JP3989403B2 - Method for producing copolymer resin - Google Patents

Method for producing copolymer resin Download PDF

Info

Publication number
JP3989403B2
JP3989403B2 JP2003143220A JP2003143220A JP3989403B2 JP 3989403 B2 JP3989403 B2 JP 3989403B2 JP 2003143220 A JP2003143220 A JP 2003143220A JP 2003143220 A JP2003143220 A JP 2003143220A JP 3989403 B2 JP3989403 B2 JP 3989403B2
Authority
JP
Japan
Prior art keywords
unsaturated dicarboxylic
aromatic vinyl
dicarboxylic acid
polymerization
acid anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143220A
Other languages
Japanese (ja)
Other versions
JP2004346149A (en
Inventor
勉 高橋
淳 高橋
秀樹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003143220A priority Critical patent/JP3989403B2/en
Publication of JP2004346149A publication Critical patent/JP2004346149A/en
Application granted granted Critical
Publication of JP3989403B2 publication Critical patent/JP3989403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生産性に優れ、ABS樹脂に対して耐熱付与効果が高く、混合性良好な耐熱付与材として用いる事が可能な共重合樹脂およびその共重合樹脂の製造方法に関するものである。
【0002】
【従来の技術】
従来からABS樹脂等の耐熱性を改良する目的で、マレイミド系共重合樹脂を耐熱付与材として用いる事が行われている。マレイミド系共重合樹脂を得る方法の一つとして、先ず中間原料の芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を製造し、更に第1級アミンにてイミド化して得る方法、いわゆる後イミド化法(例えば特許文献1、2、3参照。)が提案されている。
【0003】
【特許文献1】
特開昭60−243102
【特許文献2】
特開昭60−155216
【特許文献3】
特開平13−329026
【0004】
【発明が解決しようとする課題】
しかしながら、いずれの方法においても中間原料の芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を高収率で製造するのに長時間を要し、生産性に問題があった。そのため、目的のマレイミド系共重合樹脂の生産性を向上させることができなかった。
【0005】
【課題を解決するための手段】
本発明者らは、かかる目的を達成すべく鋭意研究を重ねた結果、芳香族ビニル−不飽和ジカルボン酸系共重合体を製造する際、芳香族ビニル単量体と不飽和ジカルボン酸無水物の一部(A)を主体とする混合液に、不飽和ジカルボン酸無水物の一部(B)を特定の割合で分割または連続的に添加しながら重合させる事により、不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸系共重合樹脂を、短時間かつ高収率で極めて効率良く得る方法、およびこれを第1級アミンでイミド化したN−置換マレイミド基含量が多く、ABS樹脂等への耐熱付与効果の高いN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の製造を可能とし本発明に至った。
【0006】
すなわち、本発明は芳香族ビニル単量体と不飽和ジカルボン酸無水物の一部(A)を主体とする混合液に、不飽和ジカルボン酸無水物の一部(B)を分割または連続的に添加しながら6時間以内に重合させる事により得た芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を第一級アミンでイミド化するN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の製造方法であって、前記不飽和ジカルボン酸無水物の一部(A)と不飽和ジカルボン酸無水物の一部(B)の質量比(A)/(B)が60/40〜90/10であり、前記共重合樹脂中のN−置換マレイミド単量体単位が63〜50質量%、芳香族ビニル単量体単位が34〜50質量%、不飽和ジカルボン酸無水物単位が3〜0質量%であり、かつガラス転移温度が191℃以上、重量平均分子量(Mw)が5〜16万であることを特徴とする共重合樹脂の製造方法に関する。
【0007】
【発明の実施の形態】
本発明の芳香族ビニル−不飽和ジカルボン酸無水物系共重合体は、芳香族ビニル単量体、不飽和ジカルボン酸無水物を共重合して得られる。
芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、t−ブチルスチレン、クロロスチレン等が挙げられるが、これらの芳香族ビニル単量体は単独で用いてもよいし、2種類以上を併用しても差し支えないが、スチレンを単独で使用する事が特に好ましい。
不飽和ジカルボン酸無水物としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物があり、これらの酸無水物等を使用する事ができるが、これらの中で入手が容易である点、さらに廉価であるという点からマレイン酸無水物が特に好ましい。また、これらの酸無水物は単独で用いてもよいし、2種類以上を併用しても差し支えないが、マレイン酸無水物を単独で使用する事が特に好ましい。
【0008】
これら単量体群の合計を100質量%とすると、好ましい組成は芳香族ビニル単量体50〜60質量%、不飽和ジカルボン酸無水物50〜40質量%である。芳香族ビニル単量体が50質量%未満であると、成形性および寸法安定性が失われる場合がある。不飽和ジカルボン酸無水物が40質量%未満であると、目的とする共重合体の耐熱性が不十分となり耐熱付与効果等の目的を達せられない場合がある。一方、不飽和ジカルボン酸無水物が50質量%を超えると、目的とする共重合体の耐熱性は向上するも、樹脂が脆くなりそして成形性が著しく悪くなる場合がある。また、不飽和ジカルボン酸無水物を50質量%以上とする事は、芳香族ビニル単量体に対するモノマー反応性比の制約があり、通常の重合条件では実施が困難である場合が多い。
【0009】
一般に、芳香族ビニル単量体、例えばスチレンと不飽和ジカルボン酸無水物、例えばマレイン酸無水物とは、電荷移動錯体を形成しやすく交互共重合性が強いため、通常の重合条件下でかつ芳香族ビニル単量体50〜60質量%、不飽和ジカルボン酸無水物50〜40質量%という単量体組成範囲での重合では、重合初期で芳香族ビニル単量体と不飽和ジカルボン酸無水物のモル比が1:1の組成をもつ交互共重合体が生成する。
重合後期では芳香族ビニル単量体単位の多い共重合体が生成したり、不飽和ジカルボン酸無水物が残存したり、得られる芳香族ビニル−不飽和ジカルボン酸無水物系共重合体は組成分布が大きくなったり、不飽和ジカルボン酸無水物が混在したり、物性上好ましくない。このため均一な組成分布を有する芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得るには、不飽和ジカルボン酸無水物の一部(A)を予め芳香族ビニル単量体と混合しておき、かつ芳香族ビニル単量体の重合速度より実質的に遅い速度で不飽和ジカルボン酸無水物の一部(B)を添加しながらラジカル重合させることが必要である。
【0010】
重合に使用する不飽和ジカルボン酸無水物の合計量を100質量%とすると、不飽和ジカルボン酸無水物の一部(A)が60〜90質量%、不飽和ジカルボン酸無水物の一部(B)の一部が40〜10質量%でなければならない。予め芳香族ビニル単量体と混合する不飽和ジカルボン酸無水物の一部(A)は好ましくは60〜85質量%、さらに好ましくは70〜80質量%である。不飽和ジカルボン酸無水物の一部(A)が60質量%未満であると、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体の生産性が低下し、さらに芳香族ビニル−不飽和ジカルボン酸無水物系共重合体の組成分布が大きくなり、イミド化後のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂とABS樹脂との混合後の組成物の外観が悪化する。また90質量%を超えると重合反応熱の除去が困難となり、重合制御が困難となる。不飽和ジカルボン酸無水物の一部(B)は加熱溶融状態として、或いは非重合性溶剤等に溶解して溶液状態で分割または連続的に添加することが好ましい。
【0011】
本発明における共重合方法は溶液重合、塊状重合等公知の方法が採用できるが、溶液重合が好ましい。
使用する溶剤は非重合性であることが好ましく、非重合性溶剤の量は、単量体群100質量部に対し、100〜400質量部が好ましく、更に好ましくは100〜200質量部である。100質量部未満であると、重合により得られる重合液が高粘度となり、取り扱いが困難になる場合がある。また400質量部以上であると重合体混合物は低粘度となり取り扱いが容易にはなるが、生産性の面から十分でない場合がある。
【0012】
非重合性溶剤の種類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4−ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素、N、N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン等の溶剤があり、揮発性、共重合体の溶解性等の取り扱い易さ等からメチルエチルケトン、メチルイソブチルケトンが特に好ましい。
一方、懸濁重合の場合、重合中に不飽和ジカルボン酸無水物基が加水分解を起こし、目的とする共重合樹脂の耐熱性が悪くなる等好ましくない場合がある。
また、重合プロセスは回分式重合法、連続式重合法のいずれの方式であっても差し支えない。
【0013】
本重合における重合温度は好ましくは60〜150℃であり、さらに好ましくは80〜130℃である。60℃未満では十分な重合速度が得られず、重合に要する時間が長くなる事から生産性の面から好ましくない場合がある。重合温度が150℃を超えると、熱重合の割合が増加するために十分な分子量が得られない場合がある。
【0014】
本重合における、芳香族ビニル単量体の重合率は95%以上が好ましく、97%以上がさらに好ましい。本発明における重合率とは、重合に使用した単量体に対して実際に単量体が重合した割合を表しており、ガスクロマトグラフィー等により未反応単量体を定量する事により求める事ができる。95%未満であると、イミド化の工程で芳香族ビニル単量体の単独重合体が生成し、目的とする共重合樹脂に混在するために物性が悪化する場合があり、さらに目的とする共重合樹脂の収率が低下する場合があり好ましくない。芳香族ビニル単量体の重合率は重合時間、重合温度、重合開始剤量、連鎖移動剤量等により制御する事ができる。
【0015】
また、本重合における不飽和ジカルボン酸無水物の重合率は99%以上が好ましい。不飽和ジカルボン酸無水物の重合率とは、重合に使用した不飽和ジカルボン酸無水物に対して実際に単量体が重合した割合を表しており、ガスクロマトグラフィー等により未反応単量体を定量する事により求める事ができる。99%未満であると、イミド化の工程でイミド化単量体を生成し、目的とする共重合樹脂の外観が著しく悪くなる場合がある。不飽和ジカルボン酸無水物の重合率は重合時間、重合温度、重合開始剤量、連鎖移動剤量等により制御する事ができる。
【0016】
本重合においては、重合は6時間以内に完結する事が好ましく、5時間以内で完結する事がさらに好ましい。6時間以上であると生産性の面から好ましくない。
【0017】
また、本重合に使用される連鎖移動剤としてはn−ドデシルメルカプタン、t−ドデシルメルカプタンや2,4−ジフェニル−4−メチル−1−ペンテン等の公知の連鎖移動剤を用いることができる。使用量は単量体群100質量部に対し、0.05〜0.6質量部が好ましく、さらに好ましくは0.15〜0.6質量部である。0.05質量部以下であると目的とする共重合樹脂の分子量が大きくなり、ABS樹脂との混合性および混合後の組成物の物性が悪くなる場合がある。0.6質量部以上であると十分な分子量が得られない場合がある。
【0018】
本重合で使用される重合開始剤としてはアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物や、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の公知の有機過酸化物を用いることができる。これらの重合開始剤は2種類以上を併用しても差し支えないが、従来のスチレン系樹脂の製造において常用されているもの、例えば10時間半減期温度が70〜120℃であるアゾ化合物や有機過酸化物を用いるのが好ましい。
【0019】
使用量は単量体群100質量部に対し、0.01〜2質量部が好ましく、さらに好ましくは0.1〜1質量部でる。0.01質量部未満であると十分な重合速度が得られない場合がある。また2質量部以上であると、重合速度が増大し反応制御が困難となったり、目的とする共重合体の分子量が不十分となる場合がある。また、本重合に用いる重合開始剤は芳香族ビニル単量体と不飽和ジカルボン酸無水物の一部(A)を主体とする混合液中に一括して添加したり、不飽和ジカルボン酸無水物の一部(B)と共に分割または連続的に添加しても差し支えなく、双方の添加割合は任意である。
【0020】
さらに、重合に際しては必要に応じて公知の可塑剤、熱安定剤、酸化防止剤等を添加しても差し支えない。
【0021】
得られた芳香族ビニル−不飽和ジカルボン酸無水物系共重合体をアミンによってイミド化を行うが、アミンとして第1級アミン或いはアンモニアが好ましく用いられる。
第1級アミンの具体例としてメチルアミン、エチルアミン、n−プロピルアミン、iso−プロピルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−オクチルアミン、シクロヘキシルアミン、デシルアミン等のアルキルアミン及びクロル又はブロム置換アルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンおよびクロル又はブロム置換芳香族アミン、等が挙げられ、これらの中でアニリン、シクロヘキシルアミンが特に好ましい。
また、これらの第1級アミンは単独で用いてもよいし、2種類以上を併用しても差し支えない。
【0022】
第1級アミンの添加量は芳香族ビニル−不飽和ジカルボン酸無水物系共重合体の不飽和ジカルボン酸無水物基に対して好ましくは0.92〜1.1モル当量、さらに好ましくは0.95〜1.05モル当量である。0.9モル当量以下であると、目的を達せられない場合がある。また、1.1モル当量以上であると、得られる目的とする共重合樹脂中の残存する第1級アミン量が多くなり好ましくない場合がある。また、イミド化に用いる第1級アミン或いはアンモニアは無水である事が好ましい。アミン中に水分が含まれると、イミド化反応の際、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体中の不飽和ジカルボン酸無水物基が加水分解しイミド化反応の支障となったり目的とする共重合樹脂の物性が悪化する場合がある。
【0023】
イミド化の触媒として第3級アミンを使用する事が好ましい。使用する第3級アミンとしてはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N、N−ジメチルアニリン、N、N−ジエチルアニリン等が挙げられる。
【0024】
第3級アミンの添加量は芳香族ビニル−不飽和ジカルボン酸無水物系共重合体中の不飽和ジカルボン酸無水物基に対し、0.01モル当量以上が好ましい。0.01モル当量未満であるとイミド化反応の触媒効果が不十分となりイミド化反応に長時間を要しかつイミド化反応を完結させる事が困難となる場合がある。
【0025】
本発明におけるイミド化反応の温度は好ましくは80〜250℃であり、さらに好ましくは100〜200℃である。80℃未満の場合には反応速度が遅く反応完結までに長時間を要し生産性の面から好ましくない場合がある。一方、250℃を越える場合には芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の熱劣化による物性低下をきたし好ましくない場合がある。
【0026】
N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂のイミド化率は好ましくは90モル%以上、さらに好ましくは94モル%以上である。
本発明におけるイミド化率とは、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体中の不飽和ジカルボン酸無水物基のイミド基への転化率を表しており、NMR等から求めることができる。イミド化率90モル%未満の共重合樹脂は目的を達せられない場合がある。イミド化率は不飽和ジカルボン酸無水物基に対する第1級アミンの添加割合、イミド化反応温度、第3級アミンの添加量等によって制御できる。
【0027】
本発明において芳香族ビニル−不飽和ジカルボン酸無水物系共重合体のイミド化反応は溶液状態で行われるが、N−置換マレイミド−スチレン−不飽和ジカルボン酸無水物系共重合樹脂を得る方法としては、脱揮装置付押出し機や脱揮槽を用いる方法等公知の方法が採用できる。
【0028】
本発明のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の重量平均分子量は5〜16万でなければならない。好ましくは8〜14万であり、さらに好ましくは8〜12万である。16万を超える場合、N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂とABS樹脂等との混合性が悪くなり、混合後に得られる組成物の物性や外観が著しく悪化する。重量平均分子量が5万未満の場合は、得られるN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系無水物共重合樹脂の溶融張力が著しく低下するため、脱揮押出後にストランド及びペレットを得る際のハンドリング性が悪化し、更にABS樹脂との組成物の機械的特性が悪化する。重量平均分子量は、連鎖移動剤量、重合開始剤量、重合温度等によって制御できる。
【0029】
本発明のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂のガラス転移温度は191℃以上でなければならない。好ましくは195℃以上、更に好ましくは200〜218℃である。191℃未満であるとABS等の樹脂と混合する際の耐熱付与効果が十分でなく、本発明の目的を達せられないので好ましくない。
【0030】
本発明のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の組成は、N−置換マレイミド系単量体単位が63〜50質量%、芳香族ビニル単量体単位が34〜50質量%、不飽和ジカルボン酸無水物単位が3〜0質量%の範囲であることが必要である。該範囲外であると、耐熱付与効果が十分でなかったり、ABS等の樹脂との混合後の組成物の成形不良を起こすことがある。
【0031】
本発明のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の酸価は、15mgKOH/g未満である事が好ましく、さらに好ましくは12mgKOH/g未満である。
本発明における酸価とは、N−置換マレイミド−スチレン−不飽和ジカルボン酸無水物系共重合樹脂中の、不飽和ジカルボン酸基、カルボン酸基、およびイミド化反応の中間体のマレアミド酸基を主体とする官能基群に由来する数値を表す。15mgKOH/g以上であると、目的とする共重合体をABS樹脂等に混合して組成物を得る際、高温成形時に成形不良を起こす場合がある。本発明における酸価は、イミド化反応において不飽和ジカルボン酸基に対する第1級アミンの添加量等によって制御できる。
【0032】
本発明におけるN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂とABS樹脂からなる組成物は、混合機等を使用して樹脂同士を混合して得られる。混合方法としては単軸押出機や二軸押出機等の公知の混合機を使用する事が好ましく、廉価で操作が容易な単軸押出機を使用する事がさらに好ましい。また、これらの混合機には脱揮装置が付属しても差し支えない。
【0033】
このようにして得られるN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂はスチレン−アクリロニトリル共重合樹脂(SAN樹脂)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、アクリロニトリル−ブタジエン−スチレン−α−メチルスチレン共重合樹脂、アクリロニトリル−アクリル系ゴム−スチレン共重合樹脂、アクリロニトリル−エチレン・プロピレン系ゴム−スチレン共重合樹脂、スチレン−メチルメタクリレート共重合樹脂、メチルメタクリレート−ブタジエン−スチレン共重合樹脂、芳香族ポリカーボネート、芳香族ポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリウレタン、及びナイロンと混合することもでき、これら樹脂への耐熱付与材として用いる事ができる。
【0034】
これらの中で特にABS樹脂とは良く相溶し、その混合物は耐熱性、耐衝撃性および成形性の点で好ましく、ABS樹脂とあらゆる割合で混合する事ができ、混合する割合により夫々の樹脂の特徴を生かした耐熱ABS樹脂を得ることが可能である。
また、本発明の組成物にさらに安定剤、紫外線吸収剤、難燃剤、可塑剤、滑剤、ガラス等の繊維、無機充填剤、着色剤、帯電防止剤等を添加しても差し支えない。
【0035】
以下本発明を参考例及び実施例によって説明する。なお、本発明はこれらの例によって限定されるものではない。
【0036】
参考例:芳香族ビニル−不飽和ジカルボン酸無水物系共重合体の製造
【参考例1】
攪拌器を備えたオートクレーブ中にスチレン56.8部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整した無水マレイン酸(B)43.2部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて7時間30分かけて添加した。添加後116℃に昇温し、更に60分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は95.1%であり、無水マレイン酸の重合率は99.2%であった。
【0037】
【参考例2】
攪拌器を備えたオートクレーブ中にスチレン56.8部、無水マレイン酸(A)6.5部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整した無水マレイン酸(B)36.7部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて5時間30分かけて添加した。添加後116℃に昇温し、更に60分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は95.8%であり、無水マレイン酸の重合率は99.8%以上であった。
【0038】
【参考例3】
攪拌器を備えたオートクレーブ中にスチレン56.8部、無水マレイン酸(A)30.2部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整した無水マレイン酸(B)13部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて4時間30分かけて添加した。添加後116℃に昇温し、更に30分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は97.5%であり、無水マレイン酸の重合率は99.8%以上であった。
【0039】
【参考例4】
攪拌器を備えたオートクレーブ中にスチレン51.5部、無水マレイン酸(A)48.5部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整したt−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて4時間かけて添加した。すると、重合途中での発熱量が大きくなり、温調を制御する事ができなくなった為、重合を中止した。
【0040】
【参考例5】
2,4−ジフェニル−4−メチル−1−ペンテンを0.01部に変更した以外は、参考例3と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は98.0%であり、無水マレイン酸の重合率は99.8%以上であった。
【0041】
【参考例6】
2,4−ジフェニル−4−メチル−1−ペンテンを0.08部に変更した以外は、参考例3と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は98.0%であり、無水マレイン酸の重合率は99.8%以上であった。
【0042】
【参考例7】
2,4−ジフェニル−4−メチル−1−ペンテンを0.50部に変更した以外は、参考例3と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は98.0%であり、無水マレイン酸の重合率は99.8%以上であった。
【0043】
【参考例8】
攪拌器を備えたオートクレーブ中にスチレン62.5部、無水マレイン酸(A)26.3部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.16部添加した。別容器に調整した無水マレイン酸(B)11.2部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて4時間30分かけて添加した。添加後116℃に昇温し、更に30分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は97.5%であり、無水マレイン酸の重合率は99.8%以上であった。
【0044】
【参考例9】
攪拌器を備えたオートクレーブ中にスチレン60部、無水マレイン酸(A)28部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整した無水マレイン酸(B)12部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて4時間30分かけて添加した。添加後116℃に昇温し、更に30分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は96.0%であり、無水マレイン酸の重合率は99.8%以上であった。
【0045】
【参考例10】
攪拌器を備えたオートクレーブ中にスチレン51.5部、無水マレイン酸(A)34.0部、メチルエチルケトン11.2部を仕込み、系内を窒素ガスで置換した後、温度を92℃に昇温した。昇温中に2,4−ジフェニル−4−メチル−1−ペンテンを0.30部添加した。別容器に調整した無水マレイン酸(B)14.5部、t−ブチルパーオキシ−2−エチルヘキサノエート0.10部をメチルエチルケトン126部に溶解した溶液を均一な添加速度にて4時間30分かけて添加した。添加後116℃に昇温し、更に30分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は98.5%であり、無水マレイン酸の重合率は99.8%以上であった。
【0046】
参考例1〜10の結果を表1に記載した。
【表1】

Figure 0003989403
【0047】
【実施例1】
参考例3で得られた共重合体を用い、不飽和ジカルボン酸無水物基に対して0.97モル当量のアニリン及び不飽和ジカルボン酸無水物基に対して0.014モル当量のトリエチルアミンを仕込んだ。そして155℃で5時間反応を行った。イミド化反応液を脱揮押出し機に投入し、揮発分を除去してペレット状のN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0048】
【実施例2】
参考例6で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0049】
【実施例3】
参考例7で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0050】
【実施例4】
参考例10で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0051】
【実施例5】
参考例9で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0052】
【実施例6】
参考例9で得られた共重合体を用い、アニリンを不飽和ジカルボン酸無水物基に対して0.92モル当量とした以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表2に示した。
【0053】
【比較例1】
参考例1で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表3に示した。
【0054】
【比較例2】
参考例2で得られた共重合体を用いた以外は、実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表3に示した。
【0055】
【比較例3】
参考例5で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表3に示した。
【0056】
【比較例4】
参考例8で得られた共重合体を用いた以外は実施例1と同様の方法によりN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂を得た。
また実施例1と同様に、ABS樹脂との混合は後記した方法で実施し、結果を表3に示した。
【0057】
N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂とABS樹脂との混合方法
得られたN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂と一般に市販されているABS樹脂(GR−3000、電気化学工業製)を表2、表3記載の配合にて20リットルヘンシェルに投入しブレンド後、二軸押出機及び単軸押出機を用い、以下に示す条件で混合を実施した。
二軸押出機による混合
押出機:TEM−35B(東芝機械社製二軸押出機、スクリュー径37mm、L/D=32)
シリンダー温度:260℃
スクリュー回転数:200rpm(回転方向は二軸同方向)
原料フィード:20kg/hr
単軸押出機による混合
押出機:VS40m/m押出機(田辺プラスチック機械製単軸押出機)
シリンダー温度:260℃
スクリュー回転数:200rpm
原料フィード:20kg/hr
【0058】
【表2】
Figure 0003989403
【0059】
【表3】
Figure 0003989403
【0060】
なお参考例、実施例の評価は以下のように行った。
(1) 芳香族ビニル−不飽和ジカルボン酸系共重合体の重合率
下記記載の測定条件で未反応の単量体の定量を行い、重合率を算出した。
装置名:Agilent6890series(Agilent社製)
カラム:キャピラリーカラム(ジメチルポリシロキサン、架橋タイプ)
温度:オーブン:50℃、注入口:200℃、検出器:250℃
検出器:FID
試料重合液0.50g、n−オクタン0.001gを秤量しメチルエチルケトンに溶解させ全体を25.0gにし、n−オクタンを内部標準として測定した。
評価方法:
芳香族ビニル単量体
○:重合率 95%以上
×:重合率 95%未満
不飽和ジカルボン酸無水物
○:重合率 99%以上
×:重合率 99%未満
【0061】
(2) N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂の組成
下記記載の測定条件でNMRを測定し、イミド基のカルボニル炭素の積分値と未反応ジカルボン酸無水物基およびイミド化反応中間体のマレアミド酸中間体のカルボニル炭素の積分値の比等からN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂の組成を求めた。
装置名:AVANCE−300(BRUKER社製)
測定核種:C13
温度:110℃
濃度:10質量%
溶媒:DMSO−d6
積算回数:1万回
【0062】
(3) 重量平均分子量
本発明におけるN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂の重量平均分子量は、下記記載のGPC測定条件で測定した。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラハイドロフラン
濃度:2質量%
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製し、重量平均分子量はPS換算値で表した。
【0063】
(4) 酸価
本発明におけるN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂の酸価測定は、次に示すような滴定法により実施した。
先ず共重合体を溶媒に溶解及び指示薬を加えて試料溶液を作成し、そこへアルカリ溶液を滴下し、良く攪拌させて中和反応を促進させた。試料溶液が淡紫色を呈した点を終点とした。また、溶媒のみを試料としてブランク滴定を実施した。
酸価(mgKOH/g)は下記式1により算出した。
酸価={アルカリ濃度(N)×(滴下量合計−ブランク値)(ml)×56.11(g/mol)}/サンプル秤量値(g) 式1
使用器具:25cm3ビュレット、100cm3共栓付三角フラスコ
温度:23℃±2℃
溶媒:メチルエチルケトン
試料溶液濃度:1質量%
アルカリ溶液:0.1N水酸化カリウムエタノール溶液(和光純薬製)
指示薬:フェノールフタレイン0.5質量%エタノール溶液
【0064】
(5) ガラス転移温度
N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂のガラス転移温度は以下に示すような方法により実施した。共重合樹脂は予めプレスして厚さ5mmの薄板状に成形してから測定に用いた。
装置:DSC220C(SEIKO電子社製)
温度範囲:室温〜250℃
昇温速度:10℃/min
算出方法:外挿法
【0065】
(6) ビカット軟化温度
JIS K7206に従った。荷重50N、昇温速度50℃/hrで測定した。
【0066】
(7) シャルピー衝撃強さ
JIS K7211に従った。なお、シャルピー衝撃強さはノッチタイプAを有するタイプ1試験片を用い、打撃方向はエッジワイズを採用して測定した。
【0067】
(8)成形品外観
N−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂とABS樹脂からなる組成物は、以下の条件で成形して外観評価を実施した。
装置:射出成形機(K−125−1、川口鉄工社製)
成形温度:250℃
プレート形状:9cm×5cm
評価方法:成形品の目視による評価
◎:成形不良が見られない場合。
○:成形不良が見られるが、殆ど目立たない。
△:成形不良が見られ、若干目立つ。
×:成形不良が見られ、著しく目立つ。
【0068】
【発明の効果】
本発明は、生産性に優れ、ABS樹脂に対して耐熱付与効果の高く、混合性良好な耐熱付与材として用いる事が可能なN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸系共重合樹脂およびその共重合樹脂の製造方法に関するものであり、極めて有用である。[0001]
BACKGROUND OF THE INVENTION
  INDUSTRIAL APPLICABILITY The present invention is a copolymer resin that is excellent in productivity, has a high heat resistance imparting effect on ABS resin, and can be used as a heat imparting material with good mixing properties, and the copolymer resinManufacturing methodIt is about.
[0002]
[Prior art]
Conventionally, a maleimide copolymer resin has been used as a heat resistance imparting material for the purpose of improving the heat resistance of an ABS resin or the like. As one of the methods for obtaining a maleimide copolymer resin, a method of first producing an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer as an intermediate raw material and then imidizing with a primary amine, so-called later An imidization method (see, for example, Patent Documents 1, 2, and 3) has been proposed.
[0003]
[Patent Document 1]
JP-A-60-243102
[Patent Document 2]
JP-A-60-155216
[Patent Document 3]
JP-A-13-329026
[0004]
[Problems to be solved by the invention]
  However, in either method, it took a long time to produce an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer as an intermediate raw material in a high yield, and there was a problem in productivity.Therefore, the productivity of the target maleimide copolymer resin could not be improved.
[0005]
[Means for Solving the Problems]
  As a result of intensive studies to achieve such an object, the present inventors have made an aromatic vinyl monomer and an unsaturated dicarboxylic acid anhydride when producing an aromatic vinyl-unsaturated dicarboxylic acid copolymer. Unsaturated dicarboxylic acid anhydride groups can be obtained by polymerizing the mixed liquid mainly comprising part (A) while partially or continuously adding part (B) of the unsaturated dicarboxylic acid anhydride at a specific ratio. A method for obtaining an aromatic vinyl-unsaturated dicarboxylic acid copolymer resin having a high content in a short time and in a high yield, and an N-substituted maleimide group content obtained by imidizing it with a primary amine, Enables the production of N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resins that have a high heat resistance effect on ABS resins, etc.,The present invention has been reached.
[0006]
  That is, in the present invention, a part (B) of the unsaturated dicarboxylic acid anhydride is divided or continuously divided into a mixed liquid mainly composed of the aromatic vinyl monomer and part (A) of the unsaturated dicarboxylic acid anhydride. While addingWithin 6 hoursAromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer obtained by polymerization is imidized with primary amine.DoN-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resinManufacturing methodThe mass ratio (A) / (B) of the part (A) of the unsaturated dicarboxylic acid anhydride and the part (B) of the unsaturated dicarboxylic acid anhydride is 60/40 to 90/10. The N-substituted maleimide monomer unit in the copolymer resin is 63 to 50% by mass, the aromatic vinyl monomer unit is 34 to 50% by mass, and the unsaturated dicarboxylic acid anhydride unit is 3 to 0% by mass. A copolymer resin characterized by having a glass transition temperature of 191 ° C. or higher and a weight average molecular weight (Mw) of 5 to 160,000Manufacturing methodAbout.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer of the present invention is obtained by copolymerizing an aromatic vinyl monomer and an unsaturated dicarboxylic acid anhydride.
Examples of the aromatic vinyl monomer include styrene, α-methyl styrene, vinyl toluene, t-butyl styrene, chlorostyrene, and the like. These aromatic vinyl monomers may be used alone or 2 Two or more types may be used in combination, but it is particularly preferable to use styrene alone.
Unsaturated dicarboxylic acid anhydrides include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and these acid anhydrides can be used, but they are easily available. In this respect, maleic anhydride is particularly preferred because it is inexpensive. These acid anhydrides may be used alone or in combination of two or more, but it is particularly preferable to use maleic anhydride alone.
[0008]
Assuming that the total of these monomer groups is 100% by mass, preferred compositions are 50 to 60% by mass of aromatic vinyl monomer and 50 to 40% by mass of unsaturated dicarboxylic acid anhydride. If the aromatic vinyl monomer is less than 50% by mass, moldability and dimensional stability may be lost. If the unsaturated dicarboxylic acid anhydride is less than 40% by mass, the target copolymer may not have sufficient heat resistance and may not achieve the purpose such as the effect of imparting heat resistance. On the other hand, when the unsaturated dicarboxylic acid anhydride exceeds 50% by mass, the heat resistance of the target copolymer is improved, but the resin becomes brittle and the moldability may be remarkably deteriorated. Further, setting the unsaturated dicarboxylic acid anhydride to 50% by mass or more has a limitation of the monomer reactivity ratio with respect to the aromatic vinyl monomer and is often difficult to carry out under normal polymerization conditions.
[0009]
In general, aromatic vinyl monomers such as styrene and unsaturated dicarboxylic acid anhydrides such as maleic anhydride tend to form charge transfer complexes and have strong alternating copolymerization properties. In the polymerization in the monomer composition range of 50 to 60% by mass of the aromatic vinyl monomer and 50 to 40% by mass of the unsaturated dicarboxylic acid anhydride, the aromatic vinyl monomer and the unsaturated dicarboxylic acid anhydride are in the initial stage of polymerization. An alternating copolymer having a composition with a molar ratio of 1: 1 is formed.
In the latter stage of polymerization, a copolymer with many aromatic vinyl monomer units is formed, unsaturated dicarboxylic acid anhydride remains, or the resulting aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer has a composition distribution. Is unfavorable from the viewpoint of physical properties or an unsaturated dicarboxylic acid anhydride. Therefore, in order to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a uniform composition distribution, a part (A) of the unsaturated dicarboxylic acid anhydride is previously mixed with an aromatic vinyl monomer. In addition, it is necessary to carry out radical polymerization while adding a part (B) of the unsaturated dicarboxylic acid anhydride at a rate substantially slower than the polymerization rate of the aromatic vinyl monomer.
[0010]
Assuming that the total amount of unsaturated dicarboxylic acid anhydrides used in the polymerization is 100% by mass, a part (A) of the unsaturated dicarboxylic acid anhydride is 60 to 90% by mass, a part of the unsaturated dicarboxylic acid anhydride (B ) Must be 40-10% by weight. A part (A) of the unsaturated dicarboxylic acid anhydride previously mixed with the aromatic vinyl monomer is preferably 60 to 85% by mass, more preferably 70 to 80% by mass. When the part (A) of the unsaturated dicarboxylic acid anhydride is less than 60% by mass, the productivity of the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer is lowered, and further the aromatic vinyl-unsaturated dicarboxylic acid is reduced. The composition distribution of the acid anhydride copolymer becomes larger, and the appearance of the composition after mixing the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin and the ABS resin after imidization is Getting worse. On the other hand, if it exceeds 90% by mass, it is difficult to remove the heat of polymerization reaction, and the polymerization control becomes difficult. A part (B) of the unsaturated dicarboxylic acid anhydride is preferably added in a molten state or dissolved in a non-polymerizable solvent or the like and divided or continuously added in a solution state.
[0011]
As the copolymerization method in the present invention, known methods such as solution polymerization and bulk polymerization can be adopted, but solution polymerization is preferred.
The solvent to be used is preferably non-polymerizable, and the amount of the non-polymerizable solvent is preferably 100 to 400 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the monomer group. If the amount is less than 100 parts by mass, the polymerization solution obtained by the polymerization may have a high viscosity and may be difficult to handle. On the other hand, if it is 400 parts by mass or more, the polymer mixture has a low viscosity and is easy to handle, but it may not be sufficient in terms of productivity.
[0012]
Types of non-polymerizable solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone and other ketones, tetrahydrofuran, 1,4-dioxane and other ethers, benzene, toluene, xylene, chlorobenzene and other aromatic hydrocarbons, N , N-dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, and the like, and methyl ethyl ketone and methyl isobutyl ketone are particularly preferred from the viewpoint of easiness in handling such as volatility and solubility of the copolymer.
On the other hand, in the case of suspension polymerization, an unsaturated dicarboxylic anhydride group may be hydrolyzed during the polymerization, which may be undesirable because the heat resistance of the target copolymer resin is deteriorated.
The polymerization process may be either a batch polymerization method or a continuous polymerization method.
[0013]
The polymerization temperature in the main polymerization is preferably 60 to 150 ° C, more preferably 80 to 130 ° C. If it is less than 60 ° C., a sufficient polymerization rate cannot be obtained, and the time required for the polymerization becomes long, which is not preferable from the viewpoint of productivity. When the polymerization temperature exceeds 150 ° C., a sufficient molecular weight may not be obtained because the rate of thermal polymerization increases.
[0014]
In the main polymerization, the polymerization rate of the aromatic vinyl monomer is preferably 95% or more, and more preferably 97% or more. The polymerization rate in the present invention represents the ratio of actual polymerization of the monomer to the monomer used for the polymerization, and can be obtained by quantifying the unreacted monomer by gas chromatography or the like. it can. If it is less than 95%, a homopolymer of an aromatic vinyl monomer is formed in the imidization step, and the physical properties may deteriorate due to mixing with the target copolymer resin. The yield of the polymerization resin may decrease, which is not preferable. The polymerization rate of the aromatic vinyl monomer can be controlled by the polymerization time, polymerization temperature, amount of polymerization initiator, amount of chain transfer agent and the like.
[0015]
The polymerization rate of the unsaturated dicarboxylic acid anhydride in the main polymerization is preferably 99% or more. The polymerization rate of the unsaturated dicarboxylic acid anhydride represents the ratio of the actual monomer polymerization with respect to the unsaturated dicarboxylic acid anhydride used for the polymerization. It can be obtained by quantifying. If it is less than 99%, an imidized monomer is generated in the imidization step, and the appearance of the target copolymer resin may be remarkably deteriorated. The polymerization rate of the unsaturated dicarboxylic acid anhydride can be controlled by the polymerization time, polymerization temperature, amount of polymerization initiator, amount of chain transfer agent and the like.
[0016]
In the main polymerization, the polymerization is preferably completed within 6 hours, and more preferably within 5 hours. If it is 6 hours or more, it is not preferable from the viewpoint of productivity.
[0017]
Moreover, as a chain transfer agent used for this superposition | polymerization, well-known chain transfer agents, such as n-dodecyl mercaptan, t-dodecyl mercaptan, and 2, 4- diphenyl-4-methyl- 1-pentene, can be used. The amount used is preferably 0.05 to 0.6 parts by mass, more preferably 0.15 to 0.6 parts by mass, with respect to 100 parts by mass of the monomer group. When the amount is 0.05 parts by mass or less, the molecular weight of the target copolymer resin increases, and the mixing property with the ABS resin and the physical properties of the composition after mixing may deteriorate. If the amount is 0.6 parts by mass or more, a sufficient molecular weight may not be obtained.
[0018]
As polymerization initiators used in the main polymerization, known azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t -Butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, Known organic peroxides such as di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate can be used. These polymerization initiators may be used in combination of two or more, but those commonly used in the production of conventional styrene resins, such as azo compounds and organic peroxides having a 10-hour half-life temperature of 70 to 120 ° C. It is preferable to use an oxide.
[0019]
The amount used is preferably from 0.01 to 2 parts by weight, more preferably from 0.1 to 1 part by weight, based on 100 parts by weight of the monomer group. If the amount is less than 0.01 parts by mass, a sufficient polymerization rate may not be obtained. On the other hand, if it is 2 parts by mass or more, the polymerization rate may increase, making it difficult to control the reaction, or the molecular weight of the target copolymer may be insufficient. In addition, the polymerization initiator used in the main polymerization may be added all at once to the mixed liquid mainly composed of the aromatic vinyl monomer and a part (A) of the unsaturated dicarboxylic acid anhydride, or the unsaturated dicarboxylic acid anhydride. It may be added separately or continuously together with a part of (B), and the addition ratio of both is arbitrary.
[0020]
Furthermore, a known plasticizer, heat stabilizer, antioxidant or the like may be added as necessary during the polymerization.
[0021]
The resulting aromatic vinyl-unsaturated dicarboxylic anhydride copolymer is imidized with an amine, and a primary amine or ammonia is preferably used as the amine.
Specific examples of primary amines include alkylamines such as methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine and decylamine. And aromatic amines such as chloro or bromo-substituted alkylamine, aniline, toluidine, naphthylamine and the like, and chloro or bromo-substituted aromatic amine, etc., among which aniline and cyclohexylamine are particularly preferable.
Moreover, these primary amines may be used alone or in combination of two or more.
[0022]
The amount of primary amine added is preferably 0.92 to 1.1 molar equivalents, more preferably 0.9 moles, based on the unsaturated dicarboxylic anhydride group of the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer. 95 to 1.05 molar equivalents. If the amount is 0.9 mole equivalent or less, the purpose may not be achieved. Moreover, when it is 1.1 molar equivalents or more, the amount of the primary amine remaining in the intended copolymer resin to be obtained increases, which is not preferable. The primary amine or ammonia used for imidization is preferably anhydrous. If water is contained in the amine, the unsaturated dicarboxylic anhydride group in the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer may be hydrolyzed during the imidation reaction, which may hinder the imidization reaction. The physical property of the target copolymer resin may deteriorate.
[0023]
It is preferable to use a tertiary amine as a catalyst for imidization. The tertiary amine used includes trimethylamine, triethylamine, tripropylamine, tributylamine, N, N-dimethylaniline, N, N-diethylaniline and the like.
[0024]
The added amount of the tertiary amine is preferably 0.01 molar equivalent or more with respect to the unsaturated dicarboxylic anhydride group in the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer. If it is less than 0.01 molar equivalent, the catalytic effect of the imidization reaction may be insufficient, and it may take a long time for the imidation reaction and it may be difficult to complete the imidation reaction.
[0025]
The temperature of the imidization reaction in the present invention is preferably 80 to 250 ° C, more preferably 100 to 200 ° C. When the temperature is lower than 80 ° C., the reaction rate is slow, and it takes a long time to complete the reaction, which is not preferable from the viewpoint of productivity. On the other hand, if the temperature exceeds 250 ° C., the physical properties of the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin may deteriorate due to thermal deterioration, which may be undesirable.
[0026]
The imidation ratio of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin is preferably 90 mol% or more, and more preferably 94 mol% or more.
The imidization rate in the present invention represents the conversion rate of unsaturated dicarboxylic acid anhydride group to imide group in the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer, and can be obtained from NMR or the like. it can. A copolymer resin having an imidation ratio of less than 90 mol% may not achieve its purpose. The imidization rate can be controlled by the ratio of the primary amine added to the unsaturated dicarboxylic anhydride group, the imidization reaction temperature, the amount of tertiary amine added, and the like.
[0027]
In the present invention, the imidization reaction of the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer is carried out in a solution state. As a method for obtaining an N-substituted maleimide-styrene-unsaturated dicarboxylic acid anhydride copolymer resin. Can employ a known method such as a method using an extruder with a devolatilizer or a devolatilization tank.
[0028]
The weight average molecular weight of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin of the present invention must be 50,000 to 160,000. Preferably it is 80-140,000, More preferably, it is 80-120,000. If it exceeds 160,000, the mixing properties of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin and the ABS resin will deteriorate, and the physical properties and appearance of the composition obtained after mixing will deteriorate significantly. To do. When the weight average molecular weight is less than 50,000, the melt tension of the resulting N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin is significantly reduced, so that strands and pellets are obtained after devolatilization extrusion. The handling properties at the time are deteriorated, and the mechanical properties of the composition with the ABS resin are further deteriorated. The weight average molecular weight can be controlled by the amount of chain transfer agent, the amount of polymerization initiator, the polymerization temperature, and the like.
[0029]
The glass transition temperature of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin of the present invention must be 191 ° C or higher. Preferably it is 195 degreeC or more, More preferably, it is 200-218 degreeC. When the temperature is lower than 191 ° C., the effect of imparting heat resistance when mixed with a resin such as ABS is not sufficient, and the object of the present invention cannot be achieved.
[0030]
The composition of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin of the present invention is such that the N-substituted maleimide monomer unit is 63 to 50% by mass and the aromatic vinyl monomer unit is It is necessary that the range is 34 to 50% by mass and the unsaturated dicarboxylic acid anhydride unit is 3 to 0% by mass. If it is out of this range, the effect of imparting heat resistance may not be sufficient, or molding failure of the composition after mixing with a resin such as ABS may occur.
[0031]
The acid value of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin of the present invention is preferably less than 15 mgKOH / g, more preferably less than 12 mgKOH / g.
The acid value in the present invention means an unsaturated dicarboxylic acid group, a carboxylic acid group, and a maleamic acid group as an intermediate of imidation reaction in an N-substituted maleimide-styrene-unsaturated dicarboxylic anhydride copolymer resin. Represents a numerical value derived from the functional group group. When it is 15 mgKOH / g or more, when a desired copolymer is mixed with ABS resin or the like to obtain a composition, molding defects may occur during high temperature molding. The acid value in the present invention can be controlled by the amount of primary amine added to the unsaturated dicarboxylic acid group in the imidization reaction.
[0032]
The composition comprising the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin and the ABS resin in the present invention is obtained by mixing the resins using a mixer or the like. As a mixing method, it is preferable to use a known mixer such as a single screw extruder or a twin screw extruder, and it is more preferable to use a single screw extruder which is inexpensive and easy to operate. These mixers may be attached with a devolatilizer.
[0033]
The N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin thus obtained is a styrene-acrylonitrile copolymer resin (SAN resin), an acrylonitrile-butadiene-styrene copolymer resin (ABS resin), Acrylonitrile-butadiene-styrene-α-methylstyrene copolymer resin, acrylonitrile-acrylic rubber-styrene copolymer resin, acrylonitrile-ethylene-propylene rubber-styrene copolymer resin, styrene-methyl methacrylate copolymer resin, methyl methacrylate-butadiene -Can be mixed with styrene copolymer resins, aromatic polycarbonates, aromatic polyesters, polyphenylene sulfide, polyamides, polyurethanes, and nylons, and used as heat resistance imparting agents for these resins. It can be.
[0034]
Of these, ABS resins are particularly compatible with each other, and the mixture is preferable in terms of heat resistance, impact resistance and moldability, and can be mixed in any proportion with ABS resin. It is possible to obtain a heat-resistant ABS resin taking advantage of the above characteristics.
Further, stabilizers, ultraviolet absorbers, flame retardants, plasticizers, lubricants, fibers such as glass, inorganic fillers, colorants, antistatic agents and the like may be added to the composition of the present invention.
[0035]
Hereinafter, the present invention will be described by reference examples and examples. Note that the present invention is not limited to these examples.
[0036]
Reference example: Manufacture of aromatic vinyl-unsaturated dicarboxylic anhydride copolymer
[Reference Example 1]
Into an autoclave equipped with a stirrer, 56.8 parts of styrene and 11.2 parts of methyl ethyl ketone were charged, the inside of the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 43.2 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate for 7 hours 30 Added over minutes. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 60 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin solution was sampled, the amount of unreacted monomer was determined by gas chromatography, and the polymerization rate of the monomer was calculated. The polymerization rate of styrene was 95.1%, and the polymerization rate of maleic anhydride was 99.2%.
[0037]
[Reference Example 2]
An autoclave equipped with a stirrer was charged with 56.8 parts of styrene, 6.5 parts of maleic anhydride (A), and 11.2 parts of methyl ethyl ketone, and the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. did. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 36.7 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate for 5 hours 30 Added over minutes. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 60 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin solution was sampled, the amount of unreacted monomer was determined by gas chromatography, and the polymerization rate of the monomer was calculated. The polymerization rate of styrene was 95.8%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0038]
[Reference Example 3]
An autoclave equipped with a stirrer was charged with 56.8 parts of styrene, 30.2 parts of maleic anhydride (A), and 11.2 parts of methyl ethyl ketone, and the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. did. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 13 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate over 4 hours 30 minutes. Added. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 30 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin solution was sampled, the amount of unreacted monomer was determined by gas chromatography, and the polymerization rate of the monomer was calculated. The polymerization rate of styrene was 97.5%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0039]
[Reference Example 4]
An autoclave equipped with a stirrer was charged with 51.5 parts of styrene, 48.5 parts of maleic anhydride (A), and 11.2 parts of methyl ethyl ketone, and the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. did. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 0.10 parts of t-butylperoxy-2-ethylhexanoate prepared in a separate container in 126 parts of methyl ethyl ketone was added at a uniform addition rate over 4 hours. Then, the amount of heat generated during the polymerization increased and the temperature control could not be controlled, so the polymerization was stopped.
[0040]
[Reference Example 5]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 3 except that 2,4-diphenyl-4-methyl-1-pentene was changed to 0.01 part. The polymerization rate of styrene was 98.0%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0041]
[Reference Example 6]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 3 except that 2,4-diphenyl-4-methyl-1-pentene was changed to 0.08 parts. The polymerization rate of styrene was 98.0%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0042]
[Reference Example 7]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 3 except that 2,4-diphenyl-4-methyl-1-pentene was changed to 0.50 part. The polymerization rate of styrene was 98.0%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0043]
[Reference Example 8]
In an autoclave equipped with a stirrer, 62.5 parts of styrene, 26.3 parts of maleic anhydride (A) and 11.2 parts of methyl ethyl ketone were charged, and the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. did. During the temperature increase, 0.16 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 11.2 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate for 4 hours 30 Added over minutes. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 30 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin liquid was sampled, and unreacted monomers were quantified by gas chromatography, and the polymerization rate of the monomers was calculated. The polymerization rate of styrene was 97.5%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0044]
[Reference Example 9]
In an autoclave equipped with a stirrer, 60 parts of styrene, 28 parts of maleic anhydride (A), and 11.2 parts of methyl ethyl ketone were charged, the inside of the system was replaced with nitrogen gas, and the temperature was raised to 92 ° C. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 12 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate over 4 hours 30 minutes. Added. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 30 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin liquid was sampled, and unreacted monomers were quantified by gas chromatography, and the polymerization rate of the monomers was calculated. The polymerization rate of styrene was 96.0%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0045]
[Reference Example 10]
An autoclave equipped with a stirrer was charged with 51.5 parts of styrene, 34.0 parts of maleic anhydride (A) and 11.2 parts of methyl ethyl ketone, and the system was replaced with nitrogen gas, and then the temperature was raised to 92 ° C. did. During the temperature increase, 0.30 part of 2,4-diphenyl-4-methyl-1-pentene was added. A solution prepared by dissolving 14.5 parts of maleic anhydride (B) and 0.10 parts of t-butylperoxy-2-ethylhexanoate in 126 parts of methyl ethyl ketone in a separate container at a uniform addition rate for 4 hours 30 Added over minutes. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 30 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin liquid was sampled, and unreacted monomers were quantified by gas chromatography, and the polymerization rate of the monomers was calculated. The polymerization rate of styrene was 98.5%, and the polymerization rate of maleic anhydride was 99.8% or more.
[0046]
The results of Reference Examples 1 to 10 are shown in Table 1.
[Table 1]
Figure 0003989403
[0047]
[Example 1]
Using the copolymer obtained in Reference Example 3, 0.97 molar equivalent of aniline with respect to the unsaturated dicarboxylic anhydride group and 0.014 molar equivalent of triethylamine with respect to the unsaturated dicarboxylic anhydride group were charged. It is. And reaction was performed at 155 degreeC for 5 hours. The imidization reaction solution was charged into a devolatilizing extruder, and volatile components were removed to obtain a pellet-shaped N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin.
The mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0048]
[Example 2]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 6 was used.
Further, in the same manner as in Example 1, mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0049]
[Example 3]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 7 was used.
Further, in the same manner as in Example 1, mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0050]
[Example 4]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 10 was used.
Further, in the same manner as in Example 1, mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0051]
[Example 5]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 9 was used.
Further, in the same manner as in Example 1, mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0052]
[Example 6]
N-substituted maleimide-aromatic vinyl was prepared in the same manner as in Example 1 except that the copolymer obtained in Reference Example 9 was used and aniline was changed to 0.92 molar equivalents relative to the unsaturated dicarboxylic anhydride group. -Unsaturated dicarboxylic anhydride copolymer resin was obtained.
Further, in the same manner as in Example 1, mixing with the ABS resin was carried out by the method described later, and the results are shown in Table 2.
[0053]
[Comparative Example 1]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 1 was used.
Further, in the same manner as in Example 1, mixing with ABS resin was carried out by the method described later, and the results are shown in Table 3.
[0054]
[Comparative Example 2]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 2 was used.
Further, in the same manner as in Example 1, mixing with ABS resin was carried out by the method described later, and the results are shown in Table 3.
[0055]
[Comparative Example 3]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 5 was used.
Further, in the same manner as in Example 1, mixing with ABS resin was carried out by the method described later, and the results are shown in Table 3.
[0056]
[Comparative Example 4]
An N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 8 was used.
Further, in the same manner as in Example 1, mixing with ABS resin was carried out by the method described later, and the results are shown in Table 3.
[0057]
Method for mixing N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin and ABS resin
The obtained N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride copolymer resin and a commercially available ABS resin (GR-3000, manufactured by Denki Kagaku Kogyo Co., Ltd.) are blended as shown in Tables 2 and 3. The mixture was put into a 20 liter Henschel, blended, and then mixed under the following conditions using a twin screw extruder and a single screw extruder.
Mixing with twin screw extruder
Extruder: TEM-35B (Toshiba Machine Co., Ltd. twin screw extruder, screw diameter 37 mm, L / D = 32)
Cylinder temperature: 260 ° C
Screw rotation speed: 200 rpm (rotating direction is the same direction of two axes)
Raw material feed: 20 kg / hr
Mixing with a single screw extruder
Extruder: VS40m / m extruder (Tanabe Plastic Machine single screw extruder)
Cylinder temperature: 260 ° C
Screw rotation speed: 200rpm
Raw material feed: 20 kg / hr
[0058]
[Table 2]
Figure 0003989403
[0059]
[Table 3]
Figure 0003989403
[0060]
In addition, evaluation of the reference example and the example was performed as follows.
(1) Polymerization rate of aromatic vinyl-unsaturated dicarboxylic acid copolymer
Unreacted monomers were quantified under the measurement conditions described below, and the polymerization rate was calculated.
Device name: Agilent 6890 series (manufactured by Agilent)
Column: Capillary column (dimethylpolysiloxane, cross-linked type)
Temperature: Oven: 50 ° C, inlet: 200 ° C, detector: 250 ° C
Detector: FID
A sample polymerization solution of 0.50 g and n-octane of 0.001 g were weighed and dissolved in methyl ethyl ketone to make 25.0 g of the whole, and n-octane was measured as an internal standard.
Evaluation methods:
Aromatic vinyl monomer
○: Polymerization rate 95% or more
X: Polymerization rate Less than 95%
Unsaturated dicarboxylic anhydride
○: Polymerization rate 99% or more
X: Polymerization rate Less than 99%
[0061]
(2) Composition of N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin
The NMR was measured under the measurement conditions described below, and the N- The composition of the substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin was determined.
Device name: AVANCE-300 (manufactured by BRUKER)
Measurement nuclide: C13
Temperature: 110 ° C
Concentration: 10% by mass
Solvent: DMSO-d6
Integration count: 10,000 times
[0062]
(3) Weight average molecular weight
The weight average molecular weight of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin in the present invention was measured under the GPC measurement conditions described below.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B
Temperature: 40 ° C
Detection: Differential refractive index
Solvent: Tetrahydrofuran
Concentration: 2% by mass
Calibration curve: produced using standard polystyrene (PS) (manufactured by PL), and the weight average molecular weight was expressed in terms of PS.
[0063]
(4) Acid value
The acid value of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin in the present invention was measured by the following titration method.
First, a copolymer solution was dissolved in a solvent and an indicator was added to prepare a sample solution. An alkali solution was dropped into the solution and stirred well to promote the neutralization reaction. The point at which the sample solution was light purple was used as the end point. Further, blank titration was performed using only the solvent as a sample.
The acid value (mgKOH / g) was calculated by the following formula 1.
Acid value = {alkaline concentration (N) × (total dripping amount−blank value) (ml) × 56.11 (g / mol)} / sample weighing value (g) Formula 1
Equipment used: Erlenmeyer flask with 25cm3 burette and 100cm3 stopper
Temperature: 23 ° C ± 2 ° C
Solvent: Methyl ethyl ketone
Sample solution concentration: 1% by mass
Alkaline solution: 0.1N potassium hydroxide ethanol solution (Wako Pure Chemical Industries, Ltd.)
Indicator: phenolphthalein 0.5 mass% ethanol solution
[0064]
(5) Glass transition temperature
The glass transition temperature of the N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin was carried out by the following method. The copolymer resin was pre-pressed and formed into a thin plate having a thickness of 5 mm, and then used for measurement.
Device: DSC220C (manufactured by SEIKO Electronics)
Temperature range: room temperature to 250 ° C
Temperature increase rate: 10 ° C / min
Calculation method: extrapolation
[0065]
(6) Vicat softening temperature
According to JIS K7206. The measurement was performed at a load of 50 N and a heating rate of 50 ° C./hr.
[0066]
(7) Charpy impact strength
According to JIS K7211. The Charpy impact strength was measured using a type 1 test piece having a notch type A, and the striking direction was measured using edgewise.
[0067]
(8) Molded product appearance
A composition comprising an N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin and an ABS resin was molded under the following conditions and evaluated for appearance.
Apparatus: Injection molding machine (K-125-1, manufactured by Kawaguchi Tekko)
Molding temperature: 250 ° C
Plate shape: 9cm x 5cm
Evaluation method: Visual evaluation of molded products
A: When molding defects are not observed.
○: Molding defects are observed, but are hardly noticeable.
Δ: Molding defects are seen and slightly noticeable.
X: Molding defects are observed and are noticeable.
[0068]
【The invention's effect】
  The present invention is an N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic acid copolymer resin that is excellent in productivity, has a high heat-resistance imparting effect on ABS resin, and can be used as a heat-resistance imparting material with good mixing properties. And copolymer resins thereofManufacturing methodAnd is extremely useful.

Claims (1)

芳香族ビニル単量体と不飽和ジカルボン酸無水物の一部(A)を主体とする混合液に、不飽和ジカルボン酸無水物の一部(B)を分割または連続的に添加しながら6時間以内に重合を完結させることにより得た芳香族ビニル−不飽和ジカルボン酸無水物系共重合体を、第1級アミンでイミド化するN−置換マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系共重合樹脂の製造方法であって、前記不飽和ジカルボン酸無水物の一部(A)と不飽和ジカルボン酸無水物の一部(B)の質量比(A)/(B)が60/40〜90/10であり、前記共重合樹脂中のN−置換マレイミド系単量体単位が63〜50質量%、芳香族ビニル単量体単位が34〜50質量%、不飽和ジカルボン酸無水物単位が3〜0質量%であり、かつガラス転移温度が191℃以上、重量平均分子量(Mw)が5万〜16万であることを特徴とする共重合樹脂の製造方法 6 hours with partial or continuous addition of part (B) of unsaturated dicarboxylic acid anhydride to a mixture mainly comprising aromatic vinyl monomer and part (A) of unsaturated dicarboxylic acid anhydride N-substituted maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride system in which an aromatic vinyl-unsaturated dicarboxylic acid anhydride-based copolymer obtained by completing the polymerization within 1% is imidized with a primary amine A method for producing a copolymer resin, wherein a mass ratio (A) / (B) of a part (A) of the unsaturated dicarboxylic acid anhydride and a part (B) of the unsaturated dicarboxylic acid anhydride is 60/40. ~ 90/10, N-substituted maleimide monomer unit in the copolymer resin is 63 to 50% by mass, aromatic vinyl monomer unit is 34 to 50% by mass, unsaturated dicarboxylic acid anhydride unit 3 to 0% by mass and the glass transition temperature 191 ° C. or higher, the production method of the copolymer resin, wherein the weight-average molecular weight (Mw) of 50,000 to 160,000.
JP2003143220A 2003-05-21 2003-05-21 Method for producing copolymer resin Expired - Fee Related JP3989403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143220A JP3989403B2 (en) 2003-05-21 2003-05-21 Method for producing copolymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143220A JP3989403B2 (en) 2003-05-21 2003-05-21 Method for producing copolymer resin

Publications (2)

Publication Number Publication Date
JP2004346149A JP2004346149A (en) 2004-12-09
JP3989403B2 true JP3989403B2 (en) 2007-10-10

Family

ID=33531068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143220A Expired - Fee Related JP3989403B2 (en) 2003-05-21 2003-05-21 Method for producing copolymer resin

Country Status (1)

Country Link
JP (1) JP3989403B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2749689C (en) 2009-01-16 2017-02-28 Denki Kagaku Kogyo Kabushiki Kaisha Maleimide copolymer, process for the production thereof, and heat-resistant resin compositions containing same
KR101469263B1 (en) * 2011-12-22 2014-12-05 제일모직주식회사 Thermoplastic resin composition and articles thereof
KR20230045601A (en) * 2020-07-27 2023-04-04 덴카 주식회사 Maleimide-based copolymer, maleimide-based copolymer composition, resin composition, and injection molded article
KR20230075477A (en) * 2020-09-29 2023-05-31 덴카 주식회사 Method for producing heat-resistant resin composition

Also Published As

Publication number Publication date
JP2004346149A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5639480B2 (en) Maleimide copolymer, process for producing the same, and heat resistant resin composition using the same
JP6228126B2 (en) Aromatic vinyl-vinyl cyanide resin Copolymer for improving heat resistance
CN111225929B (en) Maleimide copolymer, method for producing same, and resin composition using maleimide copolymer
KR20230052941A (en) A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20230052943A (en) A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
JPWO2016186142A1 (en) Copolymer and resin composition for polymer blend compatibilizer
JP7245334B2 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
JP3989403B2 (en) Method for producing copolymer resin
JP6475501B2 (en) Vinyl chloride resin heat-resistant reforming copolymer, molded body, vinyl chloride piping
JP3957663B2 (en) Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin
JP7492952B2 (en) Thermoplastic resin composition and molded article thereof
JP3953438B2 (en) Method for producing heat-resistant and stable thermoplastic resin
WO2022024878A1 (en) Maleimide-based copolymer, maleimide-based copolymer composition, resin composition, and injection molded body
JP6266984B2 (en) Copolymer for improving elongation and impact resistance of PC / ABS resin, this copolymer, PC / ABS resin and resin composition
JP2006176578A (en) Maleimide copolymer composition, its preparation method and molded product thereof
JP2016138197A (en) Styrene resin composition for blow molding and blow molded article
TW202402837A (en) Heat-resistance imparter for chlorinated polymers, resin composition, and molded object formed from said resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3989403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees