indicated by a broken line, and thus becomes zero on the surface, and λ ( It becomes maximum at a position separated by (wavelength) / 4. On the other hand, the magnetic field component becomes maximum on the surface of the conductor layer 4 as indicated by a magnetic field strength characteristic line Lh indicated by a broken line.

磁性損失層3は、バインダー(母材)としての、例えば樹脂からなる誘電体素材内に強磁性体の微粒子が所定の重量%(wt%)だけ分散配置された、例えばシート部材であり、入射する電磁波の磁界成分強度の高い領域で電磁波を効率的に吸収する。強磁性体である微粒子を分散配置することで、全体として絶縁体としてマイクロ波が内部まで浸入可能となる。また、微粒子を分散させることで強磁性体の表面積が増大するため、表皮効果が作用しても、磁性体として機能する表皮層の体積を増大させることで、入射した電磁波を磁気損失により減衰させることができる。強磁性体の各微粒子は、それらの間にバインダーが介在することで互いに非接触状態となり、全体として誘電体(絶縁体)になる。強磁性体としては、例えば鉄が採用され、またフェライト微粉末、アモルファス合金等の強磁性体からなる微粒子が採用され得る。誘電性素材としては、例えばエポキシ樹脂やシリコーン樹脂が採用され、また発泡スチロールや発泡ウレタン等の発泡性の合成樹脂材料で板状多孔質に成形したものを採用してもよい。   The magnetic loss layer 3 is, for example, a sheet member in which ferromagnetic fine particles are dispersed and disposed in a predetermined weight% (wt%) in a dielectric material made of, for example, resin as a binder (base material). The electromagnetic wave is efficiently absorbed in a region where the strength of the magnetic field component of the electromagnetic wave is high. By dispersing and arranging fine particles that are ferromagnetic materials, microwaves can penetrate into the inside as an insulator as a whole. In addition, since the surface area of the ferromagnetic material is increased by dispersing the fine particles, the incident electromagnetic wave is attenuated by the magnetic loss by increasing the volume of the skin layer that functions as a magnetic material even if the skin effect acts. be able to. The fine particles of the ferromagnetic material are brought into a non-contact state by interposing a binder between them, and become a dielectric (insulator) as a whole. As the ferromagnetic material, for example, iron is used, and fine particles made of a ferromagnetic material such as ferrite fine powder and amorphous alloy can be used. As the dielectric material, for example, an epoxy resin or a silicone resin may be employed, or a material molded into a plate-like porous material using a foamable synthetic resin material such as foamed polystyrene or foamed urethane may be employed.

誘電損失層1は、例えば樹脂からなる誘電体素材に抵抗体、例えば炭素系材料の微粒子が分散配置された、例えばシート部材であり、入射する電磁波の電界成分強度の高い領域で電磁波を効率的に吸収する。例えば、炭素材料であるケッチェンブラック(ライオン社製、型名EC300J)を所定のwt%だけ含有する樹脂材、例えばエポキシ樹脂やウレタン樹脂の成形体が使用される。   The dielectric loss layer 1 is, for example, a sheet member in which fine particles of a resistor, for example, a carbon-based material, are dispersed in a dielectric material made of resin, for example, and efficiently transmits electromagnetic waves in a region where the electric field component intensity of incident electromagnetic waves is high. To absorb. For example, a resin material containing a predetermined wt% of ketjen black (manufactured by Lion Corporation, model name EC300J), which is a carbon material, such as a molded body of an epoxy resin or a urethane resin is used.

空気類似層2は、入射する電磁波の吸収特性の挙動を抑制してフラット化(すなわち広帯域化)するもので、挙動の抑制には単位厚さ当たりの損失項α(=√(μ”ε”))が大きな値を有する材料乃至は構造体が好ましい。空気類似層2としては、マイクロバルーン(日本フェライト社製、型名EMC40)を所定のwt%だけ含有する樹脂、例えばウレタン樹脂成形体が使用される。また、アラミド紙に樹脂を含浸し、ハニカム状に成形されたアラミドハニカム(複素比誘電率実部の値1.14、同虚部の値0.003)の構造体を使用してもよい。また、例えば発泡スチロールのような発泡性の合成樹脂材料を採用してもよい。以下、各実施例について説明する。   The air-like layer 2 flattens (that is, broadens) by suppressing the behavior of the absorption characteristics of the incident electromagnetic wave, and the loss term α (= √ (μ ”ε”) per unit thickness is used to suppress the behavior. A material or structure having a large value of)) is preferred. As the air-similar layer 2, a resin containing a predetermined amount% of a microballoon (manufactured by Nippon Ferrite Co., Ltd., model name EMC40), for example, a urethane resin molded body is used. Alternatively, a structure of an aramid honeycomb (a complex relative dielectric constant real part value of 1.14 and a imaginary part value of 0.003) formed by impregnating aramid paper with resin and forming into a honeycomb shape may be used. Moreover, you may employ | adopt a foamable synthetic resin material like a polystyrene foam, for example. Each example will be described below.

(第1実施例)
図2は、本発明の第1実施例に係る電波吸収体と、比較例としての従来のインピーダンス傾斜型積層電波吸収体との反射損失特性を示す特性図である。
(First embodiment)
FIG. 2 is a characteristic diagram showing reflection loss characteristics of the radio wave absorber according to the first embodiment of the present invention and a conventional impedance gradient laminated radio wave absorber as a comparative example.

磁性損失層3は、鉄カルボニル錯体の熱分解により得られる球状鉄磁性粉(BASF社製、ES粉)をエポキシ樹脂と混合することで成形体として作製したものである。空気類似層2は、マイクロバルーン(日本フィライト社製、型名EMC40)を含有するウレタン樹脂成形体として作製したものである。誘電損失層1は、ケッチェンブラック(ライオン社製、型名EC300J)を含有するエポキシ樹脂成形体として作製したものである。導体層4としてアルミニウム金属板を用いた。これに磁性損失層3、空気類似層2、誘電損失層1の順に積層し、電波吸収特性を評価した。測定には、SchwarzbeckMess−Electronik社製のホーンアンテナBBHA9120DとAgilent社製のベクトルネットワークアナライザE8363Aとを用い、自由空間法により、1.0GHz〜18GHzの周波数帯での反射損失(電波吸収能)を評価した。なお、測定にはタイムドメインゲーティング法を使用しており、ゲートスパンは500ピコ秒である。   The magnetic loss layer 3 is prepared as a molded body by mixing spherical iron magnetic powder (manufactured by BASF, ES powder) obtained by thermal decomposition of an iron carbonyl complex with an epoxy resin. The air similar layer 2 is produced as a urethane resin molded body containing a microballoon (manufactured by Nippon Philite Co., Ltd., model name EMC40). The dielectric loss layer 1 is produced as an epoxy resin molded body containing ketjen black (manufactured by Lion Corporation, model name EC300J). An aluminum metal plate was used as the conductor layer 4. The magnetic loss layer 3, the air-like layer 2, and the dielectric loss layer 1 were laminated in this order, and the radio wave absorption characteristics were evaluated. For measurement, a horn antenna BBHA9120D manufactured by SchwarzbeckMess-Electronik and a vector network analyzer E8363A manufactured by Agilent were used, and the reflection loss (radio wave absorption ability) in the frequency band of 1.0 GHz to 18 GHz was evaluated by the free space method. did. The measurement uses a time domain gating method, and the gate span is 500 picoseconds.

電波吸収体のより具体的な構成としては、磁性損失層3となる樹脂成形体中の磁性粉含有量を80wt%とし、空気類似層2として前記マイクロバルーンを30wt%含有するウレタン樹脂成形体を用い、誘電損失層1に前記ケッチェンブラックを2wt%含有するエポキシ樹脂成形体を用いた。磁性損失層3、空気類似層2及び誘電損失層1の各厚さは、0.65mm、1.97mm、0.85mm、1m当たりの吸収体の重量は4500gである。 As a more specific configuration of the radio wave absorber, a urethane resin molded body containing 80 wt% of the magnetic powder in the resin molded body serving as the magnetic loss layer 3 and 30 wt% of the microballoon as the air-like layer 2 is used. An epoxy resin molding containing 2 wt% of the ketjen black was used for the dielectric loss layer 1. The thicknesses of the magnetic loss layer 3, the air-like layer 2 and the dielectric loss layer 1 are 0.65 mm, 1.97 mm, 0.85 mm, and the weight of the absorber per 1 m 2 is 4500 g.

図2では、10GHz辺りに1番目の吸収(凹状の第1吸収ピーク、例えば図5参照)が現れている。空気類似層2は、図2では見えていないが、より高周波側に位置する2番目の吸収(凹状の第2吸収ピーク、例えば図5参照)を、主に周波数方向に移動調整する機能を有する。すなわち、磁性損失層3、誘電損失層1及び空気類似層2の電気長を厚み又は材料定数で調整することで、2番目の吸収ピーク位置を制御することができる。例えば電気長が短くなるようにした場合は、2番目の吸収ピークの位置が1番目の吸収ピークに近づき、逆に、長くなるようにした場合は、吸収帯域における反射損失特性は犠牲になる(反射損失は低減傾向を示す)ものの、広帯域での電波吸収が可能となる。かかる現象は、以降の各実施例のメカニズムにおいても同様である。   In FIG. 2, the first absorption (a concave first absorption peak, for example, see FIG. 5) appears around 10 GHz. Although not shown in FIG. 2, the air-similar layer 2 has a function of moving and adjusting the second absorption located on the higher frequency side (the concave second absorption peak, for example, see FIG. 5) mainly in the frequency direction. . That is, the second absorption peak position can be controlled by adjusting the electrical lengths of the magnetic loss layer 3, the dielectric loss layer 1, and the air-like layer 2 with the thickness or material constant. For example, when the electrical length is shortened, the position of the second absorption peak approaches the first absorption peak. Conversely, when the electrical length is increased, the reflection loss characteristic in the absorption band is sacrificed ( Although the reflection loss tends to decrease), radio wave absorption in a wide band is possible. This phenomenon is the same in the mechanisms of the following embodiments.

一方、比較例として、電波入射表面から吸収体内部に従って、誘電率、透磁率を順次段階的に増加させる従来の積層型電波吸収体(特許文献1)も作製した。3層の電波吸収体とし、インピーダンスの整合から、表面層を70vol%の空孔を有する発泡ウレタン、中間層を金属鉄磁性粉を20wt%含有するエポキシ樹脂成形体、最下層を同磁性粉を82.5wt%含有する成形体とした。各層の厚みは、それぞれ2.94mm、1.16mm、0.83mmとし、1m当たりの吸収体の重量は6100gとなった。 On the other hand, as a comparative example, a conventional laminated radio wave absorber (Patent Document 1) in which the dielectric constant and the magnetic permeability are gradually increased stepwise from the radio wave incident surface to the inside of the absorber. From the impedance matching, the surface layer is urethane foam with 70 vol% pores, the intermediate layer is an epoxy resin molded body containing 20 wt% metallic iron magnetic powder, and the lowermost layer is the same magnetic powder. A molded body containing 82.5 wt% was obtained. The thickness of each layer was 2.94 mm, 1.16 mm, and 0.83 mm, respectively, and the weight of the absorber per 1 m 2 was 6100 g.

図2の特性図において、第1実施例に係る電波吸収体では、8GHz以上(〜18GHz)の周波数帯の電波に対し、−15dB以下の反射損失を有する吸収体を得ることができている。一方、比較例では、反射損失としては相対的には低いものの、8GHz〜18GHzで、−15dB以下の反射損失を有するものとなっている。   In the characteristic diagram of FIG. 2, in the radio wave absorber according to the first example, an absorber having a reflection loss of −15 dB or less can be obtained for radio waves in a frequency band of 8 GHz or more (˜18 GHz). On the other hand, in the comparative example, although the reflection loss is relatively low, it has a reflection loss of −15 dB or less at 8 GHz to 18 GHz.

しかし、第1実施例に係る電波吸収体は、比較例に比して、軽量、薄層であり、かつ反射損失が大きい。これは、空気類似層2によって、共振周波数を目的の周波数に合致させるものとし、入射電波を、その磁界成分が最大となる反射板近傍で磁性損失層3により熱エネルギーに、また電界成分が最大となる入射面近傍で誘電損失層1による熱エネルギーに効率的に変換していることに対応しているといえる。   However, the radio wave absorber according to the first embodiment is lighter and thinner than the comparative example, and has a large reflection loss. This is because the air-like layer 2 matches the resonance frequency to the target frequency, and incident radio waves are converted into thermal energy by the magnetic loss layer 3 in the vicinity of the reflector where the magnetic field component is maximized, and the electric field component is maximized. It can be said that this corresponds to efficient conversion into thermal energy by the dielectric loss layer 1 in the vicinity of the incident surface.

かかる薄層、軽量の構造、及び広帯域かつ高電波吸収特性によれば、マイクロ波帯、主に船舶用レーダにおいて使用されるXバンド(8GHz〜12GHz)に使用、すなわち適用部位に機械的又は他の貼り付け方法により取り付けて疑似エコーや不要エコーの発生を抑止しうる。また、Kuバンド(12〜18GHz)のレーダ(例えば気象用)にも適用可能である。さらに、Wi−max(Worldwide Interoperability for microwaveAccess)使用周波数(2GHz〜11GHz)、ブロードバンド通信として利用されるUWB規格(Ultra Wide Band)使用周波数(3GHz〜10GHz)で不要反射に起因する混信等を抑止することが可能となる。さらに、同様にマイクロ波帯が使用される民生機器への利用等、幅広い活用も可能となり、家電機器、建材等の様々な分野への適用が期待できる。以下の各実施例においても同様である。   According to such a thin layer, lightweight structure, and broadband and high radio wave absorption characteristics, it is used for microwave band, mainly X band (8GHz-12GHz) used in marine radar, ie mechanical or other in application site It is possible to suppress the generation of pseudo echoes and unnecessary echoes by attaching them with the pasting method. The present invention is also applicable to a Ku band (12 to 18 GHz) radar (for example, for weather). In addition, Wi-max (Worldwide Interoperability for microwave Access) use frequency (2 GHz to 11 GHz) and UWB standard (Ultra Wide Band) use frequency (3 GHz to 10 GHz) used as broadband communication suppress interference caused by unnecessary reflection. It becomes possible. Furthermore, it can also be used in a wide range of applications, such as consumer devices that use the microwave band, and can be expected to be applied to various fields such as home appliances and building materials. The same applies to the following embodiments.

(第2実施例)
図3は、第2実施例として、空気類似層2にアラミドハニカムを用いた場合の電波吸収体の反射損失特性を示す特性図である。空気類似層2については、第1実施例で使用したマイクロバルーン含有ウレタン樹脂成形体に代えて、前記アラミドハニカム(複素比誘電率実部の値1.14、同虚部の値0.003)を使用し、8GHz以上で、−15dB以下の反射損失を有する電波吸収体を試作した。具体的には、磁性損失層3、空気類似層2、誘電損失層1の厚みは、それぞれ0.64mm、2.2mm、0.87mmで、1m当たりの吸収体の重量は4100gとなった。空気類似層2に、0.05g/cmという比重の小さなハニカムを使用することで、吸収体の重量をさらに軽量化することができる。
(Second embodiment)
FIG. 3 is a characteristic diagram showing the reflection loss characteristic of the radio wave absorber when an aramid honeycomb is used for the air-like layer 2 as the second embodiment. For the air-like layer 2, instead of the microballoon-containing urethane resin molding used in the first example, the aramid honeycomb (value of complex relative permittivity real part 1.14, value of imaginary part 0.003) A radio wave absorber having a reflection loss of 8 GHz or more and -15 dB or less was prototyped. Specifically, the thicknesses of the magnetic loss layer 3, the air-like layer 2, and the dielectric loss layer 1 were 0.64 mm, 2.2 mm, and 0.87 mm, respectively, and the weight of the absorber per 1 m 2 was 4100 g. . By using a honeycomb having a small specific gravity of 0.05 g / cm 3 for the air-like layer 2, the weight of the absorber can be further reduced.

(第3実施例)
図4は、第3実施例として、誘電損失層1と磁性損失層3の母材である樹脂に同一材料を使用した際の反射損失特性を示す特性図である。磁性損失層3には磁性粉のキャパシタンスに由来する誘電損失成分も付随するために、表面層、すなわち誘電損失層1への適用も可能と考えられる。そこで、磁性損失層3及び誘電損失層1として、磁性粉含有量が80wt%のエポキシ樹脂成形体を作製し、空気類似層2の前記アラミドハニカムとの組み合わせから電波吸収体を試作した。磁性損失層3、空気類似層2、誘電損失層1の厚さは、それぞれ0.92mm、1.80mm、0.21mmで、1m当たりの吸収体の重量は4350gとなった。図4に示すように、8GHz以上の周波数帯で、−15dB以下の反射損失が得られた。磁性損失層3及び誘電損失層1に同種の材料を使用することでコストの低減も可能となる。
(Third embodiment)
FIG. 4 is a characteristic diagram showing reflection loss characteristics when the same material is used as the base material of the dielectric loss layer 1 and the magnetic loss layer 3 as the third embodiment. Since the magnetic loss layer 3 is also accompanied by a dielectric loss component derived from the capacitance of the magnetic powder, it can be applied to the surface layer, that is, the dielectric loss layer 1. Therefore, as the magnetic loss layer 3 and the dielectric loss layer 1, an epoxy resin molded body having a magnetic powder content of 80 wt% was manufactured, and a radio wave absorber was made as a trial from a combination of the air-like layer 2 and the aramid honeycomb. The thicknesses of the magnetic loss layer 3, the air-like layer 2, and the dielectric loss layer 1 were 0.92 mm, 1.80 mm, and 0.21 mm, respectively, and the weight of the absorber per 1 m 2 was 4350 g. As shown in FIG. 4, a reflection loss of −15 dB or less was obtained in a frequency band of 8 GHz or more. By using the same kind of material for the magnetic loss layer 3 and the dielectric loss layer 1, the cost can be reduced.

(第4実施例)
図5は、第4実施例として、空気類似層2の厚さを変化させた電波吸収体の各反射損失特性を示す特性図である。磁性損失層3として金属鉄磁性粉を82wt%含有した厚さ0.89mmのエポキシ樹脂成形体を作製し、誘電損失層1としてケッチェンブラックを4wt%含有した厚さ0.34mmのエポキシ樹脂成形体を作製した。そして、空気類似層2としてマイクロバルーンを30wt%含有したウレタン樹脂成形体を作製し、その厚さを2.0mm〜3.5mmまで、0.5mmずつ変化させた場合の反射損失特性を評価した。
(Fourth embodiment)
FIG. 5 is a characteristic diagram showing each reflection loss characteristic of the radio wave absorber in which the thickness of the air-like layer 2 is changed as the fourth embodiment. A 0.89 mm thick epoxy resin molded body containing 82 wt% metallic iron magnetic powder was produced as the magnetic loss layer 3, and a 0.34 mm thick epoxy resin molded article containing 4 wt% ketjen black as the dielectric loss layer 1. The body was made. Then, a urethane resin molded body containing 30 wt% of microballoons was prepared as the air-similar layer 2, and the reflection loss characteristics were evaluated when the thickness was changed from 2.0 mm to 3.5 mm by 0.5 mm. .

空気類似層2が薄いほど超広帯域の電波吸収特性を有し、空気類似層2の厚さが増加するにつれて吸収帯域が狭くなるものの、反射損失量は増大することが分かった。また、空気類似層2の厚さが約2.5mmの場合に8GHz以上で、−15dB以下の反射損失が得られている。   It was found that the thinner the air-like layer 2 is, the ultra-wideband electromagnetic wave absorption characteristics are obtained. As the thickness of the air-like layer 2 is increased, the absorption band is narrowed but the reflection loss amount is increased. Further, when the thickness of the air-like layer 2 is about 2.5 mm, a reflection loss of 8 GHz or more and −15 dB or less is obtained.

電波吸収体は、λ/4型共振の多重反射による干渉を援用した電波吸収体であり、8GHz付近に見られる第1吸収ピークは、電波の入射面での反射と導体層4の金属反射板での反射の干渉から得られるものである。空気類似層2の厚さを変化させて調整される第2吸収ピークの位置は、電波吸収体表面からの反射と磁性損失層3の表面からの反射との干渉に由来するものである。すなわち、空気類似層2の厚さを調整することで、電波吸収帯域を制御することができる。また、空気類似層2の厚さをどの程度にするかは電波吸収量や適用対象に応じて設定可能であり、いずれにしても厚さ2.5mm〜3.5mmのような、(全体として)薄層化、軽量化が図れる。また、磁性損失層3や誘電損失層1の厚さを、例えば従来に比してより薄めにする一方、空気類似層2の厚さを磁性損失層3や誘電損失層1の厚さより厚めに設定することで、所要広帯域において所要の電波吸収量を実現することが可能となる。すなわち、特許文献2に記載された抵抗層の場合には、tanh関数の性質に由来するインピーダンスの発振挙動を抑制しているものであるが、本実施形態における空気類似層2は、特許文献2とは機能を異にし、誘電損失により電波を吸収すること、また干渉により電波のエネルギーをキャンセルさせるための部分反射板として機能させたものである。従って、その厚さは、特許文献2とは異なり、薄すぎる場合には干渉用に必要な表面反射が減少することから、すなわち透過が多くなることから、好ましくない。   The radio wave absorber is a radio wave absorber that uses interference due to multiple reflection of λ / 4 type resonance, and the first absorption peak seen in the vicinity of 8 GHz is the reflection on the incident surface of the radio wave and the metal reflector of the conductor layer 4. It is obtained from the interference of reflections. The position of the second absorption peak adjusted by changing the thickness of the air-like layer 2 is derived from interference between the reflection from the surface of the radio wave absorber and the reflection from the surface of the magnetic loss layer 3. That is, the radio wave absorption band can be controlled by adjusting the thickness of the air-like layer 2. In addition, how much the thickness of the air-like layer 2 is set can be set according to the amount of radio wave absorption and the application target, and in any case, the thickness is 2.5 mm to 3.5 mm (as a whole ) Thinner and lighter. Further, the thickness of the magnetic loss layer 3 and the dielectric loss layer 1 is made thinner than that of, for example, the conventional one, while the thickness of the air-like layer 2 is made thicker than the thickness of the magnetic loss layer 3 and the dielectric loss layer 1. By setting, it becomes possible to realize a required amount of radio wave absorption in a required wide band. That is, in the case of the resistance layer described in Patent Document 2, the oscillation behavior of the impedance derived from the property of the tanh function is suppressed, but the air-like layer 2 in this embodiment is described in Patent Document 2. Is different in function and functions as a partial reflector for absorbing radio waves by dielectric loss and canceling radio wave energy by interference. Therefore, unlike Patent Document 2, if the thickness is too thin, surface reflection necessary for interference is reduced, that is, transmission is increased, which is not preferable.

(第5実施例)
第5実施例では、磁性損失層3として金属鉄磁性粉を82wt%含有した厚さ0.89mmのエポキシ樹脂成形体を作製し、空気類似層2として厚さ5.5mmの前記アラミドハニカム、誘電損失層1として前記ケッチェンブラックを2wt%含有した厚さ0.38mmのエポキシ樹脂成形体を作製した。図6(A)はこれらを積層したイメージを示したものである。図6(A)に示す電波吸収体の反射損失特性を評価した結果、前記UWB規格の(3GHz〜10GHz)電波を90%以上(反射損失で−10dB以下)低減できることがわかった(図10中、「穴なし」参照)。
(5th Example)
In the fifth embodiment, an epoxy resin molded body having a thickness of 0.89 mm containing 82% by weight of metal iron magnetic powder as the magnetic loss layer 3 was produced, and the aramid honeycomb having a thickness of 5.5 mm as the air-like layer 2 and dielectric As a loss layer 1, an epoxy resin molded body having a thickness of 0.38 mm containing 2 wt% of the ketjen black was prepared. FIG. 6A shows an image in which these layers are stacked. As a result of evaluating the reflection loss characteristics of the radio wave absorber shown in FIG. 6A, it was found that the UWB standard (3 GHz to 10 GHz) radio wave can be reduced by 90% or more (reflection loss of −10 dB or less) (in FIG. 10). , See "No holes").

ここで、図6(A)に示す電波吸収体において、導体層4を除いて、重量の8割以上が磁性損失層3によるものであることから、電波吸収体の軽量化には磁性損失層3への加工が有効と考えられる。   Here, in the radio wave absorber shown in FIG. 6 (A), 80% or more of the weight is due to the magnetic loss layer 3 except for the conductor layer 4. 3 is considered effective.

図7、図8、図9、図11、図12、図13は、磁性損失層3の中心に、所定wt%、この例では15wt%に相当する各種形状の孔、例えば円形孔31(図7)、正方形孔32(図8)、六芒星形孔33(図9)、六角形孔34(図11)、三角形孔35(図12)、十字形孔36(図13)を穴抜きし、それぞれの反射損失特性を評価した。各孔31〜36のサイズは以下のとおりである。すなわち、円形孔31は半径10mmであり、その他はこれと同じ体積を有する孔である。各図の(B)、(C)は、電界強度分布、磁界強度分布を示しており、(B)の電界強度は0.0000e+000〜5.0000e+002を12段階で表し、(C)の磁界強度は0.0000e+000〜5.0000e+000を12段階で表している。   7, 8, 9, 11, 12, and 13 are holes of various shapes corresponding to a predetermined wt%, in this example, 15 wt%, for example, circular holes 31 (see FIG. 7), square hole 32 (FIG. 8), hexagonal star hole 33 (FIG. 9), hexagonal hole 34 (FIG. 11), triangular hole 35 (FIG. 12), cross hole 36 (FIG. 13), Each reflection loss characteristic was evaluated. The size of each hole 31-36 is as follows. That is, the circular hole 31 has a radius of 10 mm, and the others are holes having the same volume. (B) and (C) of each figure show the electric field strength distribution and the magnetic field strength distribution. The electric field strength of (B) represents 0.0000e + 000 to 5.0000e + 002 in 12 steps, and the magnetic field strength of (C). Represents 0.0000e + 000 to 5.0000e + 000 in 12 steps.

図7では、円形孔31の対向する円弧位置に1対の高い電界強度部位が現れ(図7(B)参照)、その直交側にやや高い磁界強度部位が見られる(図7(C)参照)。図8では、正方形孔32の対向する1対の角にやや高い磁界強度部位が現れている。図9では、六芒星形孔33の対向する2対の辺に高い電界強度が見られ、同方向において対向する1対の角にやや高い磁界強度部位が現れている。図11では、六角形孔34の対向する1対の角及びその両側の辺に高い電界強度が見られ、その直交側の対向する1対の辺にやや高い磁界強度部位が現れている。図12では、三角形孔35の各辺には、周囲に比して相対的に高い電界強度、磁界強度が現れているが、他の孔31〜34、36と比べて部分的に強度の高い部位は見当たらない。すなわち、共振現象は起きていない。図13では、十字形孔36の左右方向に対向する各対となる辺に高い電界強度が見られ、左右に長尺の空間に高い磁界強度部位が現れている。   In FIG. 7, a pair of high electric field strength portions appear at the arc positions of the circular holes 31 facing each other (see FIG. 7B), and a slightly higher magnetic field strength portion is seen on the orthogonal side thereof (see FIG. 7C). ). In FIG. 8, a slightly higher magnetic field strength portion appears at a pair of opposite corners of the square hole 32. In FIG. 9, high electric field strength is observed on two opposing sides of the hexagonal star hole 33, and a slightly higher magnetic field strength portion appears at a pair of opposite corners in the same direction. In FIG. 11, high electric field strength is observed at a pair of opposite corners of the hexagonal hole 34 and sides on both sides thereof, and a slightly higher magnetic field strength portion appears on the pair of opposite sides on the orthogonal side. In FIG. 12, relatively high electric field strength and magnetic field strength appear in each side of the triangular hole 35 as compared with the surroundings, but the strength is partially higher than the other holes 31 to 34 and 36. The site is not found. That is, no resonance phenomenon has occurred. In FIG. 13, high electric field strength is seen on each pair of sides of the cross-shaped hole 36 facing in the left-right direction, and high magnetic field strength portions appear in a long space on the left and right.

図10は、第5実施例において、図6〜図9における各電波吸収体の反射損失特性をそれぞれ示す特性図である。図14は、第5実施例において、図6、図11〜図13における各電波吸収体の反射損失特性をそれぞれ示す特性図である。   FIG. 10 is a characteristic diagram showing the reflection loss characteristic of each radio wave absorber in FIGS. 6 to 9 in the fifth embodiment. FIG. 14 is a characteristic diagram showing the reflection loss characteristic of each radio wave absorber in FIGS. 6 and 11 to 13 in the fifth embodiment.

いずれの形状の孔31〜36においても、図6に示す孔が形成されていない場合に比して、吸収帯域が若干狭くなるものの、反射損失量は4GHz〜10GHzで、−15dB以下の反射損失が得られている。三次元電磁界シミュレーションにより、それぞれの吸収ラインにおける第2吸収ピークの周波数での電磁界の振る舞いを計算した結果、導体層4の近傍では電波が孔31〜36の内部で共振し、電界成分、磁界成分共に増幅していることが確認された。この効果は、共振に十分なスペースを有しない三角形孔35の場合においては有利さは相対的に小さく、一方、その他の、特に共振のための比較的に長い距離を利用できる六芒星形孔33や十字形孔36においては一層有利に働き、孔の形成による吸収帯域の狭まりの程度も緩和することができている。なお、磁性損失層3に穿設する孔を15wt%で説明したが、この数値に限定されず、適用対象に対して要求する電波吸収特性、帯域に応じてより小さく、またより大きなwt%を採用してもよい。   In any shape of holes 31 to 36, although the absorption band is slightly narrower than in the case where the hole shown in FIG. 6 is not formed, the reflection loss amount is 4 GHz to 10 GHz and the reflection loss is -15 dB or less. Is obtained. As a result of calculating the behavior of the electromagnetic field at the frequency of the second absorption peak in each absorption line by the three-dimensional electromagnetic field simulation, the radio wave resonates inside the holes 31 to 36 in the vicinity of the conductor layer 4, and the electric field component, It was confirmed that both magnetic field components were amplified. This effect is relatively less advantageous in the case of a triangular hole 35 that does not have enough space for resonance, while other hexagonal holes 33, which can utilize other relatively long distances, particularly for resonance. The cross-shaped hole 36 works more advantageously, and the degree of narrowing of the absorption band due to the formation of the hole can be reduced. In addition, although the hole drilled in the magnetic loss layer 3 has been described with 15 wt%, it is not limited to this value, and is smaller and larger wt% depending on the radio wave absorption characteristics and the band required for the application target. It may be adopted.

(第6実施例)
図15〜図19は、第6実施例を説明する図である。図15(A)は磁性損失層3の断面の三次元構造を示している。第6実施例では、磁性損失層3として、金属鉄磁性粉を84wt%含有するシリコーン樹脂性液体を選択して板状に成形し、さらに半径15mmで高さ0.9mmの円錐形状の孔301が形成された成形体を金型により作製した(いわゆる凹型コーン)。図15(A)中、黒色部分が磁性損失層3の断面に相当する。なお、いわゆる3次元プリンタを用いて作製してもよい。
(Sixth embodiment)
15 to 19 are diagrams for explaining the sixth embodiment. FIG. 15A shows a three-dimensional structure of the cross section of the magnetic loss layer 3. In the sixth embodiment, as the magnetic loss layer 3, a silicone resin liquid containing 84 wt% of metal iron magnetic powder is selected and formed into a plate shape, and a conical hole 301 having a radius of 15 mm and a height of 0.9 mm is used. A molded body on which was formed with a mold (so-called concave cone). In FIG. 15A, the black portion corresponds to the cross section of the magnetic loss layer 3. In addition, you may produce using what is called a three-dimensional printer.

また、図19(A)に示すように、同体積を有する平面型の厚さ0.74mmの磁性損失樹脂成形体3Bも作製した。   Further, as shown in FIG. 19A, a flat-type magnetic loss resin molded body 3B having the same volume and having a thickness of 0.74 mm was also produced.

そして、磁性損失層3及び磁性損失樹脂成形体3Bに、空気類似層2として厚さ2.47mmの前記アラミドハニカムと、誘電損失層1として前記ケッチェンブラックを3wt%含有した厚さ0.35mmのエポキシ樹脂成形体を積層した。   Then, the magnetic loss layer 3 and the magnetic loss resin molding 3B have a thickness of 0.35 mm containing 3 wt% of the aramid honeycomb having a thickness of 2.47 mm as the air-like layer 2 and the ketjen black as the dielectric loss layer 1. The epoxy resin molded body was laminated.

図15(B)は電界成分強度分布を示し、強度は、0.0000e+000〜6.0000e+002を12段階で表している。図15(C)は磁界成分強度分布を示し、強度は、0.0000e+000〜3.0000e+000を12段階で表している。図15(B)に示すように、電界強度は電波入射面側ほど高く、下層に向かうほど低くなり、かつ磁性損失層3の層厚に対応して波形の低電界強度部位が定在的に現れている。また、図15(C)に示すように、磁界強度は孔301の空間部位に対応して高くなっている。なお、図19(B)は、電界成分強度分布を示し、強度は、0.0000e+000〜6.0000e+002を12段階で表している。図19(C)は磁界成分強度分布を示し、強度は、1.5233e−002〜3,2661e+000を17段階で表している。図19(B)に示すように、電界強度は電波入射面側ほど高く、下層に向かうほど低くなり、かつ途中に低電界強度部位が現れている。また、図19(C)では厚さ方向の途中に低磁界強度部位が現れている。   FIG. 15B shows an electric field component intensity distribution, and the intensity represents 0.0000e + 000 to 6.0000e + 002 in 12 steps. FIG. 15C shows a magnetic field component intensity distribution, and the intensity represents 0.0000e + 000 to 3.0000e + 000 in 12 steps. As shown in FIG. 15 (B), the electric field strength is higher toward the radio wave incident surface side and lower toward the lower layer, and the low electric field strength portion of the waveform is steadily corresponding to the layer thickness of the magnetic loss layer 3. Appears. In addition, as shown in FIG. 15C, the magnetic field intensity is high corresponding to the space portion of the hole 301. Note that FIG. 19B shows an electric field component intensity distribution, and the intensity represents 0.0000e + 000 to 6.0000e + 002 in 12 steps. FIG. 19C shows the magnetic field component intensity distribution, and the intensity represents 1.5233e−002 to 3,2661e + 000 in 17 steps. As shown in FIG. 19B, the electric field strength is higher toward the radio wave incident surface side, lower toward the lower layer, and a low electric field strength portion appears in the middle. In FIG. 19C, a low magnetic field strength region appears in the middle of the thickness direction.

図16は、図15(A)に示す電波吸収体(凹型コーン)と図19(A)に示す電波吸収体(加工なし)との反射損失特性を評価した特性図である。図15(A)に示す円錐状の孔301を持つ樹脂成形体を使用した場合、図19(A)の磁性粉樹脂成形体3Bと同体積(同重量)を使用しているにも関わらず、吸収周波帯域は、磁性粉樹脂成形体3Bに比して、図16に示すように、低周波数側にシフトしていることがわかった。より具体的には、磁性樹脂成形体3Bでは、−15dB以上の吸収損失が9GHz〜18GHzであるのに対し、第6実施例の電波吸収体では、8GHz〜17GHzであり、約1GHzだけ低周波数側にシフトしている。また、円錐形状の孔301が形成された電波吸収体においては、構造に由来する電磁界の取り込みにより電波を吸収していることがわかった。これによれば、前記寸法の円錐形状の他、他の円錐形状、さらに種々の形状で磁性損失層3に凹型コーンを形成することで、吸収周波数帯域を、「加工なし」の場合に比して低周波側にシフトすることが可能となり、適用対象に応じた形状を採用することで、所望帯域を維持しつつ所望分だけ周波数シフトを実現することが可能となる。   FIG. 16 is a characteristic diagram evaluating the reflection loss characteristics of the radio wave absorber (concave cone) shown in FIG. 15A and the radio wave absorber shown in FIG. 19A (no processing). When the resin molded body having the conical hole 301 shown in FIG. 15 (A) is used, the same volume (same weight) as that of the magnetic powder resin molded body 3B of FIG. 19 (A) is used. It has been found that the absorption frequency band is shifted to the low frequency side as shown in FIG. 16 as compared with the magnetic powder resin molded body 3B. More specifically, in the magnetic resin molded body 3B, the absorption loss of −15 dB or more is 9 GHz to 18 GHz, whereas in the radio wave absorber of the sixth embodiment, the frequency is 8 GHz to 17 GHz, which is a low frequency of about 1 GHz. Shift to the side. Further, it was found that the radio wave absorber in which the conical hole 301 is formed absorbs the radio wave by taking in the electromagnetic field derived from the structure. According to this, by forming a concave cone in the magnetic loss layer 3 in a conical shape other than the above-mentioned dimensions and in various shapes, the absorption frequency band is compared with the case of “no processing”. Thus, it is possible to shift to the low frequency side, and by adopting a shape according to the application target, it is possible to realize a frequency shift by a desired amount while maintaining a desired band.

図17(A)は、図15(A)とは逆に円錐状の突起を有する形状の磁性粉含有樹脂成形体3A(凸型コーン)を金型により作製したもので、図15(A)と同様、誘電損失層1、空気類似層2及び図略の導体層4が積層されている。空孔302は、磁性粉含有樹脂が穿設された空間部位である。なお、円錐と接触するアラミドハニカムの部位は、アラミドハニカムが空気類似の材料であるため、円筒状に切り抜いても反射損失特性には影響しない。図17(B)、(C)は、図15(B)、(C)に対応するものである。図17(C)に示すように、磁界強度は全体的に低いものとなっている。   FIG. 17 (A) shows a magnetic powder-containing resin molded body 3A (convex cone) having a conical protrusion opposite to that shown in FIG. 15 (A). Similarly to the above, a dielectric loss layer 1, an air-like layer 2, and a conductor layer 4 (not shown) are laminated. The hole 302 is a space part in which the magnetic powder-containing resin is drilled. Note that the portion of the aramid honeycomb that comes into contact with the cone does not affect the reflection loss characteristics even if it is cut into a cylindrical shape because the aramid honeycomb is made of an air-like material. FIGS. 17B and 17C correspond to FIGS. 15B and 15C. As shown in FIG. 17C, the magnetic field intensity is low overall.

図18の特性図に示すように、磁性粉含有樹脂成形体3A(凸型コーン)の場合、円錐状に孔301を設けた場合(図15(A))とは対照的に電波吸収能は低下した。図15(A)と図17(A)の積層型電波吸収体について電磁界の振る舞いをシミュレーションにより検討した結果、円錐形状に孔301が形成された図15(A)の電波吸収体が構造に由来する電磁界の取り込みにより電波を吸収しているのに対して、図17(A)の電波吸収体3Aでは、吸収周波数帯域は高周波数側にシフトしていると共に狭くなり、また、インピーダンスを整合させながら電波のエネルギーを損失により熱エネルギーに変換していることがわかった。また、その熱変換の効率が「加工なし」よりも低いことがわかった。なお、図15(A)の磁性損失層3の孔の形状は、円錐の他、多角形錐でもよい。また、孔の錐形状の斜壁角度は、インピーダンスの緩和な変化が好ましく、電波入射方向に対して数10度以上、例えば45度以上がより好ましく、さらには60°以上が好ましい。   As shown in the characteristic diagram of FIG. 18, in the case of the magnetic powder-containing resin molded body 3A (convex cone), in contrast to the case where the hole 301 is provided in a conical shape (FIG. 15A), the radio wave absorption ability is Declined. As a result of examining the behavior of the electromagnetic field for the laminated wave absorber of FIGS. 15A and 17A by simulation, the structure of the wave absorber of FIG. 15A in which the hole 301 is formed in a conical shape is shown. The radio wave absorber 3A in FIG. 17 (A) absorbs radio waves by taking in the electromagnetic field derived from it, whereas the absorption frequency band is shifted to the high frequency side and becomes narrower, and the impedance is reduced. It was found that the radio wave energy was converted to thermal energy due to loss while matching. Moreover, it turned out that the efficiency of the heat conversion is lower than "no processing". In addition, the shape of the hole of the magnetic loss layer 3 of FIG. Further, the slant wall angle of the conical shape of the hole is preferably a moderate change in impedance, and is preferably several tens of degrees or more, for example, 45 degrees or more, more preferably 60 degrees or more with respect to the radio wave incident direction.

1 誘電損失層
2 空気類似層
3 磁気損失層
31〜36 孔
301 円錐状の孔
4 導体層
DESCRIPTION OF SYMBOLS 1 Dielectric loss layer 2 Air-like layer 3 Magnetic loss layer 31-36 Hole 301 Conical hole 4 Conductor layer

Claims (4)

電波の入射方向から損失層と導体とが積層された板状の電波吸収体において、
前記損失層は、前記電波の入射方向から誘電損失層と磁性損失層とが積層され、かつ、前記誘電損失層と前記磁性損失層との間に空気類似層が介在されており、
前記磁性損失層は、厚さ方向に孔が穿設されており、前記孔は、半径10mmの円の面積と同じ面積の形状を有し、かつ前記磁性損失層の全体の15重量%に相当していることを特徴とする電波吸収体。
In the plate-shaped wave absorber in which the loss layer and the conductor are laminated from the incident direction of the radio wave,
The loss layer is formed by laminating a dielectric loss layer and a magnetic loss layer from the incident direction of the radio wave, and an air-like layer is interposed between the dielectric loss layer and the magnetic loss layer,
The magnetic loss layer has a hole in the thickness direction, and the hole has a shape having the same area as that of a circle having a radius of 10 mm and corresponds to 15% by weight of the entire magnetic loss layer. wave absorber characterized in that it is.
前記孔は、断面形状に角部を有する請求項1に記載の電波吸収体。 The radio wave absorber according to claim 1, wherein the hole has a corner portion in a cross-sectional shape. 前記孔は、電波入射方向から錐形状の孔を有する請求項1又は2に記載の電波吸収体。 The radio wave absorber according to claim 1, wherein the hole has a conical hole from a radio wave incident direction. 前記孔の錐形状の斜壁角度は電波入射方向に対して45度以上である請求項3に記載の電波吸収体。 The radio wave absorber according to claim 3, wherein the inclined wall angle of the conical shape of the hole is 45 degrees or more with respect to the radio wave incident direction.
JP2014033958A 2014-02-25 2014-02-25 Radio wave absorber Active JP6481991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033958A JP6481991B2 (en) 2014-02-25 2014-02-25 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033958A JP6481991B2 (en) 2014-02-25 2014-02-25 Radio wave absorber

Publications (2)

Publication Number Publication Date
JP2015159228A JP2015159228A (en) 2015-09-03
JP6481991B2 true JP6481991B2 (en) 2019-03-13

Family

ID=54183017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033958A Active JP6481991B2 (en) 2014-02-25 2014-02-25 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP6481991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188493A (en) * 2016-04-01 2017-10-12 横浜ゴム株式会社 Resin composition for forming radio wave absorber, and radio wave absorber using the same
CN114142246B (en) * 2021-11-24 2023-06-23 中国人民解放军空军工程大学 Broadband wide-angle metamaterial wave absorber based on gradual change impedance and preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232293A (en) * 1999-02-12 2000-08-22 Hitachi Metals Ltd Electromagnetic wave absorber
JP4240363B2 (en) * 2002-12-05 2009-03-18 日立金属株式会社 Laminated wave absorber
JP2011192978A (en) * 2010-02-18 2011-09-29 New Industry Research Organization Electromagnetic wave absorber

Also Published As

Publication number Publication date
JP2015159228A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
Jayalakshmi et al. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts
JP5182863B2 (en) Radio wave absorber and manufacturing method thereof
US20080053695A1 (en) Electromagnetic wave absorber and method of constructing the same
Baskey et al. Design of flexible hybrid nanocomposite structure based on frequency selective surface for wideband radar cross section reduction
CN104993249A (en) Single-passband bilateral wave-absorbing composite metamaterial and radome and antenna system including same
Li et al. Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi‐fractal tree
CN103682672A (en) Frequency selective surface based ultrathin broadband wave-absorbing material
CN109659691A (en) A kind of Meta Materials radome
JP6481991B2 (en) Radio wave absorber
He et al. Multisection step-impedance modeling and analysis of broadband microwave honeycomb absorbing structures
CN106058484A (en) Broadband electromagnetic wave-absorbing material with multilayer structure
Shi et al. Lightweight composite microwave absorbing materials based on graphene aerogels with honeycomb structure
CN110641130A (en) Preparation method of wave-absorbing foam for absorbing low-frequency electromagnetic waves
CN109239824A (en) A kind of adjustable RCS reduction structure of broadband dynamic combined based on graphene and grating
US9105977B2 (en) Terminal device having meta-structure
Zhang et al. Design and measurement of microwave absorbers comprising resistive frequency selective surfaces
KR101614716B1 (en) Electromagnetic wave absorbation film and absorber with conductor pattern for absorbing near field noise
Jeong et al. Frequency-tunable electromagnetic absorber by mechanically controlling substrate thickness
KR102413827B1 (en) Mechanical Meta-material based Electromagnetic Wave Absorber
JP2007059456A (en) Wave absorber
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
Zheng et al. A novel design of microwave absorbers based on multilayered composite materials for reduction of radar cross section
Döken et al. A simple frequency selective absorber surface design
Duan et al. A composite electromagnetic absorber for anechoic chambers
JP4422980B2 (en) Radio wave absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6481991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350