JP6469958B2 - Method for separating triacylglycerol - Google Patents

Method for separating triacylglycerol Download PDF

Info

Publication number
JP6469958B2
JP6469958B2 JP2014052994A JP2014052994A JP6469958B2 JP 6469958 B2 JP6469958 B2 JP 6469958B2 JP 2014052994 A JP2014052994 A JP 2014052994A JP 2014052994 A JP2014052994 A JP 2014052994A JP 6469958 B2 JP6469958 B2 JP 6469958B2
Authority
JP
Japan
Prior art keywords
analysis
separation
tag
mobile phase
rac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014052994A
Other languages
Japanese (ja)
Other versions
JP2015175747A (en
Inventor
健史 馬場
健史 馬場
英一郎 福▲崎▼
英一郎 福▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Osaka University NUC
Original Assignee
Shimadzu Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Osaka University NUC filed Critical Shimadzu Corp
Priority to JP2014052994A priority Critical patent/JP6469958B2/en
Publication of JP2015175747A publication Critical patent/JP2015175747A/en
Application granted granted Critical
Publication of JP6469958B2 publication Critical patent/JP6469958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、トリアシルグリセロールを分離する方法に関するものである。   The present invention relates to a method for separating triacylglycerol.

近年、アミノ酸の光学異性体を分離することができる技術が開発されたことにより、脳神経系における生理機能解析や病態解明、疾患バイオマーカー探索、発酵食品の成分解析(酢酸菌、乳酸菌などの微生物代謝産物)など、基礎化学から健康・美容分野にわたる様々な領域に応用され始め、これまで明らかにされていなかった多くの知見が得られるようになっている。   In recent years, with the development of technologies that can separate optical isomers of amino acids, physiological function analysis and disease state elucidation in the cranial nervous system, disease biomarker search, component analysis of fermented foods (microbial metabolism such as acetic acid bacteria and lactic acid bacteria) Products) and other fields ranging from basic chemistry to health and beauty fields, many knowledge that has not been clarified so far can be obtained.

光学異性体をもつ物質としてトリアシルグリセロールがある。トリアシルグリセロール(以下、TAG)とは、1分子のグリセロールに3分子の脂肪酸がエステル結合したアシルグリセロールである。動物の体内脂肪組織に蓄えられる脂肪や食品中の油脂、植物油などを構成する脂質の大部分は中性脂肪であり、その中性脂肪に圧倒的に多く含まれているのがTAGである。このTAGは、光学活性体であることが知られているが、分離が容易でないため、その詳細な生理機能については明らかにされていない。TAGを容易に分離する方法を確立することにより、アミノ酸の光学異性体の分離と同様に、種々の分野において新たな知見が得られることが期待できる。   Triacylglycerol is a substance having an optical isomer. Triacylglycerol (hereinafter referred to as TAG) is acylglycerol in which three molecules of fatty acid are ester-bonded to one molecule of glycerol. Most of the fats that make up the fat stored in the body adipose tissue of animals, fats and oils in foods, vegetable oils, etc. are neutral fats, and TAGs are overwhelmingly contained in the neutral fats. This TAG is known to be an optically active substance, but since its separation is not easy, its detailed physiological function has not been clarified. By establishing a method for easily separating TAG, it can be expected that new knowledge can be obtained in various fields as well as separation of optical isomers of amino acids.

特許第2780273号公報Japanese Patent No. 2780273 国際公開第2005/075974号パンフレットInternational Publication No. 2005/075974 Pamphlet 特開平5−264525号公報JP-A-5-264525

試料中の物質を分離する方法としては、液体クロマトグラフィー等のクロマトグラフィーが知られている。液体クロマトグラフィーは、分離剤の充填された分析カラムに試料を通すことにより、各物質に対する分離剤の保持力の差異によって所望の物質を分離することができる。   As a method for separating a substance in a sample, chromatography such as liquid chromatography is known. In liquid chromatography, by passing a sample through an analytical column packed with a separating agent, a desired substance can be separated based on the difference in retention of the separating agent with respect to each substance.

しかし、通常の液体クロマトグラフィーでは光学活性体であるTAGを容易に分離することはできない。TAGを分離するには分析カラムの分離性能を高める必要がある。液体クロマトグラフィーの分離性能は分析カラムの長さが長いほど高くなるが、長さの長い分析カラムは高価な上、分析カラムの長さが長くなると移動相を送液するための送液圧力が高くなることから、分析カラムを長くしたり分析カラムを直列に連結したりするには限度がある。かかる理由により、TAGを液体クロマトグラフィーで分離することは容易ではない。   However, TAG, which is an optically active substance, cannot be easily separated by ordinary liquid chromatography. In order to separate TAG, it is necessary to improve the separation performance of the analytical column. The separation performance of liquid chromatography increases with the length of the analytical column, but the longer analytical column is more expensive, and the longer the analytical column length, the higher the delivery pressure for delivering the mobile phase. Since it becomes high, there is a limit to lengthening the analytical column or connecting analytical columns in series. For this reason, it is not easy to separate TAG by liquid chromatography.

TAGのような分離しにくい物質を分離する方法として、リサイクル液体クロマトグラフィーが知られている(例えば、特許文献1参照。)。リサイクル液体クロマトグラフィーは、分析カラムを通過した分離の不十分な成分を含む溶離液を分析カラムに戻して再度の分離(リサイクル分離という)を目的物質の分離が達成されるまで繰り返し行なうというものである。   Recycled liquid chromatography is known as a method for separating substances that are difficult to separate, such as TAG (see, for example, Patent Document 1). In recycle liquid chromatography, the eluent containing insufficiently separated components that have passed through the analytical column is returned to the analytical column, and re-separation (called recycle separation) is repeated until the separation of the target substance is achieved. is there.

しかし、TAGを分離するためには、多くの回数にわたってリサイクル分離を行なう必要があるため、分離に長時間を要する。また、分析カラムを通過した溶離液を再度分析カラムへ戻すというリサイクルシステムが装置に必要なため、装置構成が複雑になる。また、TAGは一般に有機溶媒に溶けるため、リサイクル液体クロマトグラフィーで分離した後のTAGの精製が容易ではない。   However, in order to separate TAG, since it is necessary to perform recycle separation many times, separation takes a long time. In addition, since the apparatus requires a recycling system that returns the eluent that has passed through the analysis column to the analysis column again, the apparatus configuration becomes complicated. Further, since TAG is generally soluble in an organic solvent, it is not easy to purify TAG after separation by recycle liquid chromatography.

そこで、本発明は、TAGの光学異性体を簡単な装置構成で分離して精製することができるようにすることを目的とするものである。   Accordingly, an object of the present invention is to enable separation and purification of optical isomers of TAG with a simple apparatus configuration.

本発明は、超臨界流体を含む移動相が送液される分析流路中にTAGを含む試料を注入し、該試料を分離剤としてアミロース誘導体が充填された分析カラムに通液させてTAGの光学異性体を分離する分離方法である。すなわち、本発明では、TAGの分離を超臨界流体クロマトグラフィーを用いて行なう。
In the present invention, a sample containing TAG is injected into an analysis flow path through which a mobile phase containing a supercritical fluid is sent, and the sample is passed through an analysis column packed with an amylose derivative as a separating agent. This is a separation method for separating optical isomers. That is, in the present invention, TAG separation is performed using supercritical fluid chromatography.

超臨界流体クロマトグラフィーは、二酸化炭素などに一定の温度及び圧力をかけて超臨界流体とし、その超臨界流体を溶媒として行なうクロマトグラフィーである。超臨界流体は液体と気体の両方の性質をもち、液体よりも拡散性が高く粘性が低いという特徴がある。超臨界流体クロマトグラフィーは、種々の特性を有する流体を移動相として使用することができるため、分離が困難な光学異性体の分離への利用も提案されている(例えば、特許文献2参照。)また、超臨界流体は粘性が低いため、複数の分析カラムを直列に連結して分離性能を高めることができる(例えば、特許文献3参照。)。   Supercritical fluid chromatography is a chromatography performed by applying a certain temperature and pressure to carbon dioxide or the like to form a supercritical fluid and using the supercritical fluid as a solvent. Supercritical fluids have both liquid and gas properties and are characterized by being more diffusive and less viscous than liquids. Since supercritical fluid chromatography can use fluids having various characteristics as a mobile phase, it has also been proposed to use for separation of optical isomers that are difficult to separate (for example, see Patent Document 2). In addition, since the supercritical fluid has low viscosity, a plurality of analytical columns can be connected in series to improve separation performance (see, for example, Patent Document 3).

上記分離方法において、モディファイアとして例えばメタノールを用いることができる。   In the above separation method, for example, methanol can be used as a modifier.

本発明では、TAGを超臨界流体クロマトグラフィーにより分離するので、分析カラムの連結によって分離性能を高めることができ、リサイクル液体クロマトグラフのように装置の流路構成を複雑にすることなく、1本の流路で短時間での分離が可能となる。超臨界流体クロマトグラフィーの移動相である超臨界流体は常温・大気圧下で気化するため、液体クロマトグラフに比べて分析カラムで分離した成分の精製が容易である。   In the present invention, since TAG is separated by supercritical fluid chromatography, the separation performance can be improved by connecting analytical columns, and the flow path of the apparatus is not complicated as in the case of a recycled liquid chromatograph. Separation in a short time is possible with this flow path. Since the supercritical fluid, which is the mobile phase of supercritical fluid chromatography, is vaporized at room temperature and atmospheric pressure, the components separated by the analytical column are easier to purify than liquid chromatographs.

超臨界流体クロマトグラフの一実施例を概略的に示す流路図である。It is a flow path figure showing roughly one example of a supercritical fluid chromatograph. 1本の分析カラムを備えた超臨界クロマトグラフでのrac−SSO−TAGの分析結果を示すクロマトグラムであり、(A)は移動相流量を3mL/minに設定したときのクロマトグラム、(B)は移動相流量を1mL/minに設定したときのクロマトグラム、(C)は移動相流量を0.6mL/minに設定したときのクロマトグラムである。It is a chromatogram which shows the analysis result of rac-SSO-TAG in a supercritical chromatograph provided with one analytical column, (A) is a chromatogram when a mobile phase flow rate is set as 3 mL / min, (B ) Is a chromatogram when the mobile phase flow rate is set to 1 mL / min, and (C) is a chromatogram when the mobile phase flow rate is set to 0.6 mL / min. 2本の分析カラムを備えた超臨界クロマトグラフでの分析結果を示すクロマトグラムであり、(A)はrac−PPO−TAGを試料として注入したときのクロマトグラム、(B)はrac−OOP−TAGを試料として注入したときのクロマトグラム、(C)はrac−SSO−TAGを試料として注入したときのクロマトグラムである。It is a chromatogram which shows the analysis result in a supercritical chromatograph provided with two analytical columns, (A) is a chromatogram when rac-PPO-TAG is injected as a sample, (B) is rac-OOP- Chromatogram when TAG is injected as a sample, (C) is a chromatogram when rac-SSO-TAG is injected as a sample. 4本の分析カラムを備えた超臨界クロマトグラフでの分析結果を示すクロマトグラムであり、(A)はrac−PPO−TAGを試料として注入したときのクロマトグラム、(B)はrac−OOP−TAGを試料として注入したときのクロマトグラム、(C)はrac−SSO−TAGを試料として注入したときのクロマトグラムである。It is a chromatogram which shows the analysis result in a supercritical chromatograph provided with four analytical columns, (A) is a chromatogram when rac-PPO-TAG is injected as a sample, (B) is rac-OOP- Chromatogram when TAG is injected as a sample, (C) is a chromatogram when rac-SSO-TAG is injected as a sample. 図4の分析よりも分離部の温度を低く設定して4本の分析カラムを備えた超臨界クロマトグラフで分析を行なったときの分析結果を示すクロマトグラムであり、(A)はrac−PPO−TAGを試料として注入したときのクロマトグラム、(B)はrac−OOP−TAGを試料として注入したときのクロマトグラム、(C)はrac−SSO−TAGを試料として注入したときのクロマトグラムである。FIG. 5 is a chromatogram showing analysis results when analysis is performed with a supercritical chromatograph equipped with four analytical columns with the temperature of the separation section set lower than in the analysis of FIG. 4, (A) is rac-PPO. -Chromatogram when TAG is injected as a sample, (B) is a chromatogram when rac-OOP-TAG is injected as a sample, and (C) is a chromatogram when rac-SSO-TAG is injected as a sample. is there.

図1を用いて、本発明の分離方法の実施に用いる超臨界流体クロマトグラフの一例を説明する。   An example of a supercritical fluid chromatograph used for carrying out the separation method of the present invention will be described with reference to FIG.

液体状態の二酸化炭素をポンプ6により送液する二酸化炭素送液流路2と、モディファイアとしてメタノールをポンプ10により送液するモディファイア送液流路4がミキサ14に接続されている。ミキサ14には分析流路16が接続されている。分析流路16上には、この分析流路16に試料を注入する試料注入部(オートサンプラ)18、分離部20、圧力制御バルブ22及び質量分析計(MS)24が配置されている。分離部20は、分離剤としてアミロース誘導体が充填された分析カラムを備えている。分離部20は1本の分析カラムによって構成することもできるが、目的に応じて複数本の分析カラムを直列に連結して構成することもできる。
A carbon dioxide liquid supply passage 2 for supplying liquid carbon dioxide by a pump 6 and a modifier liquid supply passage 4 for supplying methanol by a pump 10 as a modifier are connected to a mixer 14. An analysis flow path 16 is connected to the mixer 14. A sample injection unit (autosampler) 18, a separation unit 20, a pressure control valve 22, and a mass spectrometer (MS) 24 for injecting a sample into the analysis channel 16 are arranged on the analysis channel 16. The separation unit 20 includes an analysis column packed with an amylose derivative as a separation agent. The separation unit 20 can be configured by one analytical column, but can also be configured by connecting a plurality of analytical columns in series according to the purpose.

二酸化炭素とメタノールはミキサ14で混合され、移動相として分析流路16に導入される。分析流路16は圧力制御バルブ22によって内圧が7MPa以上に制御され、分析流路16に導入された移動相は超臨界流体の状態となる。試料注入部18により注入された試料は超臨界流体となった移動相によって分離部20に搬送され、成分ごとに分離され、圧力制御バルブ22を経て質量分析計24に導入される。   Carbon dioxide and methanol are mixed by the mixer 14 and introduced into the analysis channel 16 as a mobile phase. The internal pressure of the analysis flow path 16 is controlled to 7 MPa or more by the pressure control valve 22, and the mobile phase introduced into the analysis flow path 16 becomes a supercritical fluid state. The sample injected by the sample injection unit 18 is conveyed to the separation unit 20 by the mobile phase that has become a supercritical fluid, separated for each component, and introduced into the mass spectrometer 24 through the pressure control valve 22.

かかる超臨界流体クロマトグラフを用いてTAGの分離を行なった結果について以下に説明する   The results of TAG separation using such a supercritical fluid chromatograph will be described below.

図2はrac−SSO−TAG(ラセミ体の1,2-distearoyl-3-oleoyl-glycerol)を100ppmの濃度で含む試料を分析流路に注入して質量分析計24で得られたクロマトグラムであり、(A)は移動相の流量を3mL/min、(B)は移動相の流量を1mL/min、(C)は移動相の流量を0.6mL/minに設定したときのクロマトグラムをそれぞれ示している。   FIG. 2 is a chromatogram obtained by the mass spectrometer 24 by injecting a sample containing rac-SSO-TAG (racemic 1,2-distearoyl-3-oleoyl-glycerol) at a concentration of 100 ppm into the analysis channel. Yes, (A) shows a mobile phase flow rate of 3 mL / min, (B) shows a mobile phase flow rate of 1 mL / min, and (C) shows a chromatogram when the mobile phase flow rate is set to 0.6 mL / min. Each is shown.

この分析において、分離剤としてアミロース誘導体(3−クロロフェニルカルバマテ)をシリカゲル担体に固定化した固定相を分離剤として備えた内径4.6mm、長さ250mmの分析カラム(株式会社ダイセルの製品CHIRALPAK ID−3/SFC)1本によって分離部20を構成し、分離部20の温度(カラムオーブン温度)を35℃に設定した。移動相は、モディファイアであるメタノール(ギ酸アンモニウム(HCOONH)を0.1%含有)の濃度を0%〜10%の範囲で時間変化させてグラジエント分析を行なった。 In this analysis, an analytical column having a stationary phase in which an amylose derivative (3-chlorophenylcarbamate) is immobilized on a silica gel carrier as a separating agent and having an inner diameter of 4.6 mm and a length of 250 mm (product CHIRALPAK ID manufactured by Daicel Corporation) −3 / SFC) constitutes the separation unit 20, and the temperature of the separation unit 20 (column oven temperature) was set to 35 ° C. The mobile phase was subjected to gradient analysis by changing the concentration of methanol (containing 0.1% ammonium formate (HCOONH 4 )) as a modifier over time in the range of 0% to 10%.

図2の(A)〜(C)の各クロマトグラムについてrac−SSO−TAGの分離度Rを次式により求めた。なお、次式は互いに隣接するピークP1とP2の分離度を示すものであり、W1はピークP1のベースラインにおけるピーク幅、W2はピークP2のベースラインにおけるピーク幅、t1はピークP1の保持時間、t2はピークP2の保持時間(t2>t1)である。

Figure 0006469958
The resolution R of rac-SSO-TAG was calculated | required by following Formula about each chromatogram of (A)-(C) of FIG. The following equation shows the degree of separation between adjacent peaks P 1 and P 2 , W 1 is the peak width at the baseline of peak P 1 , W 2 is the peak width at the baseline of peak P 2 , t 1 is the retention time of peak P 1 , and t 2 is the retention time of peak P 2 (t 2 > t 1 ).
Figure 0006469958

移動相の流量が3mL/minのときの分離度R=0.804となり、移動相の流量が1mL/minのときの分離度R=1.674となり、移動相の流量が0.6mL/minのときの分離度R=1.834となった。日本薬局方では、ピークの完全分離は「分離度1.5以上」と定義されている。このことから、図2A〜図2Cの分析結果によれば、上記の分析条件下ではrac−SSO−TAGは移動相の流量を1mL/min以下にすることで完全に分離することができることがわかる。   The separation degree R = 0.804 when the mobile phase flow rate is 3 mL / min, the separation degree R = 1.664 when the mobile phase flow rate is 1 mL / min, and the mobile phase flow rate is 0.6 mL / min. In this case, the degree of separation R was 1.834. In the Japanese Pharmacopoeia, complete separation of peaks is defined as “separation degree of 1.5 or more”. From this, according to the analysis results of FIGS. 2A to 2C, it can be seen that rac-SSO-TAG can be completely separated by reducing the flow rate of the mobile phase to 1 mL / min or less under the above analysis conditions. .

図3は図2の分析で用いた分析カラムを2本使用し、それらを直列に連結して分離部20を構成して分析を行なったときのクロマトグラムである。(A)はrac−PPO−TAG(ラセミ体の1,2-dipalmitoyl-3-oleoyl-glycerol)を2ppmの濃度で含む試料、(B)はrac−OOP−TAG(ラセミ体の1,2-dioleoyl-3-palmitoyl-glycerol)を2ppmの濃度で含む試料、(C)はrac−SSO−TAGを100ppmの濃度で含む試料をそれぞれ分析して得られたクロマトグラムである。分離部20の温度(カラムオーブン温度)は35℃であり、移動相の流量は1mL/minである。移動相の組成は図2の分析と同様に、モディファイアであるメタノール(ギ酸アンモニウム(HCOONH4)を0.1%含有)の濃度を0%〜10%の範囲で時間変化させてグラジエント分析を行なった。 FIG. 3 is a chromatogram when the analysis is performed by using two analysis columns used in the analysis of FIG. 2 and connecting them in series to form the separation unit 20. (A) is a sample containing rac-PPO-TAG (racemic 1,2-dipalmitoyl-3-oleoyl-glycerol) at a concentration of 2 ppm, (B) is rac-OOP-TAG (racemic 1,2- (C) is a chromatogram obtained by analyzing a sample containing dioleoyl-3-palmitoyl-glycerol) at a concentration of 2 ppm and (C) respectively analyzing a sample containing rac-SSO-TAG at a concentration of 100 ppm. The temperature of the separation unit 20 (column oven temperature) is 35 ° C., and the flow rate of the mobile phase is 1 mL / min. Similar to the analysis of FIG. 2, the composition of the mobile phase is a gradient analysis by changing the concentration of methanol (containing 0.1% ammonium formate (HCOONH 4 )) in the range of 0% to 10% over time. I did it.

図3の分析結果によれば、(A)rac−PPO−TAGと(B)rac−OOP−TAGについては、分離はみられるものの完全分離(分離度Rが1.5以上)には至っていない。一方で、rac−SSO−TAGの分離度Rは3.833となり、分離部20以外の条件が同じ条件である図2Bの分析結果(R=1.674)に比べてさらに分離が進んでいることがわかる。このことから、2本の分析カラムを連結することによって分離部20の分離性能が向上していることが確認された。   According to the analysis result of FIG. 3, although (A) rac-PPO-TAG and (B) rac-OOP-TAG are separated, they have not been completely separated (separation degree R is 1.5 or more). . On the other hand, the separation degree R of rac-SSO-TAG is 3.833, and the separation is further advanced compared to the analysis result (R = 1.664) in FIG. 2B where the conditions other than the separation unit 20 are the same. I understand that. From this, it was confirmed that the separation performance of the separation unit 20 was improved by connecting two analytical columns.

図4は図2及び図3の分析で用いた分析カラムを4本使用し、それらを直列に連結して分離部20を構成して分析を行なったときのクロマトグラムである。図3の分析と同様に、(A)はrac−PPO−TAGを2ppmの濃度で含む試料、(B)はrac−OOP−TAGを2ppmの濃度で含む試料、(C)はrac−SSO−TAGを100ppmの濃度で含む試料をそれぞれ分析して得られたクロマトグラムである。分離部20の温度(カラムオーブン温度)は35℃であり、移動相の流量は1mL/minである。移動相の組成は図2の分析と同様に、モディファイアであるメタノール(ギ酸アンモニウム(HCOONH4)を0.1%含有)の濃度を0%〜10%の範囲で時間変化させてグラジエント分析を行なった。 FIG. 4 is a chromatogram when analysis is performed by using four analysis columns used in the analysis of FIGS. 2 and 3 and connecting them in series to form the separation unit 20. Similar to the analysis of FIG. 3, (A) is a sample containing rac-PPO-TAG at a concentration of 2 ppm, (B) is a sample containing rac-OOP-TAG at a concentration of 2 ppm, and (C) is rac-SSO- It is a chromatogram obtained by analyzing each sample containing TAG at a concentration of 100 ppm. The temperature of the separation unit 20 (column oven temperature) is 35 ° C., and the flow rate of the mobile phase is 1 mL / min. Similar to the analysis of FIG. 2, the composition of the mobile phase is a gradient analysis by changing the concentration of methanol (containing 0.1% ammonium formate (HCOONH 4 )) in the range of 0% to 10% over time. I did it.

図4の分析結果から、(A)rac−PPO−TAGと(B)rac−OOP−TAGの分離度がそれぞれ2.156、1.471となり、図3の分析よりも向上していることがわかる。このように、図1に示した超臨界流体クロマトグラフでは、必要に応じて複数本の分析カラムを直列に連結して分離性能を向上させることができるので、液体クロマトグラフでは分離の困難なTAGを、装置構成を複雑化させることなく分離することができる。   From the analysis results of FIG. 4, the degree of separation of (A) rac-PPO-TAG and (B) rac-OOP-TAG is 2.156 and 1.471, respectively, which is improved from the analysis of FIG. 3. Recognize. As described above, in the supercritical fluid chromatograph shown in FIG. 1, a plurality of analytical columns can be connected in series as necessary to improve the separation performance. Can be separated without complicating the device configuration.

図5は図4の分析条件のうち分離部20の温度を25℃に低下させて分析を行なって得られたクロマトグラムである。この分析結果から、図4の分析では完全分離に至っていなかった(B)rac−OOP−TAGの分離度が1.829に向上し、完全分離に至っていることが確認された。これらの結果により、rac−OOP−TAGのような分離しにくいTAGであっても、連結する分析カラムの本数や分離部20の温度を調節することによって完全に分離できることが確認された。   FIG. 5 is a chromatogram obtained by performing the analysis by lowering the temperature of the separation unit 20 to 25 ° C. among the analysis conditions of FIG. From this analysis result, it was confirmed that the degree of separation of (B) rac-OOP-TAG, which was not completely separated in the analysis of FIG. From these results, it was confirmed that even a TAG that is difficult to separate, such as rac-OOP-TAG, can be completely separated by adjusting the number of analytical columns to be connected and the temperature of the separation unit 20.

2 二酸化炭素送液流路
4 モディファイア送液流路
6,10 ポンプ
8 二酸化炭素
12 メタノール(モディファイア)
14 ミキサ
16 分析流路
18 試料注入部
20 分離部
22 圧力制御バルブ
24 質量分析装置
2 Carbon dioxide feed flow path 4 Modifier liquid feed flow path 6, 10 Pump 8 Carbon dioxide 12 Methanol (modifier)
DESCRIPTION OF SYMBOLS 14 Mixer 16 Analysis flow path 18 Sample injection part 20 Separation part 22 Pressure control valve 24 Mass spectrometer

Claims (2)

超臨界流体を含む移動相が1mL/min以下の流量で送液される分析流路であって、分離剤としてアミロース誘導体が充填された複数の分析カラムが直列に連結されてなる分離部を有する分析流路中にトリアシルグリセロールを含む試料を注入し、該試料を前記分離部の前記複数の分析カラムに通液させてトリアシルグリセロールの光学異性体を1.5以上の分離度で分離する分離方法。 An analysis flow path in which a mobile phase containing a supercritical fluid is sent at a flow rate of 1 mL / min or less, and has a separation unit in which a plurality of analysis columns filled with amylose derivatives as separation agents are connected in series. A sample containing triacylglycerol is injected into the analysis channel, and the sample is passed through the plurality of analysis columns of the separation unit to separate the optical isomers of triacylglycerol with a resolution of 1.5 or more. Separation method. 前記移動相はモディファイアとしてメタノールを含む請求項1に記載の分離方法。
The separation method according to claim 1, wherein the mobile phase contains methanol as a modifier.
JP2014052994A 2014-03-17 2014-03-17 Method for separating triacylglycerol Active JP6469958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014052994A JP6469958B2 (en) 2014-03-17 2014-03-17 Method for separating triacylglycerol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014052994A JP6469958B2 (en) 2014-03-17 2014-03-17 Method for separating triacylglycerol

Publications (2)

Publication Number Publication Date
JP2015175747A JP2015175747A (en) 2015-10-05
JP6469958B2 true JP6469958B2 (en) 2019-02-13

Family

ID=54255057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014052994A Active JP6469958B2 (en) 2014-03-17 2014-03-17 Method for separating triacylglycerol

Country Status (1)

Country Link
JP (1) JP6469958B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6991021B2 (en) * 2017-09-08 2022-01-12 月島食品工業株式会社 Methods for Producing Positional and / or Enantiomers of Triacylglycerol
JP6819800B2 (en) * 2017-11-06 2021-01-27 株式会社島津製作所 Component separation method using supercritical fluid chromatograph
US20210102923A1 (en) * 2018-04-03 2021-04-08 The Nisshin Oillio Group, Ltd. Method for analyzing triglyceride, method for sorting oil and fat, and method for producing triglyceride
JP2019196948A (en) * 2018-05-08 2019-11-14 日清オイリオグループ株式会社 Method for analyzing triglyceride, sorting methods of fats and oils, and method for producing triglyceride
EP3991835A4 (en) * 2019-06-27 2022-07-27 The Nisshin OilliO Group, Ltd. Triglyceride analysis method, oil and fat sorting method, and triglyceride production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293895A (en) * 1991-04-12 1994-10-21 Shokuhin Sangyo High Separeeshiyon Syst Gijutsu Kenkyu Kumiai Method for separating triglyceride from vegetable oil
DE69322974D1 (en) * 1992-10-29 1999-02-18 Loders Croklaan Bv ENZYMATIC TRIGLYCERIDE IMPLEMENTATION PROCESS
JP3306813B2 (en) * 1992-12-09 2002-07-24 ダイセル化学工業株式会社 Simulated moving bed chromatographic separation method
JP4485161B2 (en) * 2003-09-02 2010-06-16 セメダイン株式会社 Surface finishing tape and surface finishing method of sealing material using the same
CN1914505A (en) * 2004-02-03 2007-02-14 大赛璐化学工业株式会社 Method of optical isomer separation with use of supercritical fluid chromatography
CA2755247A1 (en) * 2009-03-13 2010-09-16 Terrasep, Llc Methods and apparatus for centrifugal liquid chromatography
ES2920831T3 (en) * 2010-08-06 2022-08-10 Univ Brown Functionalized Chromatographic Materials
JP2013250186A (en) * 2012-06-01 2013-12-12 Fuji Oil Co Ltd Method for separating or measuring 3-mono chloropropane-1,2-diol fatty acid esters in edible oil and fat using supercritical fluid chromatography

Also Published As

Publication number Publication date
JP2015175747A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6469958B2 (en) Method for separating triacylglycerol
Donato et al. Online comprehensive RPLC× RPLC with mass spectrometry detection for the analysis of proteome samples
Kalíková et al. Cellulose tris‐(3, 5‐dimethylphenylcarbamate)‐based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC
Rigano et al. Proposal of a linear retention index system for improving identification reliability of triacylglycerol profiles in lipid samples by liquid chromatography methods
BR112017005703A2 (en) chromatography system and method for separating a sample
Ragonese et al. Evaluation of use of a dicationic liquid stationary phase in the fast and conventional gas chromatographic analysis of health-hazardous C18 cis/trans fatty acids
De Klerck et al. Generic chiral method development in supercritical fluid chromatography and ultra-performance supercritical fluid chromatography
Pauk et al. Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography
Zhang et al. Enantiomeric separation of oxybutynin by recycling high‐speed counter‐current chromatography with hydroxypropyl‐β‐cyclodextrin as chiral selector
Aranyi et al. High‐performance liquid chromatographic enantioseparation of amino compounds on newly developed cyclofructan‐based chiral stationary phases
Hofstetter et al. Supercritical fluid chromatography: From science fiction to scientific fact
Henley et al. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength
JP6991021B2 (en) Methods for Producing Positional and / or Enantiomers of Triacylglycerol
Zhou et al. Enantioseparation of six antihistamines with immobilized cellulose chiral stationary phase by HPLC
Lerma-García et al. Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography
Luiz Oenning et al. Evaluation of two membrane‐based microextraction techniques for the determination of endocrine disruptors in aqueous samples by HPLC with diode array detection
JP6819800B2 (en) Component separation method using supercritical fluid chromatograph
Tang et al. Resolving solvent incompatibility in two-dimensional liquid chromatography with in-line mixing modulation
Gaudin et al. Retention behaviour of ceramides in sub-critical fluid chromatography in comparison with non-aqueous reversed-phase liquid chromatography
Zhou et al. Separation of mandelic acid and its derivatives with new immobilized cellulose chiral stationary phase
Huang et al. Thermal stability of thiazide and related diuretics during superheated water chromatography
JPWO2019194127A1 (en) Triglyceride analysis method, fat selection method, and triglyceride production method
Zhao et al. Aqueous two-phase extraction combined with chromatography: New strategies for preparative separation and purification of capsaicin from capsicum oleoresin
Delmonte et al. Comprehensive two dimensional gas chromatographic separation of fatty acids methyl esters with online reduction
Bao et al. Enantioseparation of racemic paroxol on an amylose‐based chiral stationary phase by supercritical fluid chromatography

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6469958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250