JP6475501B2 - Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping - Google Patents

Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping Download PDF

Info

Publication number
JP6475501B2
JP6475501B2 JP2015011983A JP2015011983A JP6475501B2 JP 6475501 B2 JP6475501 B2 JP 6475501B2 JP 2015011983 A JP2015011983 A JP 2015011983A JP 2015011983 A JP2015011983 A JP 2015011983A JP 6475501 B2 JP6475501 B2 JP 6475501B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
copolymer
hour
chloride resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015011983A
Other languages
Japanese (ja)
Other versions
JP2016138156A (en
Inventor
裕一 下木場
裕一 下木場
黒川 欽也
欽也 黒川
広平 西野
広平 西野
有一 進藤
有一 進藤
哲央 野口
哲央 野口
真典 松本
真典 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2015011983A priority Critical patent/JP6475501B2/en
Publication of JP2016138156A publication Critical patent/JP2016138156A/en
Application granted granted Critical
Publication of JP6475501B2 publication Critical patent/JP6475501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、塩化ビニル樹脂耐熱改質用共重合体、塩化ビニル樹脂耐熱改質用共重合体と塩化ビニル樹脂からなる樹脂組成物、及びその樹脂組成物からなる成形体、塩化ビニル配管に関するものである。 TECHNICAL FIELD The present invention relates to a vinyl chloride resin heat-resistant modification copolymer, a vinyl chloride resin heat-resistant modification copolymer and a vinyl chloride resin, a molded body comprising the resin composition, and a vinyl chloride pipe. It is.

塩化ビニル樹脂は、上・下水道管、継手、雨樋、波板、サッシ、床材、壁紙、ビニールレザー、ホース、電線被覆など多岐用途で使用されているが、耐熱温度が低い為、加熱変形の問題や、耐熱性が必要な部材では用途が限定されてしまう。特に、塩化ビニル配管は、耐薬品性、耐久性、難燃性に優れ、軽量でかつ安価であることから、上・下水道管などの建材用途で使用されているが、耐熱温度が低い為、夏場などの高温環境下での熱変形の問題や、温水などの耐熱性が必要な部材では使用方法が限定されてしまう。塩化ビニル樹脂の耐熱性を向上させる為に、塩化ビニル樹脂を更に塩素化させた塩素化塩化ビニル樹脂があるが、成形加工時の熱安定性が悪く、着色やガス焼けによる外観不良が発生してしまうという課題がある。 Vinyl chloride resin is used in a wide variety of applications such as water and sewer pipes, fittings, rain gutters, corrugated sheets, sashes, flooring, wallpaper, vinyl leather, hoses, and wire coverings. The use of the material is limited in the case of the above-mentioned problems and members that require heat resistance. In particular, PVC pipes are used for building materials such as water and sewer pipes because they are excellent in chemical resistance, durability, and flame resistance, and are lightweight and inexpensive. The method of use is limited for members that require heat resistance such as hot water or hot water or other members that require heat resistance. In order to improve the heat resistance of vinyl chloride resins, there are chlorinated vinyl chloride resins that are further chlorinated vinyl chloride resins, but the thermal stability during molding is poor, resulting in poor appearance due to coloring and gas burns. There is a problem that it ends up.

特開平8−27339号JP-A-8-27339 特開2008−156391号JP 2008-156391 A 特開2004−99669号JP 2004-99669 A

本発明は、塩化ビニル樹脂の耐熱性を向上させ、且つ熱安定性も良好で外観に優れた成形品が得られることを可能にする塩化ビニル樹脂耐熱改質用共重合体を提供することであり、特に、耐熱性と熱安定性に優れ、良外観な塩化ビニル配管を提供することを課題とする。 The present invention provides a vinyl chloride resin heat-modifying copolymer that improves the heat resistance of a vinyl chloride resin and that can provide a molded article having good thermal stability and excellent appearance. In particular, it is an object to provide a vinyl chloride pipe excellent in heat resistance and thermal stability and having a good appearance.

本発明は、以下を要旨とするものである。
(1)芳香族ビニル単量体単位45〜85質量%、(メタ)アクリル酸エステル単量体単位5〜45質量%、不飽和ジカルボン酸無水物単量体単位10〜30質量%からなり、重量平均分子量(Mw)が10〜20万である塩化ビニル樹脂耐熱改質用共重合体。
(2)220℃、98N荷重で測定したメルトマスフローレート(MFR)が0.5〜20.0g/分である(1)に記載の塩化ビニル樹脂耐熱改質用共重合体。
(3)50N荷重で測定したビカット軟化温度が110〜150℃である(1)又は(2)に記載の塩化ビニル樹脂耐熱改質用共重合体。
(4)(1)〜(3)のいずれか1項に記載の塩化ビニル樹脂耐熱改質用共重合体5〜50質量%と塩化ビニル樹脂50〜95質量%からなる樹脂組成物。
(5)(4)に記載の樹脂組成物からなる成形体。
(6)(4)に記載の樹脂組成物からなる塩化ビニル配管。
The gist of the present invention is as follows.
(1) Aromatic vinyl monomer units 45 to 85% by mass, (meth) acrylic acid ester monomer units 5 to 45% by mass, unsaturated dicarboxylic acid anhydride monomer units 10 to 30% by mass, A copolymer for heat resistance modification of a vinyl chloride resin having a weight average molecular weight (Mw) of 100,000 to 200,000.
(2) The copolymer for heat-resistant modification of a vinyl chloride resin according to (1), wherein a melt mass flow rate (MFR) measured at 220 ° C. under a 98 N load is 0.5 to 20.0 g / min.
(3) The vinyl chloride resin heat-modifying copolymer according to (1) or (2), wherein the Vicat softening temperature measured at a load of 50 N is 110 to 150 ° C.
(4) A resin composition comprising 5 to 50% by mass of the vinyl chloride resin heat-resistant modifying copolymer according to any one of (1) to (3) and 50 to 95% by mass of the vinyl chloride resin.
(5) A molded article comprising the resin composition according to (4).
(6) A vinyl chloride pipe comprising the resin composition according to (4).

本発明の共重合体は、塩化ビニル樹脂の耐熱性を向上させ、且つ熱安定性も良好で外観に優れた成形品を提供することが出来、また本発明の塩化ビニル配管は、配管部材に好適に利用することが出来る。 The copolymer of the present invention can improve the heat resistance of the vinyl chloride resin, and can provide a molded article having good thermal stability and excellent appearance. The vinyl chloride pipe of the present invention is used as a piping member. It can be suitably used.

<用語の説明>
本願明細書において、例えば、「A〜B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, for example, the description “A to B” means that it is A or more and B or less.

以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

塩化ビニル樹脂とは、下式(1)に示すように塩化ビニル単量体単位からなる樹脂のことである。なお、nは重合度を示す整数である。 The vinyl chloride resin is a resin composed of vinyl chloride monomer units as shown in the following formula (1). Note that n is an integer indicating the degree of polymerization.

Figure 0006475501
Figure 0006475501

本発明の塩化ビニル樹脂耐熱改質用共重合体において、芳香族ビニル単量体単位としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、エチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレンなどの各スチレン系単量体に由来する単位が挙げられる。これらの中でも好ましくはスチレン単位である。これら芳香族ビニル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。 In the copolymer for heat resistance modification of vinyl chloride resin of the present invention, the aromatic vinyl monomer unit may be styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethyl. Examples include units derived from styrene monomers such as styrene, p-tert-butylstyrene, α-methylstyrene, and α-methyl-p-methylstyrene. Of these, styrene units are preferred. These aromatic vinyl monomer units may be one type or a combination of two or more types.

本発明の塩化ビニル樹脂耐熱改質用共重合体において、(メタ)アクリル酸エステル単量体単位としては、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、2−エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレートなどの各メタクリル酸エステル単量体、およびメチルアクリレート、エチルアクリレート、n−ブチルアクリレート、2−メチルヘキシルアクリレート、2−エチルヘキシルアクリレート、デシルアクリレートなどの各アクリル酸エステル単量体に由来する単位が挙げられる。これらの中でも好ましくはメチルメタクリレート単位である。これら(メタ)アクリル酸エステル単量体単位は、1種類でもよく、2種類以上の併用であってもよい。 In the copolymer for heat resistance modification of vinyl chloride resin of the present invention, as the (meth) acrylic acid ester monomer unit, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, Derived from methacrylic acid ester monomers such as isobornyl methacrylate and acrylic acid acrylate monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methyl hexyl acrylate, 2-ethyl hexyl acrylate, decyl acrylate The unit to do is mentioned. Among these, a methyl methacrylate unit is preferable. These (meth) acrylic acid ester monomer units may be one kind or a combination of two or more kinds.

本発明の塩化ビニル樹脂耐熱改質用共重合体において、不飽和ジカルボン酸無水物単量体単位としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これらの中でも好ましくはマレイン酸無水物単位である。不飽和ジカルボン酸無水物単量体単位は、1種でもよく、2種類以上の併用であってもよい。 In the copolymer for heat resistance modification of vinyl chloride resin of the present invention, as unsaturated dicarboxylic acid anhydride monomer units, maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, aconitic acid anhydride, etc. Examples include units derived from anhydride monomers. Among these, maleic anhydride units are preferable. The unsaturated dicarboxylic acid anhydride monomer unit may be one type or a combination of two or more types.

本発明の塩化ビニル樹脂耐熱改質用共重合体の構成単位は、芳香族ビニル単量体単位45〜85質量%、(メタ)アクリル酸エステル系単量体単位5〜45質量%、不飽和ジカルボン酸無水物単量体単位10〜30質量%であり、好ましくは芳香族ビニル単量体単位50〜73質量%、(メタ)アクリル酸エステル単量体単位8〜38質量%、不飽和ジカルボン酸無水物単量体単位12〜25質量%である。なお、各単量体単位の組成分析は、C−13NMR法にて下記記載の測定条件で測定された値である。
装置名:FT−NMR AVANCE300(BRUKER社製)
溶媒:重水素化クロロホルム
濃度:14質量%
温度:27℃
積算回数:8000回
The structural unit of the copolymer for heat resistance modification of the vinyl chloride resin of the present invention is 45 to 85% by mass of an aromatic vinyl monomer unit, 5 to 45% by mass of a (meth) acrylic acid ester monomer unit, and unsaturated. 10 to 30% by weight of dicarboxylic acid anhydride monomer unit, preferably 50 to 73% by weight of aromatic vinyl monomer unit, 8 to 38% by weight of (meth) acrylic acid ester monomer unit, unsaturated dicarboxylic acid It is 12-25 mass% of acid anhydride monomer units. In addition, the composition analysis of each monomer unit is a value measured under the measurement conditions described below by the C-13 NMR method.
Device name: FT-NMR AVANCE300 (manufactured by BRUKER)
Solvent: Deuterated chloroform Concentration: 14% by mass
Temperature: 27 ° C
Integration count: 8000 times

芳香族ビニル単量体単位が85質量%以下であれば、塩化ビニル樹脂との相溶性と耐熱性付与効果が向上する。(メタ)アクリル酸エステル単量体単位が45質量%以下であれば、塩化ビニル樹脂に配合して得られる樹脂組成物を成形加工した際には、熱安定性に優れ、良外観な成形体が得られる。不飽和ジカルボン酸無水物単量体単位が30質量%以下であれば、塩化ビニル樹脂への耐熱性付与効果を維持したまま、成形加工が可能な樹脂組成物が得られる。一方、芳香族ビニル単量体単位が45質量%以上であれば、塩化ビニル樹脂に配合して得られる樹脂組成物を成形加工した際には、熱安定性に優れ、良外観な成形体が得られる。(メタ)アクリル酸エステル単量体単位が5質量%以上であれば、塩化ビニル樹脂への耐熱性付与効果を維持したまま、塩化ビニル樹脂との相溶性が向上する。不飽和ジカルボン酸無水物単量体単位が10質量%以上であれば、塩化ビニル樹脂への耐熱性付与効果が向上する。 When the aromatic vinyl monomer unit is 85% by mass or less, the compatibility with the vinyl chloride resin and the effect of imparting heat resistance are improved. When the (meth) acrylic acid ester monomer unit is 45% by mass or less, a molded article having excellent thermal stability and good appearance when molded into a vinyl chloride resin. Is obtained. When the unsaturated dicarboxylic acid anhydride monomer unit is 30% by mass or less, a resin composition that can be molded while maintaining the effect of imparting heat resistance to the vinyl chloride resin is obtained. On the other hand, when the aromatic vinyl monomer unit is 45% by mass or more, when a resin composition obtained by blending with a vinyl chloride resin is molded, a molded article having excellent thermal stability and good appearance is obtained. can get. If the (meth) acrylic acid ester monomer unit is 5% by mass or more, compatibility with the vinyl chloride resin is improved while maintaining the heat resistance imparting effect to the vinyl chloride resin. When the unsaturated dicarboxylic acid anhydride monomer unit is 10% by mass or more, the effect of imparting heat resistance to the vinyl chloride resin is improved.

なお本発明の塩化ビニル樹脂耐熱改質用共重合体は、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、および不飽和ジカルボン酸無水物単量体単位以外の、共重合可能なビニル単量体の単位を共重合体中に発明の効果を阻害しない範囲で含んでもよく、好ましくは5質量%以下である。共重合可能なビニル単量体の単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N−メチルマレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミドなどのN−アルキルマレイミド単量体、N−フェニルマレイミド、N−メチルフェニルマレイミド、N−クロルフェニルマレイミドなどのN−アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。共重合可能なビニル単量体の単位は、2種類以上の併用であってもよい。 The vinyl chloride resin heat-modifying copolymer of the present invention is a copolymer other than aromatic vinyl monomer units, (meth) acrylic acid ester monomer units, and unsaturated dicarboxylic acid anhydride monomer units. Polymerizable vinyl monomer units may be included in the copolymer as long as the effects of the invention are not impaired, and the amount is preferably 5% by mass or less. Examples of the copolymerizable vinyl monomer unit include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, and N-ethylmaleimide. N-alkylmaleimide monomers such as N-butylmaleimide and N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide Examples are units derived from the body. Two or more types of copolymerizable vinyl monomer units may be used.

本発明の塩化ビニル樹脂耐熱改質用共重合体は、重量平均分子量(Mw)が10万〜20万であることが好ましく、より好ましくは重量平均分子量(Mw)が12万〜18万である。重量平均分子量(Mw)が大きすぎると、成形加工温度の低い塩化ビニル樹脂との相溶性が悪くなり、得られる樹脂組成物の成形加工性や成形品の外観が劣る場合がある。重量平均分子量(Mw)が小さすぎると、成形加工性や成形品の強度に劣る場合がある。なお、重量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、下記記載の測定条件における測定値である。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
濃度:2質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
The vinyl chloride resin heat-resistant modifying copolymer of the present invention preferably has a weight average molecular weight (Mw) of 100,000 to 200,000, more preferably a weight average molecular weight (Mw) of 120,000 to 180,000. . If the weight average molecular weight (Mw) is too large, the compatibility with a vinyl chloride resin having a low molding temperature will be poor, and the molding processability of the resulting resin composition and the appearance of the molded product may be inferior. If the weight average molecular weight (Mw) is too small, the molding processability and the strength of the molded product may be inferior. The weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and is a value measured under the measurement conditions described below.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).

本発明の塩化ビニル樹脂耐熱改質用共重合体は、220℃、98N荷重で測定したメルトマスフローレート(MFR)は、0.5〜20.0g/分であることが好ましく、より好ましくは1.0〜15.0g/分である。メルトマスフローレート(MFR)が低すぎると、成形加工温度の低い塩化ビニル樹脂との相溶性が悪くなり、得られる樹脂組成物の成形加工性や成形品の外観が劣る場合がある。メルトマスフローレート(MFR)が高すぎると、成形加工性や成形品の強度に劣る場合がある。なお、メルトマスフローレート(MFR)とは、JIS K7210:1999に基づき、220℃、98N荷重にて測定した値である。 The vinyl chloride resin heat-resistant modifying copolymer of the present invention preferably has a melt mass flow rate (MFR) measured at 220 ° C. and a 98 N load of 0.5 to 20.0 g / min, more preferably 1 0.0-15.0 g / min. If the melt mass flow rate (MFR) is too low, the compatibility with a vinyl chloride resin having a low molding processing temperature is deteriorated, and the molding processability of the resulting resin composition and the appearance of the molded product may be inferior. If the melt mass flow rate (MFR) is too high, the moldability and the strength of the molded product may be inferior. The melt mass flow rate (MFR) is a value measured at 220 ° C. and 98 N load based on JIS K7210: 1999.

本発明の塩化ビニル樹脂耐熱改質用共重合体は、50N荷重で測定したビカット軟化温度が110〜150℃であることが好ましく、120〜145℃であることがより好ましい。ビカット軟化温度が110〜150℃の範囲であれば、塩化ビニル樹脂に所定量配合することで耐熱性に優れる樹脂組成物が得られることから好ましい。ビカット軟化温度は、JIS K7206:1999に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いた測定値である。 The vinyl chloride resin heat-resistant modifying copolymer of the present invention preferably has a Vicat softening temperature measured at 50 N load of 110 to 150 ° C, more preferably 120 to 145 ° C. When the Vicat softening temperature is in the range of 110 to 150 ° C., it is preferable because a resin composition having excellent heat resistance can be obtained by adding a predetermined amount to the vinyl chloride resin. The Vicat softening temperature is a measured value based on JIS K7206: 1999, using 50 specimens (load 50 N, heating rate 50 ° C./hour) with a test piece of 10 mm × 10 mm and a thickness of 4 mm.

本発明の塩化ビニル樹脂耐熱改質用共重合体の製造方法について説明する。
重合様式においては特に限定はなく、溶液重合、塊状重合等公知の方法で製造できるが、溶液重合がより好ましい。溶液重合で用いる溶剤は、副生成物が出来難く、悪影響が少ないという観点から非重合性であることが好ましい。溶剤の種類としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4−ジオキサン等のエーテル類、トルエン、エチルベンゼン、キシレン、クロロベンゼン等の芳香族炭化水素などが挙げられるが、単量体や共重合体の溶解度、溶剤回収のし易さの観点から、メチルエチルケトン、メチルイソブチルケトンが好ましい。溶剤の添加量は、得られる共重合体量100質量部に対して、10〜100質量部が好ましく、さらに好ましくは30〜80質量部である。10質量部以上であれば、反応速度および重合液粘度を制御する上で好適であり、100質量部以下であれば、所望の重量平均分子量(Mw)を得る上で好適である。
The method for producing the vinyl chloride resin heat-resistant modification copolymer of the present invention will be described.
The polymerization mode is not particularly limited and can be produced by a known method such as solution polymerization or bulk polymerization, but solution polymerization is more preferable. The solvent used in the solution polymerization is preferably non-polymerizable from the viewpoint that a by-product is difficult to produce and that there are few adverse effects. The type of solvent is not particularly limited. For example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, toluene, ethylbenzene, xylene, and chlorobenzene Aromatic hydrocarbons, etc. are mentioned, but methyl ethyl ketone and methyl isobutyl ketone are preferred from the viewpoint of the solubility of the monomer and copolymer and the ease of solvent recovery. The addition amount of the solvent is preferably 10 to 100 parts by mass, more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the copolymer to be obtained. If it is 10 parts by mass or more, it is suitable for controlling the reaction rate and the polymerization solution viscosity, and if it is 100 parts by mass or less, it is suitable for obtaining a desired weight average molecular weight (Mw).

重合プロセスは回分式重合法、半回分式重合法、連続重合法のいずれの方式であっても差し支えないが、所望の重量平均分子量(Mw)を得る上で回分式重合法が好適である。 The polymerization process may be any of a batch polymerization method, a semi-batch polymerization method, and a continuous polymerization method, but the batch polymerization method is suitable for obtaining a desired weight average molecular weight (Mw).

重合方法は特に限定されないが、簡潔プロセスによって生産性良く製造することが可能であるという観点から、好ましくはラジカル重合法である。重合開始剤としては特に限定されるものではないが、例えばジベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシアセテート、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の公知の有機過酸化物やアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物を用いることができる。これらの重合開始剤は2種以上を併用することも出来る。これらの中でも10時間半減期温度が、70〜110℃である有機過酸化物を用いるのが好ましい。 The polymerization method is not particularly limited, but is preferably a radical polymerization method from the viewpoint that it can be produced with high productivity by a simple process. The polymerization initiator is not particularly limited. For example, dibenzoyl peroxide, t-butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, t-butyl peroxy Known organic compounds such as isopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyacetate, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate Known azo compounds such as peroxides, azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, and the like can be used. Two or more of these polymerization initiators can be used in combination. Among these, it is preferable to use an organic peroxide having a 10-hour half-life temperature of 70 to 110 ° C.

重合の際、共重合組成分布が小さくなるように重合することが好ましい。芳香族ビニル単量体と不飽和ジカルボン酸無水物単量体とが強い交互共重合性を有することから、芳香族ビニル単量体と(メタ)アクリル酸エステル単量体の重合速度に対応するように不飽和ジカルボン酸無水物単量体を連続的に分添する方法が好適である。重合速度のコントロールについては、重合温度、重合時間、および重合開始剤添加量とで調整することが出来る。重合開始剤を連続分添すると、より重合速度をコントロールし易くなるので好ましい。共重合体組成分布を小さくすることで、耐熱性と強度のバランスに優れた共重合体を得ることができることから好ましい。共重合体組成分布は、共重合体の透明性によって評価することができる。共重合組成分布の目安として、ASTM D1003に基づき測定した2mm厚みの全光線透過率が88%以上であることが好ましい。 Polymerization is preferably performed so that the copolymer composition distribution becomes small during the polymerization. Since the aromatic vinyl monomer and unsaturated dicarboxylic acid anhydride monomer have strong alternating copolymerization, it corresponds to the polymerization rate of the aromatic vinyl monomer and the (meth) acrylate monomer. Thus, a method of continuously adding unsaturated dicarboxylic acid anhydride monomers is preferred. The control of the polymerization rate can be adjusted by the polymerization temperature, the polymerization time, and the addition amount of the polymerization initiator. It is preferable to continuously add a polymerization initiator because the polymerization rate can be more easily controlled. It is preferable to reduce the copolymer composition distribution because a copolymer having an excellent balance between heat resistance and strength can be obtained. The copolymer composition distribution can be evaluated by the transparency of the copolymer. As a measure of the copolymer composition distribution, the total light transmittance of 2 mm thickness measured based on ASTM D1003 is preferably 88% or more.

さらに、好ましい重量平均分子量(Mw)の範囲である10万〜20万である共重合体を得る方法については、重合温度、重合時間、および重合開始剤添加量の調整に加えて、溶剤添加量および連鎖移動剤添加量を調整することで得ることが出来る。連鎖移動剤としては、特に限定されるものではないが、例えば、n−ドデシルメルカプタン、t−ドデシルメルカプタンや2,4−ジフェニル−4−メチル−1−ペンテン等の公知の連鎖移動剤を用いることができる。 Furthermore, about the method of obtaining the copolymer which is the range of 100,000-200000 which is the range of preferable weight average molecular weight (Mw), in addition to adjustment of polymerization temperature, polymerization time, and polymerization initiator addition amount, solvent addition amount And it can obtain by adjusting chain transfer agent addition amount. Although it does not specifically limit as a chain transfer agent, For example, using well-known chain transfer agents, such as n-dodecyl mercaptan, t-dodecyl mercaptan, and 2, 4- diphenyl-4-methyl- 1-pentene. Can do.

重合終了後、重合液には必要に応じて、ヒンダードフェノール系化合物、ラクトン系化合物、リン系化合物、イオウ系化合物などの耐熱安定剤、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等の耐光安定剤、滑剤や可塑剤、着色剤、帯電防止剤、鉱油等の添加剤を加えても構わない。その添加量は全単量体単位100質量部に対して0.2質量部未満であることが好ましい。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。 After the polymerization is completed, the polymerization solution is optionally provided with a heat resistant stabilizer such as a hindered phenol compound, a lactone compound, a phosphorus compound, a sulfur compound, a light resistant stabilizer such as a hindered amine compound, a benzotriazole compound, Additives such as lubricants, plasticizers, colorants, antistatic agents and mineral oils may be added. The addition amount is preferably less than 0.2 parts by mass with respect to 100 parts by mass of all monomer units. These additives may be used alone or in combination of two or more.

重合液から本発明の塩化ビニル樹脂耐熱改質用共重合体を回収する方法については、特に限定はなく、公知の脱揮技術を用いることが出来る。例えば、重合液を二軸脱揮押出機にギヤーポンプを用いて連続的にフィードし、重合溶剤や未反応モノマー等を脱揮処理する方法が挙げられる。なお、重合溶剤や未反応モノマー等を含む脱揮成分は、コンデンサー等を用いて凝縮させて回収し、凝縮液を蒸留塔にて精製することで、重合溶剤は再利用することが可能である。 There is no limitation in particular about the method of collect | recovering the vinyl chloride resin heat-resistant copolymer of this invention from a polymerization liquid, A well-known devolatilization technique can be used. For example, a method of continuously feeding the polymerization liquid to a twin-screw devolatilizing extruder using a gear pump and devolatilizing a polymerization solvent, an unreacted monomer and the like can be mentioned. The devolatilizing component including the polymerization solvent, unreacted monomer, etc. is condensed and recovered using a condenser, etc., and the polymerization solvent can be reused by purifying the condensate in a distillation tower. .

このようにして得られる本発明の塩化ビニル樹脂耐熱改質用共重合体は、塩化ビニル樹脂の耐熱改質材として用いることができる。本発明の塩化ビニル樹脂耐熱改質用共重合体と塩化ビニル樹脂とを混練混合して樹脂組成物を得る方法については、特に限定はなく、公知の溶融混練技術を用いることが出来る。好適に使用できる溶融混練装置としては、単軸押出機、噛合形同方向回転または噛合形異方向回転二軸押出機、非または不完全噛合形二軸押出機等のスクリュー押出機、バンバリーミキサー、コニーダー及び混合ロール等がある。 The vinyl chloride resin heat-modifying copolymer of the present invention thus obtained can be used as a heat-resistant modifying material for vinyl chloride resins. The method for kneading and mixing the vinyl chloride resin heat-modifying copolymer of the present invention and the vinyl chloride resin to obtain a resin composition is not particularly limited, and a known melt-kneading technique can be used. Examples of the melt-kneading apparatus that can be suitably used include a single screw extruder, a meshing type co-rotating or meshing type counter-rotating twin screw extruder, a screw extruder such as a non- or incomplete meshing type twin screw extruder, a Banbury mixer, There are kneaders and mixing rolls.

塩化ビニル樹脂がパウダー形状である場合は、本発明の塩化ビニル樹脂耐熱改質用共重合体もパウダー形状に粉砕して使用した方が好ましい。粉砕方法としては、特に限定はなく、公知の粉砕技術を用いることが出来る。好適に使用できる粉砕装置としては、ターボミル式粉砕機、ターボディスクミル式粉砕機、ターボカッター式粉砕機、ジェットミル式粉砕機、衝撃式粉砕機、ハンマー式粉砕機、振動式粉砕機等がある。 When the vinyl chloride resin is in a powder form, the vinyl chloride resin heat-resistant modifying copolymer of the present invention is preferably used after being pulverized into a powder form. The pulverization method is not particularly limited, and a known pulverization technique can be used. Examples of pulverizers that can be suitably used include a turbo mill pulverizer, a turbo disk mill pulverizer, a turbo cutter pulverizer, a jet mill pulverizer, an impact pulverizer, a hammer pulverizer, and a vibration pulverizer. .

本発明の塩化ビニル樹脂耐熱改質用共重合体と塩化ビニル樹脂の配合割合は、塩化ビニル樹脂耐熱改質用共重合体5〜50質量%と、塩化ビニル樹脂50〜95質量%であると得られる樹脂組成物の耐熱性、熱安定性、外観に優れる。塩化ビニル樹脂耐熱改質用共重合体10〜40質量%と、塩化ビニル樹脂60〜90質量%であると更に好ましく、塩化ビニル樹脂耐熱改質用共重合体20〜30質量%と、塩化ビニル樹脂70〜80質量%であるとより更に好ましい。 The blending ratio of the vinyl chloride resin heat-modifying copolymer of the present invention and the vinyl chloride resin is 5 to 50% by mass of the vinyl chloride resin heat-modifying copolymer and 50 to 95% by mass of the vinyl chloride resin. The resulting resin composition is excellent in heat resistance, thermal stability and appearance. More preferably, it is 10 to 40% by mass of a vinyl chloride resin heat-modifying copolymer and 60 to 90% by mass of a vinyl chloride resin, 20 to 30% by mass of a vinyl chloride resin heat-modifying copolymer, and vinyl chloride. It is still more preferable that it is 70-80 mass% of resin.

なお本発明の塩化ビニル樹脂耐熱改質用共重合体と塩化ビニル樹脂からなる樹脂組成物には、本発明の効果を阻害しない範囲で安定剤や可塑剤、滑剤、酸化防止剤、紫外線吸収剤、光安定剤、着色剤、相溶化剤、充填剤、加工性改良剤、強化剤、帯電防止剤、難燃剤、初期着色改善剤、導電性付与剤等の添加剤を加えても構わない。これらの添加剤は単独で用いても、2種類以上を併用しても構わない。 The resin composition comprising the vinyl chloride resin heat-modifying copolymer of the present invention and the vinyl chloride resin includes a stabilizer, a plasticizer, a lubricant, an antioxidant, and an ultraviolet absorber as long as the effects of the present invention are not impaired. Additives such as a light stabilizer, a colorant, a compatibilizer, a filler, a processability improver, a reinforcing agent, an antistatic agent, a flame retardant, an initial color improver, and a conductivity imparting agent may be added. These additives may be used alone or in combination of two or more.

共重合体と塩化ビニル樹脂からなる樹脂組成物を成形加工して塩化ビニル配管を得る方法については、特に限定はなく、公知の成形加工技術を用いることが出来る。好適に使用できる成形加工技術としては、押出成形法、カレンダー成形法、射出成形法、プレス成形法ディッピング加工法、コーティング加工法等がある。 There is no particular limitation on the method of obtaining a vinyl chloride pipe by molding a resin composition comprising a copolymer and a vinyl chloride resin, and a known molding technique can be used. Suitable molding techniques include extrusion molding, calendar molding, injection molding, press molding, dipping, and coating.

以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Examples are given below to illustrate the present invention in more detail. However, the present invention is not limited to these examples.

<共重合体(A−1)の製造例>
マレイン酸無水物が20質量%濃度となるようにメチルイソブチルケトンに溶解させた20%マレイン酸無水物溶液と、t−ブチルパーオキシ−2−エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液とを事前に調製し、重合に使用した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kg、t−ドデシルメルカプタン40gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−1)を得た。得られた共重合体(A−1)をC−13NMR法により組成分析を行った。さらに重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、91.8%であった。
<Example of production of copolymer (A-1)>
20% maleic anhydride solution dissolved in methyl isobutyl ketone so that maleic anhydride has a concentration of 20% by mass and methyl so that t-butylperoxy-2-ethylhexanoate is 2% by mass. A 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization. A 120-liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, 10.4 kg of methyl methacrylate, and 40 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C. after the temperature rise, 2.1% / hour of 20% maleic anhydride solution and 375 g / hour of 2% t-butylperoxy-2-ethylhexanoate solution were respectively added. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8 ° C./hour while maintaining the addition rate of 2.1 kg / hour as it was. The addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 25.2 kg. After the temperature rise, the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer. The pellet-shaped copolymer (A-1) was obtained by performing volatilization treatment and extruding and cutting into strands. The composition of the obtained copolymer (A-1) was analyzed by C-13 NMR method. Furthermore, the weight average molecular weight (Mw), melt mass flow rate (MFR), and Vicat softening temperature were measured. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 91.8%.

<共重合体(A−2)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液3.8kg、スチレン24kg、メチルメタクレリレート8.4kg、t−ドデシルメルカプタン32gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.85kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.85kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で34.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−2)を得た。得られた共重合体(A−2)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、90.2%であった。
<Example of production of copolymer (A-2)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120 liter autoclave equipped with a stirrer was charged with 3.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, 8.4 kg of methyl methacrylate, and 32 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 2.85 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated up to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 2.85 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the addition amount reached 34.2 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (A-2) was obtained. About the obtained copolymer (A-2), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 90.2%.

<共重合体(A−3)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2kg、スチレン24kg、メチルメタクレリレート12kg、t−ドデシルメルカプタン40g、メチルイソブチルケトン5kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を1.5kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま1.5kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で18kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−3)を得た。得られた共重合体(A−3)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、90.8%であった。
<Example of production of copolymer (A-3)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 20% maleic anhydride solution, 24 kg of styrene, 12 kg of methyl methacrylate, 40 g of t-dodecyl mercaptan, and 5 kg of methyl isobutyl ketone. After the replacement, the temperature was raised to 88 ° C. over 40 minutes with stirring. After maintaining the temperature at 88 ° C., a 20% maleic anhydride solution was added at a rate of 1.5 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 375 g / hour. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8 ° C./hour while maintaining the addition rate of 1.5 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 18 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (A-3) was obtained. About the obtained copolymer (A-3), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 90.8%.

<共重合体(A−4)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液5kg、スチレン24kg、メチルメタクレリレート6kg、t−ドデシルメルカプタン50gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を3.75kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま3.75kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で45kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−4)を得た。得られた共重合体(A−4)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、90.0%であった。
<Example of production of copolymer (A-4)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120 liter autoclave equipped with a stirrer was charged with 5 kg of a 20% maleic anhydride solution, 24 kg of styrene, 6 kg of methyl methacrylate, 50 g of t-dodecyl mercaptan, the gas phase was replaced with nitrogen gas, and stirred. The temperature was raised to 88 ° C. over 40 minutes. While maintaining 88 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 3.75 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 3.75 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the addition amount reached 45 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (A-4) was obtained. About the obtained copolymer (A-4), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 90.0%.

<共重合体(A−5)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン13.8kg、メチルメタクレリレート16kg、t−ドデシルメルカプタン48gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.8kg/時、スチレン0.5kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に6時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを20g添加した。20%マレイン酸無水物溶液およびスチレンは、各々そのまま2.8kg/時、0.5kg/時の分添速度を維持しながら、10℃/時の昇温速度で3時間かけて118℃まで昇温した。20%マレイン酸無水物溶液の分添は積算で25.2kgになった時点で、スチレンの分添は積算で4.5kgになった時点で、各々の分添を停止した。昇温後、1時間118℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−5)を得た。得られた共重合体(A−5)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、89.5%であった。
<Example of production of copolymer (A-5)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120-liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 13.8 kg of styrene, 16 kg of methyl methacrylate, and 48 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. After maintaining the temperature at 88 ° C., 20% maleic anhydride solution was 2.8 kg / hour, styrene 0.5 kg / hour, and 2% t-butylperoxy-2-ethylhexanoate solution was 300 g / hour. The addition was continued continuously over a period of 6 hours at the rate of hourly addition. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 20 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution and styrene were heated to 118 ° C. over 3 hours at a heating rate of 10 ° C./hour while maintaining the addition rate of 2.8 kg / hour and 0.5 kg / hour respectively. Warm up. When the addition of 20% maleic anhydride solution reached 25.2 kg in total, the addition of styrene was stopped when the addition of styrene reached 4.5 kg. After the temperature rise, the polymerization was terminated by maintaining 118 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (A-5) was obtained. About the obtained copolymer (A-5), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 89.5%.

<共重合体(A−6)の製造例>
25%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノネート溶液は(A−1)と同様に調整した。攪拌機を備えた120リットルのオートクレーブ中に、25%マレイン酸無水物溶液1.68kg、スチレン14.8kg、メチルメタクリレート1kg、t−ドデシルメルカプタン10gを仕込み、気相部を窒素ガスで置換した後、攪拌しながら40分かけて97℃まで昇温した。昇温後97℃を保持しながら、25%マレイン酸無水溶液と、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液とを各々連続的に分添開始した。25%マレイン酸無水物溶液は、分添開始6時間目までが1.61kg/時、6時間目から9時間目までが0.91kg/時、9時間目から12時間目までが0.66kg/時、12時間目から15時間目までが0.25kg/時の分添速度となるように段階的に分添速度を変え、合計で15.12kg添加した。2%t−ブチルパーオキシ−2−エチルヘキサノネート溶液は、分添開始から9時間目までが0.13kg/時、9時間目から15時間目までが0.3kg/時の分添速度となるように段階的に分添速度を変え、合計で2.97kg添加した。重合温度は、分添開始から9時間目までは97℃を保持し、その後3.5℃/時の昇温速度で6時間かけて118℃まで昇温し、さらに118℃を1時間保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(A−6)を得た。得られた共重合体(A−6)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表1に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、89.5%であった。
<Example of production of copolymer (A-6)>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanate solution were prepared in the same manner as (A-1). A 120-liter autoclave equipped with a stirrer was charged with 1.68 kg of a 25% maleic anhydride solution, 14.8 kg of styrene, 1 kg of methyl methacrylate, and 10 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. The temperature was raised to 97 ° C. over 40 minutes with stirring. While maintaining the temperature at 97 ° C. after the temperature increase, a 25% maleic acid-free aqueous solution and a 2% t-butylperoxy-2-ethylhexanoate solution were each continuously added. The 25% maleic anhydride solution is 1.61 kg / hour from the 6th hour of the addition, 0.91 kg / hour from the 6th to the 9th hour, and 0.66 kg from the 9th to the 12th hour. / Hour, the addition speed was changed stepwise so that the addition speed of 0.25 kg / hour from the 12th to the 15th hour was added, and a total of 15.12 kg was added. The 2% t-butylperoxy-2-ethylhexanonate solution was dispensed at a rate of 0.13 kg / hour from the start of the addition until the 9th hour and 0.3 kg / hour from the 9th to the 15th hour. The addition speed was changed stepwise so that 2.97 kg in total was added. The polymerization temperature is maintained at 97 ° C. until 9 hours from the start of the addition, and then increased to 118 ° C. over 6 hours at a temperature increase rate of 3.5 ° C./hour, and further maintained at 118 ° C. for 1 hour. The polymerization was terminated. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (A-6) was obtained. About the obtained copolymer (A-6), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 1 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 89.5%.

<共重合体(B−1)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を1.68kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を200g/時の分添速度で各々連続的に10時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを20g添加した。20%マレイン酸無水物溶液はそのまま1.68kg/時の分添速度を維持しながら、6.4℃/時の昇温速度で5時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−1)を得た。得られた共重合体(B−1)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、90.3%であった。
<Example of production of copolymer (B-1)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120-liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, and 10.4 kg of methyl methacrylate, and the gas phase portion was replaced with nitrogen gas. The temperature was raised to 88 ° C. over 40 minutes. While maintaining 88 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 1.68 kg / hour, and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 200 g / hour, respectively. The addition continued continuously over 10 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 20 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 5 hours at a temperature increase rate of 6.4 ° C./hour, while maintaining the addition rate of 1.68 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 25.2 kg. After the temperature rise, the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer. Volatilization treatment was performed, and extrusion-cutting into strands was performed to obtain a pellet-shaped copolymer (B-1). About the obtained copolymer (B-1), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 90.3%.

<共重合体(B−2)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート
溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液2.8kg、スチレン24kg、メチルメタクレリレート10.4kg、t−ドデシルメルカプタン300gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.1kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を375g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。20%マレイン酸無水物溶液はそのまま2.1kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で25.2kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−2)を得た。得られた共重合体(B−2)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、91.5%であった。
<Example of production of copolymer (B-2)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120 liter autoclave equipped with a stirrer was charged with 2.8 kg of a 20% maleic anhydride solution, 24 kg of styrene, 10.4 kg of methyl methacrylate, and 300 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C. after the temperature rise, 2.1% / hour of 20% maleic anhydride solution and 375 g / hour of 2% t-butylperoxy-2-ethylhexanoate solution were respectively added. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 8 ° C./hour while maintaining the addition rate of 2.1 kg / hour as it was. The addition of the 20% maleic anhydride solution was stopped when the amount of addition reached 25.2 kg. After the temperature rise, the polymerization liquid which has been held at 120 ° C. for 1 hour to finish the polymerization is continuously fed to a twin-screw devolatilizing extruder using a gear pump to remove methyl isobutyl ketone and a small amount of unreacted monomer. The pellet-shaped copolymer (B-2) was obtained by performing volatilization treatment and extruding and cutting into strands. About the obtained copolymer (B-2), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 91.5%.

<共重合体(B−3)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液8kg、スチレン0.8kg、メチルメタクレリレート17.6kg、t−ドデシルメルカプタン30gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて88℃まで昇温した。昇温後88℃を保持しながら、20%マレイン酸無水物溶液を2.5kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を250g/時の分添速度で各々連続的に6時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを10g添加した。20%マレイン酸無水物溶液はそのまま2.5kg/時の分添速度を維持しながら、16℃/時の昇温速度で2時間かけて120℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で20kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−3)を得た。得られた共重合体(B−3)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、88.8%であった。
<Example of production of copolymer (B-3)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120 liter autoclave equipped with a stirrer was charged with 8 kg of 20% maleic anhydride solution, 0.8 kg of styrene, 17.6 kg of methyl methacrylate and 30 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 88 ° C. over 40 minutes with stirring. While maintaining 88 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 2.5 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 250 g / hour, respectively. The addition continued continuously over 6 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 10 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 120 ° C. over 2 hours at a temperature increase rate of 16 ° C./hour while maintaining the addition rate of 2.5 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the addition amount reached 20 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (B-3) was obtained. About the obtained copolymer (B-3), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 88.8%.

<共重合体(B−4)の製造例>
マレイン酸無水物が10質量%濃度となるようにメチルイソブチルケトンに溶解させた10%マレイン酸無水物溶液と、t−ブチルパーオキシ−2−エチルヘキサノエートが2質量%となるようにメチルイソブチルケトンに希釈した2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液とを事前に調製し、重合に使用した。撹拌機を備えた120リットルのオートクレーブ中に、10%マレイン酸無水物溶液2kg、スチレン24kg、メチルメタクレリレート14kg、t−ドデシルメルカプタン48g、メチルイソブチルケトン2kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて90℃まで昇温した。昇温後90℃を保持しながら、10%マレイン酸無水物溶液を1.5kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を300g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。10%マレイン酸無水物溶液はそのまま1.5kg/時の分添速度を維持しながら、7.5℃/時の昇温速度で4時間かけて120℃まで昇温した。10%マレイン酸無水物溶液の分添は、分添量が積算で18kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−4)を得た。得られた共重合体(B−4)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、90.1%であった。
<Example of production of copolymer (B-4)>
A 10% maleic anhydride solution dissolved in methyl isobutyl ketone so that the maleic anhydride has a concentration of 10% by mass and methyl so that t-butylperoxy-2-ethylhexanoate may be 2% by mass. A 2% t-butyl peroxy-2-ethylhexanoate solution diluted in isobutyl ketone was prepared in advance and used for the polymerization. A 120 liter autoclave equipped with a stirrer was charged with 2 kg of a 10% maleic anhydride solution, 24 kg of styrene, 14 kg of methyl methacrylate, 48 g of t-dodecyl mercaptan, and 2 kg of methyl isobutyl ketone, and the gas phase part was filled with nitrogen gas. After the replacement, the temperature was raised to 90 ° C. over 40 minutes with stirring. After maintaining the temperature at 90 ° C., a 10% maleic anhydride solution was added at a rate of 1.5 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 300 g / hour. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 10% maleic anhydride solution was heated to 120 ° C. over 4 hours at a temperature rising rate of 7.5 ° C./hour while maintaining the addition rate of 1.5 kg / hour. The addition of the 10% maleic anhydride solution was stopped when the addition amount reached 18 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (B-4) was obtained. About the obtained copolymer (B-4), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 90.1%.

<共重合体(B−5)の製造例>
25%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、25%マレイン酸無水物溶液4.9kg、スチレン29kg、メチルメタクレリレート4.3kg、t−ドデシルメルカプタン30gを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて92℃まで昇温した。昇温後92℃を保持しながら、25%マレイン酸無水物溶液を4.5kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を250g/時の分添速度で各々連続的に8時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを40g添加した。25%マレイン酸無水物溶液はそのまま3.75kg/時の分添速度を維持しながら、8℃/時の昇温速度で4時間かけて120℃まで昇温した。25%マレイン酸無水物溶液の分添は、分添量が積算で44kgになった時点で停止した。昇温後、1時間120℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−5)を得た。得られた共重合体(B−5)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、88.6%であった。
<Example of production of copolymer (B-5)>
A 25% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120-liter autoclave equipped with a stirrer was charged with 4.9 kg of a 25% maleic anhydride solution, 29 kg of styrene, 4.3 kg of methyl methacrylate, and 30 g of t-dodecyl mercaptan, and the gas phase was replaced with nitrogen gas. Then, the temperature was raised to 92 ° C. over 40 minutes with stirring. While maintaining 92 ° C. after the temperature rise, a 25% maleic anhydride solution was added at a rate of 4.5 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 250 g / hour, respectively. The addition continued continuously over 8 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 40 g of t-butylperoxyisopropyl monocarbonate was added. The 25% maleic anhydride solution was heated to 120 ° C. over 4 hours at a heating rate of 8 ° C./hour while maintaining the addition rate of 3.75 kg / hour. The addition of the 25% maleic anhydride solution was stopped when the addition amount reached 44 kg. After the temperature increase, the polymerization was terminated by maintaining 120 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (B-5) was obtained. About the obtained copolymer (B-5), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 88.6%.

<共重合体(B−6)の製造例>
20%マレイン酸無水物溶液と2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液は、A−1と同様に調製した。撹拌機を備えた120リットルのオートクレーブ中に、20%マレイン酸無水物溶液1.2kg、スチレン35.2kg、t−ドデシルメルカプタン30g、メチルイソブチルケトン2kgを仕込み、気相部を窒素ガスで置換した後、撹拌しながら40分かけて92℃まで昇温した。昇温後92℃を保持しながら、20%マレイン酸無水物溶液を0.76kg/時、および2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液を250g/時の分添速度で各々連続的に15時間かけて添加し続けた。その後、2%t−ブチルパーオキシ−2−エチルヘキサノエート溶液の分添を停止し、t−ブチルパーオキシイソプロピルモノカーボネートを60g添加した。20%マレイン酸無水物溶液はそのまま0.76kg/時の分添速度を維持しながら、4℃/時の昇温速度で9時間かけて128℃まで昇温した。20%マレイン酸無水物溶液の分添は、分添量が積算で18.24kgになった時点で停止した。昇温後、1時間128℃を保持して重合を終了させた。重合液は、ギヤーポンプを用いて二軸脱揮押出機に連続的にフィードし、メチルイソブチルケトンおよび微量の未反応モノマー等を脱揮処理して、ストランド状に押出し切断することによりペレット形状の共重合体(B−6)を得た。得られた共重合体(B−6)について、A−1と同様に組成分析と重量平均分子量(Mw)、メルトマスフローレイト(MFR)、ビカット軟化温度の測定を行った。組成分析結果及び各種測定結果を表2に示す。また、射出成形機にて2mm厚みの鏡面プレートを成形し、ヘーズメーターにて全光線透過率を測定した結果、88.0%であった。
<Example of production of copolymer (B-6)>
A 20% maleic anhydride solution and a 2% t-butylperoxy-2-ethylhexanoate solution were prepared in the same manner as A-1. A 120-liter autoclave equipped with a stirrer was charged with 1.2 kg of a 20% maleic anhydride solution, 35.2 kg of styrene, 30 g of t-dodecyl mercaptan, and 2 kg of methyl isobutyl ketone, and the gas phase was replaced with nitrogen gas. Then, it heated up to 92 degreeC over 40 minutes, stirring. While maintaining 92 ° C. after the temperature rise, a 20% maleic anhydride solution was added at a rate of 0.76 kg / hour and a 2% t-butylperoxy-2-ethylhexanoate solution was added at a rate of 250 g / hour, respectively. The addition continued continuously over 15 hours. Thereafter, the addition of the 2% t-butylperoxy-2-ethylhexanoate solution was stopped, and 60 g of t-butylperoxyisopropyl monocarbonate was added. The 20% maleic anhydride solution was heated to 128 ° C. over 9 hours at a temperature increase rate of 4 ° C./hour while maintaining the addition rate of 0.76 kg / hour. The addition of the 20% maleic anhydride solution was stopped when the addition amount reached 18.24 kg. After the temperature increase, the polymerization was terminated by maintaining 128 ° C. for 1 hour. The polymerization solution is continuously fed to a twin-screw devolatilizing extruder using a gear pump, and methyl isobutyl ketone and a small amount of unreacted monomer are devolatilized, and extruded into a strand to cut it. A polymer (B-6) was obtained. About the obtained copolymer (B-6), the composition analysis and the measurement of the weight average molecular weight (Mw), the melt mass flow rate (MFR), and the Vicat softening temperature were performed similarly to A-1. Table 2 shows the composition analysis results and various measurement results. Further, a 2 mm-thick mirror plate was molded with an injection molding machine, and the total light transmittance was measured with a haze meter. As a result, it was 88.0%.

Figure 0006475501
Figure 0006475501

Figure 0006475501
Figure 0006475501

<実施例1〜10、比較例1〜7>
塩化ビニル樹脂97質量%、滑剤1質量%、安定剤2質量%を、単軸押出機(東芝機械社製SE−65CA)にて、シリンダー温度190℃で溶融混練して塩化ビニル樹脂(C−1)を作製した。共重合体(A−1)〜(A−6)または共重合体(B−1)〜(B−6)と塩化ビニル樹脂(C−1)を表3〜表4で示した割合(質量%)で混合した後、単軸押出機にて、シリンダー温度190℃で溶融混練して樹脂組成物を作製した。この樹脂組成物より射出成形にて試験片を調製した他、斜軸異方向二軸押出機(東芝機械社製TEC67)にて、シリンダー温度190℃で溶融混練し、金型温度180℃で押出成形を行い、丸パイプ(外径60mm、肉厚1.2mm)を作製した。この丸パイプをプラスチックパイプカッター(KTS社製EA338BF)を用いて、長さ500mmにカットすることで塩化ビニル配管とした。この樹脂組成物を用いて以下の評価を行い、その評価結果を表3〜表4に示した。なお、塩化ビニル樹脂は、大洋塩ビ社製「TH−1000」、滑剤は日油社製ステアリン酸さくら、安定剤は日東化成社製「TVS#8832」を用いた。
<Examples 1 to 10, Comparative Examples 1 to 7>
97% by mass of vinyl chloride resin, 1% by mass of lubricant, and 2% by mass of stabilizer were melt kneaded at a cylinder temperature of 190 ° C. with a single screw extruder (SE-65CA manufactured by Toshiba Machine Co., Ltd.). 1) was produced. Ratio (mass) of the copolymers (A-1) to (A-6) or the copolymers (B-1) to (B-6) and the vinyl chloride resin (C-1) shown in Tables 3 to 4 %) And then melt kneaded at a cylinder temperature of 190 ° C. in a single screw extruder to prepare a resin composition. In addition to preparing a test piece from this resin composition by injection molding, it was melt-kneaded at a cylinder temperature of 190 ° C. and extruded at a mold temperature of 180 ° C. with an oblique biaxial extruder (TEC 67 manufactured by Toshiba Machine Co., Ltd.). Molding was performed to produce a round pipe (outer diameter 60 mm, wall thickness 1.2 mm). This round pipe was cut into a length of 500 mm using a plastic pipe cutter (EA338BF manufactured by KTS) to obtain a vinyl chloride pipe. The following evaluation was performed using this resin composition, and the evaluation results are shown in Tables 3 to 4. The vinyl chloride resin used was “TH-1000” manufactured by Taiyo Vinyl Co., Ltd., the lubricant was Stearic Acid Sakura manufactured by NOF Corporation, and the stabilizer used was “TVS # 8832” manufactured by Nitto Kasei.

<比較例8>
塩素化塩化ビニル樹脂として、カネカ社製「H516A」を使用した。
<Comparative Example 8>
As the chlorinated vinyl chloride resin, “H516A” manufactured by Kaneka Corporation was used.

(組成分析)
各単量体単位の組成分析は、C−13NMR法にて下記記載の測定条件で測定した。
装置名:JNM−ECXシリーズFT−NMR(JEOL社製)
溶媒:重水素化クロロホルム
濃度:14質量%
温度:27℃
積算回数:8000回
(Composition analysis)
The composition analysis of each monomer unit was measured by the C-13 NMR method under the measurement conditions described below.
Device name: JNM-ECX series FT-NMR (manufactured by JEOL)
Solvent: Deuterated chloroform Concentration: 14% by mass
Temperature: 27 ° C
Integration count: 8000 times

(重量平均分子量)
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の値であり、下記記載の条件にて測定した。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
濃度:2質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
(Weight average molecular weight)
The weight average molecular weight (Mw) is a polystyrene equivalent value measured by gel permeation chromatography (GPC), and was measured under the conditions described below.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2% by mass
Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL).

(メルトマスフローレイト)
メルトマスフローレイト(MFR)は、JIS K7210:1999に基づき、220℃、98N荷重にて測定した。測定機は東洋精機製作所社製メルトインデックサF−F01を使用した。
(Melt mass flow rate)
The melt mass flow rate (MFR) was measured at 220 ° C. and 98 N load based on JIS K7210: 1999. The measuring machine used was a melt indexer F-F01 manufactured by Toyo Seiki Seisakusho.

(ビカット軟化点)
ビカット軟化点は、JIS K7206:1999に基づき、50法(荷重50N、昇温速度50℃/時間)で試験片は10mm×10mm、厚さ4mmのものを用いて測定した。なお、測定機は東洋精機製作所社製HDT&VSPT試験装置を使用した。
(Vicat softening point)
The Vicat softening point was measured according to JIS K7206: 1999 using 50 specimens (load 50 N, temperature rising rate 50 ° C./hour) with a test piece of 10 mm × 10 mm and a thickness of 4 mm. In addition, the measuring machine used the Toyo Seiki Seisakusho HDT & VSPT test apparatus.

(加熱変形率)
縦30mm、横200mm、厚み2mmの試験片を作製し、温風乾燥機(yamato社製DN−43H)を用いて、温度60℃で60分間加熱した。また、外径60mm、肉厚1.2mm、長さ500mmの塩化ビニル配管をギヤーオーブン(東洋精機社製60UL)内に入れ、温度55℃で3時間加熱した。加熱変形率は、前者の場合は加熱前後の横方向の長さから、後者の場合は加熱前後の長さ(押出方向の長さ)から、以下の式を用いて絶対値として算出した。加熱変形率2.0%以下を合格とした。
加熱変形率(%)= (|加熱後の長さ−加熱前の長さ|)/加熱前の長さ×100%
(Heating deformation rate)
A test piece having a length of 30 mm, a width of 200 mm, and a thickness of 2 mm was prepared, and heated at a temperature of 60 ° C. for 60 minutes using a warm air dryer (DN-43H manufactured by Yamato). Further, a vinyl chloride pipe having an outer diameter of 60 mm, a wall thickness of 1.2 mm, and a length of 500 mm was placed in a gear oven (60 UL manufactured by Toyo Seiki Co., Ltd.) and heated at a temperature of 55 ° C. for 3 hours. The heating deformation rate was calculated as an absolute value using the following formula from the lateral length before and after heating in the former case and from the length before and after heating (length in the extrusion direction) in the latter case. A heat deformation rate of 2.0% or less was accepted.
Heat deformation rate (%) = (| length after heating−length before heating |) / length before heating × 100%

(外観)
縦90mm、横90mm、厚み2mmの試験片50個を目視にて観察し、着色、気泡、焼けコンタミ、ブツなどの外観不良が発生したサンプル数を数えることによって、外観評価を行った。また外径60mm、肉厚1.2mm、長さ500mmの塩化ビニル配管30個について目視にて観察し、同様の外観評価を行った。評価基準は以下の通りで、◎と○を合格とした。
◎:外観不良のサンプル数が0〜1個
○:外観不良のサンプル数が2〜5個
△:外観不良のサンプル数が6〜10個
×:外観不良のサンプル数が11個以上
(appearance)
Appearance evaluation was performed by visually observing 50 test pieces having a length of 90 mm, a width of 90 mm, and a thickness of 2 mm, and counting the number of samples in which appearance defects such as coloring, bubbles, burn-out contamination, and bumps occurred. Further, visual observation was performed on 30 vinyl chloride pipes having an outer diameter of 60 mm, a wall thickness of 1.2 mm, and a length of 500 mm, and the same appearance evaluation was performed. The evaluation criteria are as follows.
◎: Number of appearance defect samples 0 to 1 ○: Number of appearance defect samples 2 to 5 Δ: Number of appearance defect samples 6 to 10 x: Number of appearance defect samples 11 or more

(熱安定性)
外径60mm、肉厚1.2mm、長さ500mmの塩化ビニル配管をギヤーオーブン(東洋精機社製60UL)内に入れ、温度200℃で加熱し塩化ビニル配管が黒色になるまでの時間を測定した。60分以上黒色にならなかったものを合格とした。
(Thermal stability)
A vinyl chloride pipe having an outer diameter of 60 mm, a wall thickness of 1.2 mm, and a length of 500 mm was placed in a gear oven (60 UL manufactured by Toyo Seiki Co., Ltd.), heated at a temperature of 200 ° C., and the time until the vinyl chloride pipe turned black was measured. . Those that did not turn black for more than 60 minutes were considered acceptable.

Figure 0006475501
Figure 0006475501

Figure 0006475501
Figure 0006475501

本発明の共重合体(A−1)〜(A−6)を用いた実施例は、いずれも加熱変形率が低く、且つ優れた外観を備えることが出来ていた。一方、本発明の条件に合わない共重合体(B−1)〜(B−6)を用いた比較例や塩素化塩化ビニル樹脂では、加熱変形率が高くなる場合や外観不良が発生するなど、実施例に比べて劣るものであった。 The Examples using the copolymers (A-1) to (A-6) of the present invention all had a low heat deformation rate and an excellent appearance. On the other hand, in the comparative examples using the copolymers (B-1) to (B-6) that do not meet the conditions of the present invention and the chlorinated vinyl chloride resin, the case where the heat deformation rate becomes high or the appearance defect occurs. It was inferior to the Examples.

本発明によれば、塩化ビニル樹脂耐熱改質用共重合体を塩化ビニル樹脂に配合することで、耐熱性を付与し、且つ熱安定性も良好で優れた外観の成形品を提供することができ、特に塩化ビニル配管として好適に利用できる。
According to the present invention, by adding a vinyl chloride resin heat-resistant modifying copolymer to a vinyl chloride resin, it is possible to provide a molded article having excellent heat stability and excellent heat stability. In particular, it can be suitably used as a vinyl chloride pipe.

Claims (5)

芳香族ビニル単量体単位45〜85質量%、(メタ)アクリル酸エステル単量体単位5〜45質量%、不飽和ジカルボン酸無水物単量体単位10〜30質量%、及び共重合可能なビニル単量体としてのアクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、N−メチルマレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−メチルフェニルマレイミド、N−クロルフェニルマレイミドから選ばれる少なくとも一種の単量体単位(ただし、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、不飽和ジカルボン酸無水物単量体単位及び共重合可能なビニル単量体の合計を100質量%とする)からなり、重量平均分子量(Mw)が10〜20万である塩化ビニル樹脂耐熱改質用共重合体5〜50質量%と塩化ビニル樹脂50〜95質量%からなる樹脂組成物。 Aromatic vinyl monomer unit 45-85 mass%, (meth) acrylic acid ester monomer unit 5-45 mass%, unsaturated dicarboxylic anhydride monomer unit 10-30 mass%, and copolymerizable Acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-methylphenylmaleimide, N as vinyl monomers -At least one monomer unit selected from chlorophenylmaleimide (however, aromatic vinyl monomer unit, (meth) acrylic acid ester monomer unit, unsaturated dicarboxylic anhydride monomer unit and copolymerizable) consists a total to 100 wt% of vinyl monomer) the weight average molecular weight (Mw) of from 10 to 20 Resin composition vinyl resin heat modifying copolymer 5 to 50 mass% chloride consists 50 to 95 wt% vinyl chloride resin is. 220℃、98N荷重で測定したメルトマスフローレート(MFR)が0.5〜20.0g/分である塩化ビニル樹脂耐熱改質用共重合体を用いた請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein a vinyl chloride resin heat-modifying copolymer having a melt mass flow rate (MFR) measured at 220 ° C. under a 98 N load of 0.5 to 20.0 g / min is used. 50N荷重で測定したビカット軟化温度が110〜150℃である塩化ビニル樹脂耐熱改質用共重合体を用いた請求項1又は請求項2に記載の樹脂組成物。 The resin composition of Claim 1 or Claim 2 using the copolymer for a vinyl chloride resin heat-resistant modification whose Vicat softening temperature measured by 50N load is 110-150 degreeC. 請求項3に記載の樹脂組成物からなる成形体。 The molded object which consists of a resin composition of Claim 3. 請求項3に記載の樹脂組成物からなる塩化ビニル配管。 A vinyl chloride pipe comprising the resin composition according to claim 3.
JP2015011983A 2015-01-26 2015-01-26 Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping Active JP6475501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015011983A JP6475501B2 (en) 2015-01-26 2015-01-26 Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011983A JP6475501B2 (en) 2015-01-26 2015-01-26 Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping

Publications (2)

Publication Number Publication Date
JP2016138156A JP2016138156A (en) 2016-08-04
JP6475501B2 true JP6475501B2 (en) 2019-02-27

Family

ID=56559822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011983A Active JP6475501B2 (en) 2015-01-26 2015-01-26 Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping

Country Status (1)

Country Link
JP (1) JP6475501B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230052943A (en) 2020-08-19 2023-04-20 덴카 주식회사 A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20230052941A (en) 2020-08-19 2023-04-20 덴카 주식회사 A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20240004982A (en) 2021-05-07 2024-01-11 덴카 주식회사 A resin composition containing a maleimide-based copolymer and a chlorine-containing polymer, and a rainwater gutter and rainwater gutter parts molded from the resin composition, a building structure member, and pipes and joints.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311806A (en) * 1981-03-17 1982-01-19 Monsanto Company Polyblends of PVC and styrene-maleic anhydride-rubber copolymers
US4329272A (en) * 1981-03-17 1982-05-11 Monsanto Company Flame-retardant polymers
US20150203610A1 (en) * 2012-07-30 2015-07-23 Denki Kagaku Kogyo Kabushiki Kaisha Copolymer for improving methacrylic resin heat resistance
KR102065948B1 (en) * 2012-10-22 2020-01-14 덴카 주식회사 Copolymer for improving heat resistance of aromatic vinyl-vinyl cyanide resin
JP6166058B2 (en) * 2013-02-20 2017-07-19 デンカ株式会社 Light guide plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230052943A (en) 2020-08-19 2023-04-20 덴카 주식회사 A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20230052941A (en) 2020-08-19 2023-04-20 덴카 주식회사 A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20240004982A (en) 2021-05-07 2024-01-11 덴카 주식회사 A resin composition containing a maleimide-based copolymer and a chlorine-containing polymer, and a rainwater gutter and rainwater gutter parts molded from the resin composition, a building structure member, and pipes and joints.

Also Published As

Publication number Publication date
JP2016138156A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6055832B2 (en) Copolymer for improving heat resistance of methacrylic resin
JP6228126B2 (en) Aromatic vinyl-vinyl cyanide resin Copolymer for improving heat resistance
JPWO2016186133A1 (en) Heat resistant resin composition and method for producing the same
CN115443294A (en) Maleimide copolymer, and chlorine-containing polymer resin composition containing maleimide copolymer and chlorine-containing polymer
CN115427468A (en) Maleimide copolymer, and chlorine-containing polymer resin composition containing maleimide copolymer and chlorine-containing polymer
JP6682521B2 (en) Copolymer for polymer blend compatibilizer and resin composition
JP6475501B2 (en) Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping
JP6587620B2 (en) Copolymer suitable for improving heat resistance of methacrylic resin
JP2012208136A (en) Resin composition for optical molded article and optical molded article thereof
JP7088672B2 (en) Transparent high heat resistant styrene copolymer
KR20220034171A (en) Maleimide-based copolymer, manufacturing method thereof, and resin composition using same
JP6058420B2 (en) Light guide plate
JP6266984B2 (en) Copolymer for improving elongation and impact resistance of PC / ABS resin, this copolymer, PC / ABS resin and resin composition
JP6272787B2 (en) Glass reinforced resin composition
WO2020217687A1 (en) Thermoplastic resin composition and molded article thereof
CN107960084B (en) Resin composition, resin composition for transparent parts of automobile, transparent cover for instrument panel, and hemispherical lens
JP3989403B2 (en) Method for producing copolymer resin
TW202402837A (en) Heat-resistance imparter for chlorinated polymers, resin composition, and molded object formed from said resin composition
JPWO2016186121A1 (en) Transparent resin composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250