JP6476377B2 - Rolling device and method of using the same - Google Patents

Rolling device and method of using the same Download PDF

Info

Publication number
JP6476377B2
JP6476377B2 JP2013248788A JP2013248788A JP6476377B2 JP 6476377 B2 JP6476377 B2 JP 6476377B2 JP 2013248788 A JP2013248788 A JP 2013248788A JP 2013248788 A JP2013248788 A JP 2013248788A JP 6476377 B2 JP6476377 B2 JP 6476377B2
Authority
JP
Japan
Prior art keywords
rolling
millimeter
rolling element
nano
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248788A
Other languages
Japanese (ja)
Other versions
JP2014040927A (en
Inventor
河島壯介
Original Assignee
株式会社 空スペース
株式会社 空スペース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 空スペース, 株式会社 空スペース filed Critical 株式会社 空スペース
Priority to JP2013248788A priority Critical patent/JP6476377B2/en
Publication of JP2014040927A publication Critical patent/JP2014040927A/en
Application granted granted Critical
Publication of JP6476377B2 publication Critical patent/JP6476377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6688Lubricant compositions or properties, e.g. viscosity

Description

本発明は、転がり装置の改良に関するものである。 The present invention relates to the improvement of a rolling device.

特許文献1、特許文献2では、転がり装置の軌道面の一部について、転動体の接触半径を小さくした接触点変化路を形成することにより、接触点変化路から出て負荷を受ける転動体と、その後継の転動体との間に間隔を作る“自律分散式転がり軸受”の構造と、これにより転動体の競り合いを解消できることが開示されている。 In Patent Document 1 and Patent Document 2, a rolling contact element which receives a load from a rolling contact point changing path by forming a rolling contact point changing path in which the contact radius of the rolling element is reduced is formed It is disclosed that the structure of the "autonomous distributed rolling bearing" which forms a space between the succeeding rolling elements and that the competition between the rolling elements can be eliminated.

また特許文献3では、図13の実験にて、転がり軸受の保持器のポケットにSiC粒子を付着させた繊維状カーボンナノ材料のメッキ皮膜を施すことにより、10〜20Nの摩擦力が14.5分間の間2.5N程度に低減した、と記載されている。短期間ではあるが、実験荷重9.8Nとの記載より、滑り部の摩擦係数が1〜2から0.25に改善したと理解できる。 Further, in Patent Document 3, in the experiment of FIG. 13, by applying a plated film of a fibrous carbon nanomaterial in which SiC particles are attached to a pocket of a retainer of a rolling bearing, a friction force of 10 to 20 N is 14.5 minutes It is stated that it was reduced to about 2.5N. Although it is a short time, it can be understood from the description of the experimental load of 9.8 N that the friction coefficient of the sliding portion is improved from 1 to 2 to 0.25.

また特許文献4では、ナノ転動体は、互いにせん断運動をする固体部分が境界条件において、ミクロンスケールでの固体間の初期の直接的な接触を防ぐ機能を有すること、実施例3で、“1%の5nBD(バッキーダイヤモンド、ナノ転動体の一種)を含有する水は0.005から0.01程度の驚くほど小さいμ値(摩擦係数)を示した。この超潤滑は少なくとも500分間保持され、十分な個数のスペーサーが使用されていることを示した。”と開示されている。 Further, in Patent Document 4, the nano rolling element has a function of preventing the initial direct contact between solids on a micron scale in a boundary condition, in which solid portions shearing each other act at boundary conditions; Water containing 5% of 5nBD (bucky diamond, a kind of nano rolling element) showed a surprisingly small μ value (coefficient of friction) of around 0.005 to 0.01. This super-lubrication is held for at least 500 minutes and a sufficient number of It has been disclosed that a spacer has been used. "

特開2007−177993号公報Japanese Patent Application Publication No. 2007-177993 特開2007−192412号公報JP 2007-192412 A 特開2013−104533号公報JP, 2013-104533, A 特表2013−538274号公報Japanese Patent Publication No. 2013-538274 gazette

しかしながら、特許文献1、2の転がり装置によって転動体同士、或いは転動体と保持器との間の競り合いを解消し、当外部への潤滑を不要にしても、転がり接触部の面圧を低く抑えるためには、当外部に流体潤滑理論で示される微量の液膜が有用である。転がり装置に多量の油やグリースを供給するのであれば、この問題は解決されるが、余分な油やグリースは転がり装置の撹拌抵抗となるので好ましくなく、転がり接触部に微量の液膜を確保する手法は課題である。 However, the rolling devices of Patent Documents 1 and 2 eliminate the competition between the rolling elements or between the rolling elements and the cage, and reduce the surface pressure of the rolling contact portion even if lubrication to the outside is unnecessary. For this purpose, it is useful to use a small amount of liquid film indicated by the fluid lubrication theory to the outside. If a large amount of oil or grease is supplied to the rolling device, this problem is solved, but the excess oil or grease is not preferable because it becomes the stirring resistance of the rolling device, and a small amount of liquid film is secured in the rolling contact portion Method is an issue.

また、特許文献3のカーボンナノ材料や、特許文献4のナノ転動体等の固体潤滑を転がり装置の滑り面に適用するとき、既存の油やグリース潤滑と異なり低い摩擦を極めて短期間しか維持できない課題がある。その理由は、固体潤滑剤では油潤滑の様な表面張力による油膜の再形成が行なわれないことにある。
以下に、固体潤滑剤の一種で、かつ転がり要素でもあるナノ転動体が転がり接触部から排除されてしまうメカニズムを説明する。
Also, when solid lubricants such as the carbon nanomaterials of Patent Document 3 and the nano rolling elements of Patent Document 4 are applied to the sliding surface of a rolling device, low friction can be maintained for a very short time unlike existing oil and grease lubrication. There is a problem. The reason is that solid lubricants do not reform the oil film due to surface tension such as oil lubrication.
The mechanism by which the nano rolling element which is a kind of solid lubricant and is also a rolling element is excluded from the rolling contact portion will be described below.

図5は、従来玉軸受の要部を示す。図5(A)は回転軸と直角方向の断面図、図5(B)は外輪軌道面を内輪側から見た平面図である。
外輪1の外輪軌道面1aと内輪2の内輪軌道面2aの間に直径がミリサイズのミリ転動体3が介挿されている。ミリ転動体3は隣接するミリ転動体との直接接触を避けるべく、保持器4によって転動自在に周囲を囲われている。直径が数nmのナノ転動体5は例えば特許文献3に開示されている、分散剤である流体に数%の濃度で混合され、軌道面、ミリ転動体、保持器の表面を潤滑剤として覆っている。
FIG. 5 shows the main part of a conventional ball bearing. FIG. 5 (A) is a cross-sectional view in the direction perpendicular to the rotation axis, and FIG. 5 (B) is a plan view of the outer ring raceway surface viewed from the inner ring side.
Between the outer ring raceway surface 1 a of the outer ring 1 and the inner ring raceway surface 2 a of the inner ring 2, a millimeter rolling element 3 having a millimeter size is interposed. The millimeter rolling element 3 is rotatably surrounded by a cage 4 so as to avoid direct contact with the adjacent millimeter rolling element. The nano rolling element 5 having a diameter of several nm is mixed with the fluid serving as the dispersing agent at a concentration of several% disclosed in, for example, Patent Document 3, and covers the surface of the raceway surface, the millimeter rolling element, and the cage as a lubricant. ing.

外輪軌道面1aとミリ転動体3は、ナノ転動体5を介して接触し負荷を支える。図5(B)の接触楕円1bがこの接触範囲を示している。
なお、図示されているミリ転動体とナノ転動体の寸法比は正確では無く、図はナノ転動体を100万倍程拡大した図面である。
また、図5(B)で、1cは外輪軌道面の両側端を示し、接触楕円1bは外輪軌道面1aとミリ転動体3との接触領域を示す。接触楕円1bは外輪軌道面の幅に対し10倍程拡大した図面である。
The outer ring raceway surface 1 a and the millimeter rolling element 3 are in contact via the nano rolling element 5 to support a load. The contact ellipse 1b of FIG. 5 (B) indicates this contact range.
In addition, the dimensional ratio of the millimeter rolling element shown to nano rolling element is not correct, and the figure is the drawing which expanded nano rolling element about 1 million times.
Further, in FIG. 5 (B), 1c shows both side ends of the outer ring raceway surface, and the contact ellipse 1b shows a contact area between the outer ring raceway surface 1a and the millimeter rolling element 3. The contact ellipse 1 b is a drawing enlarged about 10 times the width of the outer ring raceway surface.

ナノ転動体5を潤滑剤とみなせば、外輪1と内輪2の相対回転によってミリ転動体3が自転と公転を行なう周知の軸受であるが、ナノ転動体5を転がり運動を行う転動体とみなした場合は、軌道間に直列にミリ転動体3とナノ転動体5が介在する構造、と理解されよう。
その理解において、外輪1を固定、内輪2が右方向に回転したとき、ミリ転動体3の転動のみによる転がり軸受の摩擦係数μm と、ナノ転動体5の転動のみによる転がり軸受の摩擦係数μnの関係が、μm<μnであれば、ミリ転動体3が周知の転がり運動(右方向への公転と右廻りの自転)を行い、ナノ転動体5は図示Vn方向に転がることはない(その際のナノ転動体の作用については後述する)。
If the nano rolling element 5 is regarded as a lubricant, the millimeter rolling element 3 is a known bearing that rotates and revolves by the relative rotation of the outer ring 1 and the inner ring 2, but the nano rolling element 5 is regarded as a rolling element performing rolling movement. In this case, it may be understood that a structure in which the millimeter rolling elements 3 and the nano rolling elements 5 are interposed in series between the raceways.
In that understanding, when the outer ring 1 is fixed and the inner ring 2 is rotated in the right direction, the friction coefficient μm of the rolling bearing due to rolling only of the millimeter rolling element 3 and the friction coefficient of the rolling bearing only due to rolling of the nano rolling element 5 If the relationship of μn is μm <μn, the millimeter rolling element 3 performs known rolling motion (revolution in the right direction and rotation around the right), and the nano rolling element 5 does not roll in the illustrated Vn direction ( The action of the nano rolling elements at that time will be described later).

逆に、μm>μnの場合、ミリ転動体3は動かず、ミリ転動体3と接触している少数のナノ転動体5aが、軌道面1aとミリ転動体3に挟まれて駆動力を得て、軌道を図示Vn方向に転がると考えられる。しかしミリ転動体3と接触していないナノ転動体5には駆動力はないので、外輪軌道面1aを覆うナノ転動体5が全体として軌道を周方向に公転することはない。よって駆動力を得たナノ転動体5aに押されたナノ転動体5周辺は密度が増して摩擦係数μnが増加、及び/又は、横方向に広がり、一部5bは外輪軌道面1aから排除されてしまう。 On the contrary, in the case of μm> μn, the millimeter rolling element 3 does not move, and a few nano rolling elements 5a in contact with the millimeter rolling element 3 are sandwiched between the raceway surface 1a and the millimeter rolling element 3 to obtain driving force. It is considered that the trajectory is rolled in the Vn direction shown. However, since the nano rolling elements 5 not in contact with the millimeter rolling elements 3 have no driving force, the nano rolling elements 5 covering the outer ring raceway surface 1 a do not revolve around the track as a whole. Therefore, the density increases and the friction coefficient μn increases and / or spreads in the lateral direction around the nano rolling element 5 pressed by the nano rolling element 5 a which obtains the driving force, and a part 5 b is excluded from the outer ring raceway surface 1 a It will

実際的には、ミリ転動体3と軌道面との接触楕円1b内の真実接触面(図中不記)にナノ転動体5が介在し、ミリ転動体3と保持器滑り部4aの真実接触面にナノ転動体が介在していない瞬間、等にμmがμnよりも大きくなることによって、ナノ転動体が大きく流動、流失し、低摩擦状態が持続しないことが、転がり軸受にナノ転動体を導入した時の問題である。 Practically, the nano rolling element 5 intervenes on the true contact surface (not shown in the figure) in the contact ellipse 1 b between the millimeter rolling element 3 and the raceway surface, and the true contact of the millimeter rolling element 3 and the retainer sliding portion 4 a At the moment when nano rolling elements do not intervene in the surface, etc., when μ m becomes larger than μ n, the nano rolling elements are greatly flowed and lost, and the low friction state is not maintained, the nano rolling elements It is a problem when introduced.

本発明は、転がり装置内の2種類の摩擦、転がり摩擦と転がり接触面内の滑り摩擦、の摩擦係数の相違を利用して、前者はミリ転動体の転がり運動に担わせ、後者はナノ転動体の転がり運動に担わせることにより、ナノ転動体を大きく流動させること無く転がり接触面に滞留させ、少量の潤滑剤で低摩擦状態を長期間維持することを課題とする。   The present invention uses the difference in the coefficient of friction between the two types of friction in the rolling device, rolling friction and sliding friction in the rolling contact surface, and the former is carried on the rolling motion of the millimeter rolling element, and the latter is nano rolling. An object of the present invention is to allow a nano rolling element to stay on a rolling contact surface without causing a large flow of the nano rolling element by supporting the rolling motion of a moving body, and to maintain a low friction state with a small amount of lubricant for a long time.

請求項1に係る発明は、少なくとも1対の相対運動可能な軌道と、軌道の間に転動自在に介挿させた複数のミリ転動体により構成され、軌道はその一部について、ミリ転動体の接触半径を小さくした接触点変化路を形成することにより、接触点変化路から出て負荷を受けるミリ転動体と、その後継のミリ転動体との間に間隔を作る“自律分散式転がり軸受”の構造を有し、潤滑剤に少なくともナノ転動体を分散させた流体を使用し、前記ミリ転動体の転動による転がり軸受の摩擦係数をμm、前記ナノ転動体の転動による転がり軸受の摩擦係数をμnとしたときに、μm<μnであることを特徴とする。
The invention according to claim 1 comprises at least one pair of orbits capable of relative movement and a plurality of millimeter rolling elements rollably interposed between the orbits, and the orbits of the rolling mills are partially "Autonomous distributed rolling bearing that creates a space between the millimeter rolling element that receives load from the contact point variation path and the succeeding millimeter rolling element by forming a contact point variation path with a small contact radius The friction coefficient of the rolling bearing by rolling of the millimeter rolling element is μm, and the rolling bearing by rolling of the nano rolling element. When the coefficient of friction is μn, it is characterized in that μm <μn .

ナノ転動体の消費量が削減されるので、長期間補給すること無く、低摩擦を維持する転がり装置を提供できる。 Since the consumption of nano rolling elements is reduced, it is possible to provide a rolling device which maintains low friction without replenishing for a long time.

玉軸受での実施例である。(実施例1)It is an embodiment of a ball bearing. Example 1 非循環円筒ころ直動案内での実施例である。(実施例2)It is an example in non-circulation cylindrical roller linear motion guidance. (Example 2) 玉軸受での耐久評価装置である。(実施例3)It is a durability evaluation device for ball bearings. (Example 3) 玉軸受での耐久評価結果である。(実施例3)It is the endurance evaluation result in a ball bearing. (Example 3) 玉軸受での従来例である。This is a conventional example of a ball bearing.

以下、図面を参照しつつ本発明の実施例を説明する。ただし、図面はもっぱら解説のためのものであって、本発明の記述的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the drawings are for the purpose of illustration only, and do not limit the descriptive scope of the present invention.

図1に玉軸受での実施例の要部を示す。図1(A)は回転軸と直角方向の要部断面図、図1(B)は外輪軌道面を内輪側から見た平面図である。
相対運動が可能な外輪1の外輪軌道面1aと内輪2の内輪軌道面2aの間に複数のミリ転動体3(直径が0.1mmから100mmの範囲から選定される略同一サイズの転動体)としての玉が転動自在に介挿されている。
外輪軌道面1aには、特許文献1に記載の接触角変化路(図中不記)が形成され、これにより接触角変化路から排出されるミリ転動体3は後継のミリ転動体3との間に隙間を作る“自律分散式転がり軸受”を形成しており、接触点変化路から出て負荷を受けるミリ転動体と、その後継のミリ転動体との間に間隔を作る。
本実施例は、微量の液膜環境において長期間作動する軸受を意図しているので、防錆のため、外輪1と内輪2には低温黒色クロム処理を施し、ミリ転動体3としての玉はステンレス、またはセラミックス、あるいはシリコン合金を使用している。
ナノ転動体5(粒径が数nm〜20nmの範囲に分布する準球形の高硬度粒子)は例えば分散剤である流体に濃度0.1%〜10%の範囲で混合され、外輪軌道面1a、内輪軌道面2a、ミリ転動体3の表面を覆っている。
FIG. 1 shows the main part of the embodiment of the ball bearing. FIG. 1A is a cross-sectional view of an essential part in a direction perpendicular to the rotation axis, and FIG. 1B is a plan view of the outer ring raceway surface viewed from the inner ring side.
A plurality of millimeter rolling elements 3 (rolling elements of substantially the same size selected from the range of 0.1 mm to 100 mm in diameter) between the outer ring raceway surface 1a of the outer ring 1 and the inner ring raceway surface 2a of the inner ring 2 capable of relative movement The ball of is rolled freely.
A contact angle changing path (not shown in the drawing) described in Patent Document 1 is formed on the outer ring raceway surface 1a, whereby the millimeter rolling element 3 discharged from the contact angle changing path is the same as the succeeding millimeter rolling element 3. A “autonomous distributed rolling bearing” is created to create a gap between the two, and a gap is created between the millimeter rolling element that receives the load out of the contact point change path and the succeeding millimeter rolling element.
Since this embodiment intends a bearing that operates for a long time in a very small amount of liquid film environment, the outer ring 1 and the inner ring 2 are subjected to low temperature black chromium treatment to prevent rust, and the ball as the millimeter rolling element 3 is It uses stainless steel or ceramic or silicon alloy.
The nano rolling element 5 (a quasi-spherical high hardness particle whose particle diameter is distributed in a range of several nm to 20 nm) is mixed with, for example, a fluid serving as a dispersant at a concentration of 0.1% to 10%, and the outer ring raceway surface 1a , The inner ring raceway surface 2 a and the surface of the millimeter rolling element 3.

図示されているミリ転動体3とナノ転動体5の寸法比は正確では無く、ナノ転動体5を実際よりも100万倍程拡大している。また、図1(B)で、1cは外輪軌道面の両側端を示し、接触楕円1bは外輪軌道面1aとミリ転動体3との接触領域を示す。例えば直径4mmのミリ転動体3を備えた玉軸受の外輪軌道面の両側端1cの幅は大凡3mm、一般的な負荷を受けた接触楕円1bの寸法は大凡、長円半径0.37mm、短円半径0.11mmである。よって図の接触楕円1bは外輪軌道面の幅に対し10倍程拡大した図面である。   The dimensional ratio of the millimeter rolling element 3 and the nano rolling element 5 shown in the drawings is not accurate, and the nano rolling element 5 is enlarged by about one million times the actual size. Further, in FIG. 1 (B), 1c indicates both ends of the outer ring raceway surface, and the contact ellipse 1b indicates a contact area between the outer ring raceway surface 1a and the millimeter rolling element 3. For example, the width of both sides 1c of the outer ring raceway surface of the ball bearing provided with the millimeter rolling element 3 with a diameter of 4 mm is approximately 3 mm, and the size of the contact ellipse 1b under general load is approximately 0.37 mm, an oval radius, and a short circle. The radius is 0.11 mm. Therefore, the contact ellipse 1b in the figure is a drawing enlarged about 10 times the width of the outer ring raceway surface.

図1の構造は、一対の軌道間に直列にミリ転動体3とナノ転動体5が介在する点で図5と同じである。よって、外輪1を固定、内輪2を右方向に回転させたとき、ミリ転動体3の転動による転がり軸受の摩擦係数μm と、ナノ転動体5の転動による転がり軸受の摩擦係数μnの関係、μm<μnを成立させれば、摩擦の小さいミリ転動体3が先に転がり運動(右方向への公転と右廻りの自転)をして、摩擦の大きいナノ転動体5は図示Vnの方向に転がらず、図5の様に軌道から排除されることがない。   The structure of FIG. 1 is the same as that of FIG. 5 in that the millimeter rolling elements 3 and the nano rolling elements 5 are interposed in series between a pair of tracks. Therefore, when the outer ring 1 is fixed and the inner ring 2 is rotated in the right direction, the relationship between the friction coefficient μm of the rolling bearing due to rolling of the millimeter rolling element 3 and the friction coefficient μn of the rolling bearing due to rolling of the nano rolling element 5 If μm <μn is established, the millimeter rolling element 3 with small friction first performs rolling motion (revolution in the right direction and rotation in the right direction), and the nano rolling element 5 with large friction is in the direction of Vn shown. And it is not excluded from the orbit as shown in FIG.

μnの値は、特許文献4の実施例3で、“サファイヤとシリコン平面に挟まれた、5nBDを1%含む水性コロイド溶液の摩擦係数が0.005〜0.01”との記載より、安全側(ナノ転動体が軌道から排除されない側)の数値として0.005を採用する。   The value of μ n is the safety side according to the description of “the friction coefficient of an aqueous colloidal solution containing 1% of 5 nBD sandwiched between sapphire and silicon plane is 0.005 to 0.01” in Example 3 of Patent Document 4 Use 0.005 as the value of the side where the moving body is not excluded from the orbit).

一方μmの値は、本実施例のミリ転動体と同様の保持器に拘束されていない鋼球の転がり摩擦の実験値として、機械工学便覧に記載の“無潤滑状態における平面とφ1.59mmの鋼球の転がり摩擦係数0.00002”が参酌できる。よって、本実施例によればμm<μnを成立させることは十分可能であり、ミリ転動体3が周知の転がり運動をして、ナノ転動体5は図示Vnの方向に転がらないので排除されることもない。   On the other hand, the value of μm is the experimental value of the rolling friction of a steel ball not restrained by the same cage as the millimeter rolling element of this embodiment. The rolling friction coefficient 0.00002 "of the steel ball can be taken into consideration. Therefore, according to the present embodiment, it is sufficiently possible to satisfy μm <μn, and the millimeter rolling element 3 performs the well-known rolling movement, and the nano rolling element 5 is excluded because it does not roll in the direction of Vn. I have nothing to do.

次に、ナノ転動体5の役割を説明する。周知の通り、転がり接触部の接触楕円内では、転動体の半径寸法の差に起因する差動滑り(接触楕円の中心部と周辺部とで、転動体の回転半径が異なることより、転動体の自転角当りの公転量に差が生じる。軌道との接触面でこの差分が滑る。)が存在する。作動滑りは局部的に観れば、軌道面1aとミリ転動体3との相対運動であるので、その間にナノ転動体5が介挿されることにより微小な転がり装置が形成されることとなる。 Next, the role of the nano rolling element 5 will be described. As well known, within the contact ellipse of the rolling contact portion, differential sliding due to the difference in the radial dimension of the rolling element (the rolling element has different rolling radius due to the central portion and the peripheral portion of the contact oval There is a difference in the amount of revolution per degree of rotation, and this difference slips at the contact surface with the track. Since the operation slippage is a relative movement between the raceway surface 1a and the millimeter rolling element 3 when viewed locally, the micro rolling device is formed by interposing the nano rolling element 5 therebetween.

具体的には図1(B)において、外輪軌道面1aに分布しているナノ転動体5の殆どは静止しているが、接触楕円1bの内側では、純転がり部1dを境界に、中央側はミリ転動体の公転と逆方向(図中、左向き実線矢印)に、両端側はミリ転動体の公転方向(図中、右向き実線矢印)にナノ転動体5が転動する。ナノ転動体5は液体中に分散しているので、この転動によって液体に図の破線領域P1が高圧、P2が低圧となる圧力差が生じ、破線の矢印に示す液体の循環流を作り、ナノ転動体5が循環することで、微小な転がり装置が形成されて摩擦が低減すると共に、ナノ転動体が循環利用されるので、低摩擦状態を長期間維持する転がり装置が可能となる。 Specifically, in FIG. 1 (B), most of the nano rolling elements 5 distributed on the outer ring raceway surface 1a are stationary, but inside the contact ellipse 1b, the center side with the pure rolling portion 1d as the boundary The nano rolling element 5 rolls in the direction opposite to the revolution of the millimeter rolling element (solid arrow in the left direction in the figure), and the nano rolling element 5 in the direction of revolution of the millimeter rolling element (solid arrow in the figure in the figure) at both ends. Since the nano rolling elements 5 are dispersed in the liquid, this rolling causes a pressure difference such that the broken line area P1 in the figure is high in pressure and P2 is low in pressure, creating a circulating flow of the liquid shown by the broken arrow. Since the nano rolling elements 5 are circulated, a minute rolling device is formed to reduce friction, and the nano rolling elements are recycled, so that the rolling device can maintain a low friction state for a long time.

接触楕円1bはミリ転動体3の公転によって移動するので、接触楕円を外れるナノ転動体5cがあるが、新たに接触楕円に入って循環するナノ転動体5dもある。よって、接触楕円1bの移動によって接触楕円内、及び周辺のナノ転動体の密度が大きく変ることは無い。
また、接触楕円1b内でも軌道面1aとミリ転動体3との空隙、及びナノ転動体5の寸法は一定では無いので、全てのナノ転動体が図示の循環運動をするものでは無い。
なお、以上の接触楕円1bは、外輪軌道面1bとミリ転動体3との接触面に形成されるものであるが、内輪軌道面2aとミリ転動体3との接触面にも同様の接触楕円が形成され、ナノ転動体5の作用も同じである。
また、転がり接触部に生じるスピン滑りやジャイロ滑りも、差動滑りと同様に、ナノ転動体の循環による摩擦の低減が可能である。
Since the contact ellipse 1b moves by the revolution of the millimeter rolling element 3, there is a nano rolling element 5c which deviates from the contact ellipse, but there is also a nano rolling element 5d which newly enters the contact ellipse and circulates. Therefore, the movement of the contact ellipse 1b does not significantly change the density of the nano rolling elements in and around the contact ellipse.
Further, even within the contact ellipse 1b, the gap between the raceway surface 1a and the millimeter rolling element 3 and the dimensions of the nano rolling element 5 are not constant, so all the nano rolling elements do not perform the circulating motion as illustrated.
The above contact ellipse 1b is formed on the contact surface between the outer ring raceway surface 1b and the millimeter rolling element 3, but the same contact ellipse is also applied to the contact plane between the inner ring raceway surface 2a and the millimeter rolling element 3 And the action of the nano rolling element 5 is also the same.
In addition, spin slip and gyro slip that occur in the rolling contact portion can also reduce friction due to the circulation of the nano rolling elements, similarly to differential slip.

本実施例は“自律分散式転がり軸受”の構成として説明したが、これに限るものではない。
例えば、保持器を使用しない総玉軸受であってもこれを稼動させる前に、全てのミリ転動体の間にシムを差し込み、当該軸受にアキシャル予圧を印加した後、当該シムを全て除去することにより、図1と同じ状態、即ちミリ転動体が軌道以外と接触しない状態にすることができるので、本発明が適用できる。
Although the present embodiment has been described as the configuration of the “autonomous distributed rolling bearing”, the present invention is not limited to this.
For example, insert a shim between all mm rolling elements and apply an axial preload to the bearing before removing it, even if it is a full ball bearing that does not use a cage, and then remove all the shims Thus, the present invention can be applied to the same state as that of FIG.

図2は、相対運動が可能なレール11のレール軌道面11aとスライダー2のスライダー軌道面2aの間に複数のミリ転動体3として円筒ころが転動自在に介挿されている、非循環型の直動案内での実施例を示す。図2(A)は円筒ころの回転中心である軸と直角方向の要部断面図、図2(B)は円筒ころの回転中心である軸と平行方向の断面図である。スライダー軌道面12aには、特許文献2に記載の接触点変化路(図中不記)が形成され、これにより接触点変化路から排出されるミリ転動体3は後継のミリ転動体3との間に隙間を作る“自律分散式転がり軸受”を形成している。実施例1に対し、ミリ転動体3が玉から円筒ころへ、軌道が円環から有端直線に変わっているが、発明の作用効果は実施例1と同じである。以下に相違点を説明する。 FIG. 2 is a non-recirculation type in which cylindrical rollers are rotatably interposed as a plurality of millimeter rolling elements 3 between the rail raceway surface 11a of the rail 11 capable of relative movement and the slider raceway surface 2a of the slider 2 An example of the linear motion guidance of FIG. 2A is a cross-sectional view of a main part in a direction perpendicular to the axis that is the rotation center of the cylindrical roller, and FIG. 2B is a cross-sectional view in a direction parallel to the axis that is the rotation center of the cylindrical roller. A contact point change path (not shown in the drawing) described in Patent Document 2 is formed on the slider raceway surface 12a, whereby the millimeter rolling element 3 discharged from the contact point change path is the same as the succeeding millimeter rolling element 3. It forms an "autonomous distributed rolling bearing" that creates a gap between them. In contrast to the first embodiment, the millimeter rolling element 3 changes from a ball to a cylindrical roller, and the track changes from an annular ring to an end straight line, but the operation and effect of the invention are the same as the first embodiment. The differences are described below.

図2(B)では軌道面1とミリ転動体の外径面の表面粗さを示す方向についてナノ転動体の尺度と近い尺度で記載している。ミリ転動体が円筒ころの場合、通常転動体の半径寸法の差に起因する差動滑りに言及されることは無いが、実際には表面粗さによる転動体の半径寸法の差(図示のR2>R1)は存在するので、この半径差により滑りは発生、これも作動滑りと呼ぶ。そして接触領域内でのナノ転動体の循環移動により、作動滑りによる摩擦、摩耗を低減することができる。 In FIG. 2 (B), the surface roughness of the raceway surface 1 and the outer diameter surface of the millimeter rolling element is described in the scale indicating the scale of the nano rolling element in the direction indicating the surface roughness. When the millimeter rolling element is a cylindrical roller, there is no mention of differential slippage due to the difference in the radial dimension of the rolling element, but actually the difference in the radial dimension of the rolling element due to the surface roughness (R2 shown) Since there is> R1), this radius difference causes slip, also referred to as actuation slip. And, by the cyclic movement of the nano rolling element in the contact area, the friction and the wear due to the operation slip can be reduced.

なおミリ転動体に使用可能なころは、他に円錐ころやたる型ころがあり、また、ころ外径面の両端の外径を小さくするクラウニングが行なわれる場合がある。これらのころ形状も図示のR2、R1と同様に、転動体の半径寸法の差を有しているので、本発明が適用できることは明らかである。 Other rollers that can be used for the millimeter rolling element include conical rollers and barrel rollers, and crowning may be performed to reduce the outer diameter of both ends of the roller outer diameter surface. It is obvious that the present invention can be applied to these roller shapes as well as R2 and R1 in the figure, because they have a difference in the radial dimension of the rolling element.

玉軸受について、耐久運転による摩擦係数の特性評価を行った。 評価軸受の諸元を表1に示す。
軸受形式はアンギュラ玉軸受708C(開放型、外径22mm、接線角15°玉径4mm)である。
実施例Aは、軸受構造を“自律分散式転がり軸受”(英語表記の頭文字ADB)とし、材質をSUJ2とし、Nanolube社(U.S.A.)のナノダイヤモンド配合油を潤滑剤とした。
実施例Bは、実施例Aが途中で発錆したため、内外輪とナノ転動体を防錆仕様として実施した。
従来例Aは、軸受構造がADB、潤滑を動粘度2.2mm2/sの工作機械用作動油を潤滑剤とした。
従来例Bは、無潤滑での摩擦係数が0.005以上の保持器付き軸受にナノダイヤモンド配合油を使用した。

Figure 0006476377
For the ball bearings, the characteristics of the coefficient of friction were evaluated. Table 1 shows the specifications of the evaluation bearing.
The bearing type is an angular contact ball bearing 708C (open type, outer diameter 22 mm, tangent angle 15 °, ball diameter 4 mm).
In Example A, the bearing structure is “autonomous dispersion type rolling bearing” (English initials ADB), the material is SUJ2, and the nanodiamond blended oil of Nanolube (USA) is used as a lubricant.
In Example B, since Example A rusted in the middle, the inner and outer rings and the nano rolling elements were used as rustproof specifications.
In the conventional example A, the bearing structure is ADB, and the lubricant is a machine tool hydraulic oil having a kinematic viscosity of 2.2 mm 2 / s.
In Conventional Example B, a nanodiamond-containing oil was used for a caged bearing without friction and having a coefficient of friction of 0.005 or more.
Figure 0006476377

耐久評価装置を図3に示す。試験軸受20は白灯油にて超音波洗浄、加熱乾燥の後、表1の潤滑剤を滴下して重り21に組付けた、その後の潤滑剤補充は一切していない。モータ(図中不記)を重り21に接続して120rpmで試験軸受20の内輪を回転させ、モータを離してから内輪停止までの時間を測定し、下式により摩擦係数に換算した。測定は基本的に24時間毎に実施、その間は図3の状態のまま120rpm連続運転を実施した。   The endurance evaluation device is shown in FIG. The test bearing 20 was subjected to ultrasonic cleaning with white kerosene, heated and dried, and then the lubricant shown in Table 1 was dropped and assembled to the weight 21. No subsequent lubricant replenishment was performed. A motor (not shown) was connected to the weight 21 and the inner ring of the test bearing 20 was rotated at 120 rpm, the time from when the motor was released to when the inner ring stopped was measured, and converted to a coefficient of friction by the following equation. The measurement was basically performed every 24 hours, during which the continuous operation at 120 rpm was performed as it is in the state of FIG.

摩擦係数μ=2×J×N/(F×Dp×ts)
J:重り21のイナーシャ5.27×10E-3 [kgm2]
N:測定開始時の回転数 12.6 [rad/s](=120rpm)
F:重り21によるアキシャル負荷 42.1 [N]
Dp:ミリ転動体3のピッチ直径 0.015 [m]
Ts:軸受内輪が停止するまでの時間 [s]
なおトルクを摩擦力に変換する際のモーメント距離について、軸受メーカが掲げる計算式では軸受内径dを採用しているが、ここでは特許文献4の摩擦係数と対比する必要上、工学的に正しいミリ転動体3のピッチ直径Dpとした。
Coefficient of friction μ = 2 × J × N / (F × Dp × ts)
J: Weight 21 inertia 5.27 × 10E-3 [kgm 2 ]
N: Number of rotations at the start of measurement 12.6 [rad / s] (= 120 rpm)
F: Axial load by weight 21 42.1 [N]
Dp: Pitch diameter of millimeter rolling element 3 0.015 [m]
Ts: Time until bearing inner ring stops [s]
Although the bearing inner diameter d is adopted in the calculation formula that the bearing manufacturer mentions for the moment distance when converting torque into friction force, it is necessary to compare with the friction coefficient of Patent Document 4 here, and the engineeringally correct millimeter The pitch diameter Dp of the rolling elements 3 was used.

耐久評価結果を図4に示す。従来例Aは36時間で摩擦係数が急増し終了した。摩擦係数急増の原因は潤滑油の流失と考えられる。
従来例Bは84時間で摩擦係数が急増し終了した。36時間での測定以降に摩擦係数0.005を超え、軌道面やミリ転動体表面のナノ転動体が大きく動かされ、流失したものと推定される。
The endurance evaluation results are shown in FIG. In the conventional example A, the friction coefficient increased rapidly in 36 hours and ended. The cause of the rapid increase in friction coefficient is considered to be the loss of lubricating oil.
In Conventional Example B, the friction coefficient increased rapidly in 84 hours and ended. The coefficient of friction exceeds 0.005 after the measurement at 36 hours, and it is estimated that the nano rolling elements on the raceway surface and the surface of the milli rolling element are largely moved and lost.

実施例Aは、途中で鋼球に発錆が見られたため1×10E6回転を超える156時間で打ち切った。摩擦係数は平均0.0022、最大0.0035、打ち切り時点では0.0019と低く、際立った効果があると判断できる。なお発錆は環境との兼ね合いによる問題である。
実施例Bは、612時間での摩擦係数は平均0.00086で、なお継続中である。
In Example A, corrosion was observed on the steel ball along the way, and the process was terminated in 156 hours exceeding 1 × 10E6 rotation. The coefficient of friction is as low as 0.0022 at the maximum, 0.0035 at the maximum, and 0.0019 at the censoring point, so it can be judged that the effect is remarkable. Rusting is a problem due to the balance with the environment.
Example B still has a coefficient of friction at 612 hours, averaging 0.00086.

この耐久評価結果より、自律分散式転がり軸受等の構成によって転動体の競り合いの解消を図った転がり装置において、潤滑剤に少なくともナノ転動体を分散させた流体、または流体混合物を使用することにより、1×10E6回転の間潤滑剤を補充すること無く、その間の転がり摩擦係数の平均値を0.005未満にできることが分かった。
耐久評価は継続しているが、見通しとしては、“3×10E7回転の間潤滑剤を補充すること無く”または“転がり摩擦係数の最大値が0.005未満”が達成できるものと考えている。
また評価は、シールの無い開放型軸受で、取付けが垂直軸方向であり保持器も無いことより潤滑剤が流失し易い条件であったが、重力方向の制約を受けるオイルパンやグリースの様に増ちょう剤に頼ることも無く、潤滑作用を長期間維持できることは産業上非常に有用である。
From this durability evaluation result, in a rolling device that aims to eliminate the competition of rolling elements by the configuration of an autonomous dispersion type rolling bearing etc., by using a fluid or a fluid mixture in which at least nano rolling elements are dispersed in a lubricant It has been found that the mean value of the coefficient of rolling friction can be less than 0.005 without replenishing the lubricant for 1 × 10E6 revolutions.
Durability evaluation is continuing, but as a prospect, it is considered that "without replenishing the lubricant during 3 × 10E7 rotation" or "the maximum value of the rolling friction coefficient is less than 0.005" can be achieved.
The evaluation was that the seal was an open type bearing, and the condition was that the lubricant was likely to flow away due to the vertical axis installation and no cage, but like oil pans and greases that are subject to gravity restrictions It is very useful in the industry that the lubricating action can be maintained for a long time without relying on a thickener.

以上、実施例に基づいた説明をしたが、本発明の機構は、ミリ転動体、ナノ転動体共に機械的な転がりであって、両転動体の機能を摩擦係数によって分離したもの。よって適用可能な用途や材質などは実施例の記載に限らず多岐にわたる。
例えば、本発明の転がり装置は、特許文献1、及び特許文献2に記載の、転動体の循環構造を持つボールねじや直動案内等に適用できる。
また、ミリ転動体や軌道の材質は、軸受鋼の他、ステンレス鋼、チタン、セラミック、シリコン合金、カーボン、ガラス、樹脂、アルミニウムなどが適用できる。
さらに、ミリ転動体や軌道の表面処理は、四三酸化鉄皮膜、クロームメッキ、窒化チタン、セラミック溶射、DLC、硬質アルマイト、タフラムなどが適用できる。
As mentioned above, although the explanation was made based on the embodiment, in the mechanism of the present invention, both the millimeter rolling element and the nano rolling element are mechanical rolling, and the functions of both rolling elements are separated by the friction coefficient. Therefore, applicable applications, materials, and the like are not limited to the description in the embodiments, but are various.
For example, the rolling device of the present invention can be applied to a ball screw, a linear motion guide or the like having a circulating structure of rolling elements described in Patent Document 1 and Patent Document 2.
In addition to bearing steel, stainless steel, titanium, ceramic, silicon alloy, carbon, glass, resin, aluminum or the like can be applied to the material of the millimeter rolling element and the raceway.
Furthermore, the surface treatment of the millimeter rolling element and the track may be triiron tetroxide coating, chromium plating, titanium nitride, ceramic thermal spraying, DLC, hard alumite, tafram or the like.

また、ナノ転動体は、特許文献3に開示されているSiC粒子や特許文献4に開示されているナノころ粒子(爆轟法ナノダイヤモンド、バッキーダイヤモンド、窒化ホウ素、コランダム)など、粒径が数nm〜20nmの高硬度粒子であれば良い。
さらに、ナノ転動体の分散剤である流体は特許文献4に開示されている、エチレングリコール、ポリオキシエチレン、アルキレングリコール、ポリオキシアルキレン、グリセリン、及びそれらの誘導体を含む多価アルコール、水、高沸点アルコールや、イオン性液体が適用できる。
ナノ転動体を分散させた溶液としては実施例3の他、株式会社ナノ炭素研究所のナノアマンドなどが適用できる。
In addition, the nano rolling element has a particle diameter such as SiC particles disclosed in Patent Document 3 or nano rollers (detonation nano diamond, bucky diamond, boron nitride, corundum) disclosed in Patent Document 4 and the like. It is sufficient if it is a high hardness particle of nm to 20 nm.
Furthermore, a fluid that is a dispersant for nano rolling elements is disclosed in Patent Document 4; polyhydric alcohols including ethylene glycol, polyoxyethylene, alkylene glycol, polyoxyalkylene, glycerin, and derivatives thereof, water, high Boiling point alcohols and ionic liquids can be applied.
As a solution in which the nano rolling elements are dispersed, nanoamand of Nano Carbon Research Institute, Inc. other than Example 3 can be applied.

産業機械、輸送機械、等に使用される転がり装置に広く利用できる。 It can be widely used in rolling devices used in industrial machines, transport machines, etc.

1 外輪
1b 接触楕円
2 内輪
3 ミリ転動体
4 保持器
5 ナノ転動体
11 レール
12 スライダー
20 試験軸受
21 重り
1 outer ring 1b contact oval 2 inner ring 3 mm rolling element 4 cage 5 nano rolling element 11 rail 12 slider 20 test bearing 21 weight

Claims (4)

少なくとも1対の相対運動可能な軌道と、軌道の間に転動自在に介挿させた複数のミリ転動体により構成され、前記軌道はその一部について前記ミリ転動体の接触半径を小さくした接触点変化路を形成することにより、前記接触点変化路から出て負荷を受ける前記ミリ転動体と、その後継の前記ミリ転動体との間に間隔を作る“自律分散式転がり軸受”の構造を有し、潤滑剤に少なくともナノ転動体を分散させた流体を使用し、前記ミリ転動体の転動による転がり装置の摩擦係数をμm、前記ナノ転動体の転動による転がり装置の摩擦係数をμnとしたときに、μm<μnであることを特徴とする転がり装置。 A contact composed of at least one pair of relative movable orbits and a plurality of millimeter rolling elements rollably interposed between the orbits, the orbit having a smaller contact radius of the millimeter rolling elements with respect to a part of the orbits By forming a point change path, the structure of an “autonomous distributed rolling bearing” is provided which creates a space between the millimeter rolling element coming out of the contact point changing path and receiving a load and the millimeter rolling element of its successor. Using a fluid in which at least nano rolling elements are dispersed in a lubricant, the friction coefficient of the rolling device by rolling of the millimeter rolling elements is μm, and the friction coefficient of the rolling device by rolling of the nano rolling elements is μn And a rolling device characterized in that μm <μn . 無潤滑における動摩擦係数が0.005未満であることを特徴とする請求項1に記載の転がり装置。 The rolling device according to claim 1, wherein a dynamic friction coefficient without lubrication is less than 0.005 . 1×10E6回転の間潤滑剤を補充すること無く、その間の転がり摩擦係数の平均値が0.005未満であることを特徴とする請求項1に記載の転がり装置。   The rolling device according to claim 1, characterized in that the mean value of the rolling friction coefficient between them is less than 0.005 without replenishing the lubricant for 1 x 10E6 revolutions. 前記ミリ転動体の材質がステンレス、またはセラミックス、あるいはシリコン合金であることを特徴とする請求項1に記載の転がり装置。







The rolling device according to claim 1, wherein a material of the millimeter rolling element is stainless steel, ceramic, or silicon alloy.







JP2013248788A 2013-12-01 2013-12-01 Rolling device and method of using the same Active JP6476377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248788A JP6476377B2 (en) 2013-12-01 2013-12-01 Rolling device and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248788A JP6476377B2 (en) 2013-12-01 2013-12-01 Rolling device and method of using the same

Publications (2)

Publication Number Publication Date
JP2014040927A JP2014040927A (en) 2014-03-06
JP6476377B2 true JP6476377B2 (en) 2019-03-06

Family

ID=50393325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248788A Active JP6476377B2 (en) 2013-12-01 2013-12-01 Rolling device and method of using the same

Country Status (1)

Country Link
JP (1) JP6476377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205906B4 (en) * 2014-03-31 2016-05-04 Aktiebolaget Skf Lubricated rolling bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2913061B2 (en) * 1990-03-05 1999-06-28 光洋精工株式会社 Vacuum ball bearing and turbo molecular pump using the same
JP2002221230A (en) * 2001-01-26 2002-08-09 Koyo Seiko Co Ltd Rolling bearing for vacuum circuit-breaker
JP3964926B2 (en) * 2005-11-30 2007-08-22 株式会社 空スペース Rolling device and manufacturing method thereof
JP5320547B2 (en) * 2007-05-15 2013-10-23 株式会社 空スペース Rolling device
JP2009063154A (en) * 2007-09-10 2009-03-26 Nsk Ltd Rolling device
KR100922607B1 (en) * 2008-04-04 2009-10-21 에스지오(주) Lubricant oil additive comprising hydrophobic carbon nanoparticles
US10155914B2 (en) * 2011-02-08 2018-12-18 Eugene Kverel Solid lubricant
JP2013067742A (en) * 2011-09-23 2013-04-18 Ntn Corp Lubricant composition and lubricant composition-filled bearing
JP2013113340A (en) * 2011-11-25 2013-06-10 Nsk Ltd Rolling bearing

Also Published As

Publication number Publication date
JP2014040927A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2009150935A1 (en) Retainer, deep groove ball bearing, and bearing with seal
KR102501503B1 (en) Guiding member in the form of a metal ring for assembly with friction and with the articulating and/or sliding capability of a shaft
TWI568956B (en) A sealing member and a linear motion guiding device using the sealing member
JP2007107588A (en) Rolling bearing
WO2006003793A1 (en) Tapered roller bearing
CN103671556A (en) Rolling bearing
JP2014095469A (en) Rolling bearing
JPWO2006057258A1 (en) Method of manufacturing spherical roller bearing with cage and cage for spherical roller bearing
JP2008051272A (en) Wheel bearing device
JP5831131B2 (en) Roller bearing and manufacturing method thereof
JP6028377B2 (en) Tapered roller bearing
JP2010265926A (en) Roller bearing
JP6476377B2 (en) Rolling device and method of using the same
JP2021127834A (en) Tapered roller bearing
EP2990670A1 (en) Cage for rolling bearing
JP2010169182A (en) Roller bearing
CN108071683B (en) Tapered roller bearing and power transmission device
JP2008038770A (en) Pump device
JP2008051308A (en) Wheel bearing device
JP2012177429A (en) Tapered roller bearing for roll neck
JP2007333084A (en) Cage for bearing
WO2016072305A1 (en) Rotational sliding bearing
JP2008019965A (en) Planetary gear device and rolling bearing
Rebai Tribology and machine elements
JP2007127251A (en) Double-row self-aligning roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6476377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150