JP6477149B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6477149B2
JP6477149B2 JP2015070711A JP2015070711A JP6477149B2 JP 6477149 B2 JP6477149 B2 JP 6477149B2 JP 2015070711 A JP2015070711 A JP 2015070711A JP 2015070711 A JP2015070711 A JP 2015070711A JP 6477149 B2 JP6477149 B2 JP 6477149B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
emitting device
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015070711A
Other languages
Japanese (ja)
Other versions
JP2016192459A (en
Inventor
祐太 岡
祐太 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2015070711A priority Critical patent/JP6477149B2/en
Publication of JP2016192459A publication Critical patent/JP2016192459A/en
Application granted granted Critical
Publication of JP6477149B2 publication Critical patent/JP6477149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

一の円形状の実装領域を有する基板上に多数のLED素子を実装して照明等の発光装置を構成することが行われている。また、LED素子に蛍光体を組み合わせ、LED素子の発する光と、この光で励起された蛍光体が発する蛍光とを混色して光を出力する発光装置も普及している。例えば、青色LEDと、この青色光で励起されて黄色光を発するYAG蛍光体とを組み合わせて、白色光を発する照明装置が、照明用途等に利用されている。   A light emitting device such as an illumination is configured by mounting a large number of LED elements on a substrate having a single circular mounting region. In addition, light-emitting devices that combine a phosphor with an LED element and mix the light emitted by the LED element with the fluorescence emitted by the phosphor excited by the light and output light are also widespread. For example, an illuminating device that emits white light by combining a blue LED and a YAG phosphor that emits yellow light when excited by the blue light is used for illumination purposes.

この場合、図9の平面図に示すように、発光装置を構成する実装基板20上の実装領域22は、外形が円形であることが多い。一方でLED素子91は、一般に矩形状である。このため、円形の周囲部分では、図9において斜線で示すように、LED素子91を実装できない未実装領域UAが発生する。このような構成においては、円形の周辺部分にはLED素子91が存在しないことから、光量が相対的に低下し、輝度むらの一因となる。   In this case, as shown in the plan view of FIG. 9, the mounting region 22 on the mounting substrate 20 constituting the light emitting device often has a circular outer shape. On the other hand, the LED element 91 is generally rectangular. For this reason, an unmounted area UA in which the LED element 91 cannot be mounted is generated in the circular peripheral portion, as indicated by hatching in FIG. In such a configuration, since the LED element 91 does not exist in the circular peripheral portion, the amount of light is relatively reduced, which causes uneven brightness.

また、LED素子91を実装した実装領域22上に蛍光体を塗布した場合、図10の断面図(図9においてX−X線における断面図に相当)に示すように、実装領域22の外縁近傍領域CAにおいてはLED素子91のない、蛍光体32のみが塗布された領域が発生する。この部分では、LED素子91から出射された光で励起される蛍光体32の距離が位置毎に異なり、円形の発光領域のなかで色むらが生じるという問題がある。   Further, when a phosphor is applied on the mounting region 22 on which the LED element 91 is mounted, as shown in a cross-sectional view of FIG. 10 (corresponding to a cross-sectional view taken along line XX in FIG. 9), the vicinity of the outer edge of the mounting region 22 In the area CA, an area where only the phosphor 32 is applied without the LED element 91 is generated. In this portion, the distance of the phosphor 32 excited by the light emitted from the LED element 91 differs from position to position, and there is a problem that color unevenness occurs in a circular light emitting region.

一方で、図11A、図11Bに示すようにLED素子を円形の半導体ウエハから切り出す際、扇形に分割することで、これらの分割されたLED素子を組み合わせて、円形状に配置する構成が提案されている(特許文献1)。この構成によれば、複数のLED素子を組み合わせて円形に構成できる。   On the other hand, as shown in FIG. 11A and FIG. 11B, when the LED elements are cut out from the circular semiconductor wafer, a configuration is proposed in which the divided LED elements are combined and arranged in a circular shape by dividing into fan shapes. (Patent Document 1). According to this configuration, a plurality of LED elements can be combined to form a circle.

しかしながら、この構成では、円形の半導体ウエハを分割して、再度これらを組み合わせて円形を復元しているため、発光装置の大きさは、半導体ウエハの大きさに限定されてしまう。いいかえると、異なる大きさの発光装置を得ることができず、柔軟性に欠けるという問題がある。   However, in this configuration, since the circular semiconductor wafer is divided and then combined again to restore the circular shape, the size of the light emitting device is limited to the size of the semiconductor wafer. In other words, there is a problem that light-emitting devices having different sizes cannot be obtained and lack flexibility.

特開2005−109113号公報JP 2005-109113 A

本発明は、従来のこのような背景に鑑みてなされたものである。本発明の目的の一は、任意の大きさの発光装置を容易に構成しつつ、輝度むらや色むらの発生を抑制した発光装置を提供することにある。   The present invention has been made in view of such a conventional background. An object of the present invention is to provide a light-emitting device that can easily generate a light-emitting device of an arbitrary size and suppress the occurrence of uneven brightness and color unevenness.

本発明の一側面に係る発光装置によれば、円形状の実装領域を有する基板と、前記実装領域上に、複数が一定の間隔でマトリックス状に配置された、個々の形状を矩形状とする第一発光素子と、前記実装領域上であって、前記第一発光素子の実装された周囲で、複数が該実装領域の円形の外縁に沿うように配置された、個々の形状を三角形状の第二発光素子とを備え、前記第二発光素子は、前記第一発光素子と同一の発光色の光を発光するものであり、前記第二発光素子の面積を、前記第一発光素子の面積に対して0.8〜1.2倍に設定している。 According to the light emitting device according to one aspect of the present invention, a substrate having a circular mounting area, and a plurality of elements arranged in a matrix at regular intervals on the mounting area are rectangular. A first light emitting element and a plurality of the light emitting elements arranged on the mounting area and around the mounting area of the first light emitting element so as to follow a circular outer edge of the mounting area. A second light emitting element, the second light emitting element emits light of the same emission color as the first light emitting element, and the area of the second light emitting element is the area of the first light emitting element. against it is set to 0.8 to 1.2 times.

上記構成により、発光素子毎の輝度をほぼ一定とでき、特に円形状の実装領域を有する基板の周辺部分での色むらの発生を抑制できる。また、第一発光素子、第二発光素子の面積をほぼ等しくすることで電流量や発熱量をほぼ一定とでき、一部の発光素子の発熱が大きくなって劣化の度合いに差が生じ、色むらの原因となる事態を回避できる。   With the above configuration, the luminance of each light emitting element can be made almost constant, and in particular, the occurrence of color unevenness in the peripheral portion of the substrate having a circular mounting region can be suppressed. In addition, by making the areas of the first light emitting element and the second light emitting element substantially equal, the amount of current and the amount of heat generated can be made substantially constant. The situation that causes unevenness can be avoided.

本発明の実施形態1に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on Embodiment 1 of this invention. 図1のII−II線における断面図である。It is sectional drawing in the II-II line of FIG. 第二発光素子の一例を示す平面図である。It is a top view which shows an example of a 2nd light emitting element. 第二発光素子の他の例を示す平面図である。It is a top view which shows the other example of a 2nd light emitting element. 本発明の実施形態2に係る発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on Embodiment 3 of this invention. 図6のVII−VII線における断面図である。It is sectional drawing in the VII-VII line of FIG. 本発明の実施形態4に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on Embodiment 4 of this invention. 従来の発光装置を示す平面図である。It is a top view which shows the conventional light-emitting device. 従来の他の発光装置を示す断面図である。It is sectional drawing which shows the other conventional light-emitting device. 図11A、図11Bは従来の発光装置を示す平面図である。11A and 11B are plan views showing a conventional light emitting device.

以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。さらに、本明細書において、層上等でいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is an example for embodying the technical idea of the present invention, and the present invention is not limited to the following. Moreover, this specification does not specify the member shown by the claim as the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments. Further, in this specification, the term “upper” as used on the layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is formed apart. It is used to include the case where there is an intervening layer between them.

一実施形態に係る発光装置によれば、前記第一発光素子及び第二発光素子が、第一ピーク波長の光を発するものであり、前記第一発光素子及び第二発光素子の上方に配置された、前記第一発光素子及び第二発光素子が発する第一ピーク波長の光を、該第一ピーク波長と異なる第二ピーク波長の光に変換する波長変換部材を備えている。これにより、前記第一発光素子及び第二発光素子が発する第一ピーク波長の光と、前記波長変換部材が発する第二ピーク波長の光が混色された混色光を出力可能とすることができる。上記構成により、発光素子と波長変換部材がそれぞれ発する光の混色光を出力するに際して、円形状の実装領域の周囲部分での色むらの発生を抑制できる。   According to the light emitting device according to an embodiment, the first light emitting element and the second light emitting element emit light having a first peak wavelength, and are disposed above the first light emitting element and the second light emitting element. In addition, a wavelength conversion member that converts light having a first peak wavelength emitted from the first light emitting element and the second light emitting element into light having a second peak wavelength different from the first peak wavelength is provided. Thereby, it is possible to output mixed color light in which the light having the first peak wavelength emitted from the first light emitting element and the second light emitting element and the light having the second peak wavelength emitted from the wavelength conversion member are mixed. With the above configuration, when outputting mixed light of light emitted from the light emitting element and the wavelength conversion member, it is possible to suppress the occurrence of color unevenness in the peripheral portion of the circular mounting region.

他の実施形態に係る発光装置によれば、前記波長変換部材を、前記円形状の実装領域、第一発光素子及び第二発光素子の上面に直接設けることができる。上記構成により、従来、第一発光素子群の周囲と円形状の実装領域の外縁との間で、第一発光素子のない未実装領域が生じ、この部分に設けられた波長変換部材によって色むらが生じる事態を、未実装領域に第二発光素子を配置することで回避できる。   According to the light emitting device according to another embodiment, the wavelength conversion member can be directly provided on the upper surface of the circular mounting region, the first light emitting element, and the second light emitting element. With the above configuration, conventionally, an unmounted region without the first light emitting element is generated between the periphery of the first light emitting element group and the outer edge of the circular mounting region, and color unevenness is caused by the wavelength conversion member provided in this portion. A situation in which the second light emitting element is arranged in the unmounted region can be avoided.

さらに他の実施形態に係る発光装置によれば、前記第一発光素子を、正方形状に形成することができる。   In the light emitting device according to another embodiment, the first light emitting element can be formed in a square shape.

さらに他の実施形態に係る発光装置によれば、前記第二発光素子が直角三角形状であって、短辺を前記第一発光素子の一辺とほぼ同じ長さとし、斜辺をその2倍とすることができる。   In the light emitting device according to another embodiment, the second light emitting element has a right triangle shape, the short side is substantially the same length as one side of the first light emitting element, and the hypotenuse is doubled. Can do.

さらに他の実施形態に係る発光装置によれば、前記第二発光素子が六方晶系の成長基板を有し、短辺を含む側面と斜辺を含む側面に前記成長基板のM面を含めることができる。   In the light emitting device according to yet another embodiment, the second light emitting element includes a hexagonal growth substrate, and the M surface of the growth substrate is included on the side surface including the short side and the side surface including the oblique side. it can.

さらに他の実施形態に係る発光装置によれば、前記第二発光素子が直角三角形状であって、短辺を前記第一発光素子の一辺とほぼ同じ長さとし、長辺をその2倍とすることができる。   In the light emitting device according to another embodiment, the second light emitting element has a right triangle shape, the short side is substantially the same length as one side of the first light emitting element, and the long side is twice as long. be able to.

さらに他の実施形態に係る発光装置によれば、前記円形状の外縁において、前記実装領域の外縁に沿って配置された1個以上の最外第一発光素子が配される領域が複数あり、前記領域の間に前記第一発光素子が配置される。また、これら領域の間であって、外縁と沿う領域に、1個以上の前記第二発光素子を配置することができる。上記構成により、矩形状の第一発光素子では円形状の実装領域の外縁に沿って、円周と隙間が生じないように配置することが困難であるところの隙間部分に三角形状の第二発光素子が配置され、隙間が低減されることにより、円形状の実装領域の大きさを維持したまま出力光の光量を増大できる。また、発光素子を敷き詰めた領域を円形に近付けて発光領域を円状とし、輝度むらの少ない発光装置を実現できる。 According to the light emitting device according to another embodiment, in the circular outer edge, there are a plurality of areas where one or more outermost first light emitting elements arranged along the outer edge of the mounting area are arranged, The first light emitting element is disposed between the regions . Further, one or more second light emitting elements can be arranged between these regions and in a region along the outer edge. With the above configuration, the rectangular first light emitting element has a triangular second light emission in the gap portion where it is difficult to arrange the circumference and the gap so as not to occur along the outer edge of the circular mounting region. By arranging the elements and reducing the gap, the amount of output light can be increased while maintaining the size of the circular mounting region. In addition, a light emitting device with less luminance unevenness can be realized by making an area where light emitting elements are spread close to a circle and making the light emitting area circular.

さらに他の実施形態に係る発光装置によれば、前記第二発光素子の面積を、前記第一発光素子の面積に対して0.8〜1.2倍に設定することができる。
(実施形態1)
According to the light emitting device according to another embodiment, the area of the second light emitting element can be set to 0.8 to 1.2 times the area of the first light emitting element.
(Embodiment 1)

本発明の実施形態1に係る発光装置100の平面図を、図1に示す。この図に示す発光装置100は、実装基板20と、この実装基板20上に形成された円形状の実装領域22上に配置された複数の第一発光素子1と、複数の第二発光素子2とを備える。各発光素子は、その上面を発光領域としている。   FIG. 1 shows a plan view of the light emitting device 100 according to Embodiment 1 of the present invention. The light-emitting device 100 shown in this figure includes a mounting substrate 20, a plurality of first light-emitting elements 1 disposed on a circular mounting region 22 formed on the mounting substrate 20, and a plurality of second light-emitting elements 2. With. Each light emitting element has a top surface as a light emitting region.

実装基板20は、外形を平面視において矩形状としており、この上面に発光素子を複数個実装するための実装領域22を形成している。このような実装基板20には、ガラスエポキシ基板やセラミック基板等が利用できる。   The mounting substrate 20 has a rectangular outer shape in plan view, and a mounting region 22 for mounting a plurality of light emitting elements is formed on the upper surface. As the mounting substrate 20, a glass epoxy substrate, a ceramic substrate, or the like can be used.

この実装領域22上に、一定の間隔でマトリックス状に、複数の第一発光素子1が配置されている。各第一発光素子1は、外形を平面視において矩形状としている。好ましくは正方形状とする。なお本明細書において「マトリックス状」とは、縦横に配置された行列状に限られず、斜め、あるいは千鳥状にオフセット配置された状態も含む意味で使用する。   On the mounting area 22, a plurality of first light emitting elements 1 are arranged in a matrix at regular intervals. Each of the first light emitting elements 1 has a rectangular outer shape in plan view. A square shape is preferable. In the present specification, the “matrix shape” is not limited to a matrix shape arranged vertically and horizontally, but includes a state in which they are obliquely or staggered.

一方、第二発光素子2は、複数の第一発光素子1が実装された第一発光素子群10の周囲であって、実装領域22の外縁との間に配置される。具体的には、矩形状に形成された第一発光素子1を、実装領域22に配置する場合、実装基板20上の円形の実装領域22を完全に矩形状の第一発光素子1のみで隙間なく埋めることは困難である。よって部分的に第一発光素子群10の周囲と実装領域22の外縁との間に、第一発光素子が配置されない未実装領域UAが発生する(図9の平面図において斜線で示す領域)。この場合、実装領域22の外縁で未実装領域UAにおいては、他の領域と比較して光量が相対的に低下し、輝度の低下や輝度むらの一因となる。さらに、第一発光素子群10による発光パターンが、本来の実装領域の外縁とは異なる輪郭で現れることとなり、見栄えの面でも好ましくない。   On the other hand, the second light emitting element 2 is disposed around the first light emitting element group 10 on which the plurality of first light emitting elements 1 are mounted and between the outer edges of the mounting region 22. Specifically, when the first light emitting element 1 formed in a rectangular shape is disposed in the mounting area 22, the circular mounting area 22 on the mounting substrate 20 can be separated by a completely rectangular first light emitting element 1 alone. It is difficult to fill without. Therefore, an unmounted area UA in which the first light emitting elements are not arranged is partially generated between the periphery of the first light emitting element group 10 and the outer edge of the mounting area 22 (area indicated by oblique lines in the plan view of FIG. 9). In this case, in the unmounted area UA at the outer edge of the mounting area 22, the light amount is relatively decreased as compared with other areas, which causes a decrease in luminance and luminance unevenness. Furthermore, the light emission pattern by the first light emitting element group 10 appears with a different outline from the outer edge of the original mounting region, which is not preferable in terms of appearance.

そこで、図1に示すように、第一発光素子1と異なる形状の第二発光素子2、具体的には三角形状とした第二発光素子2を用意し、かつ実装領域の外縁と第一発光素子群10の周囲との隙間に、第二発光素子2を配置する。このようにして、図2の断面図に示すように未実装領域UAを低減して、実装領域22の外縁に沿った発光パターンを実現でき、実装領域を最大限生かした高出力が得られる。
(第二発光素子2)
Therefore, as shown in FIG. 1, a second light emitting element 2 having a different shape from the first light emitting element 1, specifically, a second light emitting element 2 having a triangular shape is prepared, and the outer edge of the mounting region and the first light emitting element 2 are prepared. The second light emitting element 2 is arranged in a gap with the periphery of the element group 10. In this way, as shown in the cross-sectional view of FIG. 2, the unmounted area UA can be reduced, and a light emission pattern along the outer edge of the mounting area 22 can be realized, and a high output that makes the best use of the mounting area can be obtained.
(Second light emitting element 2)

第二発光素子2は、好ましくはその発光領域の面積を、第一発光素子1の発光領域の面積とほぼ等しくするように構成する。このようにすることで、第一発光素子1と第二発光素子2の輝度をほぼ等しくして、特に実装領域22の外周部分での色むらの発生を抑制できる。また、第一発光素子1、第二発光素子2の面積をほぼ等しくすることで、各発光素子に流れる電流量や発熱量をほぼ一定とできるので、第一発光素子1と第二発光素子2の劣化の度合いに大きな差が生じることを回避できる。この結果より、発光素子毎の劣化の差に起因する色むらの発生を抑制できる。なお本明細書において、第二発光素子2の面積が第一発光素子1の面積とほぼ等しいとは、第一発光素子の面積に対して0.8倍〜1.2倍を含む意味で使用する。好ましくは、第一発光素子の面積に対して約0.866とする。   The second light emitting element 2 is preferably configured such that the area of the light emitting region is substantially equal to the area of the light emitting region of the first light emitting element 1. By doing in this way, the brightness | luminance of the 1st light emitting element 1 and the 2nd light emitting element 2 can be made substantially equal, and generation | occurrence | production of the color nonuniformity especially in the outer peripheral part of the mounting area | region 22 can be suppressed. Also, by making the areas of the first light-emitting element 1 and the second light-emitting element 2 substantially equal, the amount of current and the amount of heat generated in each light-emitting element can be made substantially constant, so the first light-emitting element 1 and the second light-emitting element 2 It is possible to avoid a large difference in the degree of degradation of the. From this result, it is possible to suppress the occurrence of color unevenness due to the difference in deterioration for each light emitting element. In the present specification, the area of the second light-emitting element 2 is substantially equal to the area of the first light-emitting element 1 is used in the meaning including 0.8 to 1.2 times the area of the first light-emitting element. To do. Preferably, it is about 0.866 with respect to the area of a 1st light emitting element.

また第二発光素子2が発する光の発光色は、第一発光素子1の発光色と一致させることが好ましい。すなわち第一発光素子1及び第二発光素子2は、共通の第一ピーク波長の光を発するものとすることが好ましい。なお半導体発光素子のピーク波長は、同じ半導体ウエハから製造した発光素子間でも多少のばらつきが生じることが一般的であることから、共通の第一ピーク波長とは厳密な一致を要求するものではない。また、人の目において同じ色と視覚される範囲であれば、同じ発光色として扱うことで差し支えない。よって本明細書においても、このような若干のばらつきを許容して共通のピーク波長乃至発光色として扱うものとする。   In addition, the emission color of light emitted from the second light emitting element 2 is preferably matched with the emission color of the first light emitting element 1. That is, it is preferable that the first light emitting element 1 and the second light emitting element 2 emit light having a common first peak wavelength. Since the peak wavelength of the semiconductor light emitting element generally varies somewhat between light emitting elements manufactured from the same semiconductor wafer, it does not require exact coincidence with the common first peak wavelength. . Moreover, if it is a range which is visually recognized as the same color by human eyes, it can be handled as the same emission color. Therefore, also in this specification, such a slight variation is allowed and treated as a common peak wavelength or emission color.

図1の例では、第一発光素子1を正方形状に形成している。一方、第二発光素子2は直角三角形状に形成している。直角三角形は、短辺と長辺と斜辺とでなり、短辺と長辺の間がなす角を90°としている。上述の通り、第二発光素子2はその発光領域の面積が第一発光素子1とほぼ等しいことが好ましい。例えば第一発光素子1の一辺の長さを1とするとき、第二発光素子2は図3に示すように短辺の長さを1、長辺の長さを2、斜辺の長さを√5≒2.24とする。これによって、第一発光素子1と第二発光素子2の面積を一致させることができる。この直角三角形においては、斜辺と短辺のなす角度は約63.4°となり、斜辺と長辺のなす角度は約26.6°となる。   In the example of FIG. 1, the first light emitting element 1 is formed in a square shape. On the other hand, the second light emitting element 2 is formed in a right triangle shape. The right triangle is composed of a short side, a long side, and a hypotenuse, and an angle formed between the short side and the long side is 90 °. As described above, it is preferable that the area of the light emitting region of the second light emitting element 2 is substantially equal to that of the first light emitting element 1. For example, when the length of one side of the first light emitting element 1 is 1, the second light emitting element 2 has a short side length of 1, a long side length of 2, and an oblique side length of 2, as shown in FIG. √5≈2.24. Thereby, the areas of the first light emitting element 1 and the second light emitting element 2 can be matched. In this right triangle, the angle between the hypotenuse and the short side is about 63.4 °, and the angle between the hypotenuse and the long side is about 26.6 °.

一方において、発光素子の製造に際しては、半導体ウエハを割断して個片化するところ、半導体の成長基板にはサファイア等六方晶系の基板が用いられ、また成長基板上に成長される半導体層としてはGaN系の半導体材料が採用されることが多い。サファイア基板のC面上にGaN系の半導体材料を成長させた場合においては、劈開性は成長基板のM面に現れる。そして平面で見た場合、基板のA面と半導体層のM面との間には30°のずれがあることから、結果として半導体ウエハを割断して半導体発光素子を個片化する際、60°や30°単位で割断することにより、劈開性を利用して効率よく割断することができ、また得られる半導体発光素子の歩留まりも向上する。したがって、第二発光素子の短辺を含む側面と斜辺を含む側面が、成長基板のM面を含むように製造することが好ましい。これにより、図4に示すように、短辺と長辺がなす角度を60°とした直角三角形状に第二発光素子2’を形成することができ、第二発光素子の製造において有利となる。   On the other hand, when manufacturing a light emitting device, a semiconductor wafer is cut into pieces, and a hexagonal substrate such as sapphire is used as a semiconductor growth substrate, and a semiconductor layer grown on the growth substrate is used. Often, GaN-based semiconductor materials are used. When a GaN-based semiconductor material is grown on the C-plane of the sapphire substrate, the cleavage property appears on the M-plane of the growth substrate. When viewed in a plane, there is a 30 ° shift between the A-plane of the substrate and the M-plane of the semiconductor layer. As a result, when the semiconductor wafer is cleaved and the semiconductor light-emitting elements are singulated, 60 By cleaving in units of ° or 30 °, cleaving can be used to efficiently cleave, and the yield of the obtained semiconductor light emitting device can be improved. Therefore, it is preferable that the side surface including the short side and the side surface including the oblique side of the second light emitting element are manufactured so as to include the M plane of the growth substrate. As a result, as shown in FIG. 4, the second light emitting element 2 ′ can be formed in a right triangle having an angle between the short side and the long side of 60 °, which is advantageous in manufacturing the second light emitting element. .

この場合において、第二発光素子2’の短辺の長さを正方形状の第一発光素子1の一辺の長さ(例えば1)と一致させると、第二発光素子2’の面積は√3/2≒0.87となり、第一発光素子1の面積(例えば1)よりも若干小さくなる。しかしながら、その差は僅かであって実用上、第一発光素子に比べて輝度が顕著に低いとか、劣化の度合いが著しく大きいといった弊害もない。一方で、第二発光素子の製造上の利点が得られるため、本願発明は第二発光素子の面積を第一発光素子と一致させる場合のみに限らず、このように若干異なる場合も含むものとする。具体的には、第二発光素子の面積を、第一発光素子の面積に対して0.8〜1.2倍とする。この範囲であれば、実用上、第一発光素子と第二発光素子の性能や寿命を同一視できる。   In this case, when the length of the short side of the second light emitting element 2 ′ is matched with the length of one side (for example, 1) of the square first light emitting element 1, the area of the second light emitting element 2 ′ is √3. /2≈0.87, which is slightly smaller than the area (for example, 1) of the first light emitting element 1. However, the difference is slight, and there is no practical problem that the luminance is remarkably lower than that of the first light emitting element or the degree of deterioration is remarkably large. On the other hand, since an advantage in manufacturing the second light-emitting element can be obtained, the present invention is not limited to the case where the area of the second light-emitting element is matched with that of the first light-emitting element, and includes cases where the area is slightly different. Specifically, the area of the second light emitting element is set to 0.8 to 1.2 times the area of the first light emitting element. If it is this range, the performance and lifetime of a 1st light emitting element and a 2nd light emitting element can be equated practically.

このようにして得られた第二発光素子2は、複数の第一発光素子1をマトリックス状に実装領域22に配置した状態で、複数の第一発光素子1で構成された第一発光素子群10の輪郭と、実装領域22の輪郭との間に配置される。図1の例では、複数の第一発光素子1を実装領域22の内部に正方形状に配置する。例えば、実装領域22を円形とした場合、この円に内接する正方形を描き、この正方形内に収まるように第一発光素子1を縦横に並べる。この例では、正方形状の第一発光素子1を縦6個×横6個の36個、配置している。   The second light-emitting element 2 obtained in this way is a first light-emitting element group constituted by a plurality of first light-emitting elements 1 in a state where the plurality of first light-emitting elements 1 are arranged in the mounting region 22 in a matrix. 10 and the outline of the mounting area 22 are arranged. In the example of FIG. 1, the plurality of first light emitting elements 1 are arranged in a square shape inside the mounting region 22. For example, when the mounting region 22 is circular, a square inscribed in the circle is drawn, and the first light emitting elements 1 are arranged vertically and horizontally so as to fit within the square. In this example, 36 square-shaped first light emitting elements 1 of 6 vertical × 6 horizontal are arranged.

さらにこの状態で、36個の第一発光素子群10がなす大きな仮想正方形VSと、実装領域22の円との間には隙間がある。そこでこの隙間に、さらに第一発光素子1を配置する。図1の例では、仮想正方形VSの各辺に沿って、第一発光素子1を2段に配置し、さらに各段の第一発光素子1の数を変更している。ここでは、下段の第一発光素子1の数は、仮想正方形VSと同じ数(図1の例では6個)とし、上段の第一発光素子1の数はこれよりも少なくする(図1の例では2個)。このようにすることで、正方形状の第一発光素子1を複数、円形の実装領域22の実装領域内に、最大限配置できる。また隣接する第一発光素子同士の間は、一定間隔としている。   Further, in this state, there is a gap between the large virtual square VS formed by the 36 first light emitting element groups 10 and the circle of the mounting region 22. Therefore, the first light emitting element 1 is further disposed in this gap. In the example of FIG. 1, the first light emitting elements 1 are arranged in two stages along each side of the virtual square VS, and the number of the first light emitting elements 1 in each stage is changed. Here, the number of the first light-emitting elements 1 in the lower stage is the same as that of the virtual square VS (six in the example of FIG. 1), and the number of the first light-emitting elements 1 in the upper stage is smaller than this (in FIG. 1). 2 in the example). By doing so, a plurality of square-shaped first light emitting elements 1 can be arranged in the mounting area of the circular mounting area 22 to the maximum extent. In addition, there is a fixed interval between adjacent first light emitting elements.

さらにこの状態で、三角形状の第二発光素子2を配置する。ここでは、仮想正方形VSの各辺に沿って二段に配置された第一発光素子1の内、上段側の第一発光素子(2個の最外第一発光素子1M)については、実装領域22の外縁との間の隙間は殆ど無い。一方で、下段側の第一発光素子(6個)の内、中央(2個)を除く左右の第一発光素子(それぞれ2個)については、実装領域22の外縁との間に隙間が存在している(図9において斜線で示す第一未実装領域UA1)。より正確には、下段側の第一発光素子の上面と、上段側の第一発光素子の側面と、実装領域22の外縁とで囲まれた、三角形状の領域(図9のUA1)が存在する。この部分に、直角三角形状に形成された第二発光素子2を配置する。これによって、従来矩形状の発光素子では埋めることが困難であった実装領域22の周辺の領域を、三角形状とした第二発光素子2で埋めることができる。上記構成により、発光素子を増やすことによる発光出力の向上が得られ、また発光パターンを実装領域22の円形に近付けることができ、輝度むらの少ない高品質な発光装置100を得ることが可能となる。   Further, in this state, the triangular second light emitting element 2 is arranged. Here, among the first light emitting elements 1 arranged in two stages along each side of the virtual square VS, the upper first light emitting elements (two outermost first light emitting elements 1M) There is almost no gap between 22 outer edges. On the other hand, among the first light emitting elements on the lower side (six), the left and right first light emitting elements (two each) excluding the center (two) have a gap between the outer edge of the mounting region 22. (First unmounted area UA1 indicated by hatching in FIG. 9). More precisely, there is a triangular area (UA1 in FIG. 9) surrounded by the upper surface of the lower first light emitting element, the side surface of the upper first light emitting element, and the outer edge of the mounting area 22. To do. In this portion, the second light emitting element 2 formed in a right triangle shape is arranged. As a result, the region around the mounting region 22 that has been difficult to fill with a rectangular light emitting element can be filled with the triangular second light emitting element 2. With the above configuration, the light emission output can be improved by increasing the number of light emitting elements, and the light emitting pattern can be brought close to the circular shape of the mounting region 22, so that the high quality light emitting device 100 with less luminance unevenness can be obtained. .

なお、第二発光素子2の配置位置を特定する方法として、例えば、円形の実装領域22に対して、この円形の中心を通る十字状に第一発光素子1を配置し(図1の例では2個の第一発光素子の組を十字状に配置)、この十字状に配置された第一発光素子1の内、最も外側、すなわち実装領域22の外縁に沿って配置された最外第一発光素子1Mを基準とし、最外第一発光素子1Mの側方、あるいは十字状に配置された上下左右の最外第一発光素子1M同士の間に、第二発光素子2を配置すると表現することもできる。換言すると、第二発光素子2は、概ね、複数の第一発光素子1が配置されて塊状に構成される第一発光素子群10の外郭と、実装領域22の外郭との間の隙間領域に配置されるということができるが、図1の例では、最外第一発光素子1Mが、隙間領域に配置されているため、隙間領域の内、最外第一発光素子1Mが配置されていない領域、と捉えることもできる。いずれにしても、第一発光素子を配置できない隙間領域に、第二発光素子2を配置することで、このような隙間を低減して、発光装置100の品質を向上させるものである。   As a method for specifying the arrangement position of the second light emitting element 2, for example, the first light emitting element 1 is arranged in a cross shape passing through the center of the circle with respect to the circular mounting region 22 (in the example of FIG. 1). A set of two first light emitting elements arranged in a cross shape), and the outermost first of the first light emitting elements 1 arranged in a cross shape, that is, the outermost first arranged along the outer edge of the mounting region 22 Based on the light emitting element 1M, it is expressed that the second light emitting element 2 is arranged on the side of the outermost first light emitting element 1M or between the upper, lower, left and right outermost first light emitting elements 1M. You can also In other words, the second light emitting element 2 is generally located in a gap area between the outer surface of the first light emitting element group 10 in which a plurality of first light emitting elements 1 are arranged and configured in a lump shape and the outer surface of the mounting region 22. Although it can be said that the outermost first light emitting element 1M is arranged in the gap area in the example of FIG. 1, the outermost first light emitting element 1M is not arranged in the gap area. It can also be regarded as an area. In any case, by disposing the second light emitting element 2 in the gap area where the first light emitting element cannot be disposed, such a gap is reduced and the quality of the light emitting device 100 is improved.

なお、以上の例は一例であり、第一発光素子及び第二発光素子の配置パターンは、円形状の実装領域を有する基板の大きさ(半径等)、第一発光素子の形状、大きさ(一辺の長さ)、第二発光素子の形状、大きさ、あるいは発光装置に求められる品質等によって適宜変更できる。   Note that the above example is an example, and the arrangement pattern of the first light emitting element and the second light emitting element includes the size (radius etc.) of the substrate having a circular mounting region, the shape and size of the first light emitting element ( The length of one side), the shape and size of the second light emitting element, the quality required for the light emitting device, and the like.

第一発光素子1、第二発光素子2は、実装領域22の上面に、フリップチップ実装される。あるいは、ワイヤボンディング等により実装することも可能である。発光素子は、電圧を印加することで自ら発光する半導体素子であり、窒化物半導体等から構成される既知の半導体発光素子を適用できる。また発光素子は、所望の発光色を得るために任意の波長のものを選択すればよい。具体的には、青色の光(波長430nm〜490nm)や緑色の光(波長490nm〜570nm)を発光する発光素子としては、InxAlYGa1-x-yN(0≦X、0≦Y、X+Y≦1)で表される窒化物系半導体を、赤色の光(波長620nm〜750nm)を発光する発光素子としては、GaAlAs,AlInGaP等で表されるヒ素系化合物やリン系化合物の半導体をそれぞれ適用することができ、さらに混晶比により発光色を変化させた発光素子を利用できる。また前記半導体素子の成長基板としては、サファイアやGaN等六方晶系の基板が用いられる。
(波長変換部材30)
The first light emitting element 1 and the second light emitting element 2 are flip-chip mounted on the upper surface of the mounting region 22. Alternatively, it can be mounted by wire bonding or the like. The light-emitting element is a semiconductor element that emits light by applying a voltage, and a known semiconductor light-emitting element made of a nitride semiconductor or the like can be applied. In addition, a light emitting element having an arbitrary wavelength may be selected in order to obtain a desired emission color. Specifically, as a light emitting element that emits blue light (wavelength 430 nm to 490 nm) or green light (wavelength 490 nm to 570 nm), In x Al Y Ga 1-xy N (0 ≦ X, 0 ≦ Y, As a light emitting element that emits red light (wavelength: 620 nm to 750 nm) using a nitride semiconductor represented by X + Y ≦ 1), an arsenic compound or a phosphorus compound semiconductor represented by GaAlAs, AlInGaP, or the like is used. Further, a light-emitting element in which the emission color is changed depending on the mixed crystal ratio can be used. As the growth substrate for the semiconductor element, a hexagonal substrate such as sapphire or GaN is used.
(Wavelength conversion member 30)

また、発光装置に波長変換部材30を含むことができる。波長変換部材30は、第一発光素子1及び第二発光素子2が発する第一ピーク波長の光を、この第一ピーク波長とは波長の異なる第二ピーク波長の光に変換する部材である。このような波長変換部材30としては蛍光体が好適に利用される。   Further, the wavelength conversion member 30 can be included in the light emitting device. The wavelength conversion member 30 is a member that converts light having a first peak wavelength emitted from the first light emitting element 1 and the second light emitting element 2 into light having a second peak wavelength different from the first peak wavelength. As such a wavelength conversion member 30, a phosphor is preferably used.

波長変換部材30は、第一発光素子1及び第二発光素子2の上方に配置される。このような構成により発光装置は、第一発光素子1及び第二発光素子2が発する第一波長の光と、波長変換部材30が発する第二波長の光とが混色された混色光を出力することができる。このような構成により、発光素子と波長変換部材30がそれぞれ発する光の混色光を出力するに際して、実装領域22の周囲部分で色むらが発生することを抑制できる。例えば、第一発光素子1、第二発光素子2に青色LEDを、波長変換部材30にYAG等の蛍光体を用いれば、青色LEDの青色光と、この青色光で励起されて蛍光体が発する黄色光の蛍光とを混合させて得られる白色光を出力する発光装置を構成できる。   The wavelength conversion member 30 is disposed above the first light emitting element 1 and the second light emitting element 2. With such a configuration, the light emitting device outputs mixed light in which the first wavelength light emitted from the first light emitting element 1 and the second light emitting element 2 and the second wavelength light emitted from the wavelength conversion member 30 are mixed. be able to. With such a configuration, it is possible to suppress the occurrence of uneven color in the peripheral portion of the mounting region 22 when outputting the mixed color light of the light emitted from the light emitting element and the wavelength conversion member 30. For example, if a blue LED is used for the first light emitting element 1 and the second light emitting element 2 and a phosphor such as YAG is used for the wavelength conversion member 30, the blue light of the blue LED and the phosphor are emitted by being excited by the blue light. A light emitting device that outputs white light obtained by mixing yellow fluorescent light can be configured.

波長変換部材30は、基本となる光透過部材として、ガラス板に波長換部材を備えたもの、あるいは波長換部材である蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体、あるいは蛍光体結晶粒子による、それと適宜付加された透光性材料との焼結体、凝集体、多孔質性材料、それらに透光性材料、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等で構成できる。なお光透過部材は、樹脂等の有機材料よりも無機材料で構成されることが耐熱性の観点からは好ましい。具体的には蛍光体を含有する透光性の無機材料からなることが好ましく、特に蛍光体と無機物(結合材、バインダー)との焼結体、あるいは蛍光体からなる焼結体や結晶とすることで信頼性が高まる。なお、波長変換部材30としてYAGの蛍光体を用いる場合、YAGの単結晶や高純度の焼結体のほか、アルミナ(Al23)を結合材とするYAG/アルミナの焼結体、ガラスを結合材とした焼結体が信頼性の観点から好ましい。また、光透過部材を板状とすることで、面状に構成される発光素子1の出射面との結合効率が良く、光透過部材の主面とが略平行になるよう容易に位置合わせできる。加えて、光透過部材の厚みを略一定とすることで、通過する光の波長変換量を略均一として混色の割合を安定させ、発光面の部位における色むらを抑止できる。このため、1つの光透過部材に複数の第一発光素子1を搭載する場合において、個々の第一発光素子1の配置に起因する発光面内の輝度や色度の分布にむらが少なく略均一で高輝度の発光を得ることができる。
(実施形態2)
The wavelength conversion member 30 has a wavelength conversion member on a glass plate as a basic light transmission member, or a phosphor crystal that is a wavelength conversion member or a single crystal, a polycrystal, an amorphous body having a phase thereof, A sintered body, agglomerate, porous material, and a translucent material, for example, a translucent resin mixed in and impregnated with a ceramic body or phosphor crystal particles and a translucent material appropriately added thereto. Or a translucent member containing phosphor particles, for example, a molded body of translucent resin. In addition, it is preferable from a heat resistant viewpoint that a light transmissive member is comprised with inorganic materials rather than organic materials, such as resin. Specifically, it is preferably made of a translucent inorganic material containing a phosphor, and in particular, a sintered body of a phosphor and an inorganic substance (binding material, binder), or a sintered body or crystal made of a phosphor. This increases reliability. When a YAG phosphor is used as the wavelength converting member 30, in addition to a YAG single crystal or a high purity sintered body, a YAG / alumina sintered body using alumina (Al 2 O 3 ) as a binder, glass From the viewpoint of reliability, a sintered body using as a binder is preferable. Further, by making the light transmitting member into a plate shape, the coupling efficiency with the emission surface of the light emitting element 1 configured in a planar shape is good, and the light transmitting member can be easily aligned so as to be substantially parallel to the main surface of the light transmitting member. . In addition, by making the thickness of the light transmission member substantially constant, the amount of wavelength conversion of the light passing therethrough can be made substantially uniform, the color mixing ratio can be stabilized, and color unevenness at the site of the light emitting surface can be suppressed. For this reason, in the case where a plurality of first light emitting elements 1 are mounted on one light transmitting member, there is little unevenness in luminance and chromaticity distribution in the light emitting surface due to the arrangement of the individual first light emitting elements 1 and is substantially uniform. High luminance can be obtained.
(Embodiment 2)

ここで実施形態2として、波長変換部材30を備える発光装置200の模式断面図を図5に示す。この図に示す発光装置200は、複数の第一発光素子1、第二発光素子2を実装した実装領域22上に、透光性の封止部材40を設けており、さらにこの封止部材40の上面に、波長変換部材30を配置している。このような構成により、波長変換部材30を発光素子と離間させて、発光素子が発する光や熱の影響で波長変換部材30の劣化が促進される事態を回避しつつ、発光素子の発する第一ピーク波長の光を第二ピーク波長の光に変換することが可能となる。   Here, as Embodiment 2, a schematic cross-sectional view of a light-emitting device 200 including the wavelength conversion member 30 is shown in FIG. In the light emitting device 200 shown in this figure, a translucent sealing member 40 is provided on a mounting region 22 on which a plurality of first light emitting elements 1 and second light emitting elements 2 are mounted. A wavelength conversion member 30 is disposed on the upper surface of the substrate. With such a configuration, the wavelength conversion member 30 is separated from the light emitting element, and the first light emitted from the light emitting element is avoided while avoiding the situation where the deterioration of the wavelength conversion member 30 is accelerated by the influence of light or heat emitted from the light emitting element. It becomes possible to convert light having a peak wavelength into light having a second peak wavelength.

封止部材40には、透光性を備え、耐候性に優れた樹脂が好適に利用できる。例えば、ポリオレフィン系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、エポキシ樹脂、アクリル樹脂、アクリレート樹脂、メタクリル樹脂(PMMA等)、ウレタン樹脂、ポリイミド樹脂、ポリノルボルネン樹脂、フッ素樹脂、シリコーン樹脂、変性シリコーン樹脂、変性エポキシ樹脂等から選択される少なくとも1種の樹脂が挙げられる。   For the sealing member 40, a resin having translucency and excellent weather resistance can be suitably used. For example, polyolefin resin, polycarbonate resin, polystyrene resin, epoxy resin, acrylic resin, acrylate resin, methacrylic resin (PMMA, etc.), urethane resin, polyimide resin, polynorbornene resin, fluorine resin, silicone resin, modified silicone resin, modified epoxy Examples thereof include at least one resin selected from resins and the like.

波長変換部材30は、第一発光素子1及び第二発光素子2から発された光の少なくとも一部を吸収して異なる波長の光に変換する。このような波長変換部材には、例えば蛍光体を好適に用いることができる。また波長変換部材30は、蛍光体を樹脂等のバインダに含有させて層状に形成した蛍光体層とすることができる。また蛍光体は一種類のみとする他、複数種類を混合させることもできる。蛍光体は公知の材料を適用すればよく、例えばY(イットリウム)、Al(アルミニウム)、およびGa(ガーネット)を混合してCe等で賦活されたYAG系蛍光体や、Eu,Ce等のランタノイド系元素で主に賦活された、窒化物系蛍光体、酸窒化物系蛍光体等を用いることができる。これらの材料から、第一発光素子1及び第二発光素子2の発光色と組み合わせて、照射領域から照射される光が所望の色となるように選択する。例えば、緑色や黄色を発光するYAG系蛍光体やクロロシリケート蛍光体、赤色を発光する(Sr,Ca)AlSiN3:Eu等のSCASN系蛍光体、CaAlSiN3:Eu等のCASN系蛍光体が挙げられ、また2種類以上の蛍光体を混合して用いてもよい。
(実施形態3)
The wavelength conversion member 30 absorbs at least a part of the light emitted from the first light emitting element 1 and the second light emitting element 2 and converts it into light of different wavelengths. For such a wavelength conversion member, for example, a phosphor can be suitably used. Moreover, the wavelength conversion member 30 can be a phosphor layer that is formed into a layer by containing a phosphor in a binder such as a resin. In addition to only one type of phosphor, a plurality of types can be mixed. A known material may be applied to the phosphor, for example, a YAG-based phosphor activated with Ce or the like by mixing Y (yttrium), Al (aluminum), and Ga (garnet), or a lanthanoid such as Eu or Ce. Nitride-based phosphors, oxynitride-based phosphors and the like mainly activated with a system element can be used. From these materials, in combination with the emission colors of the first light emitting element 1 and the second light emitting element 2, the light emitted from the irradiation region is selected so as to have a desired color. Examples include YAG phosphors and chlorosilicate phosphors that emit green and yellow, SCASN phosphors such as (Sr, Ca) AlSiN 3 : Eu that emit red, and CASN phosphors such as CaAlSiN 3 : Eu. In addition, two or more kinds of phosphors may be mixed and used.
(Embodiment 3)

一方で、波長変換部材を、実装領域22の上面、及び第一発光素子1や第二発光素子2の上面に直接設けることもできる。このような例を実施形態3として、図6の模式平面図及び図7の拡大模式断面図に示す。これらの図に示す発光装置300は、波長変換部材として蛍光体32を直接、第一発光素子1及び第二発光素子2を実装した実装領域22の実装面上に塗布している。蛍光体32を塗布する方法としては、沈降や電着、パルススプレー等が利用できる。   On the other hand, the wavelength conversion member can also be provided directly on the upper surface of the mounting region 22 and the upper surfaces of the first light emitting element 1 and the second light emitting element 2. Such an example is shown as a third embodiment in the schematic plan view of FIG. 6 and the enlarged schematic cross-sectional view of FIG. In the light emitting device 300 shown in these drawings, the phosphor 32 is directly applied as a wavelength conversion member on the mounting surface of the mounting region 22 in which the first light emitting element 1 and the second light emitting element 2 are mounted. As a method of applying the phosphor 32, sedimentation, electrodeposition, pulse spray, or the like can be used.

このように、直接、蛍光体32を実装領域に塗布する構成においては、本願発明を適用することで色むらを低減できるという優れた効果が得られる。即ち、従来の矩形状の第一発光素子のみを用いる発光装置においては、図9の模式平面図に示すように、第一発光素子群10の周囲と実装領域22の外縁との間で、第一発光素子のない未実装領域UAが生じる。この状態で蛍光体32を実装領域に塗布すると、図10の断面図に示すように、未実装領域UAに蛍光体32が塗布される結果、この領域からは蛍光体32で波長変換された光のみが生じることとなる。例えば、第一発光素子1に青色LED、蛍光体32にYAG蛍光体32を用いる場合、第一発光素子1を実装した領域からは、青色LEDからの青色光と、YAG蛍光体32で波長変換された黄色光との混色光である白色光が得られる。しかし未実装領域UAにおいては、青色LEDが存在しないため、波長変換された黄色光によって蛍光体が励起されるため、結果として円形状の発光装置の周囲において、白色光の周囲が部分的により黄色っぽくなり、色むらが生じる原因となっていた。   As described above, in the configuration in which the phosphor 32 is directly applied to the mounting region, an excellent effect that uneven color can be reduced by applying the present invention is obtained. That is, in the conventional light emitting device using only the rectangular first light emitting element, the first light emitting element group 10 and the outer edge of the mounting region 22 are arranged as shown in the schematic plan view of FIG. An unmounted area UA without one light emitting element is generated. When the phosphor 32 is applied to the mounting area in this state, as shown in the cross-sectional view of FIG. 10, the phosphor 32 is applied to the unmounted area UA. As a result, the light wavelength-converted by the phosphor 32 from this area. Only will occur. For example, when a blue LED is used for the first light emitting element 1 and a YAG phosphor 32 is used for the phosphor 32, the wavelength conversion is performed between the blue light from the blue LED and the YAG phosphor 32 from the region where the first light emitting element 1 is mounted. As a result, white light which is a mixed color light with the yellow light is obtained. However, since there is no blue LED in the unmounted area UA, the phosphor is excited by the wavelength-converted yellow light, and as a result, the periphery of the white light is partially yellowed around the circular light emitting device. It became colored and caused uneven color.

これに対して、実施形態3に係る発光装置300においては、図6の平面図に示すように従来、未実装領域UAであった領域に第二発光素子2を配置したことから、図7の断面図に示すように、実装領域22の外周においても第二発光素子2と波長変換部材の組み合わせを配置できることから、他の領域と同様に混色光を得ることができ、結果として色むらのない均一で高品質な光を得ることが可能となる。
(実施形態4)
On the other hand, in the light emitting device 300 according to the third embodiment, as shown in the plan view of FIG. 6, the second light emitting element 2 is conventionally disposed in the region that was the unmounted region UA. As shown in the cross-sectional view, since the combination of the second light emitting element 2 and the wavelength conversion member can be arranged also on the outer periphery of the mounting region 22, it is possible to obtain mixed color light as in other regions, and as a result, there is no color unevenness. Uniform and high-quality light can be obtained.
(Embodiment 4)

以上の例では、第一発光素子1に加えて、これと異なる形状の第二発光素子2を組み合わせた発光素子を説明した。ただ本発明は、追加する発光素子の種類を一種類に限定するものでなく、二種類以上の異なる形状の発光素子を組み合わせてもよい。このような構成によって、より緻密に未実装領域を発光素子で埋めて、一層均一な発光装置を得ることができる。このような例として、第三発光素子3を加えた発光装置の例を実施形態4として図8の平面図に示す。この発光装置400の例では、上述した第一発光素子1、第二発光素子2に加えて、これらと異なる形状の第三発光素子3を組み合わせている。第三発光素子3は、直角二等辺三角形としている。第三発光素子3は、第二発光素子2を配置できない小さな隙間領域に配置している。図8では、仮想正方形VSの各頂点と、実装領域22の外縁との間に形成される第二未実装領域UA2に、第三発光素子3を配置している。これによって、図1の構成に比べ一層隙間を低減し、高出力で高品質な発光装置400が得られる。この第三発光素子3は、第一発光素子1の半分の面積としている。すなわち第三発光素子3の直角二等辺三角形の燐辺を、第一発光素子1の一辺の長さと等しくしている。ただ、第三発光素子3の発光面積が第一発光素子1の1/2となるため、寿命や発熱の点では不利となる。また、複数の異なる発光素子を用いることで製造の手間やコストがかかる点でも不利となるため、求められる発光装置の品質や精度等に応じて適宜選択される。例えば、精度が優先される用途においては、さらに異なる形状の第四発光素子を用いる等、四種類以上の発光素子を用いることも可能である。   In the above example, in addition to the first light emitting element 1, the light emitting element in which the second light emitting element 2 having a different shape is combined has been described. However, the present invention does not limit the type of light emitting element to be added to one type, and two or more types of light emitting elements having different shapes may be combined. With such a configuration, a more uniform light-emitting device can be obtained by more densely filling an unmounted region with a light-emitting element. As such an example, an example of a light emitting device to which the third light emitting element 3 is added is shown as a fourth embodiment in the plan view of FIG. In the example of the light emitting device 400, in addition to the first light emitting element 1 and the second light emitting element 2 described above, the third light emitting element 3 having a shape different from these is combined. The third light emitting element 3 is a right isosceles triangle. The third light emitting element 3 is disposed in a small gap region where the second light emitting element 2 cannot be disposed. In FIG. 8, the third light emitting element 3 is arranged in the second unmounted area UA <b> 2 formed between each vertex of the virtual square VS and the outer edge of the mounting area 22. As a result, the gap is further reduced as compared with the configuration of FIG. 1, and a high-output and high-quality light-emitting device 400 can be obtained. The third light emitting element 3 has a half area of the first light emitting element 1. That is, the phosphorous side of the right isosceles triangle of the third light emitting element 3 is made equal to the length of one side of the first light emitting element 1. However, since the light emitting area of the third light emitting element 3 is ½ that of the first light emitting element 1, it is disadvantageous in terms of life and heat generation. In addition, the use of a plurality of different light emitting elements is disadvantageous in terms of manufacturing effort and cost, and therefore, the light emitting device is appropriately selected according to the required quality and accuracy of the light emitting device. For example, in applications where accuracy is a priority, it is also possible to use four or more types of light emitting elements, such as using a fourth light emitting element of a different shape.

さらに以上の例では、予め製造された複数種類の発光素子を、別部材である円形状の実装領域を有する基板に実装する構成について説明したが、円形状の成長基板上に、異なる形状の半導体素子構造を成長させることで、同様に隙間を低減した発光装置を得ることもできる。   Further, in the above example, a configuration in which a plurality of types of light-emitting elements manufactured in advance are mounted on a substrate having a circular mounting region that is a separate member has been described. However, different shapes of semiconductors are formed on a circular growth substrate. By growing the element structure, it is also possible to obtain a light emitting device with a reduced gap.

以上のように、円形の実装領域内に、矩形状の第一発光素子をマトリックス状に配置し、その周辺に第一発光素子とほぼ等しくした面積の三角形状に形成した第二発光素子を配置することで、輝度むらや色むらを低減した高品質な発光装置を得ることができる。   As described above, the rectangular first light emitting elements are arranged in a matrix in the circular mounting area, and the second light emitting elements formed in a triangular shape having an area substantially equal to the first light emitting element are arranged around the first light emitting elements. By doing so, it is possible to obtain a high-quality light-emitting device with reduced luminance unevenness and color unevenness.

本発明の実施形態に係る発光装置は、バックライト光源、照明用光源、ヘッドライト、発光素子を光源としてドットマトリックス状に配置したディスプレイ、信号機、照明式スイッチ、イメージスキャナ等の各種センサ及び各種インジケータ等に好適に利用できる。   A light emitting device according to an embodiment of the present invention includes a backlight light source, an illumination light source, a headlight, a display in which a light emitting element is used as a light source, a display, a traffic light, an illumination switch, an image scanner, and other various sensors and various indicators. It can utilize suitably for etc.

100、200、300、400 発光装置
1 第一発光素子
1M 最外第一発光素子
2、2’ 第二発光素子
3 第三発光素子
10 第一発光素子群
20 実装基板
22 実装領域
30 波長変換部材
32 蛍光体
40 封止部材
91 LED素子
UA 未実装領域
UA1 第一未実装領域;UA2…第二未実装領域
CA 外縁近傍領域
VS 仮想正方形
100, 200, 300, 400 Light emitting device 1 First light emitting element 1M Outermost first light emitting element 2, 2 ′ Second light emitting element 3 Third light emitting element 10 First light emitting element group 20 Mounting substrate 22 Mounting region 30 Wavelength converting member 32 Phosphor 40 Sealing member 91 LED element UA Unmounted area UA1 First unmounted area; UA2 ... Second unmounted area CA Outer edge vicinity area VS Virtual square

Claims (8)

円形状の実装領域を有する基板と、
前記実装領域上に、複数が一定の間隔でマトリックス状に配置された、個々の形状を矩形状とする第一発光素子と、
前記実装領域上であって、前記第一発光素子の実装された周囲で、複数が該実装領域の円形の外縁に沿うように配置された、個々の形状を三角形状とする第二発光素子と
を備え、
前記第二発光素子は、前記第一発光素子と同一の発光色の光を発光するものであり、
前記第二発光素子の面積を、前記第一発光素子の面積に対して0.8〜1.2倍に設定してなる発光装置。
A substrate having a circular mounting area;
On the mounting area, a plurality of light emitting elements arranged in a matrix at regular intervals, each light emitting element having a rectangular shape,
A second light emitting element having a triangular shape on each of the mounting regions, the plurality of the light emitting elements being arranged around the outer periphery of the first light emitting element along the circular outer edge of the mounting region; With
The second light emitting element emits light of the same emission color as the first light emitting element ,
Wherein the area of the second light-emitting element, Ru emitting device name is set to 0.8 to 1.2 times the area of the first light emitting element.
請求項1に記載の発光装置であって、
前記第一発光素子及び第二発光素子が、第一ピーク波長の光を発するものであり、
前記第一発光素子及び第二発光素子の上方に配置された、前記第一発光素子及び第二発光素子が発する第一ピーク波長の光を、該第一ピーク波長と異なる第二ピーク波長の光に変換する波長変換部材を備えており、
前記第一発光素子及び第二発光素子が発する第一ピーク波長の光と、前記波長変換部材が発する第二ピーク波長の光が混色された混色光を出力可能としてなる発光装置。
The light-emitting device according to claim 1,
The first light emitting element and the second light emitting element emit light having a first peak wavelength,
Light having a first peak wavelength emitted from the first light emitting element and the second light emitting element, disposed above the first light emitting element and the second light emitting element, is light having a second peak wavelength different from the first peak wavelength. It has a wavelength conversion member that converts to
A light emitting device capable of outputting mixed light in which light having a first peak wavelength emitted from the first light emitting element and the second light emitting element and light having a second peak wavelength emitted from the wavelength conversion member are mixed.
請求項2に記載の発光装置であって、
前記波長変換部材が、前記実装領域、前記第一発光素子及び前記第二発光素子の上面に直接設けられてなる発光装置。
The light-emitting device according to claim 2,
The light emitting device in which the wavelength conversion member is directly provided on the mounting region, the first light emitting element, and the second light emitting element.
請求項1〜3のいずれか一に記載の発光装置であって、
前記第一発光素子が、正方形状に形成されてなる発光装置。
The light-emitting device according to claim 1,
A light emitting device in which the first light emitting element is formed in a square shape.
請求項4に記載の発光装置であって、
前記第二発光素子が直角三角形状であって、短辺を前記第一発光素子の一辺とほぼ同じ長さとし、斜辺をその2倍としてなる発光装置。
The light-emitting device according to claim 4,
The light emitting device, wherein the second light emitting element has a right triangle shape, a short side is substantially the same length as one side of the first light emitting element, and a hypotenuse is doubled.
請求項5に記載の発光装置であって、
前記第二発光素子は六方晶系の成長基板を有し、短辺を含む側面と斜辺を含む側面が前記成長基板のM面を含む発光装置。
The light-emitting device according to claim 5,
The second light emitting element includes a hexagonal growth substrate, and a side surface including a short side and a side surface including a hypotenuse include the M plane of the growth substrate.
請求項4に記載の発光装置であって、
前記第二発光素子が直角三角形状であって、短辺を前記第一発光素子の一辺とほぼ同じ長さとし、長辺をその2倍としてなる発光装置。
The light-emitting device according to claim 4,
The light emitting device, wherein the second light emitting element has a right triangle shape, the short side is substantially the same length as one side of the first light emitting element, and the long side is twice as long.
請求項1〜7のいずれか一に記載の発光装置であって、
前記円形状の外縁において、前記実装領域の外縁に沿って配置された1個以上の最外第一発光素子が配される領域が複数あり、前記領域の間であって、外縁と沿う領域に、1個以上の前記第二発光素子が配置されてなる発光装置。
The light-emitting device according to claim 1,
In the circular outer edge, there are a plurality of areas where one or more outermost first light emitting elements arranged along the outer edge of the mounting area are arranged, and the area between the areas and along the outer edge. A light-emitting device in which one or more second light-emitting elements are arranged.
JP2015070711A 2015-03-31 2015-03-31 Light emitting device Active JP6477149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070711A JP6477149B2 (en) 2015-03-31 2015-03-31 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070711A JP6477149B2 (en) 2015-03-31 2015-03-31 Light emitting device

Publications (2)

Publication Number Publication Date
JP2016192459A JP2016192459A (en) 2016-11-10
JP6477149B2 true JP6477149B2 (en) 2019-03-06

Family

ID=57245770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070711A Active JP6477149B2 (en) 2015-03-31 2015-03-31 Light emitting device

Country Status (1)

Country Link
JP (1) JP6477149B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340507A (en) * 1998-05-26 1999-12-10 Matsushita Electron Corp Semiconductor light-emitting element and its manufacture
JP2010015918A (en) * 2008-07-07 2010-01-21 Epson Imaging Devices Corp Lighting system, electrooptical device and electronic apparatus
JP5344149B2 (en) * 2009-01-28 2013-11-20 東芝ライテック株式会社 Manufacturing method of LED device
US20130069088A1 (en) * 2011-09-20 2013-03-21 The Regents Of The University Of California Light emitting diode with conformal surface electrical contacts with glass encapsulation
JP6150471B2 (en) * 2012-07-27 2017-06-21 シチズン時計株式会社 LED package
JP2014140015A (en) * 2012-12-19 2014-07-31 Panasonic Corp Light emitting module and illumination light source using the same

Also Published As

Publication number Publication date
JP2016192459A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
KR100946015B1 (en) White led device and light source module for lcd backlight using the same
KR102221602B1 (en) Light emitting module, backlight unit including the module, and the display apparatus including the unit
EP1566848B1 (en) Wavelength converted semiconductor light emitting device
JP5311676B2 (en) White light emitting device
JP5240603B2 (en) White light source module, backlight unit and LCD display
US8162506B2 (en) Illuminating apparatus with phosphor films
CN101939859B (en) Light emitting apparatus and display apparatus having the same
KR20170123644A (en) Light source assembly with improved color uniformity
JP2007080880A (en) Light emitting device
KR20170101065A (en) Light emitting module and display device
JP2009123758A (en) Illuminator
US9343636B2 (en) Wavelength conversion element, light-emitting semiconductor device and display apparatus therewith, and method for producing a wavelength conversion element
EP3571719A1 (en) Multiple led light source lens design in an integrated package
KR102305233B1 (en) Light emitting module and lighting apparatus including the module
US8008685B2 (en) Light emitting device, method of manufacturing light emitting device, light emitting device package, and lighting system
US20100264431A1 (en) Yellow light emitting diode and light emitting device having the same
JP2007080864A (en) Light-emitting device
US11892671B2 (en) Light-emitting module and planar light source
KR101683888B1 (en) Light emitting apparatus and display apparatus having the same
JP2008108994A (en) Luminescent device and planar light source using the same
JP6477149B2 (en) Light emitting device
KR101195430B1 (en) White light emitting device and white light source module using the same
KR100990647B1 (en) White light emitting device and white light source module using the same
JP2014220295A (en) Light-emitting device
US20240072220A1 (en) Planar light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250