JP6468890B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6468890B2
JP6468890B2 JP2015046493A JP2015046493A JP6468890B2 JP 6468890 B2 JP6468890 B2 JP 6468890B2 JP 2015046493 A JP2015046493 A JP 2015046493A JP 2015046493 A JP2015046493 A JP 2015046493A JP 6468890 B2 JP6468890 B2 JP 6468890B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
rotational speed
air conditioner
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015046493A
Other languages
Japanese (ja)
Other versions
JP2016166701A (en
Inventor
智史 莅戸
智史 莅戸
哲平 武藤
哲平 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2015046493A priority Critical patent/JP6468890B2/en
Publication of JP2016166701A publication Critical patent/JP2016166701A/en
Application granted granted Critical
Publication of JP6468890B2 publication Critical patent/JP6468890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、室外機と室内機のそれぞれにおける熱交換により冷房運転を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs a cooling operation by heat exchange between an outdoor unit and an indoor unit.

従来よりこの種の空気調和機においては、特許文献1に記載のように、室外機と室内機とをHFC系のR410Aを用いた冷媒配管で接続して冷凍サイクルを構成し、また減圧器をキャピラリーチューブで構成したものがあった。   Conventionally, in this type of air conditioner, as described in Patent Document 1, an outdoor unit and an indoor unit are connected by a refrigerant pipe using an HFC-based R410A to constitute a refrigeration cycle. Some consisted of capillary tubes.

特許第3853550号公報Japanese Patent No. 3853550

ここで、前記冷媒として従来より空気調和機に広く使用されていたR410A冷媒に代わり、近年、R32冷媒が空気調和機において使用されつつある。このR32冷媒は、前記R410A冷媒に比べて単位体積あたりの冷凍能力が高く前記R410A冷媒よりも冷媒配管内での充填量を少なくできることが知られているが、その場合には、前記のように蒸発器の上流側で減圧するとき、従来の前記R410A冷媒用の空気調和機での減圧率よりも最大2倍程度の減圧率とする必要がある。   Here, in recent years, R32 refrigerant has been used in air conditioners instead of R410A refrigerant that has been widely used in air conditioners. It is known that this R32 refrigerant has a higher refrigeration capacity per unit volume than the R410A refrigerant and can reduce the filling amount in the refrigerant pipe compared to the R410A refrigerant. In that case, as described above, When the pressure is reduced on the upstream side of the evaporator, it is necessary to make the pressure reduction rate about twice as high as that in the conventional air conditioner for the R410A refrigerant.

このようなR32冷媒における(R410A冷媒と比べた場合の)充填量の減少及び減圧率の増大により、R32冷媒用の空気調和機では、前記圧縮機(R32冷媒用の圧縮機)を起動した直後において前記室内熱交換器(蒸発器)の入口における冷媒温度(入口冷媒温度)が極端に低下し、蒸発器全体の温度バランスが崩れる結果、前記冷凍サイクルの状態が安定化するのに時間がかかることとなる。   Immediately after starting the compressor (compressor for R32 refrigerant) in the air conditioner for R32 refrigerant due to a decrease in filling amount and an increase in pressure reduction rate in R32 refrigerant (compared to R410A refrigerant). As a result, the refrigerant temperature (inlet refrigerant temperature) at the inlet of the indoor heat exchanger (evaporator) is extremely lowered and the temperature balance of the entire evaporator is lost, so that it takes time to stabilize the state of the refrigeration cycle. It will be.

このとき、前記の蒸発器上流側での減圧のために開度調整可能な膨張弁を用いる場合には、前記膨張弁の開度を適正に調整することで前記入口冷媒温度の低下を抑制できるが、前記従来のもののように減圧器として前記キャピラリーチューブを用いる場合には前記膨張弁のように減圧の程度を調整できないことから、前記のような冷凍サイクルが不安定な状態が、比較的長い時間続くこととなる。この結果、前記室内熱交換器内の管路のうち入口側部分と中間部分及び出口側部分とに大きな温度差が生じ、前記入口側部分を通過した低温の風と前記出口側部分を通過したやや温度の高い風が混合することで、室内機内部が結露する等の弊害が生じうるという問題があった。   At this time, when using an expansion valve whose opening degree can be adjusted for pressure reduction on the upstream side of the evaporator, a decrease in the inlet refrigerant temperature can be suppressed by appropriately adjusting the opening degree of the expansion valve. However, when the capillary tube is used as a pressure reducer as in the conventional one, the degree of pressure reduction cannot be adjusted as in the expansion valve, and thus the state where the refrigeration cycle is unstable is relatively long. It will last for hours. As a result, a large temperature difference occurs between the inlet side portion and the intermediate portion and the outlet side portion of the pipe line in the indoor heat exchanger, and the low temperature wind that has passed through the inlet side portion and the outlet side portion have passed. There was a problem that harmful effects such as dew condensation inside the indoor unit could occur due to the mixing of slightly hot air.

上記問題を解決するために、本発明の請求項1では、室外機と室内機とをR32冷媒を用いた冷媒配管で接続した、前記R32冷媒用の空気調和機において、前記室内機は、前記R32冷媒と室内空気との熱交換を行う室内熱交換器と、前記室内熱交換器に送風する室内ファンとを有し、前記室外機は、前記R32冷媒を圧縮する前記R32冷媒用の圧縮機と、前記R32冷媒と外気との熱交換を行う室外熱交換器と、R410A冷媒用の空気調和機における前記R410Aの減圧率のN倍(但し1<N≦2)の減圧率で前記R32冷媒を減圧するキャピラリーチューブと、前記室外熱交換器に送風する室外ファンと、少なくとも前記圧縮機の回転数を制御する室外制御部とを有し、前記室外制御部は、前記R32冷媒用の圧縮機が起動してから所定の目標回転数に到達するまでの経過時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒を圧縮する前記R410A冷媒用の圧縮機が起動してから前記所定の目標回転数に到達するまでの経過時間のM倍(但し1<M≦N)となるように、前記R32冷媒用の圧縮機の回転数を制御する圧縮機制御手段を備えるものである。
In order to solve the above problem, in claim 1 of the present invention, in the air conditioner for R32 refrigerant in which an outdoor unit and an indoor unit are connected by a refrigerant pipe using R32 refrigerant, the indoor unit is The R32 refrigerant compressor includes an indoor heat exchanger that exchanges heat between the R32 refrigerant and room air, and an indoor fan that blows air to the indoor heat exchanger, and the outdoor unit compresses the R32 refrigerant. And an outdoor heat exchanger for exchanging heat between the R32 refrigerant and the outside air, and the R32 refrigerant at a pressure reduction rate N times (where 1 <N ≦ 2) the pressure reduction rate of the R410A in the air conditioner for the R410A refrigerant. And an outdoor fan that blows air to the outdoor heat exchanger, and an outdoor control unit that controls at least the rotational speed of the compressor. The outdoor control unit is a compressor for the R32 refrigerant. Has started The elapsed time until reaching the predetermined target rotational speed reaches the predetermined target rotational speed after activation of the R410A refrigerant compressor that compresses the R410A refrigerant in the R410A refrigerant air conditioner. Compressor control means for controlling the rotational speed of the compressor for the R32 refrigerant so as to be M times the elapsed time up to (where 1 <M ≦ N).

また、請求項2では、前記圧縮機制御手段は、前記R32冷媒用の圧縮機が起動してから所定の起動保証回転数による保持を経て前記所定の目標回転数に到達するように、前記R32冷媒用の圧縮機の回転数を制御するものである。   According to a second aspect of the present invention, the compressor control means includes the R32 so that the R32 refrigerant reaches the predetermined target rotation speed after being held at a predetermined start-up guaranteed rotation speed after the R32 refrigerant compressor is started. The number of revolutions of the refrigerant compressor is controlled.

また、請求項3では、前記圧縮機制御手段は、前記所定の起動保証回転数による保持状態以外で前記R32冷媒用の圧縮機の回転数を連続的に増加させるときの増加率が、前記R410A冷媒用の空気調和機において前記所定の起動保証回転数による保持状態以外で前記R410A冷媒用の圧縮機の回転数を連続的に増加させるときの増加率より小さくかつ1/M倍以上となるように、前記R32冷媒用の圧縮機の回転数を制御するものである。
According to a third aspect of the present invention, when the compressor control means continuously increases the rotational speed of the compressor for R32 refrigerant in a state other than the holding state at the predetermined start-up guaranteed rotational speed, the rate of increase is the R410A. becomes the predetermined guaranteed activations outside holding state by the rotation speed the one or smaller than the increase rate when the R410A rotational speed of the compressor of the refrigerant is continuously increased 1 / M times the air conditioner refrigerant Thus, the rotation speed of the compressor for the R32 refrigerant is controlled.

また、請求項4では、前記圧縮機制御手段は、前記R32冷媒用の圧縮機が起動してから前記所定の起動保証回転数を経て前記所定の目標回転数に到達するときの前記所定の起動保証回転数での保持時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒用の圧縮機が起動してから前記所定の起動保証回転数を経て前記所定の目標回転数に到達するときの前記所定の起動保証回転数での保持時間より長くかつM倍以下となるように、前記R32冷媒用の圧縮機の回転数を制御するものである。
According to a fourth aspect of the present invention, the compressor control means performs the predetermined start-up when the R32 refrigerant compressor reaches the predetermined target rotational speed through the predetermined start-up guaranteed rotational speed after starting up the R32 refrigerant compressor. When the retention time at the guaranteed rotational speed reaches the predetermined target rotational speed through the predetermined startup guaranteed rotational speed after the R410A refrigerant compressor is started in the R410A refrigerant air conditioner. so that the predetermined guaranteed activations one or longer than the retention time in the rotation speed M times or less, and controls the rotational speed of the compressor for the R32 refrigerant.

また、請求項5では、前記キャピラリーチューブは、前記R410A冷媒用の空気調和機における前記R410Aの減圧率の2倍の減圧率で前記R32冷媒を減圧し、前記圧縮機制御手段は、前記R32冷媒用の圧縮機が起動してから所定の目標回転数に到達するまでの経過時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒を圧縮する前記R410A冷媒用の圧縮機が起動してから前記所定の目標回転数に到達するまでの経過時間の2倍となるように、前記R32冷媒用の圧縮機の回転数を制御するものである。 Moreover, in claim 5, wherein the capillary tube, the R410A at twice the pressure reduction rate of the pressure reduction rate of the R410A in an air conditioner in vacuo the R32 refrigerant for the refrigerant, the compressor control means, wherein R32 refrigerant The elapsed time from when the compressor for starting up to the predetermined target rotational speed is reached after the compressor for R410A refrigerant that compresses the R410A refrigerant in the air conditioner for R410A refrigerant is started. to be twice the time elapsed to reach the predetermined target rotational speed, and controls the rotational speed of the compressor for the R32 refrigerant.

この発明の請求項1によれば、室内機には、室内熱交換器、室内ファンが備えられ、室外機には、圧縮機、室外熱交換器、キャピラリーチューブ、室外ファンが備えられており、これらが冷媒配管で接続されることによって冷凍サイクルを構築している。すなわち、例えば冷房運転が行われるときには、低温・低圧で吸入されたガスの冷媒が前記圧縮機で圧縮されて高温・高圧のガスとなった後、前記室外熱交換器(凝縮器)において前記室外ファンの送風で冷却されることで外気に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記キャピラリーチューブで減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記室内熱交換器(蒸発器)において蒸発してガスに変化することで室内空気から吸熱し冷却を行う。そして冷媒は、低温・低圧のガスとして再び前記圧縮機へと戻る。   According to claim 1 of the present invention, the indoor unit includes an indoor heat exchanger and an indoor fan, and the outdoor unit includes a compressor, an outdoor heat exchanger, a capillary tube, and an outdoor fan, These are connected by refrigerant piping to construct a refrigeration cycle. That is, for example, when cooling operation is performed, after the refrigerant of gas sucked at low temperature and low pressure is compressed by the compressor to become high temperature and high pressure gas, the outdoor heat exchanger (condenser) By being cooled by the air blown by the fan, it changes into a high-pressure liquid while releasing heat to the outside air. The refrigerant thus turned into a liquid is decompressed by the capillary tube, becomes a low-pressure liquid, and is easily evaporated. Thereafter, the low-pressure liquid evaporates in the indoor heat exchanger (evaporator) and changes to gas, thereby absorbing heat from indoor air and cooling. The refrigerant then returns to the compressor again as a low-temperature and low-pressure gas.

ここで、本願発明者等は、前記のようにR410A冷媒に代えてR32冷媒を使用しかつ膨張弁でなくキャピラリーチューブを使用することに起因する、前記冷凍サイクルの不安定状態を解消する方策を検討した結果、圧縮機を起動した後に回転数を増大させていくときの経過時間を、前記減圧率の増大分に見合った割合で長くとればよいことを新たに知見した。   Here, the inventors of the present application have taken measures to eliminate the unstable state of the refrigeration cycle caused by using R32 refrigerant instead of R410A refrigerant and using a capillary tube instead of an expansion valve as described above. As a result of the examination, it has been newly found that the elapsed time when the rotational speed is increased after starting the compressor may be increased at a rate commensurate with the increase in the decompression rate.

すなわち、通常、空気調和機における前記圧縮機の回転数制御においては、圧縮機を起動した後、所定の態様で回転数を順次増大させていき、最終的に所定の目標回転数に到達させる。これに対し、請求項1によれば、前記R32冷媒かつ前記キャピラリーチューブの使用に対応させて、前記室外機の前記室外制御部に備えられる圧縮機制御手段が、前記圧縮機が起動した後前記目標回転数に到達するまでの経過時間を、R410A冷媒使用時に比べて最大で2倍(1<N≦2 1<M≦Nの条件でのM倍)とする。このようにして圧縮機の回転数上昇挙動を緩やかにすることにより、R32冷媒における前記入口冷媒温度の極端な低下を抑制し、前記蒸発器全体の温度バランスの変化を小さくすることができる。この結果、前記冷凍サイクルの状態を比較的短時間で安定化させることができ、また前記結露等の弊害を回避することができる。   That is, normally, in the rotation speed control of the compressor in the air conditioner, after the compressor is started, the rotation speed is sequentially increased in a predetermined manner and finally reaches a predetermined target rotation speed. On the other hand, according to claim 1, the compressor control means provided in the outdoor control unit of the outdoor unit corresponding to the use of the R32 refrigerant and the capillary tube is configured so that the compressor is started after the compressor is started. The elapsed time until reaching the target rotational speed is set to twice as much as the maximum when compared with the case of using the R410A refrigerant (M times under the condition of 1 <N ≦ 2 1 <M ≦ N). In this way, by making the rotational speed increase behavior of the compressor moderate, it is possible to suppress an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant and to reduce the change in the temperature balance of the entire evaporator. As a result, the state of the refrigeration cycle can be stabilized in a relatively short time, and adverse effects such as condensation can be avoided.

また、請求項2によれば、圧縮機を起動後に目標回転数にいきなり到達させるのではなく、所定起動保証回転数においていったん回転数増大を中止して所定の時間回転数を保持する。これにより、圧縮機における所望の圧縮性能を安定的かつ確実に得ることができる。   According to the second aspect of the present invention, instead of suddenly reaching the target rotational speed after starting the compressor, the rotational speed increase is temporarily stopped and the rotational speed is maintained for a predetermined time at the predetermined start-up guaranteed rotational speed. Thereby, the desired compression performance in a compressor can be obtained stably and reliably.

また、請求項3によれば、前記起動保証回転数による保持状態以外において圧縮機の回転数を連続的に増大させるときの増加率を緩やかにすることで、圧縮機の回転数上昇挙動を確実に緩やかにすることができる。この結果、前記R32冷媒における前記入口冷媒温度の極端な低下を確実に抑制でき、前記冷凍サイクルの状態を確実に短時間で安定化させることができる。   According to the third aspect of the present invention, the increase in the rotational speed of the compressor is ensured by gradual increase rate when the rotational speed of the compressor is continuously increased except in the holding state by the guaranteed start-up rotational speed. Can be relaxed. As a result, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be reliably suppressed, and the state of the refrigeration cycle can be reliably stabilized in a short time.

また、請求項4によれば、前記起動保証回転数による保持状態を経つつ圧縮機の回転数を連続的に増大させる際、前記保持状態における保持時間を長くすることで、圧縮機の回転数上昇挙動を確実に緩やかにすることができる。この結果、前記R32冷媒における前記入口冷媒温度の極端な低下を確実に抑制でき、前記冷凍サイクルの状態を確実に短時間で安定化させることができる。   According to a fourth aspect of the present invention, when continuously increasing the rotation speed of the compressor while passing through the holding state at the guaranteed start-up rotation speed, the rotation speed of the compressor is increased by increasing the holding time in the holding state. The ascending behavior can be made moderate gradually. As a result, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be reliably suppressed, and the state of the refrigeration cycle can be reliably stabilized in a short time.

また、請求項5によれば、圧縮機の回転数上昇挙動を約1/2程度に緩やかにすることができる。この結果、前記R32冷媒における前記入口冷媒温度の極端な低下をさらに確実に抑制でき、前記冷凍サイクルの状態をさらに確実に短時間で安定化させることができる。   According to the fifth aspect of the present invention, the increase in the rotational speed of the compressor can be moderated to about 1/2. As a result, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be further reliably suppressed, and the state of the refrigeration cycle can be more reliably stabilized in a short time.

本発明の一実施形態の空気調和機の冷房運転時における冷凍サイクルを模式的に表した図The figure which represented typically the refrigerating cycle at the time of the cooling operation of the air conditioner of one Embodiment of this invention. 室内機の内部構造を示す側断面図Side sectional view showing the internal structure of the indoor unit 比較例における入口冷媒温度の経時変化を示す図The figure which shows the time-dependent change of the inlet refrigerant temperature in a comparative example 冷凍サイクルが安定化する前の室内機の内部挙動を示す側断面図Side sectional view showing the internal behavior of the indoor unit before the refrigeration cycle is stabilized 増速行程の処理時間を2倍にした場合の入口冷媒温度及び圧縮機回転数の経時変化を示す図The figure which shows the time-dependent change of the inlet refrigerant temperature and compressor rotation speed at the time of doubling the processing time of the speed increasing process 保持行程の処理時間を2倍にした場合の入口冷媒温度及び圧縮機回転数の経時変化を示す図The figure which shows the time-dependent change of the inlet refrigerant temperature and the compressor rotation speed when the processing time of the holding process is doubled. 保持行程と増速行程の両方の処理時間を2倍にした場合の入口冷媒温度及び圧縮機回転数の経時変化を示す図The figure which shows the time-dependent change of an inlet refrigerant temperature and a compressor rotation speed at the time of doubling the processing time of both a holding | maintenance process and an acceleration process. 圧縮機回転数の制御を実現するための制御手順を示すフローチャート図The flowchart figure which shows the control procedure for implement | achieving control of compressor rotation speed

以下、本発明の一実施の形態を図1〜図8に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態の空気調和機の全体概略構成を図1に示す。図1において、この空気調和機1は、室内機2と室外機3の間を循環させる冷媒に対して室内機2と室外機3のそれぞれで熱交換を行うことにより前記室内機2を設置している側の室内の空気温度を調整するものである。この空気調和機1では、前記冷媒として、従来より空気調和機に広く使用されていたR410A冷媒に代え、近年使用されつつあるR32冷媒を用いる。前記室内機2は、冷媒(すなわちR32冷媒。以下同様)と室内空気との熱交換を行う室内熱交換器4と、前記室内熱交換器4に送風する室内ファン5と、前記室内機2の作動を制御する室内機制御部6とを有し、前記室外機3は、冷媒の循環方向を切り替える四方弁7と、冷媒を圧縮する圧縮機8と、冷媒と外気との熱交換を行う室外熱交換器9と、冷媒を減圧するキャピラリーチューブ10と、前記室外熱交換器9に送風する室外ファン11と、前記室外機3の作動を制御する室外機制御部12を有する。   The overall schematic configuration of the air conditioner of the present embodiment is shown in FIG. In FIG. 1, the air conditioner 1 installs the indoor unit 2 by exchanging heat between the indoor unit 2 and the outdoor unit 3 with respect to the refrigerant circulating between the indoor unit 2 and the outdoor unit 3. The air temperature in the indoor side is adjusted. In this air conditioner 1, R32 refrigerant that has been used in recent years is used as the refrigerant instead of R410A refrigerant that has been widely used in air conditioners. The indoor unit 2 includes an indoor heat exchanger 4 that exchanges heat between a refrigerant (that is, an R32 refrigerant; the same applies hereinafter) and indoor air, an indoor fan 5 that blows air to the indoor heat exchanger 4, and the indoor unit 2 An outdoor unit 3 that controls the operation, and the outdoor unit 3 is an outdoor unit that exchanges heat between the refrigerant and the outside air, a four-way valve 7 that switches the circulation direction of the refrigerant, a compressor 8 that compresses the refrigerant, and the like. It has a heat exchanger 9, a capillary tube 10 that decompresses the refrigerant, an outdoor fan 11 that blows air to the outdoor heat exchanger 9, and an outdoor unit controller 12 that controls the operation of the outdoor unit 3.

前記四方弁7は4つのポートを備える回転弁であり、主経路21用の2つのポートのそれぞれに対して他の副経路22用の2つのポートのいずれに接続するかを切り替える。前記副経路22用の2つのポートどうしはループ状に配置された副経路22の冷媒配管で接続されており、この副経路22上に圧縮機8が設けられている。   The four-way valve 7 is a rotary valve having four ports, and switches which of the two ports for the other sub-path 22 is connected to each of the two ports for the main path 21. The two ports for the sub-path 22 are connected by a refrigerant pipe of the sub-path 22 arranged in a loop shape, and the compressor 8 is provided on the sub-path 22.

前記圧縮機8は、低圧ガス状態の冷媒を昇圧して高圧ガス状態にするとともに、当該空気調和機1内における冷媒配管全体の冷媒を循環させるポンプとしても機能する。   The compressor 8 functions as a pump for increasing the pressure of the refrigerant in the low-pressure gas state to the high-pressure gas state and circulating the refrigerant in the entire refrigerant pipe in the air conditioner 1.

また、前記四方弁7の主経路21用の2つのポートどうしは、ループ状に配置された主経路21の冷媒配管で接続されており、この主経路21上に室外熱交換器9、キャピラリーチューブ10、及び室内熱交換器4が順に(図示する例では主経路21左回りの順に)設けられている。   Further, the two ports for the main path 21 of the four-way valve 7 are connected by a refrigerant pipe of the main path 21 arranged in a loop shape, and the outdoor heat exchanger 9 and the capillary tube are disposed on the main path 21. 10 and the indoor heat exchanger 4 are provided in order (in the example shown, in the order of counterclockwise rotation of the main path 21).

前記室外熱交換器9は、その内部を通過するガス状態の冷媒の温度が室外の外気温度より高い場合は、その冷媒の熱を放熱して液体状態に凝縮させる凝縮器として機能する。また、その内部を通過する液体状態の冷媒の温度が室外の外気温度より低い場合は外気の熱を冷媒に吸熱してガス状態に蒸発させる蒸発器として機能する。前記室内熱交換器4は、室内空気と冷媒の関係において前記室外熱交換器と同等に機能する。   When the temperature of the gaseous refrigerant passing through the interior of the outdoor heat exchanger 9 is higher than the outdoor outside air temperature, the outdoor heat exchanger 9 functions as a condenser that dissipates heat of the refrigerant and condenses it into a liquid state. Further, when the temperature of the liquid refrigerant passing through the inside is lower than the outdoor outside air temperature, the refrigerant functions as an evaporator that absorbs the heat of the outside air into the refrigerant and evaporates it into a gas state. The indoor heat exchanger 4 functions in the same manner as the outdoor heat exchanger in the relationship between indoor air and refrigerant.

前記室外ファン11及び前記室内ファン5は、対応する前記室外熱交換器9及び前記室内熱交換器4に対してそれぞれ送風することで、各熱交換器の性能を向上させる。   The outdoor fan 11 and the indoor fan 5 improve the performance of each heat exchanger by sending air to the corresponding outdoor heat exchanger 9 and the indoor heat exchanger 4, respectively.

前記キャピラリーチューブ10は、高圧液体状態の冷媒を減圧して低圧液体状態とするよう機能する。   The capillary tube 10 functions to depressurize the refrigerant in the high-pressure liquid state into a low-pressure liquid state.

前記室外機制御部12及び前記室内機制御部6は、それぞれ主にCPU,ROM、RAM等を備えたマイクロコンピュータで構成され、特に図示しないリモコンなどの操作部を介したユーザからの指示に基づいて互いに連携し、当該空気調和機1全体の制御を行う。室外機制御部12は、主に室外機3が備える前記四方弁7、前記圧縮機8、及び前記室外ファン11の制御を行い、室内機制御部6は主に室内機2が備える前記室内ファン5の制御を行う。なお、圧縮機8、室外ファン11、及び室内ファン5の制御においては、インバータ等を用いてそれぞれの回転数を連続的に可変制御できる。   The outdoor unit control unit 12 and the indoor unit control unit 6 are mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like, respectively, and are based on instructions from a user via an operation unit such as a remote controller (not shown). In cooperation with each other, the entire air conditioner 1 is controlled. The outdoor unit control unit 12 mainly controls the four-way valve 7, the compressor 8, and the outdoor fan 11 included in the outdoor unit 3, and the indoor unit control unit 6 mainly controls the indoor fan included in the indoor unit 2. Control 5 is performed. In controlling the compressor 8, the outdoor fan 11, and the indoor fan 5, the number of rotations can be continuously variably controlled using an inverter or the like.

前記圧縮機8は副経路22上において一方向に冷媒を循環させるものであり、前記四方弁7の切り替えによって主経路21上の冷媒の循環方向を制御する。例えば、図1は冷房運転時の循環方向を示しており、圧縮機8から吐出した冷媒が室外熱交換器9、キャピラリーチューブ10、室内熱交換器4の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機8で圧縮されて高温・高圧のガスとなった後、前記室外熱交換器9(凝縮器として機能)において前記室外ファン11の送風で冷却されることで外気に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記キャピラリーチューブ10で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記室内熱交換器4(蒸発器として機能)において蒸発してガスに変化することで室内空気から吸熱し冷却を行う。そして冷媒は、低温・低圧のガスとして再び前記圧縮機8へと戻る。以上のような冷凍サイクルを構築することで、室内空気の温度を下げる冷房運転が行われる。   The compressor 8 circulates the refrigerant in one direction on the sub-path 22, and controls the circulation direction of the refrigerant on the main path 21 by switching the four-way valve 7. For example, FIG. 1 shows the circulation direction during the cooling operation, and the refrigerant discharged from the compressor 8 flows in the order of the outdoor heat exchanger 9, the capillary tube 10, and the indoor heat exchanger 4. Thus, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 8 to become high temperature and high pressure gas, the outdoor fan 11 in the outdoor heat exchanger 9 (functions as a condenser). It is changed to a high-pressure liquid while releasing heat to the outside air by being cooled by blowing air. The refrigerant that has become liquid in this manner is decompressed by the capillary tube 10 to become a low-pressure liquid and is in a state where it is easily evaporated. Thereafter, the low-pressure liquid evaporates in the indoor heat exchanger 4 (functions as an evaporator) and changes to gas, thereby absorbing heat from the indoor air and cooling it. The refrigerant then returns to the compressor 8 again as a low-temperature and low-pressure gas. By constructing the refrigeration cycle as described above, a cooling operation for reducing the temperature of the indoor air is performed.

なお、特に図示しないが、四方弁7を切り替えて冷媒の循環方向を逆転することにより、室外熱交換器9を蒸発器として機能させ、室内熱交換器4を凝縮器として機能させて、室内空気の温度を上げる暖房運転を行うことができる。以下においては、前記冷凍サイクルを構築した場合の冷房運転時における作動についてのみ説明する。   Although not specifically illustrated, by switching the four-way valve 7 to reverse the refrigerant circulation direction, the outdoor heat exchanger 9 functions as an evaporator, and the indoor heat exchanger 4 functions as a condenser. The heating operation can be performed to raise the temperature. In the following, only the operation during the cooling operation when the refrigeration cycle is constructed will be described.

前記室内熱交換器4の構造の概略を表す、室内機2の側断面図を図2に示す。図2において、前記室内機2の室内熱交換器4は、2つの一般的なフィンチューブ式熱交換器の2つの熱交換器31、32のそれぞれの上端を近接させたいわゆる「ハ」の字型に配置した側断面構造となっている。フィンチューブ式熱交換器は、多数の平行配置した伝熱フィンと、この伝熱フィンを貫通するように蛇行配置した銅管(=チューブ)とから構成されているもので、図2では、この熱交換器31、32の構造を省略して概略的に示している。   FIG. 2 is a side sectional view of the indoor unit 2 that schematically shows the structure of the indoor heat exchanger 4. In FIG. 2, the indoor heat exchanger 4 of the indoor unit 2 is a so-called “C” shape in which the upper ends of two heat exchangers 31 and 32 of two general finned tube heat exchangers are close to each other. It has a side sectional structure arranged in a mold. The finned tube heat exchanger is composed of a large number of heat transfer fins arranged in parallel and a copper tube (= tube) arranged meandering so as to penetrate the heat transfer fins. The structure of the heat exchangers 31 and 32 is omitted and schematically shown.

そして、前記冷房運転時において、各熱交換器31,32のそれぞれの内部においてその上端から主経路21の冷媒配管(銅管に相当する)が挿通して下端で折り返し、上端から抜けるよう配置されている。このような2つの熱交換器31,32の間で冷媒配管21が直列に接続されていることで、一方の熱交換器32(図示する例で後方の熱交換器32)が冷媒流路の前半に位置し、他方の熱交換器31(図示する例の前方の熱交換器31)が冷媒流路の後半に位置する。   During the cooling operation, the refrigerant pipe (corresponding to a copper pipe) of the main path 21 is inserted from the upper end inside each of the heat exchangers 31 and 32, is folded at the lower end, and is arranged so as to come out from the upper end. ing. Since the refrigerant pipe 21 is connected in series between the two heat exchangers 31 and 32, one of the heat exchangers 32 (the rear heat exchanger 32 in the illustrated example) is connected to the refrigerant flow path. The other heat exchanger 31 (the front heat exchanger 31 in the illustrated example) is located in the second half of the refrigerant flow path.

以上の図1及び図2に示した基本構成を備える前記空気調和機1において、前記のようにR32冷媒が使用される。このR32冷媒は、一般に、前記R410A冷媒に比べて単位体積あたりの冷凍能力が高く、同じ冷凍能力を発揮させるにあたり前記R410A冷媒よりも冷媒配管内での充填量を少なくできることが知られているが、その場合には、前記のように蒸発器(この場合の室内熱交換器4)の上流側で減圧するとき、従来の前記R410A冷媒用の空気調和機での減圧率よりも大きな減圧率とする必要がある。なお、本明細書における減圧率とは、変化前後の冷媒圧力をどれだけ減圧変化させられるかの指標値を意味しており、以下においては減圧度合いが大きいほど減圧率が大きいものと表し、減圧度合いが小さいほど減圧率が小さいものと表す。   In the air conditioner 1 having the basic configuration shown in FIGS. 1 and 2, the R32 refrigerant is used as described above. It is known that this R32 refrigerant generally has a higher refrigeration capacity per unit volume than the R410A refrigerant, and in order to exert the same refrigeration capacity, it can reduce the filling amount in the refrigerant pipe as compared with the R410A refrigerant. In that case, when the pressure is reduced on the upstream side of the evaporator (in this case, the indoor heat exchanger 4) as described above, the pressure reduction rate is larger than the pressure reduction rate in the conventional R410A refrigerant air conditioner. There is a need to. Note that the decompression rate in this specification means an index value indicating how much the refrigerant pressure before and after the change can be changed, and in the following, the greater the degree of decompression, the greater the decompression rate, The smaller the degree, the smaller the decompression rate.

このようなR32冷媒における(R410A冷媒と比べた場合の)充填量の減少及び減圧率の増大により、R32冷媒を用いる前記空気調和機1においては、そのままでは、前記圧縮機8を起動した直後において前記室内熱交換器4(この場合の蒸発器)の入口における冷媒温度(入口冷媒温度;例えば図1中のA点の温度)が極端に低下し、蒸発器全体の温度バランスが崩れる結果、前記冷凍サイクルの状態が安定化するのに時間がかかることとなる。   In the air conditioner 1 that uses the R32 refrigerant, the R32 refrigerant uses a decrease in filling amount (in comparison with the R410A refrigerant) and an increase in pressure reduction rate. The refrigerant temperature at the inlet of the indoor heat exchanger 4 (evaporator in this case) (inlet refrigerant temperature; for example, the temperature at point A in FIG. 1) is extremely lowered, and as a result, the temperature balance of the entire evaporator is lost. It takes time to stabilize the state of the refrigeration cycle.

このような冷凍サイクルの不安定状態及びその後の安定化への挙動を図3により説明する。図3は、R32冷媒を用いた前記空気調和機1において、減圧率をR410Aの場合の2倍としつつ、前記圧縮機8の回転数制御を、(後述の本実施形態の回転数制御とは異なり)通常の前記R410Aを用いた場合と同等の手法で行った場合における前記入口冷媒温度の経時変化を、比較例として示したものである。   Such an unstable state of the refrigeration cycle and the subsequent behavior to stabilization will be described with reference to FIG. FIG. 3 shows the rotational speed control of the compressor 8 in the air conditioner 1 using R32 refrigerant, while the pressure reduction rate is double that of R410A (with the rotational speed control of this embodiment described later). Different) The time-dependent change of the inlet refrigerant temperature in the case of performing the same method as in the case of using the normal R410A is shown as a comparative example.

すなわち、この比較例における空気調和機1における前記圧縮機8の回転数制御においては、圧縮機8を起動した後、所定の態様で回転数を順次増大させていき、最終的に所定の目標回転数に到達させる。具体的には、まず、空気調和機1の運転開始直後には圧縮機8の回転数が無回転(0rps)となっている状態から、所定の増加率で連続的に回転数を増速させる。そして、圧縮機8の回転数が所定の起動保証回転数(図示する例では約60rps)に到達した後、所定の保持時間の間(図示する例では運転開始後経過時間約60〜120秒の間)、当該起動保証回転数を保持する。前記保持時間経過後には、前記所定の目標回転数(図示する例の約80rps)に到達するまで(図示する例では運転開始後経過時間約120〜140秒の間)再び前記所定の増加率で連続的に圧縮機8の回転数を増速させ、到達後は、運転終了時までその目標回転数を維持し続ける。   That is, in the rotational speed control of the compressor 8 in the air conditioner 1 in this comparative example, after the compressor 8 is started, the rotational speed is sequentially increased in a predetermined manner, and finally a predetermined target rotational speed. Let the number reach. Specifically, first, immediately after the start of the operation of the air conditioner 1, the rotational speed of the compressor 8 is continuously increased at a predetermined increase rate from the state where the rotational speed of the compressor 8 is not rotating (0 rps). . Then, after the rotation speed of the compressor 8 reaches a predetermined start-up guaranteed rotation speed (about 60 rps in the illustrated example), a predetermined holding time (in the illustrated example, the elapsed time after the start of operation is about 60 to 120 seconds). During this period, the startup guaranteed rotation speed is held. After the holding time has elapsed, until the predetermined target rotational speed (approximately 80 rps in the illustrated example) is reached (in the illustrated example, the elapsed time after the start of operation is approximately 120 to 140 seconds), again at the predetermined increase rate. The rotational speed of the compressor 8 is continuously increased, and after reaching, the target rotational speed is maintained until the end of operation.

なお、このような態様の回転数制御は、当該圧縮機8の構造的特性により通常必要とされているものである。すなわち、冷媒の循環と圧縮を同時に行うために圧縮機8内では慣性の大きい機構部品が複雑にリンクしており、それらを円滑に作動させるために時間をかけて回転数を増速させることが必要となる。特に前記起動保証回転数を前記保持時間の間保持することについては、圧縮機8内の各部に潤滑油を十分に流通させて円滑かつ安定的に動作させるために必要な行程となっているものである。   Note that the rotational speed control in this manner is normally required due to the structural characteristics of the compressor 8. That is, in order to perform the circulation and compression of the refrigerant at the same time, mechanical parts having a large inertia are complicatedly linked in the compressor 8, and in order to operate them smoothly, the rotational speed can be increased over time. Necessary. In particular, with respect to maintaining the start-up guaranteed rotational speed for the holding time, the process is necessary for smooth and stable operation by sufficiently flowing lubricating oil to each part in the compressor 8. It is.

前記のような圧縮機8の回転制御に伴い、前記入口冷媒温度は、以下の挙動を示す。すなわち、空気調和機1の運転開始時(時間=0)には、前記入口冷媒温度が室内空気と同等の温度(図示する例では約26℃)となっている。その後、前記運転開始により前記主経路21上で冷媒が循環し、キャピラリーチューブ10での減圧によって温度が低下した冷媒が蒸発器の入口(前記A点)に到達した時点(図示する例では運転開始から約20秒後)で前記入口冷媒温度が低下し始める。そして、前記のようにR32冷媒の充填量が少なく減圧率が大きいことにより入口冷媒温度が過剰に低下して、目標としている温度(図示する例の約13℃。)よりも大幅に低い超過低温状態(図示する例の約7℃)に達し、冷凍サイクルが不安定な状態となる。しかし、その後にR32冷媒の循環が進んで蒸発作用と凝縮作用が安定して行えるようになると入口冷媒温度が再び上昇に転じ、前記目標としている温度に達したところ(図示する例では運転開始から約210秒後)で、冷凍サイクルが安定した状態となっている。   With the rotation control of the compressor 8 as described above, the inlet refrigerant temperature exhibits the following behavior. That is, at the start of operation of the air conditioner 1 (time = 0), the inlet refrigerant temperature is the same temperature as the room air (about 26 ° C. in the illustrated example). Thereafter, when the operation starts, the refrigerant circulates on the main path 21, and when the refrigerant whose temperature is reduced by the pressure reduction in the capillary tube 10 reaches the inlet (the point A) of the evaporator (in the illustrated example, the operation starts. About 20 seconds after) the inlet refrigerant temperature begins to drop. Then, as described above, the charging amount of the R32 refrigerant is small and the decompression rate is large, so that the inlet refrigerant temperature is excessively lowered, and the excessively low temperature is significantly lower than the target temperature (about 13 ° C. in the illustrated example). The state (about 7 ° C. in the illustrated example) is reached, and the refrigeration cycle becomes unstable. However, when the circulation of the R32 refrigerant proceeds thereafter and the evaporation and condensation operations can be performed stably, the inlet refrigerant temperature starts to rise again and reaches the target temperature (in the example shown, from the start of operation). After about 210 seconds), the refrigeration cycle is stable.

以上のような作動特性に対して、仮に、蒸発器上流側での減圧のために開度調整可能な膨張弁を用いることができる場合には、前記膨張弁の開度を適正に調整することで前記入口冷媒温度の過剰な低下を抑制することができる。しかしながら、前記空気調和機1のように前記キャピラリーチューブ10を用いる場合には、(前記膨張弁のように減圧の程度を調整できないことから)前記のような冷凍サイクルが不安定な状態が、比較的長い時間続くこととなる。   For the above operating characteristics, if an expansion valve whose opening can be adjusted for decompression upstream of the evaporator can be used, the opening of the expansion valve should be adjusted appropriately. Thus, an excessive decrease in the inlet refrigerant temperature can be suppressed. However, when the capillary tube 10 is used as in the air conditioner 1, the refrigeration cycle as described above is unstable (because the degree of pressure reduction cannot be adjusted as in the expansion valve). Will last for a long time.

このような不安定状態が長く続く場合、前記図2に示した構成の室内熱交換器4において、以下のような弊害が生じうる。すなわち、前記不安定状態が長く続いた場合には、図4に示すように、前記A点に近く冷媒流路の前半部分に相当する前記熱交換器32が極端に温度低下し、後半部分に相当する前記熱交換器31が比較的温度が高い状態となる(図4中における主経路21の低温状態を表す濃淡彩色も参照)。そして、室内機2に流入した室内の空気(図中では「室温風」と略記)のうち、後方側熱交換器32を通過した低温の風(以下適宜、単に「過冷却風」と称する。各図中でも同様)が室内機2の内部(特に室内ファン5)を過剰に冷却し、前方側熱交換器31を通過したやや温度の高い風(以下適宜、単に「冷却風」と称する。各図中でも同様)が過剰に冷却された室内機2の内部(特に室内ファン5)に触れた際、当該室内機2の内部(特に室内ファン5)で結露が発生して水気を多く含んだ風(以下適宜、単に「結露風」と称する。各図中でも同様)を室内に排出してしまう。つまり、前記のようにして冷凍サイクルの不安定状態が長く続いた場合には、室内熱交換器4の各部分を通過する風の温度に大きな偏りが生じてしまい、その結果、室内機2において内部結露を生じさせてしまう。   When such an unstable state continues for a long time, the following adverse effects may occur in the indoor heat exchanger 4 having the configuration shown in FIG. That is, when the unstable state continues for a long time, as shown in FIG. 4, the heat exchanger 32 corresponding to the first half portion of the refrigerant flow path near the point A extremely decreases in temperature, and in the second half portion. The corresponding heat exchanger 31 is in a relatively high temperature state (see also the shade color representing the low temperature state of the main path 21 in FIG. 4). Of the indoor air that has flowed into the indoor unit 2 (abbreviated as “room temperature wind” in the drawing), the low-temperature wind that has passed through the rear heat exchanger 32 (hereinafter simply referred to as “supercooled wind” as appropriate). The same applies to each figure, and the interior of the indoor unit 2 (especially the indoor fan 5) is excessively cooled, and a slightly high temperature wind (hereinafter, simply referred to as “cooling air” as appropriate) after passing through the front heat exchanger 31. When the inside of the indoor unit 2 that has been excessively cooled (especially the indoor fan 5) touches the inside of the indoor unit 2 (especially the indoor fan 5), dew condensation occurs in the indoor unit 2 (especially the indoor fan 5) and the air contains a lot of moisture. (Hereinafter, simply referred to as “condensation wind” as appropriate. The same applies in each figure). That is, when the unstable state of the refrigeration cycle continues for a long time as described above, a large deviation occurs in the temperature of the wind passing through each part of the indoor heat exchanger 4, and as a result, in the indoor unit 2 Internal condensation will occur.

以上のような、R410A冷媒に代えてR32冷媒を使用しかつ膨張弁でなくキャピラリーチューブ10を使用することに起因する前記冷凍サイクルの不安定状態を解消する方策を検討した結果、本願発明者等は、圧縮機8を起動した後に回転数を増大させていくときの経過時間を、前記減圧率の増大分に見合った割合で長くとればよいことを新たに知見した。   As a result of examining the above-described measures for eliminating the unstable state of the refrigeration cycle caused by using the R32 refrigerant instead of the R410A refrigerant and using the capillary tube 10 instead of the expansion valve, the inventors of the present application, etc. Has newly found that the elapsed time when the rotational speed is increased after starting the compressor 8 should be increased at a rate commensurate with the increase in the decompression rate.

すなわち、前記キャピラリーチューブ10の使用に対応させ、前記R32冷媒使用時の減圧率を前記R410A冷媒使用時の減圧率のN倍(但し1<N≦2)とした場合に、前記圧縮機8が起動した後前記目標回転数(但しR410A冷媒での目標回転数と同一値)に到達するまでの経過時間についても、R410A冷媒使用時の前記N倍とする。このようにして圧縮機8の回転数上昇挙動を緩やかにすることにより、R32冷媒における前記入口冷媒温度の極端な低下を抑制し、前記室内熱交換器4全体の温度バランスの変化を小さくすることができることがわかった。   That is, when the pressure reduction rate when the R32 refrigerant is used is N times the pressure reduction rate when the R410A refrigerant is used (where 1 <N ≦ 2), the compressor 8 corresponds to the use of the capillary tube 10. The elapsed time after reaching the target rotational speed (the same value as the target rotational speed of the R410A refrigerant) after starting is also set to the N times when the R410A refrigerant is used. In this way, by making the rotational speed increase behavior of the compressor 8 gentle, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant is suppressed, and the change in the temperature balance of the entire indoor heat exchanger 4 is reduced. I found out that

ここで、前記のように圧縮機8を起動してから前記所定の目標回転数に到達させるまでの回転数制御の行程の種類として、前記所定の増加率(図3中の右上がり直線の傾き)で連続的に回転数を増加させる行程(図3中における運転開始後経過時間0〜約60秒、運転開始後経過時間約120〜約140秒;以下、適宜、「増速行程」と称する)と、前記所定の起動保証回転数を前記保持時間の間で保持する行程(図3中における運転開始後経過時間約60〜約120秒;以下適宜、「保持行程」と称する)と、の2種類がある。本願発明者等の検討によれば、前記増速行程にかける処理時間をR410A冷媒使用時に比べて長くとる手法と、前記保持行程にかける処理時間をR410A冷媒使用時に比べて長くとる手法とで、前記入口冷媒温度の経時変化に対しそれぞれ固有の効果が得られることが知見された。以下、その詳細を図5及び図6により説明する。   Here, as the type of the rotation speed control process from when the compressor 8 is started up until the predetermined target rotation speed is reached, the predetermined increase rate (the slope of the straight line rising to the right in FIG. 3) is used. ) Continuously increasing the number of revolutions (the elapsed time after the start of operation in FIG. 3 is about 0 to about 60 seconds, the elapsed time after the start of operation is about 120 to about 140 seconds; hereinafter referred to as “acceleration stroke” as appropriate) ) And a stroke for holding the predetermined start-up guaranteed rotational speed during the holding time (elapsed time after operation start in FIG. 3 is about 60 to about 120 seconds; hereinafter referred to as “holding stroke” as appropriate). There are two types. According to the study by the inventors of the present application, a method of taking a longer processing time for the speed increasing stroke than when using the R410A refrigerant and a method of taking a longer processing time for the holding stroke than when using the R410A refrigerant, It has been found that a unique effect can be obtained for each change in the inlet refrigerant temperature with time. The details will be described below with reference to FIGS.

まず、図5に、前記増速行程の処理時間を前記図3の比較例の2倍(つまりN倍)にした場合、言い替えれば圧縮機8の回転数の増加率を1/2倍(つまり1/N倍)にした場合の、前記入口冷媒温度及び前記圧縮機回転数の経時変化を示す。なお、対比の容易のために、上記図3の比較例における前記経時変化も点線にて併せて示している(以下、対応する各図において同様)   First, in FIG. 5, when the processing time of the speed increasing process is doubled (that is, N times) as compared with the comparative example of FIG. 3, in other words, the rate of increase in the rotational speed of the compressor 8 is halved (that is, The time-dependent change of the inlet refrigerant temperature and the compressor rotational speed in the case of (1 / N times) is shown. For easy comparison, the change with time in the comparative example of FIG. 3 is also shown by a dotted line (the same applies to corresponding drawings).

すなわち、図5に示すように、この場合の前記圧縮機8の回転制御では、運転開始後経過時間0〜約120秒の間、回転数の増加率を前記1/2倍とした1回目の前記増速行程が行われる。その後、図3と同様、運転開始後経過時間約120〜約180秒の間の約60秒間、前記保持行程が行われる。そして、運転開始後経過時間約180〜約220秒の間、1回目と同様、回転数の増加率を前記1/2倍とした2回目の前記増速行程が行われる。このように、2つの増速行程における処理時間をそれぞれ2倍にして圧縮機8の回転数の増加率を緩やかにすることで、入口冷媒温度が超過低温状態となった際の前記目標としている温度との最大温度差△Knを、前記比較例の場合の前記最大温度差△Koと比較して小さくできる。すなわち、増速行程の処理時間を長くとることで、入口冷媒温度の低下挙動を抑制して最低温度を引き上げることができることが分かった。   That is, as shown in FIG. 5, in the rotation control of the compressor 8 in this case, during the elapsed time from the start of operation to about 120 seconds, the increase rate of the rotation speed is halved for the first time. The speed increasing process is performed. Thereafter, as in FIG. 3, the holding stroke is performed for about 60 seconds between about 120 to about 180 seconds after the start of operation. Then, during the elapsed time after the start of operation of about 180 to about 220 seconds, the second speed increase stroke is performed in which the rate of increase in the rotation speed is ½ times as in the first time. In this way, the processing time in the two speed increasing steps is doubled, and the rate of increase in the rotational speed of the compressor 8 is moderated, so that the above-mentioned target when the inlet refrigerant temperature becomes an excessively low temperature state is set as the target. The maximum temperature difference ΔKn with respect to the temperature can be made smaller than the maximum temperature difference ΔKo in the comparative example. That is, it has been found that by taking a longer processing time for the speed increasing process, it is possible to suppress the lowering behavior of the inlet refrigerant temperature and raise the minimum temperature.

次に、図6に、前記保持行程の処理時間を前記図3の比較例の2倍(つまりN倍)にした場合、言い替えれば前記起動保証回転数の保持時間を2倍(つまりN倍)にした場合の、前記入口冷媒温度及び前記圧縮機回転数の経時変化を図6に示す。   Next, in FIG. 6, when the processing time of the holding process is doubled (that is, N times) as compared with the comparative example of FIG. 3, in other words, the holding time of the startup guaranteed rotation speed is doubled (that is, N times). FIG. 6 shows changes with time in the inlet refrigerant temperature and the compressor rotational speed in the case of the above.

すなわち、図6に示すように、この場合の前記圧縮機8の回転制御では、運転開始後経過時間0〜約60秒の間、回転数の増加率を前記比較例と同等とした1回目の前記増速行程が行われる。その後、運転開始後経過時間約60〜約180秒の間の(前記比較例の2倍となる)約120秒間、前記保持行程が行われる。そして、運転開始後経過時間約180〜約200秒の間、1回目と同様、回転数の増加率を前記比較例と同等とした2回目の前記増速行程が行われる。このように、保持行程における処理時間を2倍にすることで、入口冷媒温度が前記目標としている温度より低下してその後に前記目標としている温度に戻すまでの時間差△Tnを、前記比較例の場合の時間差△Toと比較して短くできる。すなわち、保持行程の処理時間を長くとることで、前記冷凍サイクルが不安定な状態にある時間を短縮化でき、また前記比較例のような2段目の温度低下も解消して入口冷媒温度の低下挙動を抑制して最低温度を引き上げることができることが分かった。   That is, as shown in FIG. 6, in the rotation control of the compressor 8 in this case, during the elapsed time from the start of operation to about 60 seconds, the increase rate of the rotation speed is made the same as that of the comparative example. The speed increasing process is performed. Thereafter, the holding stroke is performed for about 120 seconds (twice that of the comparative example) between about 60 to about 180 seconds after the start of operation. Then, during the elapsed time after the start of operation of about 180 to about 200 seconds, the second speed increase stroke is performed in the same manner as the first time, with the rate of increase in the rotational speed being equal to that of the comparative example. In this way, by doubling the processing time in the holding process, the time difference ΔTn until the inlet refrigerant temperature falls below the target temperature and then returns to the target temperature is set to the value of the comparative example. The time difference ΔTo can be shortened. That is, by taking a longer processing time for the holding process, the time during which the refrigeration cycle is in an unstable state can be shortened, and the temperature drop at the second stage as in the comparative example is eliminated, and the inlet refrigerant temperature is reduced. It was found that the minimum temperature can be raised while suppressing the lowering behavior.

以上の考察に基づき、本願発明者等は、本実施形態の空気調和機1において、キャピラリーチューブ10における減圧率を前記R410A冷媒使用時の減圧率の2倍(すなわち前記N=2)とし、かつ、前記室外機制御部12が実行する圧縮機8の回転数制御にて、前記増速行程と前記保持行程の両方でそれぞれの処理時間を前記R410A冷媒使用時の2倍(すなわち前記N=2)に設定した。   Based on the above considerations, the inventors of the present invention set the decompression rate in the capillary tube 10 to twice the decompression rate when using the R410A refrigerant (that is, N = 2) in the air conditioner 1 of the present embodiment, and In the rotational speed control of the compressor 8 executed by the outdoor unit control unit 12, the processing time in both the acceleration stroke and the holding stroke is doubled when the R410A refrigerant is used (that is, N = 2). ).

すなわち、図7に示すように、本実施形態の空気調和機1の前記室外機制御部12が実行する前記圧縮機8の回転制御においては、運転開始後経過時間0〜約120秒の間、回転数の増加率を前記比較例の1/2倍とした1回目の前記増速行程が行われる。その後、運転開始後経過時間約120〜約240秒の間の(前記比較例の2倍となる)約120秒間、前記保持行程が行われる。そして、運転開始後経過時間約240〜約280秒の間、1回目と同様、回転数の増加率を前記1/2倍とした2回目の前記増速行程が行われる。このような制御の結果、圧縮機8が起動してから前記目標回転数に到達するまでの経過時間は、R410A冷媒用の空気調和機において圧縮機が起動してから前記目標回転数に到達するまでの経過時間(図示点線の挙動を参照)の略2倍となり(140秒→280秒)、入口冷媒温度の最低温度の引き上げと、冷凍サイクルの不安定期間の短縮化の両立を実現することができる。   That is, as shown in FIG. 7, in the rotation control of the compressor 8 executed by the outdoor unit control unit 12 of the air conditioner 1 of the present embodiment, during the elapsed time from the start of operation to about 120 seconds, The first speed increasing step is performed in which the rate of increase in the rotational speed is ½ times that of the comparative example. Thereafter, the holding process is performed for about 120 seconds (twice that of the comparative example) between about 120 to about 240 seconds after the start of operation. Then, during the elapsed time after the start of operation of about 240 to about 280 seconds, the second speed increase stroke is performed in which the increase rate of the rotation speed is ½ times as in the first time. As a result of such control, the elapsed time from when the compressor 8 is started until it reaches the target rotational speed reaches the target rotational speed after the compressor is started in the R410A refrigerant air conditioner. Is approximately twice the elapsed time (see dotted line behavior in the figure) (140 seconds → 280 seconds), realizing both the increase in the minimum inlet refrigerant temperature and the shortening of the instability period of the refrigeration cycle Can do.

なお、前記図5に示した例では、キャピラリーチューブ10における減圧率を前記R410A冷媒使用時の減圧率のN倍(前述の例ではN=2)とした前提で、前記室外機制御部12が実行する圧縮機8の回転数制御にて前記増速行程での処理時間を前記R410A冷媒使用時のN倍(前述の例ではN=2)とすることで、前記増速行程及び前記保持行程の合計の処理時間は(1倍より大きく)2倍よりも小さい約1.57倍(=220/150)となっている。また、前記図6に示した例でも、キャピラリーチューブ10における減圧率を前記R410A冷媒使用時の減圧率のN倍(前述の例ではN=2)とした前提で、前記室外機制御部12が実行する圧縮機8の回転数制御にて前記保持行程での処理時間を前記R410A冷媒使用時のN倍(前述の例ではN=2)とすることで、前記増速行程及び前記保持行程の合計の処理時間は(1倍より大きく)2倍よりも小さい約1.43倍(=200/150)となっている。これらいずれの場合も、前記したように、少なくとも室内熱交換器4全体の温度バランスの変化の低減という効果を得ることができるものである。したがって、この効果を得るためには、前記増速行程及び前記保持行程の合計の処理時間を、前記R410A冷媒使用時の1倍よりは大きく前記N倍よりも小さい略M倍(但し1<M≦N)とすれば足りることになる。そして、これをさらに拡張して本願発明者等が検討した結果、前記増速行程若しくは前記保持行程のいずれか一方の処理時間を、前記R410A冷媒使用時の1倍よりは大きく前記N倍よりも小さい略M倍(但し1<M≦N)とした場合であっても、少なくとも前記比較例よりは、前記室内熱交換器4全体の温度バランスの変化を低減できることがわかった。   In the example shown in FIG. 5, the outdoor unit controller 12 is assumed to have a decompression rate in the capillary tube 10 that is N times the decompression rate when the R410A refrigerant is used (N = 2 in the above example). In the rotation speed control of the compressor 8 to be executed, the processing time in the speed increasing process is set to N times (N = 2 in the above example) when the R410A refrigerant is used, so that the speed increasing process and the holding process are performed. The total processing time is about 1.57 times (= 220/150) smaller than 2 times (greater than 1 time). In the example shown in FIG. 6 as well, the outdoor unit controller 12 is assumed to have a decompression rate in the capillary tube 10 that is N times the decompression rate when the R410A refrigerant is used (N = 2 in the above example). In the rotation speed control of the compressor 8 to be executed, the processing time in the holding stroke is set to N times (N = 2 in the above example) when the R410A refrigerant is used, so that the speed increasing stroke and the holding stroke can be reduced. The total processing time is about 1.43 times (= 200/150) which is smaller than twice (greater than 1 time). In any of these cases, as described above, at least the effect of reducing the change in temperature balance of the entire indoor heat exchanger 4 can be obtained. Therefore, in order to obtain this effect, the total processing time of the speed increasing stroke and the holding stroke is approximately M times larger than 1 time when the R410A refrigerant is used and smaller than N times (where 1 <M ≦ N) is sufficient. And as a result of further studying this and the inventors of the present application, the processing time of either the speed increasing stroke or the holding stroke is set to be larger than 1 time when the R410A refrigerant is used and more than N times. It was found that even when the size is small and approximately M times (however, 1 <M ≦ N), the change in the temperature balance of the entire indoor heat exchanger 4 can be reduced at least as compared with the comparative example.

次に、前記図7に示した本実施形態の圧縮機8の回転数制御を実現するために、前記室外機制御部12の前記CPU(図示省略)が実行する制御手順を、図8により説明する。なお、この制御手順は、特に図示しないリモコンなどの操作部を介して冷房運転の開始操作が入力された際に、実行を開始する。またこの図8では、室外機制御部12が圧縮機8に対して行う制御手順のみを示しているが、その他にも、この制御手順の開始の際には、室外機制御部12が四方弁7を冷房運転時の状態に切り替えかつ室外ファン11の作動を開始させるとともに、室内機制御部6においても室内ファン5の作動を開始させるものとする(図示省略)。   Next, a control procedure executed by the CPU (not shown) of the outdoor unit controller 12 in order to realize the rotational speed control of the compressor 8 of the present embodiment shown in FIG. 7 will be described with reference to FIG. To do. The control procedure starts to be executed when a cooling operation start operation is input via an operation unit such as a remote controller (not shown). FIG. 8 shows only the control procedure performed by the outdoor unit control unit 12 for the compressor 8. In addition, the outdoor unit control unit 12 has a four-way valve at the start of this control procedure. 7 is switched to the cooling operation state and the operation of the outdoor fan 11 is started, and the operation of the indoor fan 5 is also started in the indoor unit control unit 6 (not shown).

まず、回転数変数Vの値を0にリセットする(S5)。その後、その時点の回転数変数Vが示す回転数(初回では0rps)で圧縮機8を回転させる(S10)。なおこのとき室外機制御部12は、前記インバータを用いた回転制御により、回転数変数Vの細かい変化に対応して圧縮機8の回転数を高精度に制御する。   First, the value of the rotation speed variable V is reset to 0 (S5). Thereafter, the compressor 8 is rotated at the rotational speed indicated by the rotational speed variable V at that time (initially 0 rps) (S10). At this time, the outdoor unit control unit 12 controls the rotational speed of the compressor 8 with high accuracy in response to a fine change in the rotational speed variable V by rotational control using the inverter.

その後、回転数変数Vの値が前記の起動保証回転数Vh以上となったか否かを判定する(S15)。回転数変数Vの値がまだ起動保証回転数Vh未満である場合、判定は満たされず(S15:No)、S20に進む。   Thereafter, it is determined whether or not the value of the rotation speed variable V is equal to or greater than the start-up guaranteed rotation speed Vh (S15). If the value of the rotational speed variable V is still less than the startup guaranteed rotational speed Vh, the determination is not satisfied (S15: No), and the process proceeds to S20.

S20では、前記回転数変数Vに対して速度偏差△Vを加算した後、S10に戻って同様の手順を繰り返す。なお本実施形態では、この速度偏差△Vが、S10,S15,S20の1ループ処理時間当たりにおける圧縮機回転数の増加率に相当しており、前述したように、R410A冷媒を用いた通常の空気調和機の場合の(1/N)倍(ここではN=2)に設定されている(後述のS45においても同様)。   In S20, after adding the speed deviation ΔV to the rotation speed variable V, the process returns to S10 and the same procedure is repeated. In this embodiment, the speed deviation ΔV corresponds to the rate of increase in the compressor speed per one loop processing time of S10, S15, and S20. As described above, the normal speed using the R410A refrigerant is used. It is set to (1 / N) times (here, N = 2) in the case of an air conditioner (the same applies to S45 described later).

一方、前記S15の判定において、前記回転数変数Vの値が前記起動保証回転数Vh以上であった場合、判定が満たされ(S15:Yes)、S25に進む。   On the other hand, in the determination of S15, when the value of the rotation speed variable V is equal to or greater than the startup guaranteed rotation speed Vh, the determination is satisfied (S15: Yes), and the process proceeds to S25.

S25では、当該室外機制御部12内部に備えられるタイマ(図示省略)をリセットし(T=0)、その計時を開始する。   In S25, a timer (not shown) provided in the outdoor unit control unit 12 is reset (T = 0), and the time measurement is started.

その後、前記タイマで計時した経過時間Tが、起動保証回転数の保持時間Tsを経過したか否かを判定する(S30)。なお本実施形態では、この保持時間Tsは、前述したように、R410A冷媒を用いた通常の空気調和機の場合の前記N倍(ここではN=2)に設定され、あらかじめ室外機制御部12のROMなどに記憶されている。タイマの経過時間Tが前記保持時間Ts未満であるうちは、当該S30の手順を繰り返して圧縮機8の起動保証回転数Vhを維持し続ける。   Thereafter, it is determined whether or not the elapsed time T counted by the timer has passed the holding time Ts for the guaranteed start-up rotational speed (S30). In the present embodiment, as described above, the holding time Ts is set to N times (here, N = 2) in the case of a normal air conditioner using the R410A refrigerant, and the outdoor unit control unit 12 in advance. Is stored in the ROM. As long as the elapsed time T of the timer is less than the holding time Ts, the procedure of S30 is repeated and the start-up guaranteed rotational speed Vh of the compressor 8 is maintained.

一方、タイマの経過時間Tが前記保持時間Tsを超えた場合、S30の判定が満たされ(S30:Yes)、S35へ進む。   On the other hand, when the elapsed time T of the timer exceeds the holding time Ts, the determination in S30 is satisfied (S30: Yes), and the process proceeds to S35.

S35では、その時点の回転数変数Vが示す回転数(初回では起動保証回転数Vh)で圧縮機8を回転させる。   In S35, the compressor 8 is rotated at the rotational speed indicated by the rotational speed variable V at that time (initially guaranteed start-up rotational speed Vh).

その後、前記回転数変数Vの値が前記の目標回転数Vr以上となったか否かを判定する(S40)。なお、この目標回転数Vrは、R410A冷媒を用いた通常の空気調和機の目標回転数と同一値である。回転数変数Vの値がまだ目標回転数Vr未満である場合、判定は満たされず(S40:No)、S45に移る。   Thereafter, it is determined whether or not the value of the rotational speed variable V is equal to or greater than the target rotational speed Vr (S40). In addition, this target rotation speed Vr is the same value as the target rotation speed of the normal air conditioner using R410A refrigerant. If the value of the rotational speed variable V is still less than the target rotational speed Vr, the determination is not satisfied (S40: No), and the process proceeds to S45.

S45では、回転数変数Vに対して速度偏差△V(前記S20と同一値である。但し異なる値としても良い)を加算した後、S10に戻って同様の手順を繰り返す。   In S45, the speed deviation ΔV (which is the same value as S20, but may be a different value) is added to the rotation speed variable V, and then the process returns to S10 and the same procedure is repeated.

一方、前記S40の判定において、前記回転数変数Vの値が前記目標回転数Vr以上であった場合、判定が満たされ(S40:Yes)、S50に進む。   On the other hand, if the value of the rotational speed variable V is equal to or greater than the target rotational speed Vr in the determination of S40, the determination is satisfied (S40: Yes), and the process proceeds to S50.

S50では、特に図示しないリモコンなどの操作部を介して当該空気調和機1の運転終了操作が入力されたか否かを判定する。運転終了操作が入力されていない場合、判定は満たされず(S50:No)、当該S50の手順を繰り返す。   In S50, it is determined whether or not the operation end operation of the air conditioner 1 has been input via an operation unit such as a remote controller (not shown). If the operation end operation has not been input, the determination is not satisfied (S50: No), and the procedure of S50 is repeated.

一方、運転終了操作が入力された場合、判定が満たされ(S50:Yes)、S55へ進む。S55では、圧縮機8の回転停止も含めて室外機3の作動を停止し、このフローを終了する。   On the other hand, when the operation end operation is input, the determination is satisfied (S50: Yes), and the process proceeds to S55. In S55, the operation of the outdoor unit 3 is stopped including the rotation stop of the compressor 8, and this flow is finished.

なお、以上説明した図8中の制御手順全体を実行するCPUが、各請求項記載の圧縮機制御手段として機能する。   The CPU that executes the entire control procedure in FIG. 8 described above functions as the compressor control means described in each claim.

以上説明したように、本実施形態の空気調和機1によれば、前記R32冷媒かつ前記キャピラリーチューブ10(減圧率を前記R410A冷媒使用時の減圧率のN倍とするもの)の使用に対応させて、前記室外機制御部12が、前記圧縮機8が起動した後前記目標回転数に到達するまでの経過時間を、キャピラリーチューブでの減圧率と同等となるように、R410A冷媒を使用する時の略M倍(1<N≦2の条件で1<M≦N:すなわち最大2倍)とする。このようにして圧縮機8の回転数上昇挙動を緩やかにすることにより、R32冷媒における前記入口冷媒温度の極端な低下を抑制し、前記室内熱交換器4全体の温度バランスの変化を小さくすることができる。この結果、前記冷凍サイクルの状態を比較的短時間で安定化させることができ、また前記結露等の弊害を回避できるものである。なお、M≦NとしてN倍を超えないように設定していることで、冷凍サイクルの立ち上げ時間(≒目標回転数以下で駆動している時間)が不必要に増加してしまうことを抑制できる効果もあるものである。   As described above, according to the air conditioner 1 of the present embodiment, it is possible to cope with the use of the R32 refrigerant and the capillary tube 10 (the pressure reduction rate is N times the pressure reduction rate when the R410A refrigerant is used). When the outdoor unit control unit 12 uses the R410A refrigerant so that the elapsed time until the target rotational speed is reached after the compressor 8 is started is equal to the pressure reduction rate in the capillary tube. Is approximately M times (1 <M ≦ N: that is, twice the maximum under the condition of 1 <N ≦ 2). In this way, by making the rotational speed increase behavior of the compressor 8 gentle, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant is suppressed, and the change in the temperature balance of the entire indoor heat exchanger 4 is reduced. Can do. As a result, the state of the refrigeration cycle can be stabilized in a relatively short time, and adverse effects such as condensation can be avoided. By setting M ≦ N so that it does not exceed N times, it is possible to prevent an unnecessary increase in the start-up time of the refrigeration cycle (≈time for driving at a target rotational speed or less). There is also an effect that can be achieved.

また、本実施形態では特に、圧縮機8を起動後に前記目標回転数にいきなり到達させるのではなく、所定の起動保証回転数Vhにおいていったん回転数増大を中止して所定の時間、回転数を保持する(前記保持行程)。これにより、前記圧縮機8における所望の圧縮性能を安定的かつ確実に得るものである。   In this embodiment, in particular, the target rotational speed is not suddenly reached after the compressor 8 is started, but the rotational speed increase is temporarily stopped at a predetermined start-up guaranteed rotational speed Vh, and the rotational speed is maintained for a predetermined time. (The holding step). Thereby, the desired compression performance in the compressor 8 is stably and reliably obtained.

また、本実施形態では特に、前記起動保証回転数Vhによる保持状態以外において、R32冷媒の使用に対し圧縮機8の回転数を連続的に増大させるときの前記増速行程での速度増加率(前記速度偏差△Vに相当)を緩やかにする。前述の例では、R410A冷媒を用いた通常の場合の、略(1/M)倍(前記の例ではM=N=2)に設定する。これにより、圧縮機8の回転数上昇挙動を確実に緩やかにすることができる。この結果、前記R32冷媒における前記入口冷媒温度の極端な低下を確実に抑制でき、前記冷凍サイクルの状態を確実に短時間で安定化させるものである。   Further, in the present embodiment, in particular, the speed increasing rate in the speed increasing stroke (when the rotational speed of the compressor 8 is continuously increased with respect to the use of the R32 refrigerant, except in the holding state at the startup guaranteed rotational speed Vh ( (Corresponding to the speed deviation ΔV)). In the above-mentioned example, it is set to approximately (1 / M) times (M = N = 2 in the above example) in the normal case using the R410A refrigerant. As a result, the rotational speed increasing behavior of the compressor 8 can be surely moderated. As a result, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be reliably suppressed, and the state of the refrigeration cycle is reliably stabilized in a short time.

また、本実施形態では特に、前記起動保証回転数Vhによる保持状態を経つつ圧縮機8の回転数を連続的に増大させる際、前記保持行程における保持時間Tsを長くする。前述の例では、R410A冷媒を用いた通常の場合の、略M倍(前記の例ではM=N=2)に設定する。これにより、圧縮機8の回転数上昇挙動を確実に緩やかにすることができる。この結果、前記R32冷媒における前記入口冷媒温度の極端な低下を確実に抑制でき、前記冷凍サイクルの状態を確実に短時間で安定化させるものである。   In the present embodiment, in particular, when the rotation speed of the compressor 8 is continuously increased while maintaining the holding state at the startup guaranteed rotation speed Vh, the holding time Ts in the holding stroke is lengthened. In the above-described example, it is set to approximately M times (M = N = 2 in the above example) in the normal case using the R410A refrigerant. As a result, the rotational speed increasing behavior of the compressor 8 can be surely moderated. As a result, an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be reliably suppressed, and the state of the refrigeration cycle is reliably stabilized in a short time.

なお、このとき、起動保証回転数の前記保持時間Tsを、R410A冷媒を用いた通常の場合のN倍(N=2)に設定していたが、これに限られない。少なくともR410A冷媒を用いた通常の場合の保持時間よりも長くかつ略N倍以下で上記保持時間Tsを設定すれば、前記冷凍サイクルの不安定状態時間の短縮化が可能である。   At this time, the holding time Ts of the guaranteed start-up rotational speed is set to N times (N = 2) in the normal case using the R410A refrigerant, but is not limited thereto. If the holding time Ts is set at least longer than the normal holding time using the R410A refrigerant and approximately N times or less, the unstable state time of the refrigeration cycle can be shortened.

また、本実施形態では特に、前記キャピラリーチューブ10が、R410A冷媒用の空気調和機における減圧率の略2倍の減圧率でR32冷媒を減圧する。また、前記室外機制御部12は、この減圧率の増大分に対応して、圧縮機8が起動してから前記目標回転数に到達するまでの経過時間を、R410A冷媒用の空気調和機における前記経過時間の略2倍となるように、圧縮機8の回転数を制御する。これにより、圧縮機8の回転数上昇挙動を約1/2程度に緩やかにすることができる(前記図7参照)ので、前記R32冷媒における前記入口冷媒温度の極端な低下をさらに確実に抑制でき、前記冷凍サイクルの状態をさらに確実に短時間で安定化させるものである。   In the present embodiment, in particular, the capillary tube 10 decompresses the R32 refrigerant at a decompression rate approximately twice the decompression rate in the R410A refrigerant air conditioner. Further, the outdoor unit controller 12 determines the elapsed time from when the compressor 8 is started until the target rotational speed is reached in the air conditioner for R410A refrigerant corresponding to the increase in the decompression rate. The rotational speed of the compressor 8 is controlled so as to be approximately twice the elapsed time. As a result, the rotational speed increase behavior of the compressor 8 can be moderated to about ½ (see FIG. 7), so that an extreme decrease in the inlet refrigerant temperature in the R32 refrigerant can be further reliably suppressed. The state of the refrigeration cycle is more reliably stabilized in a short time.

なお、本発明は上記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not change the summary of invention.

1 空気調和機
2 室内機
3 室外機
4 室内熱交換器
5 室内ファン
6 室内機制御部
7 四方弁
8 圧縮機(R32冷媒用の圧縮機)
9 室外熱交換器
10 キャピラリーチューブ
11 室外ファン
12 室外機制御部
21 主経路(冷媒配管)
22 副経路(冷媒配管)
31 前方側熱交換器
32 後方側熱交換器
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 3 Outdoor unit 4 Indoor heat exchanger 5 Indoor fan 6 Indoor unit control part 7 Four-way valve 8 Compressor (compressor for R32 refrigerant)
9 Outdoor heat exchanger 10 Capillary tube 11 Outdoor fan 12 Outdoor unit controller 21 Main path (refrigerant piping)
22 Sub route (refrigerant piping)
31 Front side heat exchanger 32 Back side heat exchanger

Claims (5)

室外機と室内機とをR32冷媒を用いた冷媒配管で接続した、前記R32冷媒用の空気調和機において、
前記室内機は、
前記R32冷媒と室内空気との熱交換を行う室内熱交換器と、
前記室内熱交換器に送風する室内ファンとを有し、
前記室外機は、
前記R32冷媒を圧縮する前記R32冷媒用の圧縮機と、
前記R32冷媒と外気との熱交換を行う室外熱交換器と、
R410A冷媒用の空気調和機における前記R410Aの減圧率のN倍(但し1<N≦2)の減圧率で前記R32冷媒を減圧するキャピラリーチューブと、
前記室外熱交換器に送風する室外ファンと、
少なくとも前記圧縮機の回転数を制御する室外制御部とを有し、
前記室外制御部は、
前記R32冷媒用の圧縮機が起動してから所定の目標回転数に到達するまでの経過時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒を圧縮する前記R410A冷媒用の圧縮機が起動してから前記所定の目標回転数に到達するまでの経過時間のM倍(但し1<M≦N)となるように、前記R32冷媒用の圧縮機の回転数を制御する圧縮機制御手段を備える
ことを特徴とする空気調和機。
In the air conditioner for R32 refrigerant, in which the outdoor unit and the indoor unit are connected by a refrigerant pipe using R32 refrigerant,
The indoor unit is
An indoor heat exchanger for exchanging heat between the R32 refrigerant and room air;
An indoor fan for blowing air to the indoor heat exchanger;
The outdoor unit is
A compressor for the R32 refrigerant that compresses the R32 refrigerant;
An outdoor heat exchanger for exchanging heat between the R32 refrigerant and outside air;
A capillary tube for reducing the pressure of the R32 refrigerant at a pressure reduction rate N times (where 1 <N ≦ 2) of the pressure reduction rate of the R410A in the air conditioner for the R410A refrigerant;
An outdoor fan that blows air to the outdoor heat exchanger;
An outdoor control unit that controls at least the rotational speed of the compressor,
The outdoor control unit is
The R410A refrigerant compressor that compresses the R410A refrigerant in the air conditioner for R410A refrigerant is activated after the R32 refrigerant compressor is activated until it reaches a predetermined target rotational speed. Compressor control means for controlling the rotational speed of the compressor for the R32 refrigerant so that it is M times the elapsed time from reaching the predetermined target rotational speed (where 1 <M ≦ N). An air conditioner comprising:
前記圧縮機制御手段は、
前記R32冷媒用の圧縮機が起動してから所定の起動保証回転数による保持を経て前記所定の目標回転数に到達するように、前記R32冷媒用の圧縮機の回転数を制御する
ことを特徴とする請求項1記載の空気調和機。
The compressor control means includes
The rotation speed of the R32 refrigerant compressor is controlled so that the predetermined target rotation speed is reached after being held at a predetermined start-up guaranteed rotation speed after the R32 refrigerant compressor is started. The air conditioner according to claim 1.
前記圧縮機制御手段は、
前記所定の起動保証回転数による保持状態以外で前記R32冷媒用の圧縮機の回転数を連続的に増加させるときの増加率が、前記R410A冷媒用の空気調和機において前記所定の起動保証回転数による保持状態以外で前記R410A冷媒用の圧縮機の回転数を連続的に増加させるときの増加率より小さくかつ1/M倍以上となるように、前記R32冷媒用の圧縮機の回転数を制御する
ことを特徴とする請求項2記載の空気調和機。
The compressor control means includes
The rate of increase when the rotational speed of the compressor for the R32 refrigerant is continuously increased in a state other than the holding state at the predetermined startup guaranteed rotational speed is equal to the predetermined guaranteed startup rotational speed in the air conditioner for the R410A refrigerant. as the rotational speed of the compressor for the R410A refrigerant becomes continuously or smaller than the increase rate one 1 / M times in increasing except holding state by the rotational speed of the compressor for the R32 refrigerant It controls, The air conditioner of Claim 2 characterized by the above-mentioned.
前記圧縮機制御手段は、
前記R32冷媒用の圧縮機が起動してから前記所定の起動保証回転数を経て前記所定の目標回転数に到達するときの前記所定の起動保証回転数での保持時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒用の圧縮機が起動してから前記所定の起動保証回転数を経て前記所定の目標回転数に到達するときの前記所定の起動保証回転数での保持時間より長くかつM倍以下となるように、前記R32冷媒用の圧縮機の回転数を制御する
ことを特徴とする請求項2または請求項3記載の空気調和機。
The compressor control means includes
The holding time at the predetermined guaranteed rotation speed when the R32 refrigerant compressor starts up and reaches the predetermined target rotation speed after passing through the predetermined guaranteed rotation speed is determined for the R410A refrigerant. In the air conditioner, is it longer than the holding time at the predetermined guaranteed start speed when the R410A refrigerant compressor starts up and reaches the predetermined target speed through the predetermined start guaranteed speed? 4. The air conditioner according to claim 2, wherein the rotation speed of the compressor for the R32 refrigerant is controlled to be equal to or less than M times. 5.
前記キャピラリーチューブは、
前記R410A冷媒用の空気調和機における前記R410Aの減圧率の2倍の減圧率で前記R32冷媒を減圧し、
前記圧縮機制御手段は、
前記R32冷媒用の圧縮機が起動してから所定の目標回転数に到達するまでの経過時間が、前記R410A冷媒用の空気調和機において前記R410A冷媒を圧縮する前記R410A冷媒用の圧縮機が起動してから前記所定の目標回転数に到達するまでの経過時間の2倍となるように、前記R32冷媒用の圧縮機の回転数を制御する
ことを特徴とする請求項1乃至4のいずれか1項に記載の空気調和機。
The capillary tube is
The R32 refrigerant and decompressed at twice the pressure reduction rate of the pressure reduction rate of the R410A in an air conditioner for the R410A refrigerant,
The compressor control means includes
The R410A refrigerant compressor that compresses the R410A refrigerant in the air conditioner for the R410A refrigerant is activated after the R32 refrigerant compressor is activated until it reaches a predetermined target rotational speed. 5. The rotation speed of the compressor for the R32 refrigerant is controlled so as to be twice as long as an elapsed time until the predetermined target rotation speed is reached. Item 1. An air conditioner according to item 1.
JP2015046493A 2015-03-09 2015-03-09 Air conditioner Active JP6468890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046493A JP6468890B2 (en) 2015-03-09 2015-03-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046493A JP6468890B2 (en) 2015-03-09 2015-03-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2016166701A JP2016166701A (en) 2016-09-15
JP6468890B2 true JP6468890B2 (en) 2019-02-13

Family

ID=56898175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046493A Active JP6468890B2 (en) 2015-03-09 2015-03-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP6468890B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272571U (en) * 1985-10-25 1987-05-09
JP2014081118A (en) * 2012-10-16 2014-05-08 Panasonic Corp Air conditioner
JP6113503B2 (en) * 2012-12-28 2017-04-12 ダイキン工業株式会社 Heat pump equipment
JP2016166700A (en) * 2015-03-09 2016-09-15 株式会社コロナ Air conditioner

Also Published As

Publication number Publication date
JP2016166701A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
JP6225819B2 (en) Air conditioner
JP5516695B2 (en) Air conditioner
JP6044238B2 (en) Air conditioner
CN108351116B (en) Air conditioner
WO2019171588A1 (en) Refrigeration cycle apparatus
CN110741208B (en) Air conditioner
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP6120797B2 (en) Air conditioner
JP5800909B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP6084297B2 (en) Air conditioner
JPWO2019003306A1 (en) Air conditioner
JP2014153028A (en) Air conditioner
JP5316457B2 (en) Air conditioner
JP6576468B2 (en) Air conditioner
JP6567086B2 (en) Air conditioner
JP6468890B2 (en) Air conditioner
JP2016166700A (en) Air conditioner
JP2008215648A (en) Air conditioner
JP6531794B2 (en) Air conditioner
JP2020153604A (en) Refrigeration cycle device
JP6573507B2 (en) Air conditioner
JP6964049B2 (en) Heat pump type cold water air conditioner
JP6978363B2 (en) Heat pump heat source machine
JP5780199B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190115

R150 Certificate of patent or registration of utility model

Ref document number: 6468890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250