JP6472620B2 - DC ground fault detector - Google Patents

DC ground fault detector Download PDF

Info

Publication number
JP6472620B2
JP6472620B2 JP2014163732A JP2014163732A JP6472620B2 JP 6472620 B2 JP6472620 B2 JP 6472620B2 JP 2014163732 A JP2014163732 A JP 2014163732A JP 2014163732 A JP2014163732 A JP 2014163732A JP 6472620 B2 JP6472620 B2 JP 6472620B2
Authority
JP
Japan
Prior art keywords
ground fault
resistor
switch
circuit
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014163732A
Other languages
Japanese (ja)
Other versions
JP2016038357A (en
Inventor
松本 崇
崇 松本
圭一 廣瀬
圭一 廣瀬
洋平 三好
洋平 三好
大森 隆雄
隆雄 大森
智士 小笠
智士 小笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Hasegawa Electric Co Ltd
Original Assignee
NTT Facilities Inc
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, Hasegawa Electric Co Ltd filed Critical NTT Facilities Inc
Priority to JP2014163732A priority Critical patent/JP6472620B2/en
Publication of JP2016038357A publication Critical patent/JP2016038357A/en
Application granted granted Critical
Publication of JP6472620B2 publication Critical patent/JP6472620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、例えば太陽光発電システムにおける太陽電池パネルなどの電源を有する直流回路を保護するため、その直流回路に発生する地絡事故の監視に使用される直流地絡検出器に関する。   The present invention relates to a DC ground fault detector used to monitor a ground fault occurring in a DC circuit in order to protect a DC circuit having a power source such as a solar battery panel in a photovoltaic power generation system.

従来、電源を有する直流回路として、例えば太陽光発電システムが産業用だけでなく一般家庭用にも普及しつつある。この太陽光発電システムは、その回路構成上、面積的に広いことから、地絡事故は局部的でなく電位的にあらゆる箇所で発生するものであり、地絡事故を原因とする火災などが発生することを未然に防止することが重要である。また、太陽光発電システムは、通常、電力系統と連系させて運用されることから、太陽光発電システムで発生した地絡事故は電力系統にも波及するため、地絡事故発生の有無を監視することは非常に重要である。   Conventionally, as a DC circuit having a power source, for example, a photovoltaic power generation system has been spreading not only for industrial use but also for general household use. Since this solar power generation system is wide in area due to its circuit configuration, ground faults occur not at local but at every potential, and fires caused by ground faults occur. It is important to prevent this from happening. In addition, since solar power generation systems are usually operated in conjunction with the power grid, ground faults that occur in the solar power generation system also affect the power grid, so monitoring for the occurrence of ground faults is monitored. It is very important to do.

このような太陽光発電システムで発生した地絡事故を検出する手段の一つに、回路の中性点を接地して電位の不平衡を検出する直流電位検出方式がある。この直流電位検出方式を採用した直流地絡検出器1は、図5に示すように、複数の太陽電池パネル2が直列に接続された直流回路3の陽極(P)側に接続された陽極側抵抗4と、その直流回路3の陰極(N)側に接続された陰極側抵抗5と、陽極側抵抗4および陰極側抵抗5からなる直列回路の中間接続点と大地との間に接続された検出抵抗6とで構成されている。   One of means for detecting a ground fault occurring in such a photovoltaic power generation system is a DC potential detection method in which a neutral point of a circuit is grounded to detect potential imbalance. As shown in FIG. 5, a DC ground fault detector 1 that employs this DC potential detection system has an anode side connected to the anode (P) side of a DC circuit 3 in which a plurality of solar cell panels 2 are connected in series. A resistor 4, a cathode side resistor 5 connected to the cathode (N) side of the DC circuit 3, and an intermediate connection point of a series circuit composed of the anode side resistor 4 and the cathode side resistor 5 and the ground. It comprises a detection resistor 6.

以上の構成からなる直流地絡検出器1では、直流回路3の陽極側で地絡事故が発生した場合、図6に示すように、太陽電池パネル2−地絡抵抗7−大地−検出抵抗6−陰極側抵抗5−太陽電池パネル2からなる閉ループ回路(図中破線参照)に地絡電流が流れることになる。この閉ループ回路に流れる地絡電流を検出抵抗6で検出することにより、直流回路3の陽極側で発生した地絡事故を監視するようにしている。   In the DC ground fault detector 1 having the above configuration, when a ground fault occurs on the anode side of the DC circuit 3, as shown in FIG. 6, the solar cell panel 2-ground fault resistor 7-ground-detection resistor 6 is provided. -Cathode side resistance 5-A ground fault electric current will flow into the closed loop circuit (refer broken line in the figure) which consists of the solar cell panel 2. FIG. By detecting the ground fault current flowing in the closed loop circuit with the detection resistor 6, the ground fault occurring on the anode side of the DC circuit 3 is monitored.

また、直流回路3の陰極側で地絡事故が発生した場合、図7に示すように、太陽電池パネル2−陽極側抵抗4−検出抵抗6−大地−地絡抵抗8−太陽電池パネル2からなる閉ループ回路(図中破線参照)に地絡電流が流れることになる。この閉ループ回路に流れる地絡電流を検出抵抗6で検出することにより、直流回路3の陰極側で発生した地絡事故を監視するようにしている。   When a ground fault occurs on the cathode side of the DC circuit 3, as shown in FIG. 7, from the solar cell panel 2-anode side resistance 4-detection resistance 6-ground-ground fault resistance 8-solar cell panel 2 A ground fault current flows through the closed loop circuit (see the broken line in the figure). By detecting the ground fault current flowing in the closed loop circuit with the detection resistor 6, a ground fault accident occurring on the cathode side of the DC circuit 3 is monitored.

特開2013−130536号公報JP 2013-130536 A

ところで、前述の直流地絡検出器1では、陽極側抵抗4と陰極側抵抗5の接続点、つまり、中性点を検出抵抗6を介して接地した構造となっている。そのため、図8に示すように、複数の太陽電池パネル2の中間点で地絡事故が発生した場合、直流地絡検出器1における検出抵抗6の接地電位と、太陽電池パネル2の中間点での地絡抵抗9の接地電位とが同電位となる。このように、直流地絡検出器1の接地電位と太陽電池パネル2の中間点での接地電位とが同電位になると、地絡電流が流れないことから、直流地絡検出器1により地絡事故を検出することが不可能となる。   By the way, the above-described DC ground fault detector 1 has a structure in which the connection point of the anode-side resistor 4 and the cathode-side resistor 5, that is, the neutral point is grounded via the detection resistor 6. Therefore, as shown in FIG. 8, when a ground fault occurs at an intermediate point between the plurality of solar battery panels 2, a ground potential of the detection resistor 6 in the DC ground fault detector 1 and an intermediate point between the solar battery panels 2 are detected. The ground potential of the ground fault resistor 9 becomes the same potential. As described above, when the ground potential of the DC ground fault detector 1 and the ground potential at the intermediate point of the solar battery panel 2 become the same potential, the ground fault current does not flow. It becomes impossible to detect accidents.

この問題点を解消するため、太陽電池パネルの中間点で地絡事故が発生した場合であっても、その地絡事故を検出することができるようにした直流地絡検出器が提案されている(例えば、特許文献1参照)。特許文献1で開示された直流地絡検出器は、接地点順次移動式と称される直流電位検出方式を採用したものである。   In order to solve this problem, there has been proposed a DC ground fault detector capable of detecting a ground fault even when a ground fault occurs at the midpoint of the solar cell panel. (For example, refer to Patent Document 1). The DC ground fault detector disclosed in Patent Document 1 employs a DC potential detection method called a ground point sequential movement type.

この特許文献1の直流地絡検出器は、太陽電池パネルを有する直流回路の陽極側と陰極側との間に、2つの抵抗と一つの定電圧素子(ツェナーダイオード)とからなる直列回路を接続し、一方の抵抗と定電圧素子との接続点と、定電圧素子と他方の抵抗との接続点を切り替えるスイッチを設けた構成を具備するものである。この直流地絡検出器では、2つの接続点の中間電位をスイッチにより周期的に切り替えることにより、いずれか一方の接続点での中間電位から地絡事故を検出するようにしている。   The DC ground fault detector of Patent Document 1 connects a series circuit composed of two resistors and one constant voltage element (zener diode) between the anode side and the cathode side of a DC circuit having a solar cell panel. In addition, a configuration is provided in which a switch for switching a connection point between one resistor and the constant voltage element and a connection point between the constant voltage element and the other resistor is provided. In this DC ground fault detector, a ground fault is detected from the intermediate potential at one of the connection points by periodically switching the intermediate potential at the two connection points with a switch.

しかしながら、特許文献1の直流地絡検出器では、太陽電池パネルの中間点で地絡事故が発生した場合と、その以外の直流回路の陽極側あるいは陰極側で地絡事故が発生した場合とで地絡検出感度が変動する。例えば、太陽電池パネルの中間点で地絡事故が発生した場合は、直流回路の陽極側あるいは陰極側で地絡事故が発生した場合と比較すると、太陽電池パネルによる起電力が半分になるため、地絡検出感度も鈍くなる。この地絡検出感度の低下は、定電圧素子が設けられていることでより一層顕著に現れる。このように、地絡検出感度が低下すると、地絡事故を正確に検出することが困難となる。   However, in the DC ground fault detector of Patent Document 1, there is a case where a ground fault occurs at the midpoint of the solar battery panel and a case where a ground fault occurs on the anode side or the cathode side of the other DC circuit. The ground fault detection sensitivity varies. For example, when a ground fault occurs at the midpoint of the solar panel, the electromotive force by the solar panel is halved compared to when a ground fault occurs on the anode side or the cathode side of the DC circuit, The ground fault detection sensitivity also becomes dull. This decrease in the ground fault detection sensitivity becomes more prominent due to the provision of the constant voltage element. Thus, when the ground fault detection sensitivity decreases, it becomes difficult to accurately detect a ground fault accident.

そこで、本発明は、前述の問題点に鑑みて提案されたもので、その目的とするところは、直流回路のいずれの箇所で地絡事故が発生しても、その地絡事故を一定の感度で検出し得る直流地絡検出器を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to prevent a ground fault from occurring at a certain sensitivity regardless of the location of the DC fault. An object of the present invention is to provide a DC ground fault detector that can be detected by the following.

前述の目的を達成するための技術的手段として、本発明は、電源を有する直流回路の陽極側に接続された陽極側抵抗と、直流回路の陰極側に接続された陰極側抵抗と、陽極側抵抗あるいは陰極側抵抗に周期的に切り替え接続されるスイッチと、スイッチと大地との間に接続された検出抵抗とを備えた直流地絡検出器であって、スイッチが陽極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値と、スイッチが陰極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値とを合算し、直流回路のいずれの箇所で地絡事故が発生しても常に一定の合算値を地絡電流として検出する検出部を具備したことを特徴とする。 As technical means for achieving the above-described object, the present invention provides an anode side resistor connected to the anode side of a DC circuit having a power source, a cathode side resistor connected to the cathode side of the DC circuit, and an anode side. A DC ground fault detector comprising a switch that is periodically switched and connected to a resistor or a cathode side resistor, and a detection resistor connected between the switch and the ground, the switch being switched and connected to an anode side resistor If the absolute value of the current that flows through the detection resistor and the absolute value of the current that flows through the detection resistor when the switch is connected to the cathode side resistance are combined , a ground fault occurs at any point in the DC circuit. Is also provided with a detection unit that always detects a constant sum as a ground fault current.

本発明に係る直流地絡検出器の検出部では、スイッチが陽極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値と、スイッチが陰極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値とを合算し、その合算値を地絡電流として検出するようにしたから、直流回路のいずれの箇所で地絡事故が発生しても、地絡電流としての合算値が常に一定であるので、地絡事故を一定の感度で検出することが可能となる。   In the detection unit of the DC ground fault detector according to the present invention, the absolute value of the current flowing through the detection resistor when the switch is switched to the anode-side resistor and the detection resistor when the switch is switched to the cathode-side resistor Since the absolute value of the current is summed and the sum value is detected as a ground fault current, the sum value as the ground fault current is always constant no matter where a ground fault occurs in any part of the DC circuit. Therefore, it becomes possible to detect a ground fault accident with a certain sensitivity.

本発明における検出部は、スイッチが陽極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値と、スイッチが陰極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値との大小を比較するように構成されていることが望ましい。このように、スイッチが陽極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値と、スイッチが陰極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値との大小を比較すれば、地絡事故の発生箇所を特定することが可能となる。   The detection unit according to the present invention is configured so that the absolute value of the current flowing through the detection resistor when the switch is switched to the anode side resistor and the absolute value of the current flowing through the detection resistor when the switch is switched to the cathode side resistance are large and small. It is desirable to be configured to compare the two. In this way, the magnitude of the absolute value of the current flowing through the detection resistor when the switch is connected to the anode-side resistor and the absolute value of the current flowing through the detection resistor when the switch is connected to the cathode-side resistor are compared. For example, it is possible to identify the location where the ground fault occurred.

本発明によれば、検出部により、スイッチが陽極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値と、スイッチが陰極側抵抗に切り替え接続された時に検出抵抗に流れる電流の絶対値とを合算し、その合算値を地絡電流として検出するようにしたから、直流回路のいずれの箇所で地絡事故が発生しても、地絡電流としての合算値が常に一定であるので、地絡事故を一定の感度で検出することが可能となる。その結果、直流回路で発生する地絡事故を正確に検出することができるので、信頼性の高い直流地絡検出器を提供できる。   According to the present invention, the absolute value of the current flowing through the detection resistor when the switch is switched and connected to the anode-side resistance by the detection unit, and the absolute value of the current flowing through the detection resistor when the switch is switched and connected to the cathode-side resistance. Because the sum value is detected as a ground fault current, even if a ground fault occurs in any part of the DC circuit, the sum value as a ground fault current is always constant. It becomes possible to detect a ground fault accident with a certain sensitivity. As a result, since a ground fault accident occurring in the DC circuit can be detected accurately, a highly reliable DC ground fault detector can be provided.

本発明の実施形態で、太陽電池パネルを有する直流回路に直流地絡検出器を設置した構成を示す回路図である。In embodiment of this invention, it is a circuit diagram which shows the structure which installed the direct-current ground fault detector in the direct current circuit which has a solar cell panel. 図1の直流回路の陽極側で地絡事故が発生した場合で、(A)はスイッチが陽極側に接続された状態を示す回路図、(B)はスイッチが陰極側に接続された状態を示す回路図である。When a ground fault occurs on the anode side of the DC circuit of FIG. 1, (A) is a circuit diagram showing a state where the switch is connected to the anode side, and (B) is a state where the switch is connected to the cathode side. FIG. 図1の直流回路の陰極側で地絡事故が発生した場合で、(A)はスイッチが陽極側に接続された状態を示す回路図、(B)はスイッチが陰極側に接続された状態を示す回路図である。When a ground fault occurs on the cathode side of the DC circuit of FIG. 1, (A) is a circuit diagram showing a state where the switch is connected to the anode side, and (B) is a state where the switch is connected to the cathode side. FIG. 図1の直流回路の中間点で地絡事故が発生した場合で、(A)はスイッチが陽極側に接続された状態を示す回路図、(B)はスイッチが陰極側に接続された状態を示す回路図である。When a ground fault occurs at the midpoint of the DC circuit of FIG. 1, (A) is a circuit diagram showing a state where the switch is connected to the anode side, and (B) is a state where the switch is connected to the cathode side. FIG. 太陽電池パネルを有する直流回路に従来の直流地絡検出器を設置した構成を示す回路図である。It is a circuit diagram which shows the structure which installed the conventional DC ground fault detector in the DC circuit which has a solar cell panel. 図5の直流回路の陽極側で地絡事故が発生した場合を示す回路図である。FIG. 6 is a circuit diagram showing a case where a ground fault has occurred on the anode side of the DC circuit of FIG. 5. 図5の直流回路の陰極側で地絡事故が発生した場合を示す回路図である。FIG. 6 is a circuit diagram illustrating a case where a ground fault occurs on the cathode side of the DC circuit of FIG. 5. 図5の直流回路の中間点で地絡事故が発生した場合を示す回路図である。FIG. 6 is a circuit diagram illustrating a case where a ground fault occurs at an intermediate point of the DC circuit of FIG. 5.

本発明に係る直流地絡検出器の実施形態を図面に基づいて以下に詳述する。以下の実施形態は太陽光発電システムへの適用例であり、太陽電池パネルを有する直流回路に適用した場合を例示する。なお、本発明は、太陽電池パネル以外にも、電気自動車のバッテリなどの他の電源を有する直流回路にも適用可能である。   An embodiment of a DC ground fault detector according to the present invention will be described below in detail with reference to the drawings. The following embodiment is an application example to a photovoltaic power generation system, and illustrates a case where the embodiment is applied to a DC circuit having a solar battery panel. The present invention can be applied to a DC circuit having another power source such as a battery of an electric vehicle in addition to the solar battery panel.

図1は、直列接続された複数個(図では4個)の太陽電池パネル12を有する直流回路13に、実施形態の直流地絡検出器11を設置した概略回路構成を示す。同図に示す直流地絡検出器11は、直流回路13の陽極(P)側に接続された陽極側抵抗14(制限抵抗)と、その直流回路13の陰極(N)側に接続された陰極側抵抗15(制限抵抗)と、陽極側抵抗14あるいは陰極側抵抗15に周期的に切り替え接続されるスイッチ21と、そのスイッチ21と大地との間に接続された検出抵抗16と、地絡事故発生時に検出抵抗16に流れる地絡電流により検出抵抗16の両端に発生する電圧に基づいて地絡事故を検出する検出部22とで主要部が構成されている。   FIG. 1 shows a schematic circuit configuration in which the DC ground fault detector 11 of the embodiment is installed in a DC circuit 13 having a plurality (four in the figure) of solar cell panels 12 connected in series. The DC ground fault detector 11 shown in the figure includes an anode-side resistor 14 (limiting resistor) connected to the anode (P) side of the DC circuit 13 and a cathode connected to the cathode (N) side of the DC circuit 13. Side resistor 15 (limit resistor), switch 21 periodically switched to anode side resistor 14 or cathode side resistor 15, detection resistor 16 connected between switch 21 and ground, and ground fault The main part is composed of a detection unit 22 that detects a ground fault based on a voltage generated at both ends of the detection resistor 16 due to a ground fault current flowing through the detection resistor 16 at the time of occurrence.

この直流地絡検出器11の陽極側抵抗14および陰極側抵抗15は、地絡事故の発生時に直流回路13に過電流が流れることを抑制する機能を発揮するものである。また、スイッチ21は、地絡事故発生を監視するため、常時、陽極側抵抗14あるいは陰極側抵抗15に周期的に切り替え接続されることから、耐久性の点を考慮すれば、半導体スイッチが有効である。なお、このスイッチ21は機械スイッチであってもよい。さらに、検出部22は、図示しないが、地絡事故の検出により作動するランプあるいはブザーを備えている。この検出部22では、地絡事故が検出されると、ランプを点灯させたり、ブザーを鳴動させることにより作業員に報知する。   The anode-side resistor 14 and the cathode-side resistor 15 of the DC ground fault detector 11 exhibit a function of suppressing an overcurrent from flowing through the DC circuit 13 when a ground fault occurs. Further, since the switch 21 is periodically switched and connected to the anode side resistor 14 or the cathode side resistor 15 in order to monitor the occurrence of the ground fault, the semiconductor switch is effective in consideration of durability. It is. The switch 21 may be a mechanical switch. Furthermore, the detection unit 22 includes a lamp or a buzzer that is activated by detection of a ground fault, although not shown. When a ground fault is detected, the detection unit 22 notifies the worker by lighting a lamp or sounding a buzzer.

以上の構成からなる直流地絡検出器11の地絡検出動作を以下に詳述する。なお、以下では、地絡事故が直流回路13の陽極側で発生した場合〔図2(A)(B)参照〕と、地絡事故が直流回路13の陰極側で発生した場合〔図3(A)(B)参照〕と、地絡事故が直流回路13の太陽電池パネル12の中間点で発生した場合〔図4(A)(B)参照〕とに分けて説明する。図2(A)(B)および図3(A)(B)の説明では、太陽電池パネル12の直列回路外の箇所で地絡事故が発生した場合を例示するが、前述の「陽極側」および「陰極側」とは、太陽電池パネル12の直列回路内でその中間点を境界とする陽極側および陰極側の箇所も含むことを意味する。   The ground fault detection operation of the DC ground fault detector 11 having the above configuration will be described in detail below. In the following, when a ground fault occurs on the anode side of the DC circuit 13 (see FIGS. 2A and 2B) and when a ground fault occurs on the cathode side of the DC circuit 13 [FIG. A) and (B)] and a case where a ground fault occurs at an intermediate point of the solar battery panel 12 of the DC circuit 13 [see FIGS. 4A and 4B]. In the description of FIGS. 2A and 2B and FIGS. 3A and 3B, a case where a ground fault occurs at a location outside the series circuit of the solar cell panel 12 is exemplified. In addition, the “cathode side” means that the position on the anode side and the cathode side having the middle point as a boundary in the series circuit of the solar cell panel 12 is also included.

まず、地絡事故が直流回路13の陽極側で発生した場合、図2(A)に示すように、直流地絡検出器11のスイッチ21が陽極側抵抗14に切り替え接続されている時には、直流回路13に地絡電流が流れない。一方、同図(B)に示すように、直流地絡検出器11のスイッチ21が陰極側抵抗15に切り替え接続されている時には、図中4個全ての太陽電池パネル12の起電力により、太陽電池パネル12−地絡抵抗17−大地−検出抵抗16−陰極側抵抗15−太陽電池パネル12からなる閉ループ回路(図中破線参照)に地絡電流が流れる。このように、スイッチ21が陰極側抵抗15に切り替え接続されている時に地絡電流が検出抵抗16に流れることにより、その検出抵抗16の両端に現出する電圧を検出部22により検出することで地絡事故の発生を認知することができる。   First, when a ground fault occurs on the anode side of the DC circuit 13, when the switch 21 of the DC ground fault detector 11 is switched and connected to the anode side resistor 14 as shown in FIG. No ground fault current flows in the circuit 13. On the other hand, when the switch 21 of the DC ground fault detector 11 is switched and connected to the cathode-side resistor 15 as shown in FIG. A ground fault current flows through a closed loop circuit (see the broken line in the figure) including the battery panel 12-the ground fault resistor 17-the ground-the detection resistor 16-the cathode side resistor 15-the solar cell panel 12. In this way, when the switch 21 is switched and connected to the cathode-side resistor 15, the ground fault current flows through the detection resistor 16, so that the voltage appearing at both ends of the detection resistor 16 is detected by the detection unit 22. The occurrence of a ground fault can be recognized.

次に、地絡事故が直流回路13の陰極側で発生した場合、図3(A)に示すように、直流地絡検出器11のスイッチ21が陽極側抵抗14に切り替え接続されている時には、図中4個全ての太陽電池パネル12の起電力により、太陽電池パネル12−陽極側抵抗14−検出抵抗16−大地−地絡抵抗18−太陽電池パネル12からなる閉ループ回路(図中破線参照)に地絡電流が流れる。このように、スイッチ21が陽極側抵抗14に切り替え接続されている時に地絡電流が検出抵抗16に流れることにより、その検出抵抗16の両端に現出する電圧を検出部22により検出することで地絡事故の発生を認知することができる。なお、同図(B)に示すように、直流地絡検出器11のスイッチ21が陰極側抵抗15に切り替え接続されている時には、直流回路13に地絡電流が流れない。   Next, when a ground fault occurs on the cathode side of the DC circuit 13, as shown in FIG. 3A, when the switch 21 of the DC ground fault detector 11 is switched and connected to the anode side resistor 14, A closed loop circuit composed of a solar cell panel 12-an anode side resistor 14-a detection resistor 16-a ground-ground fault resistor 18-a solar cell panel 12 by the electromotive force of all four solar cell panels 12 in the figure (refer to the broken line in the figure). A ground fault current flows in As described above, when the switch 21 is connected to the anode-side resistor 14, the ground fault current flows through the detection resistor 16, and the voltage appearing at both ends of the detection resistor 16 is detected by the detection unit 22. The occurrence of a ground fault can be recognized. As shown in FIG. 5B, when the switch 21 of the DC ground fault detector 11 is switched and connected to the cathode side resistor 15, no ground fault current flows in the DC circuit 13.

最後に、地絡事故が直流回路13の太陽電池パネル12の中間点で発生した場合、図4(A)に示すように、直流地絡検出器11のスイッチ21が陽極側抵抗14に切り替え接続されている時には、図中上側2個の太陽電池パネル12の起電力により、太陽電池パネル12−陽極側抵抗14−検出抵抗16−大地−地絡抵抗19−太陽電池パネル12からなる閉ループ回路(図中破線参照)に地絡電流が流れる。また、同図(B)に示すように、直流地絡検出器11のスイッチ21が陰極側抵抗15に切り替え接続されている時には、図中下側2個の太陽電池パネル12の起電力により、太陽電池パネル12−地絡抵抗19−大地−検出抵抗16−陰極側抵抗15−太陽電池パネル12からなる閉ループ回路(図中破線参照)に地絡電流が流れる。このように、スイッチ21が陽極側抵抗14に切り替え接続されている時と陰極側抵抗15に切り替え接続されている時の両方で地絡電流が検出抵抗16に流れることにより、その検出抵抗16の両端に現出する電圧を検出部22により検出することで地絡事故の発生を認知することができる。   Finally, when a ground fault occurs at the midpoint of the solar battery panel 12 of the DC circuit 13, the switch 21 of the DC ground fault detector 11 is switched to the anode-side resistor 14 as shown in FIG. When closed, a closed loop circuit comprising a solar cell panel 12-an anode side resistor 14-a detection resistor 16-a ground-ground fault resistor 19-a solar cell panel 12 by the electromotive force of the two upper solar cell panels 12 in the figure ( A ground fault current flows in the broken line). Further, as shown in FIG. 5B, when the switch 21 of the DC ground fault detector 11 is switched to the cathode-side resistor 15, the electromotive force of the two lower solar cell panels 12 in the figure A ground fault current flows in a closed loop circuit (see the broken line in the figure) including the solar cell panel 12-the ground fault resistor 19-the ground-the detection resistor 16-the cathode side resistor 15-the solar cell panel 12. As described above, when the switch 21 is switched and connected to the anode-side resistor 14 and when the switch 21 is switched and connected to the cathode-side resistor 15, the ground fault current flows through the detection resistor 16, so that the detection resistor 16 The occurrence of a ground fault can be recognized by detecting the voltage appearing at both ends by the detection unit 22.

以上で説明した直流地絡検出器11の地絡検出動作を地絡事故の発生箇所ごとにまとめると、下表のようになる。ここで、4個全ての太陽電池パネル12の起電力により、地絡事故発生時に検出抵抗16に流れる電流を例えば10mAとする。また、スイッチ21の切り替え位置は、スイッチ21が陽極側抵抗14に切り替え接続されている状態をP側、陰極側抵抗15に切り替え接続されている状態をN側としている。
The ground fault detection operation of the DC ground fault detector 11 described above is summarized for each location where a ground fault occurs, as shown in the table below. Here, the current flowing through the detection resistor 16 when the ground fault occurs due to the electromotive force of all four solar battery panels 12 is, for example, 10 mA. The switching position of the switch 21 is the P side when the switch 21 is switched and connected to the anode side resistor 14, and the N side when the switch 21 is switched and connected to the cathode side resistor 15.

この表を見ても明らかなように、地絡事故が直流回路13の陽極側で発生した場合、スイッチ21がP側に位置する時に検出抵抗16に流れる電流は0mAであるが、スイッチ21がN側に位置する時に検出抵抗16に流れる電流は10mAとなるので、直流回路13の陽極側で発生した地絡事故を検出することができる。   As is apparent from this table, when a ground fault occurs on the anode side of the DC circuit 13, the current flowing through the detection resistor 16 when the switch 21 is located on the P side is 0 mA. Since the current flowing through the detection resistor 16 is 10 mA when positioned on the N side, a ground fault occurring on the anode side of the DC circuit 13 can be detected.

また、地絡事故が直流回路13の陰極側で発生した場合、スイッチ21がN側に位置する時に検出抵抗16に流れる電流は0mAであるが、スイッチ21がP側に位置する時に検出抵抗16に流れる電流は10mAとなるので、直流回路13の陰極側で発生した地絡事故を検出することができる。   When a ground fault occurs on the cathode side of the DC circuit 13, the current flowing through the detection resistor 16 when the switch 21 is located on the N side is 0 mA, but the detection resistor 16 is present when the switch 21 is located on the P side. Since the current flowing through is 10 mA, a ground fault that has occurred on the cathode side of the DC circuit 13 can be detected.

さらに、地絡事故が直流回路13の太陽電池パネル12の中間点で発生した場合、スイッチ21がP側に位置する時に検出抵抗16に流れる電流は5mAとなり、スイッチ21がN側に位置する時に検出抵抗16に流れる電流も5mAとなるので、直流回路13の太陽電池パネル12の中間点で発生した地絡事故についても検出することが可能となる。   Furthermore, when a ground fault occurs at the midpoint of the solar battery panel 12 of the DC circuit 13, when the switch 21 is located on the P side, the current flowing through the detection resistor 16 is 5 mA, and when the switch 21 is located on the N side. Since the current flowing through the detection resistor 16 is also 5 mA, it is possible to detect a ground fault occurring at the midpoint of the solar cell panel 12 of the DC circuit 13.

ここで、スイッチ21がP側あるいはN側のいずれか一方の位置にある時に検出抵抗16に流れる電流を地絡電流としていたのでは、地絡事故の発生箇所によって地絡検出感度が変動することになる。つまり、地絡事故が直流回路13の陽極側あるいは陰極側で発生した場合には、地絡電流が10mAであるが、地絡事故が直流回路13の太陽電池パネル12の中間点で発生した場合には、地絡電流が5mAとなる。このように、太陽電池パネル12の中間点で地絡事故が発生した場合は、直流回路13の陽極側あるいは陰極側で地絡事故が発生した場合と比較すると、太陽電池パネル12による起電力に基づく地絡電流が半分になるため、地絡検出感度も鈍くなる。   Here, if the current flowing through the detection resistor 16 is the ground fault current when the switch 21 is at either the P side or the N side, the ground fault detection sensitivity varies depending on the location where the ground fault occurs. become. That is, when a ground fault occurs on the anode side or the cathode side of the DC circuit 13, the ground fault current is 10 mA, but when a ground fault occurs at the midpoint of the solar battery panel 12 of the DC circuit 13. In this case, the ground fault current is 5 mA. Thus, when a ground fault occurs at the midpoint of the solar cell panel 12, compared with a case where a ground fault occurs on the anode side or the cathode side of the DC circuit 13, the electromotive force generated by the solar cell panel 12 is reduced. Since the ground fault current based is halved, the ground fault detection sensitivity becomes dull.

そこで、この実施形態の直流地絡検出器11における検出部22は、スイッチ21がP側に位置する時に検出抵抗16に流れる電流の絶対値と、スイッチ21がN側に位置する時に検出抵抗16に流れる電流の絶対値とを合算し、その合算値を地絡電流として検出する機能を具備する。ここで、「絶対値」としたのは、スイッチ21がP側に位置する時と、スイッチ21がN側に位置する時とで、検出抵抗16に流れる電流の方向が逆になることに基づく。   Therefore, the detection unit 22 in the DC ground fault detector 11 of this embodiment includes the absolute value of the current flowing through the detection resistor 16 when the switch 21 is located on the P side and the detection resistor 16 when the switch 21 is located on the N side. The absolute value of the current flowing through the sum is added, and the sum is detected as a ground fault current. Here, the “absolute value” is based on the fact that the direction of the current flowing through the detection resistor 16 is reversed when the switch 21 is located on the P side and when the switch 21 is located on the N side. .

地絡事故が直流回路13の陽極側で発生した場合、スイッチ21がP側に位置する時の電流0mAと、スイッチ21がN側に位置する時に流れる電流10mAとを合算し、その合算値10mAを地絡電流とする。また、地絡事故が直流回路13の陰極側で発生した場合、スイッチ21がP側に位置する時に流れる電流10mAと、スイッチ21がN側に位置する時の電流0mAとを合算し、その合算値10mAを地絡電流とする。さらに、地絡事故が直流回路13の太陽電池パネル12の中間点で発生した場合、スイッチ21がP側に位置する時に流れる電流5mAと、スイッチ21がN側に位置する時に流れる電流5mAとを合算し、その合算値10mAを地絡電流とする(表1参照)。   When a ground fault occurs on the anode side of the DC circuit 13, the current 0 mA when the switch 21 is located on the P side and the current 10 mA that flows when the switch 21 is located on the N side are added together, and the total value 10 mA. Is the ground fault current. In addition, when a ground fault occurs on the cathode side of the DC circuit 13, the current 10mA that flows when the switch 21 is located on the P side and the current 0mA when the switch 21 is located on the N side are added together. A value of 10 mA is defined as a ground fault current. Furthermore, when a ground fault occurs at the midpoint of the solar battery panel 12 of the DC circuit 13, a current 5mA that flows when the switch 21 is positioned on the P side and a current 5mA that flows when the switch 21 is positioned on the N side are The total value is 10 mA as the ground fault current (see Table 1).

このように、スイッチ21がP側に位置する時に検出抵抗16に流れる電流の絶対値と、スイッチ21がN側に位置する時に検出抵抗16に流れる電流の絶対値との合算値を地絡電流とすることにより、太陽電池パネル12の中間点で地絡事故が発生した場合に検出される地絡電流は、直流回路13の陽極側および陰極側で地絡事故が発生した場合に検出される地絡電流と同じになるため、地絡事故の発生箇所がどこであっても、地絡検出感度を常に一定に保持することが可能となる。その結果、直流回路13で発生する地絡事故を正確に検出することができるので、信頼性の高い直流地絡検出器11を提供できる。   Thus, the ground fault current is obtained by adding the absolute value of the current flowing through the detection resistor 16 when the switch 21 is located on the P side and the absolute value of the current flowing through the detection resistor 16 when the switch 21 is located on the N side. Thus, the ground fault current detected when a ground fault occurs at the midpoint of the solar battery panel 12 is detected when a ground fault occurs on the anode side and the cathode side of the DC circuit 13. Since it becomes the same as the ground fault current, the ground fault detection sensitivity can always be kept constant regardless of where the ground fault occurs. As a result, since a ground fault accident occurring in the DC circuit 13 can be accurately detected, the highly reliable DC ground fault detector 11 can be provided.

また、検出部22は、スイッチ21がP側に位置する時に検出抵抗16に流れる電流の絶対値と、スイッチ21がN側に位置する時に検出抵抗16に流れる電流の絶対値との大小を比較するように構成されている。このように、スイッチ21がP側に位置する時に検出抵抗16に流れる電流の絶対値と、スイッチ21がN側に位置する時に検出抵抗16に流れる電流の絶対値との大小を比較することにより、地絡事故の発生箇所を特定することが可能となる。   The detection unit 22 compares the absolute value of the current flowing through the detection resistor 16 when the switch 21 is positioned on the P side with the absolute value of the current flowing through the detection resistor 16 when the switch 21 is positioned on the N side. Is configured to do. In this way, by comparing the magnitude of the absolute value of the current flowing through the detection resistor 16 when the switch 21 is positioned on the P side with the absolute value of the current flowing through the detection resistor 16 when the switch 21 is positioned on the N side. It becomes possible to specify the location where the ground fault occurred.

つまり、スイッチ21がP側に位置する時に流れる電流の絶対値が、スイッチ21がN側に位置する時に流れる電流の絶対値よりも大きい場合は、地絡事故が直流回路13の陰極側で発生していると判定することができる。逆に、スイッチ21がP側に位置する時に流れる電流の絶対値が、スイッチ2がN側に位置する時に流れる電流の絶対値よりも小さい場合は、地絡事故が直流回路13の陽極側で発生していると判定することができる。また、スイッチ21がP側に位置する時に流れる電流の絶対値が、スイッチ21がN側に位置する時に流れる電流の絶対値と等しい場合は、地絡事故が直流回路13の太陽電池パネル12の中間点で発生していると判定することができる。   That is, when the absolute value of the current that flows when the switch 21 is located on the P side is larger than the absolute value of the current that flows when the switch 21 is located on the N side, a ground fault occurs on the cathode side of the DC circuit 13. Can be determined. Conversely, if the absolute value of the current that flows when the switch 21 is located on the P side is smaller than the absolute value of the current that flows when the switch 2 is located on the N side, a ground fault will occur on the anode side of the DC circuit 13. It can be determined that it has occurred. Further, when the absolute value of the current that flows when the switch 21 is positioned on the P side is equal to the absolute value of the current that flows when the switch 21 is positioned on the N side, a ground fault occurs in the solar panel 12 of the DC circuit 13. It can be determined that it occurs at an intermediate point.

なお、スイッチ21がP側に位置する時に流れる電流の絶対値と、スイッチ21がN側に位置する時に流れる電流の絶対値との差が最大値(例えば10mA)となる場合は、複数個の太陽電池パネル12が接続された直列回路外に位置する直流回路13の陽極側あるいは陰極側の箇所で地絡事故が発生していると判定することができる。そして、スイッチ21がP側に位置する時に流れる電流の絶対値と、スイッチ21がN側に位置する時に流れる電流の絶対値との差が最大値よりも小さくなればなるほど、地絡事故の発生箇所は、直列接続された複数個の太陽電池パネル12の中間点に近づくことになる。   When the difference between the absolute value of the current that flows when the switch 21 is positioned on the P side and the absolute value of the current that flows when the switch 21 is positioned on the N side is a maximum value (for example, 10 mA), It can be determined that a ground fault has occurred at a location on the anode side or cathode side of the DC circuit 13 located outside the series circuit to which the solar cell panel 12 is connected. As the difference between the absolute value of the current that flows when the switch 21 is positioned on the P side and the absolute value of the current that flows when the switch 21 is positioned on the N side becomes smaller than the maximum value, the occurrence of a ground fault occurs. The location approaches the midpoint of the plurality of solar cell panels 12 connected in series.

この実施形態の直流地絡検出器11において、スイッチ21の切り替え周期は、常時、一定となるように設定すればよいが、一時的に変更することも可能である。つまり、切り替え周期を例えば1分間に設定した場合であっても、スイッチ21が陽極側抵抗14あるいは陰極側抵抗15のいずれか一方の極側に切り替え接続されることにより地絡電流を検出した時点で、1分間の切り替え周期を待たず、スイッチ21を他方の極側に即座に切り替えるようにすることが有効である。このようにすれば、地絡事故発生の判定を迅速に行うことができて、応答性に優れた直流地絡検出器11を提供できる。   In the DC ground fault detector 11 of this embodiment, the switching cycle of the switch 21 may be set to be constant at all times, but can be temporarily changed. That is, even when the switching cycle is set to 1 minute, for example, when the ground fault current is detected by the switch 21 being switched and connected to either the anode side resistor 14 or the cathode side resistor 15. Thus, it is effective to immediately switch the switch 21 to the other pole side without waiting for a switching period of one minute. In this way, it is possible to quickly determine the occurrence of a ground fault and to provide the DC ground fault detector 11 having excellent responsiveness.

さらに、地絡事故発生の判定が確定した後は、スイッチ21を陽極側抵抗14あるいは陰極側抵抗15のいずれにも切り替え接続しないようにすることも有効である。このように、地絡事故発生が確定した時点で、スイッチ21を開放状態にすることにより、直流回路13に地絡電流が流れないので、地絡事故を復旧させる作業を安全に実施することができる。   Furthermore, it is also effective to prevent the switch 21 from being switched and connected to either the anode-side resistor 14 or the cathode-side resistor 15 after the determination of the occurrence of the ground fault is confirmed. As described above, when the occurrence of the ground fault is determined, the ground fault current does not flow through the DC circuit 13 by opening the switch 21. Therefore, the work for recovering the ground fault can be performed safely. it can.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

11 直流地絡検出器
12 電源(太陽電池パネル)
13 直流回路
14 陽極側抵抗
15 陰極側抵抗
16 検出抵抗筐体
21 スイッチ
22 検出部
11 DC ground fault detector 12 Power supply (solar cell panel)
13 DC circuit 14 Anode-side resistance 15 Cathode-side resistance 16 Detection resistance housing 21 Switch 22 Detection unit

Claims (2)

電源を有する直流回路の陽極側に接続された陽極側抵抗と、前記直流回路の陰極側に接続された陰極側抵抗と、前記陽極側抵抗あるいは前記陰極側抵抗に周期的に切り替え接続されるスイッチと、前記スイッチと大地との間に接続された検出抵抗とを備えた直流地絡検出器であって、
前記スイッチが陽極側抵抗に切り替え接続された時に前記検出抵抗に流れる電流の絶対値と、前記スイッチが陰極側抵抗に切り替え接続された時に前記検出抵抗に流れる電流の絶対値とを合算し、前記直流回路のいずれの箇所で地絡事故が発生しても常に一定の合算値を地絡電流として検出する検出部を具備したことを特徴とする直流地絡検出器。
An anode-side resistor connected to the anode side of a DC circuit having a power source, a cathode-side resistor connected to the cathode side of the DC circuit, and a switch periodically connected to the anode-side resistor or the cathode-side resistor And a DC ground fault detector comprising a detection resistor connected between the switch and the ground,
Said switch summing the absolute value of the current flowing in the detection resistor when it is switched connected to the anode-side resistor, the absolute value of the current flowing in the detection resistor when the switch is switched connected to the cathode-side resistor, wherein What is claimed is: 1. A DC ground fault detector, comprising: a detection unit that detects a constant sum as a ground fault current even if a ground fault occurs in any part of a DC circuit .
前記検出部は、前記スイッチが陽極側抵抗に切り替え接続された時に前記検出抵抗に流れる電流の絶対値と、前記スイッチが陰極側抵抗に切り替え接続された時に前記検出抵抗に流れる電流の絶対値との大小を比較するように構成されている請求項1に記載の直流地絡検出器。   The detection unit includes an absolute value of a current flowing through the detection resistor when the switch is connected to the anode-side resistor, and an absolute value of a current flowing through the detection resistor when the switch is connected to the cathode-side resistor. The DC ground fault detector according to claim 1, wherein the DC ground fault detector is configured to compare the magnitudes of.
JP2014163732A 2014-08-11 2014-08-11 DC ground fault detector Active JP6472620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014163732A JP6472620B2 (en) 2014-08-11 2014-08-11 DC ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163732A JP6472620B2 (en) 2014-08-11 2014-08-11 DC ground fault detector

Publications (2)

Publication Number Publication Date
JP2016038357A JP2016038357A (en) 2016-03-22
JP6472620B2 true JP6472620B2 (en) 2019-02-20

Family

ID=55529520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163732A Active JP6472620B2 (en) 2014-08-11 2014-08-11 DC ground fault detector

Country Status (1)

Country Link
JP (1) JP6472620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221461A1 (en) * 2020-04-28 2021-11-04 (주)아이티이 Device, method, and power distribution system for preventing electric shock and fire in case of short circuit and ground fault

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625586B2 (en) * 2017-02-07 2019-12-25 矢崎総業株式会社 Ground fault detection device
EP3923009B1 (en) * 2020-06-11 2024-02-21 Ellego Powertec Oy A method for determining the location of a ground fault in an electrical circuit and an electrical circuit
JP7360225B1 (en) * 2023-03-28 2023-10-12 日本カーネルシステム株式会社 Solar cell string monitoring device and ground fault location identification method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321148Y2 (en) * 1981-01-08 1988-06-10
JPH01165973A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Measuring device of insulation resistance of direct-current circuit
JPH0384475A (en) * 1989-08-28 1991-04-10 Toyo Commun Equip Co Ltd Measurement of insulation resistance for dc circuit
JPH0681410B2 (en) * 1990-05-02 1994-10-12 株式会社関電工 DC circuit ground fault detector
JPH06153301A (en) * 1992-10-30 1994-05-31 Matsushita Electric Ind Co Ltd Leak detector
JPH07123504A (en) * 1993-10-19 1995-05-12 Matsushita Electric Works Ltd Safety unit for electric automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221461A1 (en) * 2020-04-28 2021-11-04 (주)아이티이 Device, method, and power distribution system for preventing electric shock and fire in case of short circuit and ground fault

Also Published As

Publication number Publication date
JP2016038357A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US9316682B1 (en) Fault diagnosis method for freewheeling diodes of dual-switch power converter of switched reluctance motor
EP2541715B1 (en) Dc power supply insulation fault detection circuit
JP6472620B2 (en) DC ground fault detector
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
EP2479860B1 (en) Built-in test for an overvoltage protection circuit
US10840698B2 (en) Leakage current detection and protection device for power cord
CN116540008A (en) System and method for detecting ground faults in DC systems
US10557883B2 (en) Leakage current detection and protection device for power cord
CN102916415A (en) Arc fault protective switch with excess voltage protection
KR101631998B1 (en) Solar power generation system having Controlling Device for Leakage Current and Double Protection for Surge
US20170138996A1 (en) Differential protection method and differential protection device
RU2660384C2 (en) Detection of shorted diodes
EP2837076B1 (en) Neutral grounding resistor monitor
US20140239744A1 (en) Method of electricity leakage detection and prevention of electrical equipment's outer surface and system thereof
JP2011152003A (en) Circuit and method for protecting overvoltage
KR101302123B1 (en) Earth leakage breaker of automatic recovery type
KR101631997B1 (en) Solar power generation system having Controlling Device for Leakage Current and Double Protection for Surge
CN105720554A (en) Overvoltage protection device and operation method thereof
JP5788713B2 (en) Earth leakage breaker
KR20120083240A (en) Methods and systems involving monitoring circuit connectivity
JP2018066569A (en) Arc fault detection system and arc fault detection method
KR101287727B1 (en) shut-down of operation and safety apparatus for electrical and electronic equipment by using grounding
JP2018017690A (en) DC ground fault detector
US20210384717A1 (en) Dc-overcurrent detector
JP2020005357A (en) Protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6472620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250