JP6469664B2 - ハイバンド励振信号を生成するための混合係数の推定 - Google Patents

ハイバンド励振信号を生成するための混合係数の推定 Download PDF

Info

Publication number
JP6469664B2
JP6469664B2 JP2016521680A JP2016521680A JP6469664B2 JP 6469664 B2 JP6469664 B2 JP 6469664B2 JP 2016521680 A JP2016521680 A JP 2016521680A JP 2016521680 A JP2016521680 A JP 2016521680A JP 6469664 B2 JP6469664 B2 JP 6469664B2
Authority
JP
Japan
Prior art keywords
signal
highband
mixing
mixing factor
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016521680A
Other languages
English (en)
Other versions
JP2016532886A5 (ja
JP2016532886A (ja
Inventor
アッティ、ベンカトラマン・エス.
クリシュナン、ベンカテシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2016532886A publication Critical patent/JP2016532886A/ja
Publication of JP2016532886A5 publication Critical patent/JP2016532886A5/ja
Application granted granted Critical
Publication of JP6469664B2 publication Critical patent/JP6469664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/087Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using mixed excitation models, e.g. MELP, MBE, split band LPC or HVXC
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Amplitude Modulation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

優先権の主張
[0001]本出願は、参照によってすべての内容が組み込まれる、2013年10月11日に出願された「ESTIMATION OF MIXING FACTORS TO GENERATE HIGH−BAND EXCITATION SIGNAL」という名称の米国仮特許出願第61/889,727号、および2014年10月8日に出願された「ESTIMATION OF MIXING FACTORS TO GENERATE HIGH−BAND EXCITATION SIGNAL」という名称の米国非仮特許出願第14/509,676号の優先権を主張するものである。
[0002]本開示は、一般に、信号処理に関する。
[0003]技術の進歩が、より小さくより強力なコンピューティングデバイスをもたらしている。たとえば、現在、小さく、軽く、ユーザによって容易に持ち運ばれるポータブルワイヤレス電話、携帯情報端末(PDA)、およびページングデバイスなどのワイヤレスコンピューティングデバイスを含む、様々なポータブルパーソナルコンピューティングデバイスが存在する。より具体的には、セルラー電話およびインターネットプロトコル(IP)電話などのポータブルワイヤレス電話は、ワイヤレスネットワークを介して音声およびデータパケットを通信することができる。さらに、多くのそのようなワイヤレス電話は、内蔵されている他のタイプのデバイスを含む。たとえば、ワイヤレス電話は、デジタルスチルカメラと、デジタルビデオカメラと、デジタルレコーダと、オーディオファイルプレーヤとを含むこともできる。
[0004]従来の電話システム(たとえば、公衆交換電話網(PSTN))では、信号帯域幅は、300ヘルツ(Hz)〜3.4キロヘルツ(kHz)の周波数範囲に限定される。セルラー式テレフォニーおよびボイスオーバーインターネットプロトコル(VoIP)などの広帯域(WB)適用例では、信号帯域幅は、50Hz〜7kHzの周波数範囲に及ぶことがある。超広帯域(SWB)コーディング技法は、約16kHzまで延びる帯域幅をサポートする。信号帯域幅を3.4kHzにおける狭帯域テレフォニーから16kHzのSWBテレフォニーまで拡張することによって、信号再構成、了解度、および自然度の品質を改善することができる。
[0005]SWBコーディング技法は、通常、信号の低周波数部分(たとえば、50Hz〜7kHz、「ローバンド」とも呼ばれる)を符号化および伝送することを含む。たとえば、ローバンドは、フィルタパラメータおよび/またはローバンド励振信号を使用して表され得る。しかしながら、コーディング効率を改善するために、信号のより高い周波数部分(たとえば、7kHz〜16kHz、「ハイバンド」とも呼ばれる)は、完全に符号化および伝送されないことがある。代わりに、受信機は、ハイバンドを予測するために信号モデリングを利用することがある。いくつかの実装形態では、ハイバンドに関連付けられたデータは、予測の助けとなるために受信機に供給され得る。そのようなデータは「サイド情報」と呼ばれることがあり、サブフレーム、利得情報、線スペクトル周波数(LSF、線スペクトル対(LSP)とも呼ばれる)などの間における発展を平滑化するための混合係数を含み得る。ローバンド信号がハイバンド信号に十分に相関するとき、信号モデルを使用するハイバンド予測は許容可能に正確であり得る。しかしながら、ノイズの存在下では、ローバンドとハイバンドの相関が弱いことがあり、信号モデルは、もはやハイバンドを正確に表すことができないことがある。この結果、受信機においてアーティファクト(たとえば、歪み語音)が生じる。
[0006]閉ループ分析を使用して混合係数を推定するシステムおよび方法が開示される。ハイバンド符号化は、ローバンド分析(たとえば、ローバンド線形予測(LP)分析)を使用して生成されたローバンド励振信号からハイバンド励振信号を生成することを含み得る。ハイバンド励振信号は、高調波的に拡張された信号を変調されたノイズ(たとえば、ホワイトノイズ)と混合することによって生成され得る。高調波的に拡張された信号と変調されたノイズとが混合される比は、信号再構成品質に影響を及ぼし得る。バックグラウンドノイズの存在下では、ローバンドとハイバンドとの相関が損なわれることがあり、また高調波的に拡張された信号はハイバンド合成に不適切となることがある。たとえば、ハイバンド励振信号は、ハイバンドから独立したフレーム内に、ローバンドの変動を原因とする可聴アーティファクトを導入し得る。説明される技術によれば、高調波的に拡張された信号と変調されたノイズとが混合される比は、ハイバンドを表す信号(たとえばハイバンド残余信号)に基づいて調節され得る。たとえば、本明細書で説明される技術は、高調波的に拡張された信号と変調されたノイズとが混合される比を決定するために使用される混合係数の閉ループ推定を可能にし得る。この閉ループ推定は、ハイバンド励振信号とハイバンド残余信号との差を低減し(たとえば最小化し)、それによって、ローバンドにおける変動をより受けにくく、ハイバンドをよりよく表すハイバンド励振信号を生成し得る。
[0007]特定の実施形態では、ある方法が、音声エンコーダにおいて、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することを含む。この方法はまた、オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成することを含む。この方法はさらに、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定することを含む。変調されたノイズは、高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく。
[0008]別の特定の実施形態では、ある装置が、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための線形予測分析フィルタを含む。その装置はまた、オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成するための非線形変換生成器を含む。この装置は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための混合係数計算器をさらに含む。変調されたノイズは、高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく。
[0009]別の特定の実施形態では、非一時的コンピュータ可読媒体が、プロセッサによって実行されたとき、プロセッサに、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することを行わせる命令を含む。この命令はまた、プロセッサに、オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成することを行わせるように実行可能である。この命令はまた、プロセッサに、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定することを行わせるように実行可能である。変調されたノイズは、高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく。
[0010]別の特定の実施形態では、ある装置が、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための手段を含む。この装置はまた、オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成するための手段を含む。この装置はさらに、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための手段を含む。変調されたノイズは、高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく。
[0011]別の特定の実施形態では、ある方法が、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を音声デコーダにて受信することを含む。ハイバンドサイド情報は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定された混合係数を含む。この方法はまた、ハイバンドサイド情報とローバンド励振信号とに基づいてハイバンド励振信号を生成することを含む。
[0012]別の特定の実施形態では、ある装置が、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信するように構成された音声デコーダを含む。ハイバンドサイド情報は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定された混合係数を含む。この音声デコーダは、ハイバンドサイド情報とローバンド励振信号とに基づいてハイバンド励振信号を生成するようにさらに構成される。
[0013]別の特定の実施形態では、ある方法が、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信するための手段を含む。ハイバンドサイド情報は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定された混合係数を含む。この装置はまた、ハイバンドサイド情報とローバンド励振信号とに基づいてハイバンド励振信号を生成するための手段を含む。
[0014]別の特定の実施形態では、非一時的コンピュータ可読媒体が、プロセッサによって実行されたとき、プロセッサに、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信することを行わせる命令を含む。ハイバンドサイド情報は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定された混合係数を含む。この命令はまた、プロセッサに、ハイバンドサイド情報とローバンド励振信号とに基づいてハイバンド励振信号を生成することを行わせるように実行可能である。
[0015]開示される実施形態の少なくとも1つによってもたらされる特定の利点には、ハイバンドの特性に基づいてハイバンド合成の間に使用される混合係数を動的に調節する能力が含まれる。たとえば、混合係数は、ハイバンド合成の間に使用されるハイバンド残余信号とハイバンド励振信号との間の誤差を低減するように、閉ループ分析を使用して決定され得る。本開示の他の態様、利点、および特徴は、「図面の簡単な説明」と、「発明を実施するための形態」と、「特許請求の範囲」とを含めて本願全体を再検討した後に明白になる。
[0016]混合係数を推定するように動作可能であるシステムの特定の実施形態を示すための図。 [0017]ハイバンド励振信号を生成するために混合係数を推定するように動作可能であるシステムの特定の実施形態を示すための図。 [0018]ハイバンド励振信号を生成するために閉ループ分析を使用して混合係数を推定するように動作可能であるシステムの特定の実施形態を示すための図。 [0019]混合係数を使用してオーディオ信号を再生するように動作可能であるシステムの特定の実施形態を示すための図。 [0020]混合係数を使用してハイバンド信号を再生するための方法の特定の実施形態を示すためのフローチャート。 [0021]図1〜図5のシステムおよび方法による信号処理動作を実施するように動作可能なワイヤレスデバイスのブロック図。
[0022]図1を参照すると、(たとえば閉ループ分析を使用して)混合係数を推定するように動作可能であるシステムの特定の実施形態が示されており、全体的に100として示されている。特定の一実施形態では、システム100は、符号化システムまたは装置(たとえば、ワイヤレス電話またはコーダ/デコーダ(CODEC)内)に統合され得る。他の特定の実施形態では、システム100は、セットトップボックス、音楽プレーヤ、映像プレーヤ、娯楽装置、ナビゲーションデバイス、通信デバイス、PDA、固定ロケーションデータユニット、またはコンピュータに統合され得る。
[0023]以下の説明では、図1のシステム100によって実施される様々な機能は、ある特定の構成要素またはモジュールによって実施されると説明されることに留意されたい。しかしながら、構成要素およびモジュールのこの分割は、説明のためにすぎない。代替実施形態では、その代わり、特定のコンポーネントまたはモジュールによって実施される機能が、複数のコンポーネントまたはモジュールに分割されてもよい。その上、代替実施形態では、図1の2つ以上の構成要素またはモジュールが、単一の構成要素またはモジュールに統合されてもよい。図1に示される各構成要素またはモジュールは、ハードウェア(たとえば、フィールドプログラマブルゲートアレイ(FPGA)デバイス、特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、コントローラなど)を使用して実施されてもよいし、ソフトウェア(たとえば、プロセッサによって実行可能な命令)を使用して実施されてもよいし、これらの任意の組合せを使用して実施されてもよい。
[0024]システム100は、入力オーディオ信号102を受信するように構成された分析フィルタバンク110を含む。たとえば、入力オーディオ信号102は、マイクロフォンまたは他の入力デバイスによって供給され得る。特定の一実施形態では、入力オーディオ信号102は、発話を含むことができる。入力オーディオ信号102は、約50Hz〜約16kHzの周波数範囲内のデータを含むSWB信号であってよい。分析フィルタバンク110は、周波数に基づいて入力オーディオ信号102をフィルタ処理して複数の部分にし得る。たとえば、分析フィルタバンク110はローバンド信号122とハイバンド信号124とを生成し得る。ローバンド信号122およびハイバンド信号124は、等しい帯域幅を有しても等しくない帯域幅を有してもよく、また重複しても重複しなくてもよい。代替実施形態では、分析フィルタバンク110は3つ以上の出力を生成し得る。
[0025]図1の例では、ローバンド信号122とハイバンド信号124は、重複しない周波数帯域を占有する。たとえば、ローバンド信号122とハイバンド信号124は、50Hz〜7kHzと7kHz〜16kHzとの重複しない周波数帯域を占有し得る。代替実施形態では、ローバンド信号122およびハイバンド信号124は、それぞれ50Hz〜8kHzおよび8kHz〜16kHzの重複しない周波数帯域を占有し得る。別の代替実施形態では、ローバンド信号122とハイバンド信号124が重複し(たとえば、50Hz〜8kHzおよび7kHz〜16kHz)、これによって、分析フィルタバンク110のローパスフィルタおよびハイパスフィルタがスムーズなロールオフを有することを可能にし得、これによって、設計を単純化し、ハイパスフィルタおよびローパスフィルタのコストを低減し得る。ローバンド信号122とハイバンド信号124とを重複させることは、受信機におけるローバンド信号とハイバンド信号との滑らかな混合をも可能にし得、これは、より少数の可聴アーティファクトをもたらし得る。
[0026]図1の例はSWB信号の処理を示しているが、これは説明のためのものにすぎないことに留意されたい。代替実施形態では、入力オーディオ信号102は、約50Hz〜約8kHzの周波数範囲を有するWB信号であり得る。そのような実施形態では、ローバンド信号122は、約50Hz〜約6.4kHzの周波数範囲に対応し得、ハイバンド信号124は、約6.4kHz〜約8kHzの周波数範囲に対応し得る。
[0027]システム100は、ローバンド信号122を受信するように構成されたローバンド分析モジュール130を含み得る。特定の実施形態では、ローバンド分析モジュール130は、符号励振線形予測(CELP)エンコーダの一実施形態を表し得る。ローバンド分析モジュール130は、LP分析およびコーディングモジュール132と、線形予測係数(LPC)−LSP変換モジュール134と、量子化器136とを含み得る。LSPはまたLSFと呼ばれることもあり、2つの用語(LSPおよびLSF)が本明細書で互換的に使用され得る。LP分析およびコーディングモジュール132は、ローバンド信号122のスペクトルエンベロープをLPCのセットとして符号化し得る。LPCは、オーディオの各フレーム(たとえば、16kHzのサンプリングレートにおける320個のサンプルに対応する、オーディオの20ミリ秒(ms))、オーディオの各サブフレーム(たとえば、オーディオの5ms)、またはそれらの任意の組合せについて、生成され得る。各フレームまたはサブフレームに対して生成されるLPCの数は、実施されるLP分析の「次数」によって決定され得る。特定の実施形態では、LP分析およびコーディングモジュール132は、10次LP分析に対応する11個のLPCのセットを生成し得る。
[0028]LPC−LSP変換モジュール134は、LP分析およびコーディングモジュール132によって生成されたLPCのセットを(たとえば1対1変換を使用して)LSPの対応するセットに変換し得る。あるいは、LPCのセットは、パーコール係数、ログ面積比値、イミタンススペクトル対(ISP)、またはイミタンススペクトル周波数(ISF)の対応するセットに一対一に変換され得る。LPCのセットとLSPのセットとの間の変換は、誤差なしに可逆であり得る。
[0029]量子化器136は、変換モジュール134によって生成されたLSPのセットを量子化し得る。たとえば、量子化器136は、複数のエントリ(たとえば、ベクトル)を含む複数のコードブックを含むかまたはそれらに結合され得る。LSPのセットを量子化するために、量子化器136は、LSPのセット「に最も近い」(たとえば、最小2乗または平均2乗誤差などの歪み尺度に基づいて)コードブックの項目を特定し得る。量子化器136は、コードブック内の特定された項目の場所に対応するインデックス値または一連のインデックス値を出力し得る。したがって、量子化器136の出力は、ローバンドビットストリーム142に含まれるローバンドフィルタパラメータを表し得る。
[0030]ローバンド分析モジュール130はまた、ローバンド励振信号144を生成し得る。たとえば、ローバンド励振信号144は、ローバンド分析モジュール130によって実施されるLPプロセス中に生成されるLP残差信号を量子化することによって生成される符号化された信号であってよい。LP残差信号は、予測誤差を表し得る。
[0031]システム100は、分析フィルタバンク110からのハイバンド信号124とローバンド分析モジュール130からのローバンド励振信号144とを受け取るように構成されたハイバンド分析モジュール150をさらに含み得る。ハイバンド分析モジュール150は、ハイバンド信号124およびローバンド励振信号144に基づいてハイバンドサイド情報172を生成し得る。たとえば、ハイバンドサイド情報172は、本明細書でさらに説明するように、ハイバンドLSPと、利得情報と、混合係数(α)とを含み得る。
[0032]ハイバンド分析モジュール150は、ハイバンド励振生成器160を含み得る。ハイバンド励振生成器160は、ローバンド励振信号144のスペクトルをハイバンド周波数範囲(たとえば、7kHz〜16kHz)へと拡張することによって、ハイバンド励振信号161を生成し得る。説明のために、ハイバンド励振生成器160は、変換をローバンド励振信号144に適用し(たとえば、絶対値または平方演算などの非線形変換)得、ハイバンド励振信号161を生成するために、高調波的に拡張された信号をノイズ信号(たとえば、ローバンド信号122のゆっくり変化する時間特性を模倣するローバンド励振信号144に対応するエンベロープに従って変調されたホワイトノイズ)と混合し得る。たとえば、混合は、以下の式に従って実施され得る。
Figure 0006469664
[0033]高調波的に拡張された信号と変調されたノイズとが混合される比は、受信機におけるハイバンド再構成品質に影響を及ぼし得る。有声音声信号の場合、混合は、高調波的に拡張されたものの方へ偏らされ得る(たとえば、混合係数αは0.5〜1.0の範囲にあり得る)。無声信号の場合、混合は、変調されたノイズの方へ偏らされ得る(たとえば、混合係数αは0.0〜0.5の範囲にあり得る)。
[0034]状況によっては、高調波的に拡張された信号は、ハイバンド信号124とノイズの多いローバンド信号122との相関が不十分であることにより、ハイバンド合成において使用するのに不適切となり得る。たとえば、ローバンド信号122は(したがって高調波的に拡張された信号は)、ハイバンド信号124においては模倣され得ない高頻度の変動を含み得る。一般に、混合係数αは、有声音に関連付けられる特定のフレームの強度と無声音に関連付けられる特定のフレームの強度とを模倣するローバンド有声化パラメータに基づいて決定され得る。しかしながら、ノイズの存在下で、そのような様式で混合係数αを決定することによって、サブフレームごとに大きい変動が生じ得る。たとえば、ノイズにより、4つの連続するサブフレームに対する混合パラメータαは0.9、0.25、0.8、および0.15となり、結果として、騒音の多い(buzzy)アーティファクトまたは変調アーティファクトが生じ得る。その上、大量の量子化歪みが存在し得る。
[0035]このようにして、ハイバンド励振生成器160は、図2〜図3に関して説明したように、混合係数αを推定するための混合係数計算器162を含み得る。たとえば、混合係数計算器162は、ハイバンド信号124の特性に基づいて混合係数(α)を生成し得る。たとえば、混合係数(α)を推定するために、ハイバンド信号124の残余が使用され得る。特定の実施形態では、混合係数計算器162は、ハイバンド信号124の残余とハイバンド励振信号161との差の平均2乗誤差を低減する混合係数(α)を生成し得る。ハイバンド信号124の残余は、LPCのセットを生成するためにハイバンド信号124に対して線形予測を実施することによって(たとえばハイバンド信号124のスペクトルエンベロープを符号化することによって)生成され得る。たとえば、ハイバンド分析モジュール150はまた、LP分析およびコーディングモジュール152と、LPC−LSP変換モジュール154と、量子化器156とを含み得る。LP分析およびコーディングモジュール152はLPCのセットを生成し得る。LPCのセットは、変換モジュール154によってLSPに変換され、コードブック163に基づいて量子化器156によって量子化され得る。
[0036]ハイバンド励振信号161は、ハイバンドサイド情報172に含まれる1つまたは複数のハイバンド利得パラメータを決定するために使用され得る。LP分析およびコーディングモジュール152、変換モジュール154、および量子化器156の各々は、ローバンド分析モジュール130の対応する構成要素に関して上記で説明したように機能し得るが、(たとえば、より少数の、各係数に対するビット、LSPなどを使用して)比較的低解像度で機能し得る。LP分析およびコーディングモジュール152は、変換モジュール154によってLSPに変換されコードブック163に基づいて量子化器156によって量子化されるLPCのセットを生成し得る。たとえば、LP分析およびコーディングモジュール152、変換モジュール154、および量子化器156は、ハイバンドサイド情報172に含まれるハイバンドフィルタ情報(たとえば、ハイバンドLSP)を決定するためにハイバンド信号124を使用し得る。特定の実施形態では、ハイバンドサイド情報172は、ハイバンドLSP、ハイバンド利得パラメータ、および混合係数(α)を含み得る。
[0037]ローバンドビットストリーム142およびハイバンドサイド情報172は、出力ビットストリーム192を生成するためにマルチプレクサ(MUX)180によって多重化され得る。出力ビットストリーム192は、入力オーディオ信号102に対応する符号化されたオーディオ信号を表し得る。たとえば、出力ビットストリーム192は(たとえば、ワイヤード、ワイヤレス、または光チャネル上で)送信され、および/または記憶され得る。受信機において、オーディオ信号(たとえば、スピーカーまたは他の出力デバイスに与えられる入力オーディオ信号102の再構成されたバージョン)を生成するために、逆方向演算が、デマルチプレクサ(DEMUX)、ローバンドデコーダ、ハイバンドデコーダ、およびフィルタバンクによって実施され得る。ローバンドビットストリーム142を表すために使用されるビット数は、ハイバンドサイド情報172を表すために使用されるビット数よりも実質的に大きいことがある。したがって、出力ビットストリーム192中のビットの大部分は、ローバンドデータを表し得る。ハイバンドサイド情報172は、信号モデルに従ってローバンドデータからハイバンド励振信号を再生するために受信機で使用され得る。たとえば、この信号モデルは、ローバンドデータ(たとえば、ローバンド信号122)とハイバンドデータ(たとえば、ハイバンド信号124)の関係または相関関係の予測されるセットを表し得る。したがって、異なる種類のオーディオデータ(たとえば、発話、音楽など)に異なる信号モデルが使用されてよく、使用中の特定の信号モデルは、符号化されたオーディオデータの通信の前に、送信機および受信機によって取り決められてよい(または業界標準によって定義されてよい)。その信号モデルを使用して、送信機におけるハイバンド分析モジュール150は、受信機における対応するハイバンド分析モジュールが、出力ビットストリーム192からハイバンド信号124を再構成するためにその信号モデルを使用することが可能であるように、ハイバンドサイド情報172を生成することが可能であり得る。
[0038]たとえば、量子化器156は、変換モジュール154によって供給されるLSPなどの、スペクトル周波数値のセットを量子化するように構成され得る。他の実施形態では、量子化器156は、LSFまたはLSPに加えて、またはその代わりに、1つまたは複数の他のタイプのスペクトル周波数値のセットを受け取って量子化し得る。たとえば、量子化器156は、LP分析およびコーディングモジュール152によって生成されたLPCのセットを受け取って量子化し得る。他の例としては、量子化器156において受け取られ量子化され得る、パーコール係数、ログ面積比値、およびISFのセットがある。量子化器156は、入力ベクトル(たとえば、ベクトル形式のスペクトル周波数値のセット)をコードブック163などの表またはコードブック中の対応するエントリへのインデックスとして符号化するベクトル量子化器を含み得る。別の例として、量子化器156は1つまたは複数のパラメータを決定するように構成されてよく、疎な(sparse)コードブック実施形態などでは、入力ベクトルは、ストレージから取り出されるのではなく、これらのパラメータからデコーダで動的に生成され得る。説明のために、疎なコードブックの例は、3GPP(登録商標)2(第3世代パートナーシップ2)EVRC(Enhanced Variable Rate Codec)などのCELPおよびコーデックなどのコーディング方式において適用され得る。別の実施形態では、ハイバンド分析モジュール150は、量子化器156を含むことができ、(たとえば、フィルタパラメータのセットに従って)合成信号を生成するためにいくつかのコードブックベクトルを使用し、知覚的に加重された領域などにおいてハイバンド信号124に最も良く適合する合成信号に関連付けられたコードブックベクトルのうち1つを選択するように構成され得る。
[0039]システム100は、時間的および利得パラメータの過大評価が原因で起こり得るアーティファクトを低減し得る。たとえば、混合係数計算器162は、ハイバンド予測の間のハイバンド推定の精度を改善するために閉ループ分析を使用して混合係数(α)を決定し得る。ハイバンド推定の精度を改善することにより、増大したノイズがローバンドとハイバンドとの相関を低下させるシナリオにおいて、アーティファクトが低減され得る。ハイバンド分析モジュール150は、ハイバンドの特性(たとえばハイバンド残余信号)を使用してハイバンドを予測し、そのハイバンド残余信号をモデル化するハイバンド励振信号161を発生させるように混合係数(α)を推定し得る。ハイバンド分析モジュール150は、他のハイバンドサイド情報172とともに混合係数(α)を受信機に送信し得、それによって受信機は、逆の動作を実施して入力オーディオ信号102を再構成することが可能となり得る。
[0040]図2を参照すると、ハイバンド励振信号を生成するための混合係数を推定するように動作可能であるシステム200の特定の例示的な実施形態が示されている。システム200は、線形予測分析フィルタ204と、非線形変換生成器207と、混合係数計算器212と、混合器211とを含んでいる。システム200は、図1のハイバンド分析モジュール150を使用して実装され得る。特定の実施形態では、混合係数計算器212は、図1の混合係数計算器162に対応し得る。
[0041]合成されたハイバンド信号124は時間利得計算器204にも与えられ得る。線形予測分析フィルタ204は、ハイバンド信号124(たとえば入力オーディオ信号102のハイバンド部分)に基づいてハイバンド残余信号224を生成するように構成され得る。たとえば、線形予測分析フィルタ204は、ハイバンド信号124のスペクトルエンベロープを、ハイバンド信号124の将来のサンプルを予測するために使用されるLPCのセットとして符号化し得る。ハイバンド残余信号224は、ハイバンド励振信号161の誤差を予測するために使用され得る。ハイバンド残余信号224は、混合係数計算器212の第1の入力に供給され得る。
[0042]ローバンド励振信号144は、非線形変換生成器207に供給され得る。図1に関して説明したように、ローバンド励振信号144は、ローバンド分析モジュール130を使用してローバンド信号122(たとえば入力オーディオ信号102のローバンド部分)から生成され得る。非線形変換生成器207は、ローバンド励振信号144に基づいて、高調波的に拡張された信号208を生成するように構成され得る。たとえば、非線形変換生成器207は、ローバンド励振信号144のフレームに対して絶対値演算または平方演算を実施して、高調波的に拡張された信号208を生成し得る。
[0043]説明のために、非線形変換生成器207は、ローバンド励振信号144(たとえば約0kHz〜8kHzに及ぶ8kHz信号)をアップサンプリングして、約0kHz〜16kHzに及ぶ16kHz信号(たとえばローバンド励振信号144の約2倍のバンド幅を有する信号)を生成し得る。16kHz信号のローバンド部分(たとえば約0kHz〜8kHz)が、ローバンド励振信号144と実質的に同様の高調波を有してもよく、また16kHz信号のハイバンド部分(たとえば約8kHz〜16kHz)が、実質的に高調波を持たなくてもよい。非線形変換生成器204は、16kHz信号のローバンド部分における「優勢な」高調波を16kHz信号のハイバンド部分に拡張して、高調波的に拡張された信号208を生成し得る。このようにして、高調波的に拡張された信号208は、非線形演算(たとえば平方演算および/または絶対値演算)を使用してハイバンドへと拡張する、ローバンド励振信号144の高調波的に拡張されたバージョンとなり得る。高調波的に拡張された信号208は、エンベロープトラッカー202の入力へ、混合係数計算器212の第2の入力と、第1の結合器254の第1の入力とに供給され得る。
[0044]エンベロープトラッカー202は、高調波的に拡張された信号208を受信するように、また高調波的に拡張された信号208に対応するローバンド時間領域エンベロープ203を計算するように構成され得る。たとえば、エンベロープトラッカー202は、高調波的に拡張された信号208のフレームの各サンプルの平方を計算して2乗値のシーケンスを発生させるように構成され得る。エンベロープトラッカー202は、第1次無限インパルス応答(IIR)低域フィルタを平方値のシーケンスに適用することなどによって、2乗値のシーケンスに対して平滑化演算を実施するように構成され得る。エンベロープトラッカー202は、平滑化されたシーケンスの各サンプルに平方根機能を適用してローバンド時間領域エンベロープ203を発生させるように構成され得る。ローバンド時間領域エンベロープ203は、ノイズ結合器240の第1の入力に供給され得る。
[0045]ノイズ結合器240は、変調されたノイズ220を発生させるために、ローバンド時間領域エンベロープ203をホワイトノイズ生成器(図示せず)によって生成されたホワイトノイズ205と結合させるように構成され得る。たとえば、ノイズ結合器240は、ローバンド時間領域エンベロープ203に従ってホワイトノイズ205を振幅変調するように構成され得る。特定の実施形態では、ノイズ結合器240は、変調されたノイズ信号220を発生させるために、ホワイトノイズ205をローバンド時間領域エンベロープ203に従ってスケーリングするように構成された乗算器として実装され得る。変調されたノイズ信号220は、混合計算器212の第3の入力と、第2の結合器256の第1の入力とに供給され得る。
[0046]混合係数計算器212は、ハイバンド残余信号224と、高調波的に拡張された信号208と、変調されたノイズ信号220とに基づいて混合係数(α)を決定するように構成され得る。混合係数計算器212は混合係数(α)を決定し得る。たとえば、混合係数計算器212は、ハイバンド残余信号224とハイバンド励振信号161との差の平均2乗誤差(E)に基づいて混合係数(α)を決定し得る。ハイバンド励振信号161は、以下の式に従って表され得る。
Figure 0006469664
上式で、
Figure 0006469664
はハイバンド励振信号161に対応し、αは混合係数に対応し、
Figure 0006469664
は高調波的に拡張された信号208に対応し、
Figure 0006469664
は変調されたノイズ信号220に対応する。ハイバンド残余信号224はRHBと表され得る。
[0047]したがって、誤差(e)は、ハイバンド残余信号224とハイバンド励振信号161との差に対応し得、以下の式に従って表され得る。
Figure 0006469664
式1で記述されたハイバンド励振信号161に対する表現を式2に代入することにより、誤差(e)はハイバンド残余信号224とハイバンド励振信号161との差として表現され得、以下の式に従って表現され得る。
Figure 0006469664
したがって、ハイバンド残余信号224とハイバンド励振信号161との差の平均2乗誤差(E)は、以下の式に従って表現され得る。
Figure 0006469664
[0048]ハイバンド励振信号161は、平均2乗誤差(E)を低減する(たとえば平均2乗誤差(E)を0に設定する)ことによって、ハイバンド残余信号224にほぼ等しくされ得る。式4において平均2乗誤差(E)を最小化することにより、混合係数(α)は以下の式に従って表現され得る。
Figure 0006469664
特定の実施形態では、ハイバンド残余信号224および高調波的に拡張された信号208のエネルギーは、式5を使用して混合係数(α)を計算する前に正規化され得る。混合係数(α)は、フレーム(またはサブフレーム)ごとに推定され、図1に関して説明するように、他のハイバンドサイド情報172(たとえばハイバンドLSPならびにハイバンド利得パラメータ)とともに出力ビットストリーム192で受信機に送信され得る。
[0049]混合計数計算器212は、推定された混合計数(α)を第1の結合器254の第2の入力と、減算器252の入力とに供給し得る。減算器252は、1から混合係数(α)を減算し、この差(1−α)を第2の結合器256の第2の入力へ供給し得る。第1の結合器254は、第1のスケーリングされた信号を生成するための混合係数(α)に従って、高調波的に拡張された信号208をスケーリングするように構成された乗算器として実装され得る。第2の結合器256は、第2のスケーリングされた信号を生成するための係数(1−α)に基づいて、変調された信号220をスケーリングするように構成された乗算器として実装され得る。たとえば、第2の結合器256は、減算器252で生成された差(1−α)に基づいて、変調されたノイズ信号220をスケーリングし得る。第1のスケーリングされた信号および第2のスケーリングされた信号は、混合器211に供給され得る。
[0050]混合器211は、混合係数(α)と、高調波的に拡張された信号208と、変調されたノイズ信号220とに基づいて、ハイバンド励振信号161を生成し得る。たとえば、混合器211は、第1のスケーリングされた信号と第2のスケーリングされた信号とを結合して(たとえば加算して)、ハイバンド励振信号161を生成し得る。
[0051]特定の実施形態では、混合係数計算器212は、混合係数(α)をオーディオ信号の各フレームに対する複数の混合係数(α)として生成するように構成され得る。たとえば、4つの混合係数α1、α2、α3、α4はオーディオ信号のフレームに対して生成されてよく、各混合係数(α)は、フレームのそれぞれのサブフレームに対応してよい。
[0052]図2のシステム200は、ハイバンド予測の間のハイバンド推定の精度を改善するために混合係数(α)を推定し得る。たとえば、混合係数計算器212は、ハイバンド残余信号224とほぼ同等であるハイバンド励振信号161を発生させる混合係数(α)を推定し得る。したがって、増大したノイズがローバンドとハイバンドとの相関を低減させるシナリオにおいて、システム200は、ハイバンドの特性(たとえばハイバンド残余信号224)を使用してハイバンドを予測し得る。他のハイバンドサイド情報172とともに混合係数(α)を受信機に送信することにより、受信機は、逆の動作を実施して入力オーディオ信号102を再構成することが可能となり得る。
[0053]図3を参照すると、ハイバンド励振信号を生成するために閉ループ分析を使用して混合係数(α)を推定するように動作可能であるシステム300の、別の特定の例示的な実施形態が示されている。システム300は、エンベロープトラッカー202と、線形予測分析フィルタ204と、非線形変換生成器207と、ノイズ結合器240とを含む。
[0054]図3におけるノイズ結合器240の出力は、変調されたノイズ信号220を生成するために、ベータ乗算器304を使用してノイズスケーリング係数(β)によってスケーリングされ得る。ベータ乗算器304は、変調されたホワイトノイズとローバンド励振の高調波拡張との間の電力正規化因子である。変調されたノイズ信号220および高調波的に拡張された信号208は、ハイバンド励振生成器302に供給され得る。たとえば、高調波的に拡張された信号208は第1の結合器254に供給され得、変調されたノイズ信号220は第2の結合器220に供給され得る。
[0055]システム300は、図2に関して説明したように、ハイバンド残余信号224とハイバンド励振信号161との差の平均2乗誤差(E)を低減する(たとえば最小化する)混合係数(α)を発見するために、混合係数(α)の値を選択的に増分および/または減分し得る。たとえば、線形予測分析フィルタ204は、ハイバンド残余信号224を誤差検出回路306の第1の入力に供給し得る。ハイバンド励振生成器302は、ハイバンド励振信号161を誤差検出回路306の第2の入力に供給し得る。誤差検出回路306は、式3に従ってハイバンド残余信号224とハイバンド励振信号161との差を決定し得る。この差は誤差信号368によって表され得る。誤差信号368は、誤差最小化計算器308(たとえば誤差制御器)の入力に供給され得る。
[0056]誤差最小化計算器308は、混合係数(α)の特定の値に対して、式4に従って平均2乗誤差(E)を計算し得る。誤差最小化計算器308は、より小さい平均2乗誤差(E)を発生させるために、信号370をハイバンド励振生成器302に送って混合係数(α)の特定の値を選択的に増分または減分し得る。
[0057]動作の間、誤差最小化計算器308は、第1の混合係数(α1)に基づいて第1の平均2乗誤差(E1)を計算し得る。特定の実施形態では、第1の平均2乗誤差(E1)を計算すると、誤差最小化計算器308は、第2の混合係数(α2)を生成するために、信号370をハイバンド励振生成器302に送って第1の混合係数(α1)を特定の量だけ増分し得る。誤差最小化計算器308は、第2の混合係数(α2)に基づいて第2の平均2乗誤差(E2)を計算し得、また、第3の混合係数(α3)を生成するために、信号370をハイバンド励振生成器302に送って第2の混合係数(α2)を特定の量だけ増分し得る。この処理は、平均2乗誤差(E)の複数の値を生成するために反復され得る。誤差最小化計算器308は、平均2乗誤差(E)のどの値が最小値であるかを決定し得、混合係数(α)は、平均2乗誤差(E)のより低い値をもたらす特定の値に対応し得る。
[0058]別の特定の実施形態では、第1の平均2乗誤差(E1)を計算すると、誤差最小化計算器308は、第2の混合係数(α2)を生成するために、信号370をハイバンド励振生成器302に送って第1の混合係数(α1)を特定の量だけ減分し得る。誤差最小化計算器308は、第2の混合係数(α2)に基づいて第2の平均2乗誤差(E2)を計算し得、また、第3の混合係数(α3)を生成するために、信号370をハイバンド励振生成器302に送って第2の混合係数(α2)を特定の量だけ減分し得る。この処理は、平均2乗誤差(E)の複数の値を生成するために反復され得る。誤差最小化計算器308は、平均2乗誤差(E)のどの値が最小値であるかを決定し得、混合係数(α)は、平均2乗誤差(E)のより低い値をもたらす特定の値に対応し得る。
[0059]特定の実施形態では、複数の混合係数(α)が、オーディオ信号の各フレームに対して使用され得る。たとえば、4つの混合係数α1、α2、α3、α4はオーディオ信号のフレームに対して生成されてよく、各混合係数(α)は、フレームのそれぞれのサブフレームに対応してよい。混合係数(α)の値は、単一フレーム内でまたは複数のフレームにまたがって混合係数(α)を適応的に平滑化して出力混合係数(α)の変動の出現および/または程度を低減するように増分および/または減分され得る。説明のために、混合係数(α1)の第1の値は特定のフレームの第1のサブフレームに対応し得、混合係数(α2)の第2の値は特定のフレームの第2のサブフレームに対応し得る。混合係数(α3)の第3の値は、混合係数(α1)の第1の値と混合係数(α2)の第2の値とに少なくとも部分的に基づき得る。
[0060]図3のシステム300は、ハイバンド予測の間のハイバンド推定の精度を改善するために閉ループ分析を使用して混合係数(α)を決定し得る。たとえば、誤差検出回路306および誤差最小化計算器308は、小さい平均2乗誤差(E)を発生させる(たとえば、ハイバンド残余信号224を厳密に模倣するハイバンド励振信号161を発生させる)混合係数(α)の値を決定し得る。したがって、増大したノイズがローバンドとハイバンドとの相関を低減させるシナリオにおいて、システム300は、ハイバンドの特性(たとえばハイバンド残余信号224)を使用してハイバンドを予測し得る。他のハイバンドサイド情報172とともに混合係数(α)を受信機に送信することにより、受信機は、逆の動作を実施して入力オーディオ信号102を再構成することが可能となり得る。
[0061]図4を参照すると、混合係数(α)を使用してオーディオ信号を再生するように動作可能であるシステム400の特定の例示的な実施形態が示されている。システム400は、非線形変換生成器407と、エンベロープトラッカー402と、ノイズ結合器440と、第1の結合器454と、第2の結合器456と、減算器452と、混合器411とを含む。特定の実施形態では、システム400は、復号システムまたは装置(たとえば、ワイヤレス電話またはCODEC内)に統合され得る。他の特定の実施形態では、システム400は、セットトップボックス、音楽プレーヤ、映像プレーヤ、娯楽装置、ナビゲーションデバイス、通信デバイス、PDA、固定ロケーションデータユニット、またはコンピュータに統合され得る。
[0062]非線形変換生成器407は、図1のローバンド励振信号144を受信するように構成され得る。たとえば、図1のローバンドビットストリーム142はローバンド励振信号144を含み得、またシステム400にビットストリーム192として送信され得る。非線形変換生成器407は、ローバンド励振信号144に基づいて、第2の高調波的に拡張された信号408を生成するように構成され得る。たとえば、非線形変換生成器407は、ローバンド励振信号144のフレームに対して絶対値演算または平方演算を実施して、第2の高調波的に拡張された信号408を生成し得る。特定の実施形態では、非線形変換生成器407は、図2の非線形変換生成器207と実質的に同様の方法で動作し得る。第2の高調波的に拡張された信号408は、エンベロープトラッカー402と第1の結合器454とに供給され得る。
[0063]エンベロープトラッカー402は、第2の高調波的に拡張された信号408を受信するように、また第2の高調波的に拡張された信号408に対応する第2のローバンド時間領域エンベロープ403を計算するように構成され得る。たとえば、エンベロープトラッカー402は、第2の高調波的に拡張された信号408のフレームの各サンプルの平方を計算して2乗値のシーケンスを発生させるように構成され得る。エンベロープトラッカー402は、第1次IIR低域フィルタを平方値のシーケンスに適用することなどによって、2乗値のシーケンスに対して平滑化演算を実施するように構成され得る。エンベロープトラッカー402は、平滑化されたシーケンスの各サンプルに平方根機能を適用して第2のローバンド時間領域エンベロープ403を発生させるように構成され得る。特定の実施形態では、エンベロープトラッカー402は、図2のエンベロープトラッカー202と実質的に同様の方法で動作し得る。第2のローバンド時間領域エンベロープ403は、ノイズ結合器440に供給され得る。
[0064]ノイズ結合器440は、第2の変調されたノイズ信号420を発生させるために、第2のローバンド時間領域エンベロープ403をホワイトノイズ生成器(図示せず)によって生成されたホワイトノイズ405と結合させるように構成され得る。たとえば、ノイズ結合器440は、第2のローバンド時間領域エンベロープ403に従ってホワイトノイズ405を振幅変調するように構成され得る。特定の実施形態では、ノイズ結合器440は、第2の変調されたノイズ信号420を発生させるために、ホワイトノイズ405の出力を第2のローバンド時間領域エンベロープ403に従ってスケーリングするように構成された乗算器として実装され得る。特定の実施形態では、ノイズ結合器440は、図2のノイズ結合器240と実質的に同様の方法で動作し得る。第2の変調されたノイズ信号420は、送信第2の結合器456に供給され得る。
[0065]図2の混合係数(α)は、第1の結合器454と減算器452とに供給され得る。たとえば、図1のハイバンドサイド情報172は混合係数(α)を含み得、またシステム400に送信され得る。減算器452は、1から混合係数(α)を減算し、この差(1−α)を第2の結合器256に供給し得る。第1の結合器454は、第1のスケーリングされた信号を生成するための混合係数(α)に従って、第2の高調波的に拡張された信号408をスケーリングするように構成された乗算器として実装され得る。第2の結合器454は、第2のスケーリングされた信号を生成するための係数(1−α)に基づいて、変調されたノイズ信号420をスケーリングするように構成された乗算器として実装され得る。たとえば、第2の結合器454は、減算器452で生成された差(1−α)に基づいて、変調されたノイズ信号420をスケーリングし得る。第1のスケーリングされた信号および第2のスケーリングされた信号は、混合器411に供給され得る。
[0066]混合器411は、混合係数(α)と、第2の高調波的に拡張された信号408と、第2の変調されたノイズ信号420とに基づいて、第2のハイバンド励振信号461を生成し得る。たとえば、混合器411は、第1のスケーリングされた信号と第2のスケーリングされた信号とを結合して(たとえば加算して)、第2のハイバンド励振信号461を生成し得る。
[0067]図4のシステム400は、第2のハイバンド励振信号461を使用して図1のハイバンド信号124を再生し得る。たとえば、システム400は、ハイバンドサイド情報172を介して混合係数(α)を受信することによって、図1〜図2のハイバンド励振信号161と実質的に同様である第2のハイバンド励振信号461を発生させ得る。第2のハイバンド励振信号461は、ハイバンド信号124と実質的に同様であるハイバンド信号を生成するために、線形予測係数合成操作を受け得る。
[0068]図5を参照すると、混合係数(α)を使用してハイバンド信号を再生するための方法500、510の特定の実施形態を例示するためのフローチャートが示されている。第1の方法500は図3のシステム100〜300によって実施され得る。第2の方法510は図4のシステム400によって実施され得る。
[0069]第1の方法500は、502においてオーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することを含み得る。たとえば、図2において、線形予測分析フィルタ204は、ハイバンド信号124(たとえば入力オーディオ信号120のハイバンド部分)に基づいてハイバンド残余信号224を生成し得る。特定の実施形態では、線形予測分析フィルタ204は、ハイバンド信号124のスペクトルエンベロープを、ハイバンド信号124の将来のサンプルを予測するために使用されるLPCのセットとして符号化し得る。ハイバンド残余信号224は、ハイバンド励振信号161の誤差を予測するために使用され得る。
[0070]504において、高調波的に拡張された信号が、少なくともオーディオ信号のローバンド部分に基づいて生成され得る。たとえば、図1のローバンド励振信号144は、ローバンド分析モジュール130を使用してローバンド信号122(たとえば入力オーディオ信号102のローバンド部分)から生成され得る。図2の非線形変換生成器207は、ローバンド励振信号144に対して絶対値演算または平方演算を実施して、高調波的に拡張された信号208を生成し得る。
[0071]506において、混合係数が、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズ信号とに基づいて決定され得る。たとえば、図2の混合係数計算器212は、ハイバンド残余信号224とハイバンド励振信号161との差の平均2乗誤差(E)に基づいて混合係数(α)を決定し得る。閉ループ分析を使用すると、ハイバンド励振信号161は、平均2乗誤差(E)を効果的に最小化する(たとえば平均2乗誤差(E)を0に設定する)ように、ハイバンド残余信号224にほぼ等しくなり得る。図2に関して説明したように、混合係数(α)は以下のように表現され得る。
Figure 0006469664
混合係数(α)は音声デコーダに送信され得る。たとえば、図1のハイバンドサイド情報172は混合係数(α)を含み得る。
[0072]512において、第2の方法510は、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を音声デコーダにて受信することを含み得る。たとえば、図4の非線形変換生成器407は、図1のローバンド励振信号144を受信し得る。たとえば、図1のローバンドビットストリーム142はローバンド励振信号144を含み得、またシステム400にビットストリーム192として送信され得る。第1の結合器454および減算器452は、ハイバンドサイド情報172を受信し得る。ハイバンドサイド情報172は、ハイバンド残余信号224と、高調波的に拡張された信号208と、変調されたノイズ信号220とに基づいて決定された混合係数(α)を含み得る。
[0073]514において、ハイバンド励振信号が、ハイバンドサイド情報とローバンド励振信号とに基づいて生成され得る。たとえば、図4の混合器411は、混合係数(α)と、第2の高調波的に拡張された信号408と、変調されたノイズ信号420とに基づいて、第2のハイバンド励振信号461を生成し得る。
[0074]図5の方法500、510は、ハイバンド予測の間にハイバンド推定の精度を改善するように(たとえば閉ループ分析を使用して)混合係数(α)を推定し得、また混合係数(α)を使用してハイバンド信号124を再構成し得る。たとえば、混合係数計算器212は、ハイバンド残余信号224とほぼ同等であるハイバンド励振信号161を発生させる混合係数(α)を推定し得る。したがって、増大したノイズがローバンドとハイバンドとの相関を低減させるシナリオにおいて、方法500は、ハイバンドの特性(たとえばハイバンド残余信号224)を使用してハイバンドを予測し得る。他のハイバンドサイド情報172とともに混合係数(α)を受信機に送信することにより、受信機は、逆の動作を実施して入力オーディオ信号102を再構成することが可能となり得る。たとえば、図1〜図2のハイバンド励振信号161と実質的に同様である第2のハイバンド励振信号461が発生され得る。第2のハイバンド励振信号461は、ハイバンド信号124と実質的に同様である合成されたハイバンド信号を生成するために、線形予測係数合成操作を受け得る。
[0075]特定の実施形態では、図5の方法500、510は、中央処理装置(CPU)、DSP、またはコントローラなどの処理ユニットのハードウェア(たとえば、FPGAデバイス、ASICなど)によって、ファームウェアによって、またはこれらの任意の組合せによって実施されてもよい。一例として、図5の方法500、510は、図6に関して説明したように、命令を実行するプロセッサによって実施され得る。
[0076]図6を参照すると、ワイヤレス通信デバイスの特定の例示的な実施形態のブロック図が示されており、全体的に600と称されている。デバイス600は、メモリ632に結合されたプロセッサ610(たとえば、中央処理装置(CPU))を含む。メモリ632は、図5の方法500、510などの本明細書で開示される方法およびプロセスを実施するためにプロセッサ610および/またはCODEC634によって実行可能な命令660を含み得る。
[0077]特定の実施形態では、CODEC634は、混合係数推定システム682と、推定された混合係数に従う復号システム684とを含み得る。特定の実施形態では、混合係数推定システム682は、図1の混合係数計算器162の1つもしくは複数の構成要素、図2のシステム200の1つもしくは複数の構成要素、および/または図3のシステム300の1つもしくは複数の構成要素を含む。たとえば、混合係数推定システム682は、図1〜図3のシステム100〜300および図5の方法500と関連付けられる符号化操作を実施し得る。特定の実施形態では、復号システム684は、図4のシステム400の1つまたは複数の構成要素を含み得る。たとえば、復号システム684は、図4のシステム400および図5の方法510と関連付けられる復号操作を実施し得る。混合係数推定システム682および/または復号システム684は、専用ハードウェア(たとえば、回路)を介して実施されても、1つまたは複数のタスクを実行するために命令を実行するプロセッサによって実施されても、これらの組合せによって実施されてもよい。
[0078]一例として、メモリ632またはCODEC634内のメモリ690は、ランダムアクセスメモリ(RAM)、磁気抵抗ランダムアクセスメモリ(MRAM)、スピントルクトランスファーMRAM(STT−MRAM)、フラッシュメモリ、読出し専用メモリ(ROM)、プログラマブル読出し専用メモリ(PROM)、消去可能なプログラマブル読出し専用メモリ(EPROM)、電気的に消去可能なプログラマブル読出し専用メモリ(EEPROM(登録商標))、レジスタ、ハードディスク、着脱可能ディスク、またはコンパクトディスク読出し専用メモリ(CD−ROM)などのメモリデバイスであってよい。メモリデバイスは、コンピュータ(たとえば、CODEC634内のプロセッサおよび/またはプロセッサ610)によって実行されるときにコンピュータに図5の方法500、510の一方の少なくとも一部分を実施させ得る命令(たとえば、命令660または命令695)を含み得る。一例として、メモリ632またはCODEC634内のメモリ690は、コンピュータ(たとえば、CODEC634内のプロセッサおよび/またはプロセッサ610)によって実行されるときにコンピュータに図5の方法500、510の一方の少なくとも一部分を実施させる命令(たとえば、それぞれ命令660または命令695)を含む非一時的コンピュータ可読媒体であってよい。
[0079]デバイス600はまた、CODEC634とプロセッサ610とに結合されたDSP696を含み得る。特定の実施形態では、DSP696は、混合係数推定システム697と、推定された混合係数に従う復号システム698とを含み得る。特定の実施形態では、混合係数推定システム697は、図1の混合係数計算器162の1つもしくは複数の構成要素、図2のシステム200の1つもしくは複数の構成要素、および/または図3のシステム300の1つもしくは複数の構成要素を含む。たとえば、混合係数推定システム697は、図1〜図3のシステム100〜300および図5の方法500と関連付けられる符号化操作を実施し得る。特定の実施形態では、復号システム698は、図4のシステム400の1つまたは複数の構成要素を含み得る。たとえば、復号システム698は、図4のシステム400および図5の方法510と関連付けられる復号操作を実施し得る。混合係数推定システム697および/または復号システム698は、専用ハードウェア(たとえば、回路)を介して実施されても、1つまたは複数のタスクを実行するために命令を実行するプロセッサによって実施されても、これらの組合せによって実施されてもよい。
[0080]図6はまた、プロセッサ610とディスプレイ628とに結合されたディスプレイコントローラ626を示している。CODEC634は、図示のように、プロセッサ610に結合され得る。スピーカー636およびマイクロフォン638はCODEC634に結合可能にされ得る。たとえば、マイクロフォン638は図1の入力オーディオ信号102を生成し得、CODEC634は、入力オーディオ信号102に基づいて、受信機への送信のための出力ビットストリーム192を生成し得る。別の例として、スピーカー636は、CODEC634によって再構成された信号を図1の出力ビットストリーム192から出力するために使用されてもよく、出力ビットストリーム192は送信機から受け取られる。図6はまた、ワイヤレスコントローラ640がプロセッサ610とワイヤレスアンテナ642とに結合され得ることを示している。
[0081]特定の一実施形態では、プロセッサ610、ディスプレイコントローラ626、メモリ632、CODEC634、およびワイヤレスコントローラ640は、システムインパッケージデバイスまたはシステムオンチップデバイス(たとえば、移動局モデム(MSM))622に含まれる。特定の一実施形態では、タッチスクリーンおよび/またはキーパッドなどの入力デバイス630、ならびに電源644は、システムオンチップデバイス622に結合される。さらに、特定の実施形態では、図6に示すように、ディスプレイ628、入力デバイス630、スピーカー636、マイクロフォン638、ワイヤレスアンテナ642、および電源644は、システムオンチップデバイス622の外部にある。しかしながら、ディスプレイ628、入力デバイス630、スピーカー636、マイクロフォン638、ワイヤレスアンテナ642、および電源644の各々は、インターフェースまたはコントローラなどのシステムオンチップデバイス622の構成要素に結合され得る。
[0082]説明した実施形態とともに、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための手段を含んだ第1の装置が開示される。たとえば、ハイバンド残余信号を生成するための手段は、図1の分析フィルタバンク110、図1のLP分析およびコーディングモジュール152、図2〜図3の線形予測分析フィルタ204、図6の混合係数推定システム682、図6のCODEC634、図6の混合係数推定システム697、図6のDSP696、ハイバンド残余信号を生成するように構成された、フィルタなどの1つもしくは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体にて命令を実行するプロセッサ)、またはそれらの任意の組合せを含み得る。
[0083]第1の装置はまた、オーディオ信号のローバンド部分に少なくとも部分的に基づいて高調波的に拡張された信号を生成するための手段を含み得る。たとえば、高調波的に拡張された信号を生成するための手段は、図1の分析フィルタバンク110、図1のローバンド分析フィルタ130もしくはその構成要素、図2〜図3の非線形変換生成器207、図6の混合係数推定システム682、図6の混合係数推定システム697、図6のDSP696、高調波的に拡張された信号を生成するように構成された1つもしくは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体にて命令を実行するプロセッサ)、またはそれらの任意の組合せを含み得る。
[0084]第1の装置はまた、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための手段を含む。たとえば、混合係数を決定するための手段は、図1のハイバンド励振生成器160、図1の混合係数計算器162、図2の混合係数計算器212、図3の誤差検出回路306,図3の誤差最小化計算器308、図3のハイバンド励振生成器302、図6の混合係数推定システム682、図6のCODEC634、図6の混合係数推定システム697、図6のDSP696、混合係数を決定するように構成された1つもしくは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体にて命令を実行するプロセッサ)、またはそれらの任意の組合せを含み得る。
[0085]説明した実施形態とともに、第2の装置は、ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信するための手段を含む。ハイバンドサイド情報は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定された混合係数を含む。たとえば、符号化された信号を受信するための手段は、図4の非線形変換生成器407、図4の第1の結合器454,図4の減算器452、図6のCODEC634、図6の復号システム684、図6の復号システム698、図6のDSP696、符号化された信号を受信するように構成された1つもしくは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体にて命令を実行するプロセッサ)、またはそれらの任意の組合せを含み得る。
[0086]第2の装置はまた、ハイバンドサイド情報とローバンド励振信号とに基づいてハイバンド励振信号を生成するための手段を含み得る。たとえば、ハイバンド励振信号を生成するための手段は、図4の非線形変換生成器407、図4のエンベロープトラッカー402、図4のノイズ結合器440、図4の第1の結合器454、図4の第2の結合器456、図4の減算器452、図4の混合器411、図6のCODEC634、図6の復号システム684、図6の復号システム698、図6のDSP696、ハイバンド励振信号を生成するように構成された1つもしくは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体にて命令を実行するプロセッサ)、またはそれらの任意の組合せを含み得る。
[0087]本明細書で開示される実施形態に関して説明された様々な例示的な論理ブロック、構成、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、ハードウェアプロセッサなどの処理デバイスによって実行されるコンピュータソフトウェア、または両方の組合せとして実施され得ることは、当業者にはさらに諒解されよう。様々な例示的な構成要素、ブロック、構成、モジュール、回路、およびステップは、上記で機能に関して一般的に説明されてきた。そのような機能をハードウェアとして実装するか、実行可能ソフトウェアとして実装するかは、特定の適用例および全体的なシステムに課される設計制約に依存する。当業者は、説明された機能を特定の適用例ごとに様々な方法で実現できるが、そのような実現の決定は、本開示の範囲からの逸脱を生じるものと解釈されるべきではない。
[0088]本明細書で開示される実施形態に関して説明された方法またはアルゴリズムのステップは、ハードウェア内で、プロセッサによって実行されるソフトウェアモジュール内で、またはこれら2つの組合せで直接実施され得る。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、磁気抵抗ランダムアクセスメモリ(MRAM)、スピントルクトランスファーMRAM(STT−MRAM)、フラッシュメモリ、読出し専用メモリ(ROM)、プログラマブル読出し専用メモリ(PROM)、消去可能なプログラマブル読出し専用メモリ(EPROM)、電気的に消去可能なプログラマブル読出し専用メモリ(EEPROM)、レジスタ、ハードディスク、着脱可能ディスク、またはコンパクトディスク読出し専用メモリ(CD−ROM)などのメモリデバイス内に存在してよい。例示的なメモリデバイスは、プロセッサがメモリデバイスから情報を読み取り、メモリデバイスに情報を書き込むことが可能であるように、プロセッサに結合される。代替として、メモリデバイスはプロセッサと一体であってよい。プロセッサおよび記憶媒体は、ASIC内に存在し得る。ASICは、コンピューティングデバイスまたはユーザ端末内に存在し得る。代替として、プロセッサおよび記憶媒体は、コンピューティングデバイスまたはユーザ端末中に個別構成要素として存在し得る。
[0089]開示されている実施形態を前記のように提示したのは、当業者が開示されている実施形態を製作または使用することができるようにするためである。これらの実施形態に対する様々な修正は、当業者には容易に明らかであり、本明細書で定義されている原理は、本開示の範囲から逸脱することなく、他の実施形態に適用され得る。したがって、本開示は、本明細書に示されている実施形態に限定されることを意図されておらず、以下の特許請求の範囲によって定義される原理および新規な特徴と一致する可能な最も広い範囲を与えられるべきである。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1]
音声エンコーダにおいて、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することと、
前記オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成することと、
前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定することと、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく、
を備える方法。
[C2]
前記混合係数は、閉ループ分析を使用して調節される、
C1に記載の方法。
[C3]
前記閉ループ分析を使用して前記混合係数を調節することは、
前記ハイバンド残余信号をハイバンド励振信号と比較することと、ここにおいて、前記ハイバンド励振信号は、前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに基づいて生成される、
前記比較に基づいて誤差信号を生成することと、
前記誤差信号に基づいて前記混合係数を調節することと、を備える、
C2に記載の方法。
[C4]
前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに少なくとも部分的に基づいてハイバンド励振信号を生成することをさらに備える、
C1に記載の方法。
[C5]
前記ハイバンド励振信号の時間特性が前記ハイバンド残余信号の時間特性と厳密に一致する、
C4に記載の方法。
[C6]
前記ハイバンド励振信号を生成することは、
第1のスケーリングされた信号を生成するために、前記混合係数に従って前記高調波的に拡張された信号をスケーリングすることと、
第2のスケーリングされた信号を生成するために、前記混合係数に基づいて前記変調されたノイズをスケーリングすることと、
前記第1のスケーリングされた信号と前記第2のスケーリングされた信号とを結合することとを備える、
C4に記載の方法。
[C7]
前記混合係数は、前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて調節される、C4に記載の方法。
[C8]
前記混合係数は、少なくとも、ローバンド有声化、ローバンドチルト、またはそれらの任意の組合せに基づいてさらに調節される、C7に記載の方法。
[C9]
第2の混合係数を生成するために、第1の混合係数を選択的に増分または減分することをさらに備え、
前記混合係数は、前記第1の混合係数に基づいた前記平均2乗誤差が前記第2の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第1の混合係数に対応し、
前記混合係数は、前記第2の混合係数に基づいた前記平均2乗誤差が前記第1の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第2の混合係数に対応する、
C7に記載の方法。
[C10]
前記ハイバンド残余信号を生成するために、前記オーディオ信号の前記ハイバンド部分に対して線形予測分析を実施することと、
ローバンド残余信号を生成するために、前記オーディオ信号の前記ローバンド部分に対して線形予測分析を実施することと、
ローバンド励振信号を生成するために前記ローバンド残余信号を量子化することと、
前記高調波的に拡張された信号を生成するために、前記ローバンド励振信号に対して非線形フィルタリング操作を実施することと、をさらに備える、
C1に記載の方法。
[C11]
前記混合係数を受信機にビットストリームの一部として送信することをさらに備える、
C1に記載の方法。
[C12]
オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための線形予測分析フィルタと、
前記オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成するための非線形変換生成器と、
前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための混合係数計算器と、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく、
を備える装置。
[C13]
前記混合係数は閉ループ分析を使用して調節される、
C12に記載の装置。
[C14]
誤差検出回路と、前記閉ループ分析を使用して前記混合係数を調節するための誤差最小化計算器とをさらに備え、
前記誤差検出回路は、前記ハイバンド残余信号をハイバンド励振信号と比較するように構成され、前記ハイバンド励振信号は、前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに基づいて生成され、
前記誤差最小化計算器は、
前記比較に基づいて誤差信号を生成し、
前記誤差信号に基づいて前記混合係数を調節するように構成される、
C13に記載の装置。
[C15]
前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに少なくとも部分的に基づいてハイバンド励振信号を生成するためのハイバンド励振生成器をさらに備える、
C14に記載の装置。
[C16]
前記ハイバンド励振信号の時間特性が前記ハイバンド残余信号の時間特性と厳密に一致する、
C15に記載の装置。
[C17]
前記ハイバンド励振生成器は、
第1のスケーリングされた信号を生成するために前記混合係数に従って前記高調波的に拡張された信号をスケーリングするための第1の乗算器と、
第2のスケーリングされた信号を生成するために前記混合係数に基づいて前記変調されたノイズをスケーリングするための第2の乗算器と、
前記第1のスケーリングされた信号と前記第2のスケーリングされた信号とを結合するための混合器とを備える、
C15に記載の装置。
[C18]
前記混合係数は、前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて調節される、
C15に記載の装置。
[C19]
前記混合係数は、少なくとも、ローバンド有声化、ローバンドチルト、またはそれらの任意の組合せに基づいてさらに調節される、
C18に記載の装置。
[C20]
第2の混合係数を生成するために第1の混合係数を選択的に増分または減分するように構成された誤差制御器をさらに備え、
前記混合係数は、前記第1の混合係数に基づいた前記平均2乗誤差が前記第2の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第1の混合係数に対応し、
前記混合係数は、前記第2の混合係数に基づいた前記平均2乗誤差が前記第1の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第2の混合係数に対応する、
C18に記載の装置。
[C21]
さらに、前記ハイバンド残余信号を生成するために、前記オーディオ信号の前記ハイバンド部分に対して第1の線形予測分析を実施するように構成された第1の線形予測分析フィルタと。
ローバンド残余信号を生成するために、前記オーディオ信号の前記ローバンド部分に対して第2の線形予測分析を実施するように構成された第2の線形予測分析フィルタと、
ローバンド励振信号を生成するために前記ローバンド残余信号を量子化するように構成された量子化器と、
前記高調波的に拡張された信号を生成するために、前記ローバンド励振信号に対して非線形フィルタリング操作を実施するための非線形変換生成器と、を備える、
C12に記載の装置。
[C22]
前記混合係数を受信機にビットストリームの一部として送信するための送信機をさらに備える、
C12に記載の装置。
[C23]
音声エンコーダにおいてプロセッサによって実行されたときに、前記プロセッサに、
オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することと、
前記オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成することと、
前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定することと、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく、
を行わせる命令を備える非一時的コンピュータ可読媒体。
[C24]
前記混合係数は閉ループ分析を使用して調節される、
C23に記載の非一時的コンピュータ可読媒体。
[C25]
前記閉ループ分析を使用して前記混合係数を調節することは、
前記ハイバンド残余信号をハイバンド励振信号と比較することと、ここにおいて、前記ハイバンド励振信号は、前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに基づいて生成される、
前記比較に基づいて誤差信号を生成することと、
前記誤差信号に基づいて前記混合係数を調節することと、を備える、
C24に記載の非一時的コンピュータ可読媒体。
[C26]
前記プロセッサによって実行されるとき、前記プロセッサに、前記混合係数と、前記高調波的に拡張された信号と、前記変調された信号とに少なくとも部分的に基づいて、ハイバンド励振信号を生成することを行わせる命令をさらに備える、
C23に記載の非一時的コンピュータ可読媒体。
[C27]
前記ハイバンド励振信号の時間特性が前記ハイバンド残余信号の時間特性と厳密に一致する、
C26に記載の非一時的コンピュータ可読媒体。
[C28]
オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための手段と、
前記オーディオ信号のローバンド部分に少なくとも部分的に基づいて、高調波的に拡張された信号を生成するための手段と、
前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための手段と、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づく、
を備える装置。
[C29]
前記混合係数は、閉ループ分析を使用して調節される、C28に記載の装置。
[C30]
前記閉ループ分析を使用して前記混合係数を調節することは、
前記ハイバンド残余信号をハイバンド励振信号と比較することと、ここにおいて、前記ハイバンド励振信号は、前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに基づいて生成される、
前記比較に基づいて誤差信号を生成することと、
前記誤差信号に基づいて前記混合係数を調節することと、を備える、
C29に記載の装置。
[C31]
前記混合係数と、前記高調波的に拡張された信号と、前記変調されたノイズとに少なくとも部分的に基づいてハイバンド励振信号を生成するための手段をさらに備える、
C28に記載の装置。
[C32]
前記ハイバンド励振信号の時間特性が前記ハイバンド残余信号の時間特性と厳密に一致する、
C31に記載の装置。
[C33]
ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を音声デコーダにて受信することと、
ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
ここにおいて、前記混合係数は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定される、
前記ハイバンドサイド情報と前記ローバンド励振信号とに基づいてハイバンド励振信号を生成することと、
を備える方法。
[C34]
ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信することと、
ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
ここにおいて、前記混合係数は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定される、
前記ハイバンドサイド情報と前記ローバンド励振信号とに基づいてハイバンド励振信号を生成することと、を行うように構成された音声デコーダを備える装置。
[C35]
音声エンコーダにおいてプロセッサによって実行されたときに、前記プロセッサに、
ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信することと、
ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
ここにおいて、前記混合係数は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定される、
前記ハイバンドサイド情報と前記ローバンド励振信号とに基づいてハイバンド励振信号を生成することと、
を行わせる命令を備える非一時的コンピュータ可読媒体。
[C36]
ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信するための手段と、
ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
ここにおいて、前記混合係数は、ハイバンド残余信号と、高調波的に拡張された信号と、変調されたノイズとに基づいて決定される、
前記ハイバンドサイド情報と前記ローバンド励振信号とに基づいてハイバンド励振信号を生成するための手段と、
を備える装置。

Claims (12)

  1. 音声エンコーダにおいて、オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成することと、
    前記オーディオ信号のローバンド励振信号に少なくとも部分的に基づいて、高調波的に拡張された信号を生成することと、
    前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定することと、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づ前記混合係数は、閉ループ分析を使用して調節され、前記閉ループ分析を使用して前記混合係数を調節することは、
    前記ハイバンド残余信号をハイバンド励振信号と比較することと、
    前記比較に基づいて誤差信号を生成することと、
    前記誤差信号に基づいて前記混合係数を調節することと、を備える、
    前記混合係数に基づいてスケーリングされた前記高調波的に拡張された信号に対応する第1の信号と、前記混合係数に基づいてスケーリングされた前記変調されたノイズに対応する第2の信号とを結合することに基づいて前記ハイバンド励振信号を生成することと、
    前記オーディオ信号の前記ローバンド励振信号と前記混合係数を含むハイバンドサイド情報とを含む信号を前記音声エンコーダの出力信号として出力することと、
    を備える方法。
  2. 前記誤差信号に基づいて前記混合係数を調節することは、前記混合係数が、前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて調節されることを備える、請求項に記載の方法。
  3. 前記混合係数は、ローバンド有声化、ローバンドチルト、またはそれらの任意の組合せに基づいてさらに調節される、請求項に記載の方法。
  4. 前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて、第2の混合係数を生成するために、第1の混合係数を選択的に増分または減分することをさらに備え、
    前記混合係数は、前記第1の混合係数に基づいた前記平均2乗誤差が前記第2の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第1の混合係数に対応し、
    前記混合係数は、前記第2の混合係数に基づいた前記平均2乗誤差が前記第1の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第2の混合係数に対応する、
    請求項に記載の方法。
  5. 前記混合係数を受信機にビットストリームの一部として送信することをさらに備える、
    請求項1に記載の方法。
  6. オーディオ信号のハイバンド部分に基づいてハイバンド残余信号を生成するための線形予測分析フィルタと、
    前記オーディオ信号のローバンド励振信号に少なくとも部分的に基づいて、高調波的に拡張された信号を生成するための非線形変換生成器と、
    前記ハイバンド残余信号と、前記高調波的に拡張された信号と、変調されたノイズとに基づいて混合係数を決定するための混合係数計算器と、ここにおいて、前記変調されたノイズは、前記高調波的に拡張された信号とホワイトノイズとに少なくとも部分的に基づ前記混合係数は閉ループ分析を使用して調節される、
    誤差検出回路と、前記閉ループ分析を使用して前記混合係数を調節するための誤差最小化計算器と、ここにおいて、前記誤差検出回路は、前記ハイバンド残余信号をハイバンド励振信号と比較するように構成され、
    前記誤差最小化計算器は、
    前記比較に基づいて誤差信号を生成し、
    前記誤差信号に基づいて前記混合係数を調節するように構成される、
    ハイバンド励振信号を生成するためのハイバンド励振生成器と、前記ハイバンド励振生成器は、前記混合係数に基づいてスケーリングされた前記高調波的に拡張された信号に対応する第1の信号と、前記混合係数に基づいてスケーリングされた前記変調されたノイズに対応する第2の信号とを結合するための混合器を含む、
    前記オーディオ信号の前記ローバンド励振信号と前記混合係数を含むハイバンドサイド情報とを含む信号は出力信号として出力される、
    を備える装置。
  7. 前記混合係数は、前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて調節され、前記装置は、
    前記ハイバンド残余信号と前記ハイバンド励振信号との差の平均2乗誤差に基づいて、第2の混合係数を生成するために第1の混合係数を選択的に増分または減分するように構成された誤差制御器をさらに備え、
    前記混合係数は、前記第1の混合係数に基づいた前記平均2乗誤差が前記第2の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第1の混合係数に対応し、
    前記混合係数は、前記第2の混合係数に基づいた前記平均2乗誤差が前記第1の混合係数に基づいた前記平均2乗誤差よりも小さいという決定に応答して、前記第2の混合係数に対応する、
    請求項に記載の装置。
  8. 前記混合係数を受信機にビットストリームの一部として送信するための送信機をさらに備える、
    請求項に記載の装置。
  9. ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を音声デコーダにて受信することと、
    ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
    ここにおいて、前記混合係数は、ハイバンド残余信号と、第1の高調波的に拡張された信号と、第1の変調されたノイズとに基づき、
    前記ローバンド励振信号に基づく第2の高調波的に拡張された信号に対応する第1の信号と、前記第2の高調波的に拡張された信号とホワイトノイズとに基づく第2の変調されたノイズに対応する第2の信号とを混合することによって、ハイバンド励振信号を生成することと、ここにおいて、前記第2の高調波的に拡張された信号は、前記混合係数に基づいてスケーリングされ、前記第2の変調されたノイズは、前記混合係数に基づいてスケーリングされる、
    前記ローバンド励振信号と、前記第1の信号と前記第2の信号と混合することによって生成された前記ハイバンド励振信号に基づいて、オーディオ信号を再構成することと、
    を備える方法。
  10. ローバンド励振信号とハイバンドサイド情報とを含む符号化された信号を受信することと、
    ここにおいて、前記ハイバンドサイド情報は混合係数を含み、
    ここにおいて、前記混合係数は、ハイバンド残余信号と、第1の高調波的に拡張された信号と、第1の変調されたノイズとに基づき、
    前記ローバンド励振信号に基づく第2の高調波的に拡張された信号に対応する第1の信号と、前記第2の高調波的に拡張された信号とホワイトノイズとに基づく第2の変調されたノイズに対応する第2の信号とを混合することによって、ハイバンド励振信号を生成することと、ここにおいて、前記第2の高調波的に拡張された信号は、前記混合係数に基づいてスケーリングされ、前記第2の変調されたノイズは、前記混合係数に基づいてスケーリングされる、
    前記ローバンド励振信号と、前記第1の信号と前記第2の信号と混合することによって生成された前記ハイバンド励振信号に基づいて、オーディオ信号を再構成することと、
    を行うように構成された音声デコーダを備える装置。
  11. 音声エンコーダにおいてプロセッサによって実行されたときに、前記プロセッサに、請求項1乃至のいずれかに記載の方法を行わせる命令を備える非一時的コンピュータ可読媒体。
  12. 音声デコーダにおいてプロセッサによって実行されたときに、前記プロセッサに、請求項9に記載の方法を行わせる命令を備える非一時的コンピュータ可読媒体。
JP2016521680A 2013-10-11 2014-10-09 ハイバンド励振信号を生成するための混合係数の推定 Active JP6469664B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361889727P 2013-10-11 2013-10-11
US61/889,727 2013-10-11
US14/509,676 US10083708B2 (en) 2013-10-11 2014-10-08 Estimation of mixing factors to generate high-band excitation signal
US14/509,676 2014-10-08
PCT/US2014/059901 WO2015054492A1 (en) 2013-10-11 2014-10-09 Estimation of mixing factors to generate high-band excitation signal

Publications (3)

Publication Number Publication Date
JP2016532886A JP2016532886A (ja) 2016-10-20
JP2016532886A5 JP2016532886A5 (ja) 2017-10-26
JP6469664B2 true JP6469664B2 (ja) 2019-02-13

Family

ID=52810390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016521680A Active JP6469664B2 (ja) 2013-10-11 2014-10-09 ハイバンド励振信号を生成するための混合係数の推定

Country Status (21)

Country Link
US (2) US10083708B2 (ja)
EP (1) EP3055861B1 (ja)
JP (1) JP6469664B2 (ja)
KR (1) KR101941755B1 (ja)
CN (2) CN105612578B (ja)
AU (2) AU2014331890B2 (ja)
CA (1) CA2925573C (ja)
CL (1) CL2016000818A1 (ja)
DK (1) DK3055861T3 (ja)
ES (1) ES2660605T3 (ja)
HK (1) HK1220033A1 (ja)
HU (1) HUE036838T2 (ja)
MX (1) MX354886B (ja)
MY (1) MY182788A (ja)
NZ (1) NZ717750A (ja)
PH (1) PH12016500506A1 (ja)
RU (1) RU2672179C2 (ja)
SA (1) SA516370877B1 (ja)
SG (1) SG11201601790QA (ja)
SI (1) SI3055861T1 (ja)
WO (1) WO2015054492A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011408A1 (fr) * 2013-09-30 2015-04-03 Orange Re-echantillonnage d'un signal audio pour un codage/decodage a bas retard
US10083708B2 (en) 2013-10-11 2018-09-25 Qualcomm Incorporated Estimation of mixing factors to generate high-band excitation signal
US10163447B2 (en) * 2013-12-16 2018-12-25 Qualcomm Incorporated High-band signal modeling
US9984699B2 (en) 2014-06-26 2018-05-29 Qualcomm Incorporated High-band signal coding using mismatched frequency ranges
US10847170B2 (en) 2015-06-18 2020-11-24 Qualcomm Incorporated Device and method for generating a high-band signal from non-linearly processed sub-ranges
US10217468B2 (en) * 2017-01-19 2019-02-26 Qualcomm Incorporated Coding of multiple audio signals
US10825467B2 (en) * 2017-04-21 2020-11-03 Qualcomm Incorporated Non-harmonic speech detection and bandwidth extension in a multi-source environment
WO2020157888A1 (ja) * 2019-01-31 2020-08-06 三菱電機株式会社 周波数帯域拡張装置、周波数帯域拡張方法、及び周波数帯域拡張プログラム

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141638A (en) 1998-05-28 2000-10-31 Motorola, Inc. Method and apparatus for coding an information signal
US7117146B2 (en) 1998-08-24 2006-10-03 Mindspeed Technologies, Inc. System for improved use of pitch enhancement with subcodebooks
US7272556B1 (en) 1998-09-23 2007-09-18 Lucent Technologies Inc. Scalable and embedded codec for speech and audio signals
GB2342829B (en) 1998-10-13 2003-03-26 Nokia Mobile Phones Ltd Postfilter
CA2252170A1 (en) 1998-10-27 2000-04-27 Bruno Bessette A method and device for high quality coding of wideband speech and audio signals
US6449313B1 (en) 1999-04-28 2002-09-10 Lucent Technologies Inc. Shaped fixed codebook search for celp speech coding
US6704701B1 (en) 1999-07-02 2004-03-09 Mindspeed Technologies, Inc. Bi-directional pitch enhancement in speech coding systems
AU2001241475A1 (en) 2000-02-11 2001-08-20 Comsat Corporation Background noise reduction in sinusoidal based speech coding systems
AU2001287970A1 (en) 2000-09-15 2002-03-26 Conexant Systems, Inc. Short-term enhancement in celp speech coding
US6760698B2 (en) 2000-09-15 2004-07-06 Mindspeed Technologies Inc. System for coding speech information using an adaptive codebook with enhanced variable resolution scheme
US6766289B2 (en) 2001-06-04 2004-07-20 Qualcomm Incorporated Fast code-vector searching
JP3457293B2 (ja) 2001-06-06 2003-10-14 三菱電機株式会社 雑音抑圧装置及び雑音抑圧方法
US6993207B1 (en) 2001-10-05 2006-01-31 Micron Technology, Inc. Method and apparatus for electronic image processing
US7146313B2 (en) 2001-12-14 2006-12-05 Microsoft Corporation Techniques for measurement of perceptual audio quality
CA2501368C (en) * 2002-10-11 2013-06-25 Nokia Corporation Methods and devices for source controlled variable bit-rate wideband speech coding
US7047188B2 (en) 2002-11-08 2006-05-16 Motorola, Inc. Method and apparatus for improvement coding of the subframe gain in a speech coding system
US7788091B2 (en) 2004-09-22 2010-08-31 Texas Instruments Incorporated Methods, devices and systems for improved pitch enhancement and autocorrelation in voice codecs
JP2006197391A (ja) 2005-01-14 2006-07-27 Toshiba Corp 音声ミクシング処理装置及び音声ミクシング処理方法
UA92742C2 (ru) * 2005-04-01 2010-12-10 Квелкомм Инкорпорейтед Способ и устройство для кодирования речевых сигналов с расщеплением полосы
KR100956877B1 (ko) 2005-04-01 2010-05-11 콸콤 인코포레이티드 스펙트럼 엔벨로프 표현의 벡터 양자화를 위한 방법 및장치
US8280730B2 (en) 2005-05-25 2012-10-02 Motorola Mobility Llc Method and apparatus of increasing speech intelligibility in noisy environments
WO2007087824A1 (de) * 2006-01-31 2007-08-09 Siemens Enterprise Communications Gmbh & Co. Kg Verfahren und anordnungen zur audiosignalkodierung
DE102006022346B4 (de) 2006-05-12 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Informationssignalcodierung
US8682652B2 (en) 2006-06-30 2014-03-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder and audio processor having a dynamically variable warping characteristic
US8239190B2 (en) * 2006-08-22 2012-08-07 Qualcomm Incorporated Time-warping frames of wideband vocoder
US9009032B2 (en) 2006-11-09 2015-04-14 Broadcom Corporation Method and system for performing sample rate conversion
US20100332223A1 (en) 2006-12-13 2010-12-30 Panasonic Corporation Audio decoding device and power adjusting method
US20080208575A1 (en) 2007-02-27 2008-08-28 Nokia Corporation Split-band encoding and decoding of an audio signal
ES2592416T3 (es) * 2008-07-17 2016-11-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Esquema de codificación/decodificación de audio que tiene una derivación conmutable
PL4231291T3 (pl) * 2008-12-15 2024-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dekoder powiększania szerokości pasma audio, powiązany sposób oraz program komputerowy
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
US8484020B2 (en) 2009-10-23 2013-07-09 Qualcomm Incorporated Determining an upperband signal from a narrowband signal
JP5812998B2 (ja) 2009-11-19 2015-11-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) オーディオコーデックにおけるラウドネスおよびシャープネスの補償のための方法および装置
CA2792452C (en) 2010-03-09 2018-01-16 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an input audio signal using cascaded filterbanks
US9443534B2 (en) * 2010-04-14 2016-09-13 Huawei Technologies Co., Ltd. Bandwidth extension system and approach
US8600737B2 (en) 2010-06-01 2013-12-03 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for wideband speech coding
US8924200B2 (en) * 2010-10-15 2014-12-30 Motorola Mobility Llc Audio signal bandwidth extension in CELP-based speech coder
US8738385B2 (en) 2010-10-20 2014-05-27 Broadcom Corporation Pitch-based pre-filtering and post-filtering for compression of audio signals
TR201815402T4 (tr) * 2010-10-25 2018-11-21 Voiceage Corp Düşük bit hızları ve düşük gecikmede genel audio sinyallerinin kodlanması.
WO2012158157A1 (en) 2011-05-16 2012-11-22 Google Inc. Method for super-wideband noise supression
CN102802112B (zh) 2011-05-24 2014-08-13 鸿富锦精密工业(深圳)有限公司 具有音频文件格式转换功能的电子装置
US9070361B2 (en) 2011-06-10 2015-06-30 Google Technology Holdings LLC Method and apparatus for encoding a wideband speech signal utilizing downmixing of a highband component
CN104221081B (zh) * 2011-11-02 2017-03-15 瑞典爱立信有限公司 带宽扩展音频信号的高频带扩展的生成
CN104221082B (zh) * 2012-03-29 2017-03-08 瑞典爱立信有限公司 谐波音频信号的带宽扩展
US9601125B2 (en) 2013-02-08 2017-03-21 Qualcomm Incorporated Systems and methods of performing noise modulation and gain adjustment
US10083708B2 (en) 2013-10-11 2018-09-25 Qualcomm Incorporated Estimation of mixing factors to generate high-band excitation signal

Also Published As

Publication number Publication date
CN105612578B (zh) 2019-10-11
SG11201601790QA (en) 2016-04-28
RU2016116044A3 (ja) 2018-07-10
HUE036838T2 (hu) 2018-08-28
AU2019203827A1 (en) 2019-06-20
AU2014331890A1 (en) 2016-03-31
MY182788A (en) 2021-02-05
SA516370877B1 (ar) 2019-04-11
ES2660605T3 (es) 2018-03-23
SI3055861T1 (en) 2018-03-30
CA2925573C (en) 2019-04-23
AU2014331890B2 (en) 2019-05-16
PH12016500506B1 (en) 2016-06-13
RU2672179C2 (ru) 2018-11-12
PH12016500506A1 (en) 2016-06-13
EP3055861A1 (en) 2016-08-17
CL2016000818A1 (es) 2016-10-14
DK3055861T3 (en) 2018-03-26
US20180268839A1 (en) 2018-09-20
HK1220033A1 (zh) 2017-04-21
WO2015054492A1 (en) 2015-04-16
KR101941755B1 (ko) 2019-01-23
MX2016004535A (es) 2016-07-22
US10083708B2 (en) 2018-09-25
KR20160067210A (ko) 2016-06-13
NZ754130A (en) 2020-09-25
CN105612578A (zh) 2016-05-25
CN110634503B (zh) 2023-07-14
CN110634503A (zh) 2019-12-31
RU2016116044A (ru) 2017-11-16
CA2925573A1 (en) 2015-04-16
US20150106084A1 (en) 2015-04-16
MX354886B (es) 2018-03-23
US10410652B2 (en) 2019-09-10
NZ717750A (en) 2019-07-26
AU2019203827B2 (en) 2020-07-16
JP2016532886A (ja) 2016-10-20
EP3055861B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6469664B2 (ja) ハイバンド励振信号を生成するための混合係数の推定
JP6345780B2 (ja) ハイバンドコーディングにおける選択的位相補償
JP6752936B2 (ja) ノイズ変調とゲイン調整とを実行するシステムおよび方法
JP6262337B2 (ja) ハイバンド時間的特性の改善された追跡のための利得形状推定
JP2016541032A5 (ja)
JP2016541032A (ja) ハイバンド信号モデリング
AU2014331903A1 (en) Gain shape estimation for improved tracking of high-band temporal characteristics
RU2667973C2 (ru) Способы и системы переключения технологий кодирования в устройстве

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180129

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250