JP6467573B2 - Method for producing a food material having emulsifying ability and the food material - Google Patents

Method for producing a food material having emulsifying ability and the food material Download PDF

Info

Publication number
JP6467573B2
JP6467573B2 JP2014173167A JP2014173167A JP6467573B2 JP 6467573 B2 JP6467573 B2 JP 6467573B2 JP 2014173167 A JP2014173167 A JP 2014173167A JP 2014173167 A JP2014173167 A JP 2014173167A JP 6467573 B2 JP6467573 B2 JP 6467573B2
Authority
JP
Japan
Prior art keywords
oil
starch
flour
fat
food material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014173167A
Other languages
Japanese (ja)
Other versions
JP2015107097A (en
Inventor
克彦 三國
克彦 三國
三浦 靖
靖 三浦
三輪 章志
章志 三輪
幸男 早川
幸男 早川
野田 實
實 野田
信次 吉野
信次 吉野
昭一 小林
昭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ensuiko Sugar Refining Co Ltd
Ishikawa Prefecture
Iwate University
Original Assignee
Ensuiko Sugar Refining Co Ltd
Ishikawa Prefecture
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensuiko Sugar Refining Co Ltd, Ishikawa Prefecture, Iwate University filed Critical Ensuiko Sugar Refining Co Ltd
Priority to JP2014173167A priority Critical patent/JP6467573B2/en
Publication of JP2015107097A publication Critical patent/JP2015107097A/en
Application granted granted Critical
Publication of JP6467573B2 publication Critical patent/JP6467573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fish Paste Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Noodles (AREA)
  • Grain Derivatives (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Description

本発明は、油脂原料を擬似粉末状態で、油脂関連酵素のリパーゼで反応させ、反応物全体を食品素材として用いることを特徴とする、油脂複合体としての該食品素材の製造法とその食品素材に関するものであり、更に詳しくは、油脂原料の粉末状態を保持するために用いる粉末状態保持用素材(粉末化基材又は担体、反応の場として用いる)と反応基質(反応用原料又は基質)を混合して、適度の水分を添加し、粉末の水分がペンジュラー域からキャピラリー域の全体が散ける「擬似粉末状態」で油脂関連酵素のリパーゼを作用させて、油脂複合体としての該食品素材を製造する方法とその食品素材に関するものである。   The present invention relates to a method for producing a food material as an oil / fat complex and the food material, characterized in that the oil / fat raw material is reacted in a pseudo-powder state with a lipase of an oil / fat-related enzyme, and the entire reaction product is used as a food material. More specifically, a powder state holding material (powdered base material or carrier, used as a reaction field) and a reaction substrate (reaction raw material or substrate) used for maintaining the powder state of the fat and oil raw material Mix, add moderate moisture, and let the lipase of the fat and oil related enzyme act in a “pseudo-powder state” where the moisture of the powder is scattered from the pendulum region to the entire capillary region. It relates to a method of manufacturing and its food material.

本明細書で用いる用語として、乳化能とは、「水中油滴(O/W)型、又は油中水滴(W/O)型エマルションにおいて、互いに溶け合わない(相溶しない)液体からなる分散液を形成する能力」を意味し、該乳化能をもつ特性を「乳化性・均一分散性」と呼称する。試験区分は、無試験(無処理)区を「Bnk」と略称し、対照試験区を「Ref」と略称し、試験区を「Exp」と略称することがある。   As used herein, the term emulsifying ability refers to “a dispersion composed of liquids that are incompatible with each other in an oil-in-water (O / W) type or water-in-oil (W / O) type emulsion. It means “ability to form a liquid”, and the characteristic having the emulsifying ability is referred to as “emulsification / uniform dispersion”. In the test category, the untested (untreated) group may be abbreviated as “Bnk”, the control test group may be abbreviated as “Ref”, and the test group may be abbreviated as “Exp”.

従来より、酵素反応は液中で行い、基質が高濃度であっても反応は進み、また、農産原料の状態で保蔵した場合、酵素反応が進むことがあり、農産原料の品質劣化が起こることは知られていた。逆に、農産原料の加工の際に、酵素剤を加えて製造操作を容易にし、製品の品質を向上させている例もある。また、基質高濃度下で糖質関連酵素の逆合成反応を利用した各種糖質、糖質複合体の製造方法が、開発、実用化されている。油脂関連酵素の場合、農産物、特に米、大豆などの穀類にリパーゼ活性があると、油脂成分の分解が進み、更に油脂成分の分解で生成させる脂肪酸の酸化などで、異味、異臭など品質低下が起こるので、リパーゼ欠損品種の作出なども行われている。   Conventionally, enzymatic reactions are carried out in liquid, the reaction proceeds even if the substrate is at a high concentration, and when stored in the state of agricultural raw materials, the enzymatic reaction may proceed, resulting in degradation of the quality of agricultural raw materials. Was known. On the contrary, there is an example in which an enzyme agent is added during the processing of agricultural raw materials to facilitate the manufacturing operation and improve the quality of the product. In addition, methods for producing various carbohydrates and carbohydrate complexes using reverse synthesis reactions of carbohydrate-related enzymes under high substrate concentrations have been developed and put into practical use. In the case of fat and oil related enzymes, if lipase activity is present in cereals such as agricultural products, especially rice and soybeans, the degradation of the fat and oil components will proceed, and the quality of the products will deteriorate due to the oxidation of fatty acids produced by the decomposition of the fat and oil components. Because it happens, the production of lipase-deficient varieties is also being carried out.

先行技術として、例えば、非特許文献1では、乳化された脂溶性成分が近づいたりして、酵素周辺の環境が疎水的になると、リパーゼのフタ構造が開いて、疎水性の活性中心が外側にむき出しになる「活性型」酵素分子が増えてくる、また、リパーゼ分子が活性を発現するのに必要な高次構造を維持する上で、有機溶媒に最小限の水を添加しなければならない、また、一般的有機合成分野でリパーゼ反応に用いられる溶媒の種類は、いろいろあるが、全てのリパーゼ反応に等しく有効であるとは限らず、リパーゼの種類、基質の種類、水を含む溶媒の濃度、酵素の濃度や状態、反応温度、反応方法(撹拌条件)、反応時間などによって、溶媒の効果は多様に異なるので、個々の利用目的に応じて詳細な検討が必要である、と説明されている。   As a prior art, for example, in Non-Patent Document 1, when an emulsified fat-soluble component approaches and the environment around the enzyme becomes hydrophobic, the lipase lid structure opens, and the hydrophobic active center is on the outside. More “active” enzyme molecules are exposed, and a minimum amount of water must be added to the organic solvent to maintain the higher order structure required for the lipase molecule to exhibit activity. In addition, there are various types of solvents used for lipase reactions in the general organic synthesis field, but they are not necessarily effective for all lipase reactions. The types of lipases, types of substrates, and concentrations of solvents containing water It is explained that the effect of the solvent varies depending on the enzyme concentration and state, reaction temperature, reaction method (stirring conditions), reaction time, etc., and detailed examination is necessary depending on the purpose of use. Yes.

リパーゼの機能は、反応系の水分の含有量により異なり、特許文献1の、澱粉粒又はセルロース粉末固定化リパーゼ及び油脂反応物の製法では、通常、リパーゼ分子が、活性を発現するのに必要な高次構造を維持する上で、有機溶媒に最小限の水を添加しなければならないとあり、リパーゼの機能発現には、水の存在が必須であり、水のない系では、反応は起こらない、一般に、水分が10%以上では、加水分解反応に有利であり、1%以下では、エステル合成反応、エステル交換反応に有利であり、水分の量は、リパーゼの種類、基質の種類、反応条件により、反応様式、効果が異なる、と説明されている。   The function of the lipase varies depending on the water content of the reaction system. In the method for producing a starch granule or cellulose powder-immobilized lipase and an oil-and-fat reactant in Patent Document 1, a lipase molecule is usually necessary for the activity to be expressed. In order to maintain the higher order structure, it is necessary to add a minimum amount of water to the organic solvent. The presence of water is essential for the function of lipase, and no reaction occurs in a system without water. In general, when the water content is 10% or more, it is advantageous for the hydrolysis reaction. When the water content is 1% or less, it is advantageous for the ester synthesis reaction or transesterification reaction. The amount of water is determined depending on the type of lipase, the type of substrate, and the reaction conditions. Explains that the reaction mode and effect are different.

特許文献1の技術は、澱粉粒又はセルロース粉末に酵素リパーゼを結合させた澱粉粒又はセルロース粉末固定化リパーゼ及びその製法に関するものであり、更に詳しくは、澱粉粒又はセルロース粉末担体に、リパーゼを加え、粉末状態を維持して、混合、結合させて固定化する方法及び該方法によって得られる澱粉粒又はセルロース粉末固定化リパーゼ、更に、この澱粉粒又はセルロース粉末固定化リパーゼに、油脂又はその分解物と、グルコースなどから成る被反応物に作用させて、各種の油脂反応物を製造する方法に関与するものである。しかし、本技術は、固定化リパーゼの製造とそれを用いた油脂反応物の製造の二段階の製法となっており、煩雑である。   The technology of Patent Document 1 relates to a starch granule or cellulose powder-immobilized lipase obtained by binding an enzyme lipase to starch granules or cellulose powder and a method for producing the same. More specifically, lipase is added to starch granules or cellulose powder carrier. , A method of maintaining the powder state, mixing, bonding and fixing, and starch granules or cellulose powder-immobilized lipase obtained by the method, and further to this starch granules or cellulose powder-immobilized lipase, And a method for producing various types of oil-and-fat reactants by acting on the reactants such as glucose. However, this technique is a two-step production method of producing an immobilized lipase and producing an oil-and-fat reactant using the lipase, and is complicated.

この他、特許文献2の、糖質と糖質以外の食品成分を混合して大気中で高温処理して機能性素材を製造する方法及びその素材では、粉末を担体として、粉末状の食品素材を混合して噴霧し、処理することを特徴とする食品素材の処理方法であり、これにより、粉末中で各種食品成分が反応したり粉末自体と結合し、目的に応じた食品素材とすることができる、とあり、また、粉末担体として、粉末セルロース、粉末キチンを用いた場合には、各種食品成分が反応し、目的に応じた食品素材とすることができる、とあり、この他、粉末担体として利用できるものとしては、ガラスビーズ、活性炭、樹脂類粉末などが例示される、と説明されている。   In addition, the method of manufacturing functional materials by mixing high-temperature processing in the atmosphere by mixing saccharides and food components other than saccharides in Patent Document 2, and the raw materials, using the powder as a carrier, powdered food materials This is a method for processing food materials characterized by mixing, spraying, and processing, whereby various food ingredients react in the powder or combine with the powder itself to make a food material suitable for the purpose. In addition, when powdered cellulose or powdered chitin is used as a powder carrier, various food ingredients react to form a food material according to the purpose. Examples of the carrier that can be used include glass beads, activated carbon, and resin powders.

そして、この文献では、更に、本技術がリパーゼの反応にも適用でき、例えば、粉末担体に基質の脂肪酸と糖アルコールを噴霧混合し、50〜60℃で密閉静置反応すれば、糖―脂肪酸エステルを製造できる、とあり、また、リパーゼの反応での基質の組合せをデキストリンとグルコース、フルクトースなど単糖、糖アルコール、ポリフェノール、ステロイドなどの水酸基をもつ食品成分などに換えて、サイクロデキストリン合成酵素の作用を利用すれば、各種の糖転移物が得られる、とあり、また、プルラナーゼ、イソアミラーゼによる糖転移反応、α−アミラーゼ、グルコアミラーゼによる糖転移反応、ペプチダーゼによるアミノ酸転移反応も、水が粒子表面に局在するために効率的に進行することが予想され、その利用も可能である、と説明されている。   In this document, the present technology can be further applied to a lipase reaction. For example, if a fatty acid and a sugar alcohol as a substrate are sprayed and mixed in a powder carrier and a stationary reaction is performed at 50 to 60 ° C., a sugar-fatty acid is obtained. Esters can be produced, and the combination of substrates in the lipase reaction is replaced with dextrin and food components with hydroxyl groups such as glucose, fructose and other monosaccharides, sugar alcohols, polyphenols, steroids, etc. It is said that various glycosylated products can be obtained by utilizing the action of water, and also the transglycosylation reaction by pullulanase and isoamylase, the transglycosylation reaction by α-amylase and glucoamylase, and the transamination reaction by peptidase, It is expected to proceed efficiently because it is localized on the particle surface, and its use is also possible. It has been described.

しかし、特許文献1には、「担体表面を反応の場とした」との記述があり、澱粉粒、セルロース粉末担体に、粉末状態を維持して、リパーゼを固定化し、油脂、油脂分解物、糖質などと液状で作用させて製品を製造する方法は、予想だにできないものである、と説明されている。
更に、特許文献2では、粉末担体、脂肪酸、糖アルコールの配合比、粉末担体の含水率そしてリパーゼ反応条件などの具体的な条件が明確でない。
However, in Patent Document 1, there is a description that “the surface of the carrier is used as a reaction field”, and the lipase is immobilized on the starch granules and the cellulose powder carrier while maintaining the powder state. It is explained that a method of producing a product by reacting with a carbohydrate or the like in a liquid state cannot be expected.
Furthermore, in Patent Document 2, specific conditions such as a powder carrier, a blending ratio of fatty acid and sugar alcohol, a moisture content of the powder carrier, and a lipase reaction condition are not clear.

他の先行技術として、例えば、糖質関連酵素を用いた粉末状態の酵素反応による各種素材の製造方法があり、各種製品が製造されるとされている。その中に、多くの関連技術もあり、リパーゼ反応も酵素反応であるので、基本的には、同様の技術と考えられる。   As another prior art, for example, there is a manufacturing method of various materials by a powdered enzyme reaction using a sugar-related enzyme, and various products are manufactured. Among them, there are many related technologies, and the lipase reaction is also an enzyme reaction, so it is basically considered the same technology.

麹菌による米麹の製造では、蒸した米に麹菌を散布分散して室で発酵し、微生物が生産する酵素を利用した物質生産が行われている。この場合、本態は酵素反応であるが、麹菌を接種して発酵させるものであり、固体発酵、半固体発酵など、水分含有原材料を用いた各種醸造技術に通じるものである。これに対し、本発明の方法は、原材料に適量の水分を含ませ、直接酵素を作用させ、製品化するもので、麹菌による発酵とは本質的に異なる技術である。   In the production of rice bran by koji molds, koji molds are sprayed and dispersed in steamed rice, fermented in a room, and materials are produced using enzymes produced by microorganisms. In this case, although this is an enzyme reaction, it is inoculated and fermented with Aspergillus oryzae, leading to various brewing techniques using water-containing raw materials such as solid fermentation and semi-solid fermentation. On the other hand, the method of the present invention is a technique essentially different from fermentation by koji molds, in which an appropriate amount of moisture is contained in a raw material and an enzyme is directly acted on to produce a product.

他の先行技術として、非特許文献2では、種麹使用区とリパーゼ製剤添加区との味噌の製造比較試験を行っているが、本技術は、本発明のように、素材の組み合わせと条件を設定して成る新しい素材の製造を目的とするものではない。   As other prior arts, in Non-Patent Document 2, a production comparison test of miso is conducted between the use zone of the soy sauce and the addition region of the lipase preparation. It is not intended for the production of new materials.

また、製パン用酵素製剤には、例えば、特許文献3のような、リパーゼを主体としたものなど各種の製品があり、これらを利用することにより、パン製品の品質を各種に改善させている。小麦粉に各種素材及び酵素製剤を混合して、製パン用酵素製剤に含まれる酵素を発酵と同時に作用させるもので、本発明の方法に一部類似するものであるが、酵母が関与し、食品製造に用いられるもので、本発明の方法とは、特に、乾燥粉末素材の製造という点で、本質的に異なるものである。   In addition, as an enzyme preparation for bread making, for example, there are various products such as those mainly composed of lipase as in Patent Document 3, and by using these, the quality of bread products is improved in various ways. . Various ingredients and enzyme preparations are mixed with wheat flour and the enzymes contained in the enzyme preparation for bread making are allowed to act simultaneously with the fermentation, which is partly similar to the method of the present invention. It is used for manufacturing and is essentially different from the method of the present invention, particularly in terms of manufacturing a dry powder material.

他の先行技術として、非特許文献3では、米粉にβ−アミラーゼを添加混捏し、ケーキ状にして反応させ柔らかいモチが形成されることが示されている。この方法は、本発明の方法に一部類似しているが、食品製造に用いられるもので、本発明の粉末素材の製造法とは本質的に異なるものである。更に、食品自体に酵素類を作用させて、組織を崩壊させるなどして、物性、食味を改良する例もあるが、これらは、食品全体を取り扱うもので、本発明のように、素材・成分を擬似粉末状態で反応させるものではない。   As another prior art, Non-Patent Document 3 shows that β-amylase is added and kneaded to rice flour and reacted in the form of a cake to form a soft mochi. This method is partially similar to the method of the present invention, but is used for food production and is essentially different from the method for producing a powder material of the present invention. Furthermore, there are examples of improving the physical properties and taste by causing enzymes to act on the food itself to disrupt the tissue, but these handle the entire food. Is not allowed to react in a pseudo powder state.

更に、他の先行技術として、非特許文献4では、オレイン酸(不飽和脂肪酸)と馬鈴薯澱粉を反応させているが、該技術は、可及的に水分含量を少なくしてリパーゼで反応させるもので、結合体の生成量は極めて少ないが、これは、本発明の方法では、添加する原料として脂肪酸を含めないこと、また、前処理技術として過熱水蒸気処理をも含むことからも、本発明とは異なる研究開発例である。   Furthermore, as other prior art, in Non-Patent Document 4, oleic acid (unsaturated fatty acid) and potato starch are reacted, but this technique is to react with lipase with as little water content as possible. In the method of the present invention, since the fatty acid is not included as a raw material to be added and the superheated steam treatment is also included as a pretreatment technique, Are different examples of research and development.

特開2010−226966号公報JP 2010-226966 A 特開2009−60875号公報JP 2009-60875 A 特開2005−318833号公報JP 2005-318833 A

都築和香子:リパーゼの機能と食品への応用、食糧その科学と技術、45号、p.1−18(2007)Kazuko Tsuzuki: Functions of lipase and its application to food, Food science and technology, No. 45, p. 1-18 (2007) 渡辺隆幸ら:「米味噌の脂肪酸エチルエステル生成に与える種麹、酵母と酵素剤の影響」秋田県総合食品研究所報告 第8号、p.7−14(2006)Takayuki Watanabe et al .: “Effects of seed meal, yeast and enzyme on fatty acid ethyl ester formation in rice miso”, Akita Prefectural Food Research Institute Report No. 8, p. 7-14 (2006) 杉田亜希子ら:「Bacillus flexus由来の耐熱性β−アミラーゼについて」応用糖質科学 第1巻 第2号 p.194−200(2011)Akiko Sugita et al .: “About thermostable β-amylase derived from Bacillus flexus” Applied Glycoscience Volume 1 Issue 2 p. 194-200 (2011) 日本応用糖質科学会大会平成24年度大会講演要旨集、p.47“オレイン酸結合澱粉の特徴”(平成24年9月19日)Abstracts of Annual Meeting of Japanese Society of Applied Glycoscience 2012, p. 47 “Characteristics of oleic acid-binding starch” (September 19, 2012)

一般に、加工・化工製品については、酵素処理による製造の際には、液状反応を行うのが常法であり、反応終了後、生成物を取り出し、そのままの状態で濃縮・乾燥して製品化し、固定化酵素を用いる場合も、通液して製造する。この製造法では、水を多量に必要とし、しかも安定性の高い乾燥品を得るためには、生成物の濃縮・乾燥工程を必要とし、生産コストの上昇と環境負荷の増大が製品価格に影響する。濃縮のみで液状製品とすることもできる例もあるが、品質保持、保存、取り扱いの面からは、乾燥粉末にすることが望まれる。更に、各種ミックス粉へのニーズも多様化し、粉への各種機能性の付与も求められている。   In general, for processed and modified products, it is common practice to perform a liquid reaction when producing by enzyme treatment. After the reaction is completed, the product is taken out and concentrated and dried to produce a product. Even when an immobilized enzyme is used, it is produced by passing it through. This production method requires a large amount of water and requires a product concentration and drying process to obtain a highly stable dry product. The increase in production cost and the increase in environmental impact will affect the product price. To do. Although there is an example that can be made into a liquid product only by concentration, it is desired to make it a dry powder from the viewpoint of quality maintenance, storage, and handling. Furthermore, needs for various mixed powders are diversified, and various functionalities are required to be added to the powders.

一般に、粉末状でも酵素反応は進むと考えられ、糖質関連酵素で粉末状態を保持するための糖質と反応用原料の等量混合物に酵素を添加したものの水分含有率は、澱粉、穀粉では14〜50%であり、リパーゼ反応の場合も、水分含有率20〜50%の範囲で酵素反応が進むと考えられる。しかし、澱粉、穀粉の種類による酵素反応性は大きく異なり、適用できる種類は限られている。   In general, the enzyme reaction is thought to proceed even in powder form, and the water content of starch and flour is the same as that obtained by adding enzyme to an equal mixture of sugar and reaction raw material to maintain the powder state with a sugar-related enzyme. In the case of lipase reaction, the enzyme reaction is considered to proceed in the range of 20 to 50% water content. However, the enzyme reactivity varies greatly depending on the types of starch and flour, and the applicable types are limited.

本発明者らは、更に検討を進め、リパーゼの「反応の場」として最適乃至好適な食品素材を探索し、リパーゼの擬似粉末状態での反応に有利な澱粉の種類、穀粉の種類を見出した。更に、リパーゼ反応を増強する水分含有率、食品素材も見出した。これらの条件を組み合わせて、水分含有量を少なくし、原料を混合し、一定温度で放置するだけで、乳化能をもつ食品素材を製造できる方法を鋭意検討して、本発明を完成するに至った。   The present inventors have further studied, searched for a food material that is optimal or suitable as a “reaction field” for lipase, and found a kind of starch and a kind of flour that are advantageous for the reaction of lipase in a simulated powder state. . Furthermore, the moisture content and food material which enhance lipase reaction were also found. Combining these conditions, the present inventors completed the present invention by intensively studying a method for producing a food material having an emulsifying ability by reducing the water content, mixing the raw materials, and leaving it at a constant temperature. It was.

本発明は、リパーゼの反応の場として、各種澱粉、米粉などの穀粉から選択された粉末を用い、これに、適量の水と液状油脂を混合したもの、又は、油脂と有機酸を混合した後に加熱処理したものに対して、リパーゼを擬似粉末状態で反応させ、加水分解反応を液状での反応よりも促進させ、反応物全体に乳化能を付与して、乳化能をもつ食品用素材を製造するものである。   The present invention uses a powder selected from flours such as various types of starch and rice flour as a reaction site for lipase, and after mixing a suitable amount of water and liquid fat or oil, or after mixing fat and organic acid Produces a food material with emulsifying ability by reacting lipase in a pseudo-powder state with the heat-treated product, accelerating the hydrolysis reaction more than the liquid reaction, and adding emulsifying ability to the whole reaction product. To do.

本発明では、上述のように、リパーゼの「反応の場」として最適乃至好適な食品素材を探索し、リパーゼ反応に有利な澱粉の種類、穀粉の種類を見出し、更に、リパーゼ反応を増強する水分含有率、油脂含有率、有機酸含有率、加熱処理条件を見出した。本発明は、これらの条件を組み合わせて、水分含有量を少なくし、原料を混合し、一定温度で放置するだけで目的の製品が製造できる方法を開発し、その製造方と生産物を提供することを目的とするものである。   In the present invention, as described above, the optimum or preferred food material as a “reaction field” for lipase is searched for, the types of starch and flour that are advantageous for the lipase reaction are found, and moisture that enhances the lipase reaction is found. The content, oil content, organic acid content, and heat treatment conditions were found. The present invention combines these conditions to develop a method capable of producing a target product simply by reducing the water content, mixing raw materials, and allowing to stand at a constant temperature, and provides a production method and a product. It is for the purpose.

一般に、油脂は、脂肪油(fatty oil)と脂肪(fat)の総称で、化学的には1分子のグリセリンと3分子の脂肪酸が結合したエステル(トリグリセリド)の混合物である。したがって、ここでは、本発明でいう油脂には、遊離脂肪酸は含まないものとする。また、本発明において、擬似粉末状態とは、穀粉又は澱粉に、油脂を混合したとき、粉末が塊になり、水分が染み出る状態ではなく、ペンジュラー域からキャピラリー域までの湿潤状態からの乾燥が容易で、乾燥したとき、簡単に微粉砕できる状態のものも含むものである。   In general, fats and oils are a general term for fatty oils and fats, and are chemically a mixture of esters (triglycerides) in which one molecule of glycerin and three molecules of fatty acid are bonded. Therefore, the fats and oils referred to in the present invention do not include free fatty acids. Further, in the present invention, the pseudo powder state means that when fats and oils are mixed with flour or starch, the powder becomes a lump and moisture does not ooze out, and drying from a wet state from the pendulum region to the capillary region does not occur. It includes those that are easy and can be easily pulverized when dried.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)穀粉又は澱粉と、油脂を混合し、リパーゼを該穀粉又は澱粉に対して20〜50%(W/W)の水分含有率並びに5〜50%(W/W)の油脂含有率の、粉末の水分がペンジュラー域からキャピラリー域の全体が散ける「擬似粉末状態で反応させて、油脂を加水分解することにより、これら反応混合物から構成される遊離脂肪酸を含有する油脂複合体としての食品素材を製造することを特徴とする該食品素材の製造方法。
(2)穀粉又は澱粉と、油脂と、有機酸を混合し、かつ加熱処理したものを用いる、前記(1)に記載の方法。
(3)更に有機酸含有率が0〜20%(W/W)(但し、0は0超を表わす。)、かつ加熱処理したものを用いる場合の加熱処理温度が150〜300℃の条件の擬似粉末状態で反応させる、前記(2)に記載の方法。
(4)穀粉が、米粉、薄力小麦粉、又は中力小麦粉であり、澱粉が、馬鈴薯澱粉、タピオカ澱粉、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、小麦澱粉、又はサゴ澱粉である、前記(1)又は(2)に記載の方法。
(5)油脂が、液状乃至半固形状の、サラダ油、ナタネ油、大豆油、パーム油、ヤシ油、中鎖脂肪酸トリグリセリド油、トウモロコシ油、べに花油、オリーブ油、ごま油、又はこめ油である、前記(1)又は(2)に記載の方法。
(6)有機酸が、クエン酸、イタコン酸、DL−リンゴ酸、L−酒石酸、フマル酸、アジピン酸、グルコノラクトン、グルコン酸、乳酸フィチン酸、又は酢酸である、前記(2)に記載の方法。
(7)加熱処理が、150〜300℃の過熱水蒸気及び伝導伝熱加熱である、前記(2)に記載の方法。
(8)穀粉又は澱粉と、油脂を混合し、あるいは、更に、有機酸を混合し、かつ加熱処理を行った後に、リパーゼを上記擬似粉末状態で反応させて、乳化能をもつ油脂複合体としての食品素材を製造する、前記(1)又は(2)に記載の方法。
(9)穀粉又は澱粉と、油脂と、炭酸カルシウムを混合し、リパーゼを上記擬似粉末状態で反応させて、油脂を加水分解することにより、酸価(AV)を低下させた油脂複合体としての食品素材とする前記(1)に記載の方法。
(10)前記(1)から(7)のいずれか一項に記載の方法で製造した油脂複合体としての食品素材に、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、リン酸カルシウム、リン酸カリウム/カリウム塩、水酸化ナトリウム、水酸化カリウム、又はアンモニアのアルカリ系素材やカルマグS(商品名 オリエンタル酵母工業社製、原料 ドロマイト:カルシウム、マグネシウム含有物)の一種以上を添加し、撹拌混合して、酸価(AV)を低下させた食品素材とすることを特徴とする該食品素材の製造方法。
(11)前記(9)又は(10)に記載の方法で酸価(AV)を低下させた油脂複合体としての食品素材。
(12)前記(1)から(10)のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする加工食品。
(13)前記(1)から(10)のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とするベークド製品。
(14)前記(1)から(10)のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする水産練り製品。
(15)前記(1)から(10)のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする麺製品。

The present invention for solving the above-described problems comprises the following technical means.
(1) Mixing cereal flour or starch with fats and oils, and making lipase 20-20 % (W / W) moisture content and 5-50 % (W / W) fat content with respect to the flour or starch. , By reacting in a pseudo-powder state ” in which the moisture of the powder is scattered from the pendulum region to the entire capillary region , and hydrolyzing the fats and oils, as a fat and oil complex containing free fatty acids composed of these reaction mixtures A method for producing a food material, comprising producing the food material.
(2) The method as described in said (1) using the thing which mixed flour and starch, fats and oils, and the organic acid, and heat-processed.
(3) Further, the organic acid content is 0 to 20% (W / W) (where 0 represents more than 0) , and the heat treatment temperature in the case of using the heat treatment is 150 to 300 ° C. The method according to (2) , wherein the reaction is performed in a pseudo powder state.
(4) The flour is rice flour, thin wheat flour, or medium strength wheat flour, and the starch is potato starch, tapioca starch, glutinous rice starch, glutinous rice starch, corn starch, corn starch, wheat starch, or sago starch. The method according to (1) or (2) above.
(5) Said oil or fat is liquid or semi-solid, salad oil, rapeseed oil, soybean oil, palm oil, coconut oil, medium chain fatty acid triglyceride oil, corn oil, ben flower oil, olive oil, sesame oil or rice bran oil The method according to (1) or (2).
(6) The organic acid is citric acid, itaconic acid, DL-malic acid, L-tartaric acid, fumaric acid, adipic acid, gluconolactone, gluconic acid, lactic acid phytic acid, or acetic acid as described in (2) above the method of.
(7) The method according to (2), wherein the heat treatment is superheated steam at 150 to 300 ° C. and conduction heat transfer heating.
(8) Mixing cereal flour or starch and fats or oils, or further mixing an organic acid and performing a heat treatment , then reacting lipase in the above-mentioned pseudo powder state to obtain an oily fat complex having emulsifying ability The method according to (1) or (2) above, wherein the food material is produced.
(9) As an oil and fat complex in which the acid value (AV) is reduced by mixing cereal flour or starch, oil and fat, calcium carbonate, reacting lipase in the above-mentioned pseudo powder state and hydrolyzing the oil and fat. The method according to (1) above, wherein the food material is used.
(10) A food material as an oil and fat composite produced by the method according to any one of (1) to (7) above, sodium carbonate, potassium carbonate, calcium carbonate, calcium phosphate, potassium phosphate / potassium salt, sodium hydroxide, potassium hydroxide, or ammonia alkaline material or Karumagu S (trade name of Oriental Yeast Co., Ltd., raw dolomite, calcium, magnesium-containing material) was added over a one, and stirred and mixed, the acid value ( A method for producing a food material, wherein the food material has a reduced AV).
(11) A food material as an oil and fat complex having an acid value (AV) reduced by the method according to (9) or (10).
(12) Processed food characterized by using a food material as an oil and fat complex produced by the method according to any one of (1) to (10).
(13) A baked product characterized by using a food material as an oil and fat composite produced by the method according to any one of (1) to (10).
(14) A marine product obtained by using a food material as an oil and fat composite produced by the method according to any one of (1) to (10).
(15) A noodle product using a food material as an oil and fat composite produced by the method according to any one of (1) to (10).

次に、本発明について更に詳細に説明する。
本発明は、穀粉又は澱粉と、油脂を混合したもの、又は、油脂と有機酸を混合した後に加熱処理したものに対して、リパーゼを該穀粉又は澱粉に対して所定の水分含有率、油脂含有率、並びに有機酸含有率の擬似粉末状態で反応させて、油脂を加水分解することにより、これら反応混合物から構成される食品素材を製造することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a mixture of cereal flour or starch and oil or fat, or a mixture of oil and fat and an organic acid, followed by heat treatment. It is characterized by producing a food material composed of these reaction mixtures by hydrolyzing fats and oils by reacting them in a pseudo powder state with an organic acid content.

本発明において、擬似粉末状態とは、穀粉又は澱粉に対して所定の水分含有率並びに油脂含有率の粉末状態で、全体が散ける(ばらける)状態と定義され(この状態での酵素反応を粉末状酵素反応と呼称する)、非離水状態、又は粉末の水分がペンジュラー域からキャピラリー域の全体が散ける状態(=「擬似粉末状態」)であり、リパーゼを擬似粉末状態で反応させるとは、具体的には、リパーゼを、穀粉又は澱粉に対して水分含有率が20〜50%(W/W)、油脂含有率が5〜50%(W/W)の擬似粉末状態、あるいは、更に、有機酸含有率が0〜20%(W/W)の擬似粉末状態で反応させることを意味する。   In the present invention, the pseudo-powder state is defined as a state in which the whole of the powder or starch has a predetermined moisture content and fat content, and the whole is scattered (spread) (enzymatic reaction in this state). It is called a powdery enzyme reaction), non-water-removed state, or a state where the moisture of the powder is scattered from the pendular region to the entire capillary region (= “pseudo-powder state”), and lipase is reacted in a pseudo-powder state Specifically, the lipase is a pseudo powder state in which the water content is 20 to 50% (W / W) and the fat content is 5 to 50% (W / W) with respect to the flour or starch, or further It means that the organic acid content is reacted in a pseudo powder state of 0 to 20% (W / W).

所定の水分含有率、油脂含有率、並びに有機酸含有率の疑似粉末状態は、穀粉、澱粉、油脂、有機酸などの原材料の種類によって上記範囲内のいずれかの値になるように調整することで形成することができる。本発明では、水分含有率が20〜50%(W/W)で、油脂含有率が5〜50%(W/W)の擬似粉末状態、あるいは、更に有機酸含有率が0〜20%(W/W)かつ加熱処理を用いる場合には、加熱処理が150〜300℃の条件の擬似粉末状態を形成することが重要である。なお、油脂含有率がこれ以上では、全体が散け難く、粉末状態となりにくく、取り扱いが困難となり、更に乾燥処理してもサラサラ状の粉末が得られなくなる。   The predetermined moisture content, fat content, and organic acid content pseudo-powder state should be adjusted to any value within the above range depending on the type of raw materials such as flour, starch, fat, and organic acid. Can be formed. In the present invention, the moisture content is 20 to 50% (W / W) and the fat content is 5 to 50% (W / W), or the organic acid content is 0 to 20% (W / W). W / W) In the case of using heat treatment, it is important that the heat treatment forms a pseudo powder state under the condition of 150 to 300 ° C. When the oil content is higher than this, the whole is difficult to disperse, difficult to be in a powder state, difficult to handle, and even after drying, a smooth powder cannot be obtained.

本発明は、穀粉又は澱粉と、油脂を混合し、あるいは、更に、有機酸を混合し、かつ加熱処理を行った後に、リパーゼを上記擬似粉末状態で反応させて、乳化能をもつ食品素材を製造することを特徴とするものである。ここで、乳化能とは、「水中油滴(O/W)型又は、油中水滴(W/O)型エマルションにおいて、互いに溶け合わない(相溶しない)液体からなる分散液を形成する能力」を意味し、該乳化能をもつ特性を「乳化性・均一分散性」と呼称する。   The present invention mixes cereal flour or starch and fats and oils, or further mixes an organic acid and heat-treats, and then reacts lipase in the above-mentioned pseudo powder state to produce a food material having emulsifying ability. It is characterized by manufacturing. Here, the emulsification ability means “the ability to form a dispersion composed of liquids that are incompatible with each other in an oil-in-water (O / W) type or water-in-oil (W / O) type emulsion. ”And the characteristic having the emulsifying ability is referred to as“ emulsifying / uniformly dispersing ”.

これまで、穀粉又は澱粉と、油脂を混合し、あるいは、更に、有機酸を混合し、かつ加熱処理を行った後に、リパーゼを穀粉又は澱粉に対して所定の水分含有率、油脂含有率並びに有機酸含有率の擬似粉末状態で反応させて、油脂を加水分解することにより、これら反応混合物から構成される食品素材を製造する該食品素材の製造例や、穀粉又は澱粉と、油脂の原材料から、リパーゼを作用させて得られる反応混合物を乳化能をもつ食品素材とする応用例は開発例がない。   So far, after mixing flour or starch and fat or oil, or further mixing organic acid and performing heat treatment, lipase with respect to flour or starch has a predetermined moisture content, fat content and organic content. By reacting in an acid content pseudo-powder state and hydrolyzing fats and oils, production examples of the food materials for producing food materials composed of these reaction mixtures, and flour or starch and raw materials for fats and oils, There are no development examples of application of the reaction mixture obtained by the action of lipase as a food material having emulsifying ability.

本発明で製造できる素材は、従来使用されてきた既存乳化剤に換えて使用することができるが、O/W型及びW/O型乳化能をもつので、例えば、ベークド製品(パン、ケーキ、クッキーなど)、麺製品(米粉うどん、ラーメン、うどんなど)、フラワーペースト、アイスクリーム、コーヒー飲料、練り製品、チョコレート、羊羹、餡を用いた菓子類、調味料類、錠剤など極めて多岐にわたる食品において、既存乳化剤に換えて使用することができるものと期待される。   Although the raw material which can be manufactured by this invention can be used in place of the conventionally used emulsifier, since it has O / W type and W / O type emulsifying ability, for example, a baked product (bread, cake, cookie) Etc.), noodle products (rice flour udon, ramen, udon), flower paste, ice cream, coffee drinks, kneaded products, chocolate, sheep cake, confectionery using rice cake, seasonings, tablets, etc. It is expected that it can be used in place of an emulsifier.

リパーゼ系酵素の種類は、学術的には極めて多く、EC番号(酵素番号、Enzyme Commission numbers)、EC.3.−(加水分解酵素)、EC.3.1.−(エステル加水分解酵素)、EC.3.1.1.−(カルボン酸エステル加水分解酵素)、EC 3.1.1.3 トリアシルグリセロール リパーゼ[EC 3 Hydrolases、EC 3.1 Acting on Ester Bonds、EC 3.1.1 Carboxylic Ester Hydrolases、EC 3.1.1.3 triacylglycerol lipase]のように分類され、トリアシルグリセロール リパーゼは、各種微生物などに見出され、膨大な数になっている(http://www.brenda−enzymes.info/php/result_flat.php4?ecno=3.1.1.3)。   The types of lipase-based enzymes are very large from an academic perspective, and EC numbers (enzyme number, Enzyme Commission numbers), EC. 3. -(Hydrolase), EC. 3.1. -(Ester hydrolase), EC. 3.1.1. -(Carboxyl ester hydrolase), EC 3.1.1.3 Triacylglycerol lipase [EC 3 Hydrolases, EC 3.1 Acting on Ester Bonds, EC 3.1.1 Carboxylic Ester Hydrolases, EC 3.1 1.3 triacylglycerol lipase], and triacylglycerol lipase is found in various microorganisms and has become a huge number (http://www.brenda-enzymes.info/php/result_flat). .Php4? Ecno = 3.1.1.3).

「既存添加物名簿収載品目リスト」には、番号:305 名称:ホスホリパーゼ 品名/別名:ホスファチダーゼ レシチナーゼ 基原・製法・本質:動物のすい臓若しくはアブラナ科キャベツ(Brassica oleracea LINNE)より、冷時〜室温時水で抽出して得られたもの、又は糸状菌(Aspergillus oryzaeAspergillus niger)、担子菌(Corticium)、放線菌(ActinomaduraNocardiopsis)若しくは細菌(Bacillus)の培養液より、冷時〜室温時水で抽出して得られたもの、除菌したもの、冷時〜室温時濃縮したもの、又はこれより含水エタノール若しくは含水アセトンで沈殿又は分画処理して得られたもの、樹脂精製後、アルカリ性水溶液で処理したもの、とある。 In the “List of Existing Additives”, No .: 305 Name: Phospholipase Product Name / Alias: Phosphatidase Lecithinase Base / Production / Essential: From animal pancreas or cruciferous cabbage ( Brassica oleracea LINNE), cold to room temperature those obtained by extraction with water, or filamentous fungi (Aspergillus oryzae, Aspergillus niger), Basidiomycetes (Corticium), actinomycetes (Actinomadura, Nocardiopsis) or from the culture medium of the bacteria (Bacillus), when cold-room temperature during water , Sterilized, concentrated at cold to room temperature, or obtained by precipitation or fractionation with water-containing ethanol or water-containing acetone, after resin purification, al Those treated with Li aqueous solution, there.

更に、番号:349 名称:リパーゼ 品名/別名:脂肪分解酵素 簡略名又は類別名:エステラーゼ 基原・製法・本質:動物若しくは魚類の臓器、又は動物の舌下部より、冷時〜微温時水で抽出して得られたもの又は糸状菌(Aspergillus awamoriAspergillus nigerAspergillus oryzaeAspergillus phoenicis,Aspergillus usamiiGeotrichum candidumHumicolaMucor javanicusMucor mieheiPenicillium camembertiiPenicillium chrysogenumPenicillum roquefortiiRhizomucor mieheiRhizopus delemarRhizopus japonicusRhizopus mieheiRhizopus niveusRhizopus oryzae)、放線菌(Streptomyces)、細菌(AlcaligenesArthrobactorChromobacterium viscosumPseudomonasSerratia marcescens)又は酵母(Candida)の培養液より、冷時〜微温時水で抽出して得られたもの、除菌したもの、冷時〜室温時濃縮したもの、又はエタノール、含水エタノール若しくはアセトンで沈殿又は分画処理して得られたものである、とある。 Furthermore, number: 349 name: lipase product name / alias: lipolytic enzyme abbreviated name or similar name: esterase base, production method, essence: extracted from animal or fish organs, or under the tongue of animals with cold to warm water and those obtained or filamentous fungi (Aspergillus awamori, Aspergillus niger, Aspergillus oryzae, Aspergillus phoenicis, Aspergillus usamii, Geotrichum candidum, Humicola, Mucor javanicus, Mucor miehei, Penicillium camembertii, Penicillium chrysogenum, Penicillum roquefortii, Rhizo ucor miehei, Rhizopus delemar, Rhizopus japonicus , Rhizopus miehei, Rhizopus niveus, Rhizopus oryzae), actinomycetes (Streptomyces), bacteria (Alcaligenes, Arthrobactor, Chromobacterium viscosum, Pseudomonas, from Serratia marcescens) or culture of yeast (Candida), Cold It is obtained by extraction with water at the time to time of low temperature, sterilized, concentrated at time of cold to room temperature, or obtained by precipitation or fractionation with ethanol, hydrous ethanol or acetone, a.

市販品に関しては、独立行政法人 農業・食品産業技術総合研究機構 食品総合研究所 酵素研究ユニットが、2011年6月にアンケートした調査結果がある(http://www.nfri.affrc.go.jp/yakudachi/koso/3_shishitu3_1.index.html)。   Regarding commercial products, there is a survey result of the Enzyme Research Unit, National Food Research Institute, National Agriculture and Food Research Organization, which was surveyed in June 2011 (http://www.nfri.affrc.go.jp). /Yakudachi/koso/3_shishitu3_1.index.html).

本発明でリパーゼとして用いられる酵素製剤は、1998年の天野製薬(現天野エンザイム株式会社)製のものと、2010年に製造された以下のL1〜L6であり、本発明者らは、本発明において、これらは、同等の効果を奏することを確認している。
L1:リパーゼF−AP15、1998
L2:リパーゼM「アマノ」10、1998
L3:リパーゼA「アマノ」6、2010 リパーゼ:48.0% 食品素材:52.0%
L4:リパーゼAY「アマノ」30G、2010 リパーゼ:20.0 グアーガム:0.04 食品素材:79.6
L5:リパーゼR「アマノ」、2010 リパーゼ:20.0 食品素材:80.0(原材料の一部にゼラチンを含む)
L6:リパーゼG「アマノ」50、2010 リパーゼ:50.0 食品素材:50.0(原材料の一部にゼラチンを含む)
Enzyme preparations used as lipases in the present invention are those manufactured by Amano Pharmaceutical (present Amano Enzyme Co., Ltd.) in 1998 and the following L1 to L6 manufactured in 2010. The present inventors In these, it has been confirmed that these have the same effect.
L1: Lipase F-AP15, 1998
L2: Lipase M “Amano” 10, 1998
L3: Lipase A “Amano” 6, 2010 Lipase: 48.0% Food material: 52.0%
L4: Lipase AY “Amano” 30G, 2010 Lipase: 20.0 Guar gum: 0.04 Food material: 79.6
L5: Lipase R “Amano”, 2010 Lipase: 20.0 Food material: 80.0 (Part of the raw material contains gelatin)
L6: Lipase G “Amano” 50, 2010 Lipase: 50.0 Food material: 50.0 (Part of the raw material contains gelatin)

各酵素粉末50mgを秤取り、水を1%(W/W)になるように加えて(5mL)、溶解させたものについて、酵素活性を測定した。なお、リパーゼ活性測定法は、以下のようにした。すなわち、発色試薬溶液として、フェノールフタレイン溶液:1gを、95%(V/V)エタノール100mLに溶解したもの(F液と略称する)、炭酸水素カリウムの飽和溶液(K液と略称する)、を用いた。   50 mg of each enzyme powder was weighed, water was added to 1% (W / W) (5 mL), and the enzyme activity was measured for those dissolved. The lipase activity measurement method was as follows. That is, as a coloring reagent solution, a phenolphthalein solution: 1 g dissolved in 100 mL of 95% (V / V) ethanol (abbreviated as F solution), saturated solution of potassium hydrogencarbonate (abbreviated as K solution), Was used.

大豆油50μL+各酵素液50μLと、Refは大豆油50μL+水50μLを撹拌して、45℃、1時間密閉系で反応させ、反応後、エタノール2.5mL+水5mLを加え、F液50μL+K液50μLを加え、ピンク色の発色強度と液表層の油滴の大きさから判定して、高活性から、L4(白濁、油滴ほとんどなし)、L1(白濁、油滴僅かにあり)、L5、L2、L3、L6(油滴はこの順に大きくなり、2.3mmから5.6mmの範囲である)の順とした。この他のリパーゼ製剤についても、本法を用いて、活性を試験・確認した。これらの酵素液を、例えば、L4酵素液のように表記する。   50 μL of soybean oil + 50 μL of each enzyme solution and Ref stirred 50 μL of soybean oil + 50 μL of water and reacted in a closed system at 45 ° C. for 1 hour. After the reaction, 2.5 mL of ethanol + 5 mL of water were added, and 50 μL of F solution + 50 μL of K solution were added. In addition, judging from the pink color intensity and the size of the oil droplets on the liquid surface layer, L4 (white turbidity, almost no oil droplets), L1 (white turbidity, few oil droplets), L5, L2, L3 and L6 (oil droplets increased in this order and ranged from 2.3 mm to 5.6 mm). The activity of other lipase preparations was tested and confirmed using this method. These enzyme solutions are expressed as, for example, L4 enzyme solution.

分析手法としては、本発明者らが開発した「アスタキサンチン法」(ASSO法と略称)と、酸価(AV)、過酸化物価(POV)測定法を用いた。ASSO法では、ヤマハ発動機(株)製、食品添加物、ヘマトコッカス藻色素製剤、「ピュアスタオイル80」(アスタキサンチン含有量8.0%(W/W)以上)を用い、その100mgをとり、10mLのサラダ油を加えて、振盪撹拌して溶解させたものを、室温保存で使用した。   As an analysis method, an “astaxanthin method” (abbreviated as ASSO method) developed by the present inventors and an acid value (AV) and peroxide value (POV) measurement method were used. In the ASSO method, a food additive manufactured by Yamaha Motor Co., Ltd., a hematococcus alga pigment preparation, “pure aster oil 80” (astaxanthin content of 8.0% (W / W) or more) is used, and 100 mg thereof is taken. A solution prepared by adding 10 mL of salad oil and dissolving it by shaking was used at room temperature.

本発明の方法で調製された素材の乳化能は、ASSO法での着色程度を目視で観察して、水、無処理、対照の試験区との比較を行い、乳化能の優劣を判別したが、市販乳化剤との比較の際には、「HLB値が3−6程度では一部が水に分散し、W/O型エマルションの乳化剤、HLB値が10−13程度では水に半透明に溶解、分散し、O/W型エマルションの乳化剤として使用される。」(http://www.mfc.co.jp/product/nyuuka/ryoto_syuga/list.html 三菱化学フーズ株式会社)ことを参考にして、ショ糖ステアリン酸エステル W/O型用として[リョートー シュガーエステル(粉末)シュガーエステルS−370]と[リョートー シュガーエステル(粉末)シュガーエステルS−570]を用い、O/W型用として[リョートー シュガーエステル(粉末)シュガーエステルS−1170]を用いて、本発明で調製した素材と比較検討した。   The emulsifying ability of the material prepared by the method of the present invention was visually observed for the degree of coloring in the ASSO method, and compared with water, no treatment, and a control test group to determine whether the emulsifying ability was superior or inferior. When comparing with commercially available emulsifiers, “If the HLB value is about 3-6, part of it is dispersed in water, and the emulsifier of the W / O emulsion, and if the HLB value is about 10-13, it is translucently dissolved in water. , Dispersed and used as an emulsifier for O / W emulsions "(http://www.mfc.co.jp/product/nyuka/ryoto_syuga/list.html Mitsubishi Chemical Foods, Inc.) [Ryoto sugar ester (powder) sugar ester S-370] and [Ryoto sugar ester (powder) sugar for W / O type sucrose Using ester S-570], with [Ryoto sugar ester (powder) sugar ester S-1170] for the O / W type, it was compared with the material prepared in the present invention.

測定手順では、本発明で調製の素材250mg、市販乳化剤50mgを、バイアルに秤取り、蒸留水5mLとASSO 50μLを加えて、手で50回以上激しく振盪撹拌する。1,660×g、10分間遠心分離した後、n−ヘキサン3mLを静かに、加えて、更に1,660×g、10分間遠心分離し、n−ヘキサン層を乱さないようにして水層をピペットで沈殿も分散するように緩やかにかき混ぜ、分散液状水層を3mL静かに取り出して、n−ヘキサン3mLを加えて、50回以上激しく振盪撹拌する。   In the measurement procedure, 250 mg of the raw material prepared in the present invention and 50 mg of a commercially available emulsifier are weighed in a vial, 5 mL of distilled water and 50 μL of ASSO are added, and the mixture is vigorously shaken and stirred 50 times or more by hand. After centrifugation at 1,660 × g for 10 minutes, gently add 3 mL of n-hexane, and further centrifuge at 1,660 × g for 10 minutes to avoid disturbing the n-hexane layer. Mix gently with a pipette to disperse the precipitate, and gently remove 3 mL of the dispersed liquid aqueous layer, add 3 mL of n-hexane, and vigorously shake and stir 50 times or more.

1,660×g、10分間遠心分離した後、n−ヘキサン層2mLを静かに採り、分光光度計で470nmの吸光度を測定する。その実験例を示すと、図1のようになり、米粉素材では250mg、市販乳化剤は50mgとすると、本発明での米粉素材を1とすると、上新粉で0.35、市販乳化剤.S−170で0.057、S−570で0.16、水では0.088となり、本条件では、本発明の方法で調製した米粉素材で高い乳化能・均一分散性を示した。   After centrifugation at 1,660 × g for 10 minutes, 2 mL of the n-hexane layer is gently taken and the absorbance at 470 nm is measured with a spectrophotometer. The experimental example is as shown in FIG. 1. When the rice flour material is 250 mg and the commercially available emulsifier is 50 mg, the rice flour material according to the present invention is 1, the upper fresh powder is 0.35, and the commercially available emulsifier. S-170 was 0.057, S-570 was 0.16, and water was 0.088. Under these conditions, the rice flour material prepared by the method of the present invention exhibited high emulsifying ability and uniform dispersibility.

図1に、各種乳化剤のASSO法で測定した乳化能を示す。図1において、Bnkは無処理区(セルブランク)で、1は本発明の方法で調製した乳化能をもつ米粉、2は上新粉、3は三菱化学フーズ ショ糖脂肪酸エステルS−170、4は三菱化学フーズ ショ糖脂肪酸エステルS−570の場合であり、(三菱化学フーズ ショ糖脂肪酸エステルS−1170の場合、ゲル化のため測定不能)、[水]は、水の場合である。   FIG. 1 shows the emulsifying ability of various emulsifiers measured by the ASSO method. In FIG. 1, Bnk is an untreated section (cell blank), 1 is a rice powder having an emulsifying capacity prepared by the method of the present invention, 2 is an upper powder, 3 is Mitsubishi Chemical Foods Sucrose Fatty Acid S-170, 4 Is the case of Mitsubishi Chemical Foods Sucrose Fatty Acid Ester S-570 (in the case of Mitsubishi Chemical Foods Sucrose Fatty Acid Ester S-1170, it cannot be measured due to gelation), and [Water] is the case of water.

AV測定法では、試料(粉末状)250mg、油脂の場合は50mg又は50μLを、バイアルにとり、エタノール2.5mLを加えて、振盪撹拌した後、5mLの水を加え、フェノールフタレイン溶液(フェノールフタレイン−エタノール溶液;フェノールフタレイン1gを95%(V/V)エタノール100mLに溶解したもの)を50μL加え、1N 水酸化ナトリウム水溶液(Na液と略記する)を、10μLずつ添加しながら、紫色に発色する量を求めた。   In the AV measurement method, 250 mg of a sample (powdered form) or 50 mg or 50 μL in the case of oils and fats is taken into a vial, added with 2.5 mL of ethanol, stirred and shaken, then added with 5 mL of water, and a phenolphthalein solution (phenolphthalein solution). Rain-ethanol solution: 1 g of phenolphthalein dissolved in 100 mL of 95% (V / V) ethanol was added in 50 μL, and 1 N sodium hydroxide aqueous solution (abbreviated as Na solution) was added 10 μL at a time. The amount of color development was determined.

なお、発色が微弱である場合は、更に、水酸化ナトリウム水溶液10μLを加えて、明確に発色する量を求め、その中間を発色点とした。また、フェノールフタレイン溶液を加えた時点で発色した場合は、10μLずつ加えて、フェノールフタレイン呈色が消失する量を求めた。AV測定の場合には、通常、水酸化カリウムを用いているので、水酸化ナトリウムでの値を1.4倍すれば、水酸化カリウムでの値に換算できる。なお、酸価が「油脂1g中に存在する遊離脂肪酸を中和するのに必要な水酸化カリウムのmg数」と定義されているので、油脂50mgをとって測定した場合は、Na液の必要量(μL)×1.12で、AVが求められる。   When the color development was weak, 10 μL of sodium hydroxide aqueous solution was further added to obtain a clear color development amount, and the intermediate point was defined as the color development point. In addition, when the phenolphthalein solution was colored at the time when it was added, 10 μL each was added to determine the amount of disappearance of the phenolphthalein coloration. In the case of AV measurement, since potassium hydroxide is usually used, if the value with sodium hydroxide is multiplied by 1.4, it can be converted to the value with potassium hydroxide. In addition, since the acid value is defined as “mg of potassium hydroxide necessary for neutralizing free fatty acid present in 1 g of fat and oil”, when measuring 50 mg of fat and oil, Na liquid is necessary. AV is determined by the amount (μL) × 1.12.

次に、試験例を示す。
[試験例1]
(1)糖質の種類による擬似粉末状態での酵素反応の差異について
大豆油と、酵素の種類(酵素液:L4[=リパーゼAY「アマノ」30G]の1%(W/W)蒸留水溶液を使用)、濃度を固定し、糖質の種類を変化させて、擬似粉末状態での酵素反応による乳化能について検討した。糖質としては、単糖、オリゴ糖、糖アルコール系、澱粉、多糖系を用意し、単糖、オリゴ糖系として、グルコース、フルクトース、マルトース・HO、トレハロース、スクロース、ラクトース、サンオリゴ5・6を用い、糖アルコール系として、4単糖アルコール(エリスリトール)、6単糖アルコール(ソルビトール)、5単糖アルコール(キシリトール)、6単糖アルコール(マンニトール)を用いた。
Next, test examples are shown.
[Test Example 1]
(1) About the difference in enzyme reaction in the simulated powder state depending on the type of sugar Soybean oil and 1% (W / W) distilled aqueous solution of enzyme type (enzyme solution: L4 [= lipase AY “Amano” 30G]) Use), the concentration was fixed, and the sugar type was changed, and the emulsifying ability by the enzyme reaction in the pseudo powder state was examined. As sugars, monosaccharides, oligosaccharides, sugar alcohols, starches, polysaccharides are prepared. As monosaccharides and oligosaccharides, glucose, fructose, maltose / H 2 O, trehalose, sucrose, lactose, sun oligo 5. 6, monosaccharide alcohol (erythritol), 6 monosaccharide alcohol (sorbitol), 5 monosaccharide alcohol (xylitol), 6 monosaccharide alcohol (mannitol) were used as sugar alcohols.

単糖、オリゴ糖、糖アルコール、各250mgを、バイアルにとり、大豆油50μLと酵素液50μLを加えて、撹拌・混合して、密閉系で一夜(15時間)、45℃で反応させた。密閉系で、105℃、30分間失活処理し、水5mLを添加して観察した。ASSO50μL添加の乳化能を目視測定した結果では、この条件で、乳化能を示す単糖、糖アルコールは見出せなかった。   Monosaccharides, oligosaccharides, sugar alcohols, 250 mg each were taken in a vial, 50 μL soybean oil and 50 μL enzyme solution were added, stirred and mixed, and allowed to react at 45 ° C. overnight (15 hours) in a closed system. In a closed system, it was deactivated at 105 ° C. for 30 minutes, and 5 mL of water was added and observed. As a result of visual measurement of the emulsification ability with the addition of 50 μL of ASSO, no monosaccharide or sugar alcohol showing emulsification ability was found under these conditions.

また、澱粉、多糖系として、以下の1〜20のものを用いた。
1.トウモロコシ澱粉αβ DE10(トウモロコシ澱粉分解物)
2.分岐D DE8(糯トウモロコシ澱粉分解物)
3.糯A DE5(糯トウモロコシ澱粉分解物)
4.可溶性澱粉(Starch soluble、MERCK社)
5.アミロースA、トウモロコシ澱粉由来 分子量約2900(ナカライテスク社)
Moreover, the following 1-20 things were used as starch and polysaccharide type | system | group.
1. Corn starch αβ DE10 (corn starch degradation product)
2. Branch D DE8 (Decomposed corn starch)
3.糯 A DE5 (Decomposed corn starch)
4). Soluble starch (Starch soluble, MERCK)
5. Amylose A, derived from corn starch, molecular weight of about 2900 (Nacalai Tesque)

6.アミロース 分子量約16,000(ナカライテスク社)
7.アミロペクチン(ナカライテスク社)
8.上新粉
9.小麦粉WFL(薄力小麦粉)
10.WFM(中力小麦粉)
6). Amylose molecular weight about 16,000 (Nacalai Tesque)
7). Amylopectin (Nacalai Tesque)
8). Joshin flour 9. Flour WFL (light flour)
10. WFM (medium flour)

11.WFS(強力小麦粉)
12.小麦澱粉
13.糯米澱粉(モチールB)
14.粳米澱粉(ファインスノー)
15.トウモロコシ澱粉
11. WFS (strong flour)
12 12. Wheat starch Sticky rice starch (Motil B)
14 Sticky rice starch (fine snow)
15. Corn starch

16.糯トウモロコシ澱粉
17.タピオカ澱粉
18.甘藷澱粉
19.馬鈴薯澱粉
20.セルロースパウダー(食品添加用)
16.糯 Corn starch17. Tapioca starch 18. Sweet potato starch19. Potato starch20. Cellulose powder (for food addition)

実際の反応物の製造には、原材料の取り扱い易さが求められるので、上記1〜20の澱粉、多糖系の撹拌・混合時の取り扱いの容易さを比較した。特に取り扱いが容易であったのは、6:アミロース、14:粳米澱粉、16:糯トウモロコシ澱粉、20:セルロースパウダーであり、湿潤粉末状によく混合することができた。5:アミロースA、8:上新粉、12:小麦澱粉、13:糯米澱粉、15:トウモロコシ澱粉、17:タピオカ澱粉、19:馬鈴薯澱粉、Ref、Bnkも散けた状態になり、擬似粉末状態での酵素反応には適当と考えられた。これら以外は、付着性、固着性があり、混合しにくかった。すなわち、5、6、8、12、13、14、15、16、17、19、20は、擬似粉末状態での酵素反応の担体として優れていた。   In the actual production of the reaction product, the ease of handling of the raw materials is required, so the ease of handling during stirring and mixing of the starches and polysaccharides of the above 1 to 20 was compared. Particularly easy to handle were 6: amylose, 14: glutinous rice starch, 16: glutinous corn starch, and 20: cellulose powder, which could be well mixed in a wet powder form. 5: Amylose A, 8: Umeshin flour, 12: Wheat starch, 13: Sticky rice starch, 15: Corn starch, 17: Tapioca starch, 19: Potato starch, Ref, Bnk are also scattered, in a pseudo powder state This was considered appropriate for the enzymatic reaction. Other than these, there were adhesion and stickiness, and it was difficult to mix. That is, 5, 6, 8, 12, 13, 14, 15, 16, 17, 19, and 20 were excellent as a carrier for an enzyme reaction in a pseudo powder state.

澱粉、多糖系、各250mgをバイアルにとり、大豆油50μLと酵素液50μLを加えて撹拌・混合して、密閉系で、一夜(15時間)、45℃で反応させ、密閉系で105℃、30分間失活処理し、水5mLを添加して、液表層、液層、沈殿層を、観察した。ASSO50μL添加の乳化能を目視測定した結果では、乳化能を示すものとしては、図2Aに示すように、3−8が最も優れた乳化能を示した(3−8は、糖質8:上新粉を意味する。以下同様。)。この3−8では、表層にはASSOの分離層は認められず、沈殿層は着色、液層も着色白濁していたが、これは、乳化能、すなわち、乳化性・均一分散性が最も優れているということを示す。3−9〜20でも乳化能が観察されるが、これらの試料を沸騰水浴中で加熱処理すると、図2Bのように、3−11、12、19、20では、ASSOが表層に分離し、乳化性・均一分散性は高温処理により消失することを示している。   Take 250 mg each of starch and polysaccharides in a vial, add 50 μL of soybean oil and 50 μL of enzyme solution, stir and mix, react in a closed system overnight (15 hours) at 45 ° C., and react in a closed system at 105 ° C., 30 After inactivation treatment for 5 minutes, 5 mL of water was added, and the liquid surface layer, liquid layer, and precipitation layer were observed. As a result of visual measurement of the emulsifying ability with addition of 50 μL of ASSO, as shown in FIG. 2A, 3-8 showed the most excellent emulsifying ability as shown in FIG. 2A (3-8 is carbohydrate 8: top This means fresh powder. In this 3-8, no ASSO separation layer was observed on the surface layer, the precipitation layer was colored, and the liquid layer was also colored and cloudy. This is the most excellent emulsifying ability, that is, emulsifying property and uniform dispersibility. It shows that it is. Although emulsifying ability is also observed in 3-9 to 20, when these samples are heat-treated in a boiling water bath, as shown in FIG. 2B, ASSO is separated into a surface layer in 3-11, 12, 19, and 20, Emulsification and uniform dispersibility are shown to disappear by high temperature treatment.

図2Aは、擬似粉末状態での酵素反応、失活処理した後、ASSO法で乳化能を目視観察したものである。ASSO法では、ASSOを添加後、振盪撹拌し、室温で30分間静置した。図2Bは、図2Aの試料を密閉系で撹拌しながら、10分間沸騰水浴中で溶解処理し、室温で一夜(15時間)放置したものである。以上の結果を総合すると、3−8、9、10、13、14、15、16、17、18を担体として用いた擬似粉末状態での酵素反応で優れた乳化能の発現を示し、特に3−8が優れていた。   FIG. 2A is a visual observation of the emulsification ability by the ASSO method after the enzyme reaction and deactivation treatment in a pseudo powder state. In the ASSO method, after ASSO was added, the mixture was shaken and stirred and allowed to stand at room temperature for 30 minutes. FIG. 2B shows the sample of FIG. 2A, which was dissolved in a boiling water bath for 10 minutes while stirring in a closed system, and left overnight (15 hours) at room temperature. Summing up the above results, the emulsification reaction was demonstrated in an enzyme reaction in a pseudo powder state using 3-8, 9, 10, 13, 14, 15, 16, 17, 18 as a carrier. -8 was excellent.

更に詳しく説明を加えると、図2Aにおいて、ASSOの層が液表面にほとんど認められないということは、ASSO、すなわち、アスタキサンチン含有サラダ油が液相に分散し水不溶性相に固定されていることを示している。また、13〜18の澱粉では、加熱処理によりゲル化し、ゲル中にASSOが分散していることを示していて、加水により、ASSOは一部分離するが、ある程度の乳化能は示す。図2の観察結果からは、8の上新粉は最上位の素材、9の薄力小麦粉、10の中力小麦粉、11の強力小麦粉、12の小麦澱粉は中位の素材、その他の素材は低位の素材と評価される。   In more detail, in FIG. 2A, almost no ASSO layer is observed on the liquid surface, indicating that ASSO, that is, astaxanthin-containing salad oil is dispersed in the liquid phase and fixed in the water-insoluble phase. ing. Moreover, in the starch of 13-18, it gelatinizes by heat processing, and it has shown that ASSO has disperse | distributed in the gel, ASSO is partly isolate | separated by hydration, but a certain amount of emulsification ability is shown. According to the observation results in FIG. 2, 8 upper flour is the top material, 9 light wheat flour, 10 medium wheat flour, 11 strong wheat flour, 12 wheat starch is the middle wheat flour, and other materials are It is evaluated as a low-grade material.

図3に、トウモロコシ澱粉と大豆油を用いたRef(対照試験区)、Bnk(無処理区)の乳化性・均一分散性を示す。R1は、トウモロコシ澱粉250mg+大豆油50μL、R2は、トウモロコシ澱粉250mg+酵素液50μL、R3は、トウモロコシ澱粉250mg+水50μL、であり、Ref・Bnkとした。3−15は、酵素反応試験区である。全て、45℃で、15時間、密閉系で静置した後に、ASSO法で検討した。図3の左は、ASSO添加後、振盪撹拌し、室温で30分間放置後の観察結果であり、図3の右は、密閉系で沸騰水浴中10分間で撹拌溶解処理した後の観察結果である。   FIG. 3 shows the emulsifiability and uniform dispersibility of Ref (control test group) and Bnk (untreated group) using corn starch and soybean oil. R1 is corn starch 250 mg + soybean oil 50 μL, R2 is corn starch 250 mg + enzyme solution 50 μL, and R3 is corn starch 250 mg + water 50 μL, which is Ref · Bnk. 3-15 is an enzyme reaction test section. All were allowed to stand in a closed system at 45 ° C. for 15 hours, and then examined by the ASSO method. The left side of FIG. 3 is an observation result after shaking and stirring after adding ASSO and left at room temperature for 30 minutes, and the right side of FIG. 3 is an observation result after stirring and dissolving in a boiling water bath for 10 minutes in a closed system. is there.

Ref・Bnkとして、トウモロコシ澱粉±大豆油、トウモロコシ澱粉+酵素液についても同様に処理した結果、図3に示すように、室温処理・放置した場合の乳化性・均一分散性は、酵素反応試験区で優れていた。   As a result of the same treatment of corn starch ± soybean oil and corn starch + enzyme solution as Ref · Bnk, as shown in FIG. 3, the emulsifiability and uniform dispersibility when treated at room temperature are as follows. It was excellent at.

小麦粉については、市販薄力、中力、強力小麦粉を用い、Refとして上新粉を用いて検討した。図4に、3種小麦粉のリパーゼ反応による乳化能をもつ小麦粉への変換可能性を示す。小麦粉のL M S (上新粉を対照にして)、市販薄力小麦粉(L)、中力小麦粉(M)、強力小麦粉(S)、上新粉(R)を、密閉系で45℃、1時間反応させ、密閉系で105℃、30min失活処理した後、ASSO50μLを加えて振盪撹拌し、室温静置一昼夜(15時間)後の呈色を観察した。   Regarding wheat flour, commercially available thin, medium and strong flours were used, and shinshin was used as the Ref. FIG. 4 shows the possibility of conversion to flour having emulsifying ability by lipase reaction of three kinds of wheat flour. LM of wheat flour (in contrast to Kaminshin flour), commercially available thin wheat flour (L), medium wheat flour (M), strong wheat flour (S), Kaminshin flour (R) at 45 ° C in a closed system, After reacting for 1 hour and deactivation treatment at 105 ° C. for 30 minutes in a closed system, 50 μL of ASSO was added and shaken and stirred, and the coloration after standing overnight at room temperature (15 hours) was observed.

その結果、図4に示すように、試験区Expでは、上新粉が極めて優れた乳化能を示し、Refでは、LR薄力小麦粉≒RR米粉がよく、Bnkでは、LB薄力小麦粉がよい、という結果を得た。これは、小麦粉自体もある程度の乳化能を示すが、酵素処理した上新粉よりは劣ることを示す。   As a result, as shown in FIG. 4, in the test section Exp, the upper fresh flour exhibits an extremely excellent emulsifying ability, in Ref, LR thin wheat flour≈RR rice flour is good, in Bnk, LB thin wheat flour is good, The result was obtained. This indicates that the wheat flour itself exhibits a certain degree of emulsifying ability, but is inferior to the enzyme-treated upper fresh flour.

Bnkは、各試料250mgそのもの、Refは、各試料250mg+米油50μL+水50μL、Expは、各250mg+米油50μL+1%(W/W)に濃度L4酵素溶液50μLである。各試料は、以下の通りである。   Bnk is 250 mg of each sample itself, Ref is 250 mg of each sample + 50 μL of rice oil + 50 μL of water, Exp is 250 mg of each sample + 50 μL of rice oil + 1% (W / W), and the concentration of L4 enzyme solution is 50 μL. Each sample is as follows.

LB:薄力小麦粉Bnk
MB:中力小麦粉Bnk
SB:強力小麦粉Bnk
RB:上新粉Bnk
LB: Thin wheat flour Bnk
MB: Middle strength flour Bnk
SB: Powerful flour Bnk
RB: Upper fresh powder Bnk

LR:薄力小麦粉Ref
MR:中力小麦粉Ref
SR:強力小麦粉Ref
RR:上新粉Ref
LR: Thin wheat flour Ref
MR: Middle strength flour Ref
SR: Strong flour Ref
RR: Kaminshin Powder Ref

L:薄力小麦粉Exp
M:中力小麦粉Exp
S:強力小麦粉Exp
R:上新粉Exp
L: Light wheat flour Exp
M: Medium strength flour Exp
S: Powerful flour Exp
R: Kamisin Powder Exp

次に、上新粉を各種条件で擬似粉末状態で酵素反応させた時の乳化能の発現について検討した。図5に、上新粉の乳化能の発現に関与する要件を示す。すなわち、試料の1、3〜7は、以下の通りである。
1.上新粉250mg+大豆油50μL+1%濃度L4酵素溶液50μL
3.上新粉250mg+大豆油50μL+水50μL
4.上新粉250mg+大豆油50μL
5.上新粉250mg+水50μL+L4酵素液50μL
6.上新粉250mg+水50μL
7.上新粉250mg
Next, the expression of emulsifying ability was examined when the upper fresh powder was enzymatically reacted in various powder conditions under various conditions. FIG. 5 shows the requirements involved in the expression of emulsifying ability of the upper fresh powder. That is, samples 1 and 3 to 7 are as follows.
1. Top fresh powder 250mg + soybean oil 50μL + 1% concentration L4 enzyme solution 50μL
3. Top fresh powder 250mg + Soybean oil 50μL + Water 50μL
4). Top fresh powder 250mg + soybean oil 50μL
5. Top fresh powder 250mg + water 50μL + L4 enzyme solution 50μL
6). Top fresh powder 250mg + water 50μL
7). Top fresh powder 250mg

上記混合物に、水5mLとASSO50μLを添加し、振盪撹拌して、10分間室温放置した。なお、[水]は、水5mLにASSO50μLを添加し、振盪撹拌して、10分間室温放置したものである。その結果、図5に示すように、1.でのみ優れた乳化能が発現し、乳化能の発現には、大豆油とリパーゼが必須であった。なお、ここでの反応条件は、45℃、密閉系で一夜(15h)静置、その後、密閉系での105℃、30分間失活処理とした。   To the above mixture, 5 mL of water and 50 μL of ASSO were added, shaken and stirred, and allowed to stand at room temperature for 10 minutes. [Water] is obtained by adding 50 μL of ASSO to 5 mL of water, stirring with shaking, and allowing to stand at room temperature for 10 minutes. As a result, as shown in FIG. Excellent emulsification ability was expressed only in, and soybean oil and lipase were essential for the expression of emulsification ability. The reaction conditions here were set at 45 ° C. overnight in a closed system (15 h), and then deactivated at 105 ° C. for 30 minutes in a closed system.

[試験例2]
(2)油脂の種類による擬似粉末状態での酵素反応の差異について
油脂の種類の検討は、市販液状油脂を用いて行った。なお、有機酸成分であるオレイン酸、DHA、EPAは、本発明の範囲には含めないこととした。
[Test Example 2]
(2) About the difference of the enzyme reaction in the pseudo-powder state by the kind of fats and oils Examination of the kind of fats and oils was performed using commercially available liquid fats and oils. The organic acid components oleic acid, DHA, and EPA are not included in the scope of the present invention.

上新粉250mgに、液状油脂50μLと1%(W/W)濃度のL4酵素溶液50μLを加え、撹拌混合した。密閉系で45℃、15時間反応させて、乳化能を目視観測した。パーム油とヤシ油は、軟弱な固形であったので、スパーテルで50mg取り出して加えた。なお、硬化油など固体状の油脂は、本発明の条件である擬似粉末状態での酵素反応は進行しなかった。   To 250 mg of the upper fresh powder, 50 μL of liquid oil and fat and 50 μL of L4 enzyme solution having a concentration of 1% (W / W) were added and mixed with stirring. The reaction was carried out in a closed system at 45 ° C. for 15 hours, and the emulsifying ability was visually observed. Since palm oil and palm oil were soft solids, 50 mg was taken out and added with a spatula. In addition, solid fats and oils, such as hydrogenated oil, did not advance the enzyme reaction in the pseudo powder state which is the conditions of the present invention.

各試料は、以下の通りである。
F1:サラダ油
F2:ナタネ油
F3:大豆油
F4:パーム油
F5:ヤシ油
F6:中鎖脂肪酸トリグリセリド油
F9:トウモロコシ油
F10:べに花油
F11:オリーブ油
F12:ごま油
F13:こめ油
Each sample is as follows.
F1: Salad oil F2: Rapeseed oil F3: Soybean oil F4: Palm oil F5: Palm oil F6: Medium chain fatty acid triglyceride oil F9: Corn oil F10: Beni flower oil F11: Olive oil F12: Sesame oil F13: Rice oil

図6に、各種市販油脂と上新粉の擬似粉末状態での酵素反応による乳化能の発現を示す。図6において、上段は、反応後、ASSOを加えて振盪撹拌し、30分間、室温で静置したものであり、Refは、油脂の換わりに水50μLを加えて振盪撹拌し、30分間、室温で静置したものである。中段は、反応後、ASSOを加えて振盪撹拌し、一夜、室温で静置したものであり、[水]は、水5mLにASSO50μLを加えて振盪撹拌し、30分間、室温で静置したものである。下段は、中段の試料を沸騰水浴中で、10分間、加熱溶解処理し、放冷して、1,660×g、10分間遠心分離したものであり、[水]は、水5mLにASSO50μLを加えて振盪撹拌し、30分間、室温で静置したものである。   FIG. 6 shows the expression of emulsifying ability by enzyme reaction in a simulated powder state of various commercially available oils and fats. In FIG. 6, after the reaction, the upper part is ASSO added and shaken and stirred for 30 minutes at room temperature, and Ref was added with 50 μL of water instead of fat and oil and shaken and stirred for 30 minutes at room temperature. It was left still. The middle stage is the one after adding ASSO after the reaction and stirring with shaking and standing overnight at room temperature. [Water] is the one with 50 mL of ASSO added to 5 mL of water and shaking and stirring, and then allowed to stand at room temperature for 30 minutes. It is. The lower part is a sample in which the middle part is heated and dissolved in a boiling water bath for 10 minutes, allowed to cool, and centrifuged at 1,660 × g for 10 minutes. [Water] is obtained by adding 50 μL of ASSO to 5 mL of water. In addition, the mixture was shaken and stirred and allowed to stand at room temperature for 30 minutes.

結果として、使用した全ての液状油脂(ペースト状も含む)で乳化能を示した。特に乳化能が優れていたものは、F12とF13であり、図6の下段に示すように、試料を沸騰水浴中で加熱溶解処理した後、遠心分離しても、液表層へのASSOの残存は極僅かであった。   As a result, all liquid oils and fats used (including pastes) showed emulsifying ability. Particularly, those having excellent emulsifying ability are F12 and F13. As shown in the lower part of FIG. 6, after the sample was heated and dissolved in a boiling water bath and centrifuged, the ASSO remained in the liquid surface layer. Was negligible.

[試験例3]
(3)米油と各種澱粉、穀粉による擬似粉末状態での酵素反応の差異について
各種澱粉、穀粉を用いてAVについて検討した結果を、図7に示す。各試験区は、以下のような成分・素材の組み合わせにした。
[Test Example 3]
(3) About the difference of the enzyme reaction in the pseudo-powder state by rice oil, various starches, and flour The result of having examined AV using various starches and flour is shown in FIG. Each test section was made up of the following combinations of ingredients and materials.

FL:米油50μL+L4酵素液50μL+水50μL
RP:上新粉+米油50μL+L4酵素液50μL
NGRS:粳米澱粉250mg+米油50μL+L4酵素液50μL
GRS:糯米澱粉250mg+米油50μL+L4酵素液50μL
CS:トウモロコシ澱粉250mg+米油50μL+L4酵素液50μL
WCS:糯トウモロコシ澱粉+米油50μL+L4酵素液50μL
PS:馬鈴薯澱粉+米油50μL+L4酵素液50μL
WFL:薄力小麦粉+米油50μL+L4酵素液50μL
WS:小麦澱粉+米油50μL+L4酵素液50μL
TS:タピオカ澱粉+米油50μL+L4酵素液50μL
CEL:セルロース+米油50μL+L4酵素液50μL
FL: Rice oil 50 μL + L4 enzyme solution 50 μL + water 50 μL
RP: upper fresh powder + rice oil 50 μL + L4 enzyme solution 50 μL
NGRS: Sticky rice starch 250 mg + rice oil 50 μL + L4 enzyme solution 50 μL
GRS: Sticky rice starch 250 mg + Rice oil 50 μL + L4 enzyme solution 50 μL
CS: Corn starch 250 mg + rice oil 50 μL + L4 enzyme solution 50 μL
WCS: corn starch + rice oil 50 μL + L4 enzyme solution 50 μL
PS: potato starch + rice oil 50 μL + L4 enzyme solution 50 μL
WFL: wheat flour + rice oil 50 μL + L4 enzyme solution 50 μL
WS: wheat starch + rice oil 50 μL + L4 enzyme solution 50 μL
TS: tapioca starch + rice oil 50 μL + L4 enzyme solution 50 μL
CEL: Cellulose + rice oil 50 μL + L4 enzyme solution 50 μL

これら試験区の成分・素材をミニスパーテルで撹拌混合したとき、混合難易度では、極めて混合し易いものは、RP、WSであり、CS、WCS、CELは混合し易く、NGRSとGRSは嵩高くて混合し難く、PSとTSは付着する傾向が強く混合が難しかった。WFLは完全に生地が形成できた。   When mixing and mixing the ingredients and materials in these test sections with a mini spatula, the mixing difficulty is RP and WS that are extremely easy to mix, CS, WCS, and CEL are easy to mix, and NGRS and GRS are bulky. It was difficult to mix, and PS and TS had a strong tendency to adhere and mixing was difficult. WFL was able to form the dough completely.

撹拌混合して、密閉系で45℃、1時間反応させ、105℃、30分で失活処理後、測定し、F液で発色したK液の量(μL)からAVを計算した。図7に、各種澱粉、穀粉などによる油脂の加水分解反応による酸価(AV)を示す。AVは、上新粉、馬鈴薯澱粉、タピオカ澱粉で高く、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、小麦澱粉でも比較的高いAVを示した。反応の場としては、米粉が極めて効果的であり、澱粉、穀粉の種類によって、反応効率が大きく異なっていた。(図3で、馬鈴薯澱粉で乳化能の発現が劣っていたのは、油脂の加水分解は進むが、反応物が乳化能を示す様態になっていないものと推量される)。   After stirring and mixing, the mixture was reacted at 45 ° C. for 1 hour in a closed system, deactivated at 105 ° C. for 30 minutes, measured, and AV was calculated from the amount (μL) of K solution colored with F solution. In FIG. 7, the acid value (AV) by the hydrolysis reaction of fats and oils by various starches, flours, etc. is shown. AV was high for Kaminshin flour, potato starch and tapioca starch, and relatively high AV was also observed for glutinous rice starch, glutinous rice starch, corn starch, corn corn starch and wheat starch. Rice flour was extremely effective as a reaction site, and reaction efficiency varied greatly depending on the types of starch and flour. (In FIG. 3, the reason why the expression of emulsifying ability was inferior with potato starch was presumed that although the hydrolysis of fats and oils proceeded, the reaction product was not in a state showing emulsifying ability).

[試験例4]
(4)擬似粉末状態での酵素反応における水分の影響について
擬似粉末状態での酵素反応における水分の影響については、105℃、2時間乾燥処理したトウモロコシ澱粉250mg+L4酵素粉末1mg+大豆油50μL+水0、5、10、25、50μLを加えた試験区をP0〜P50とし、トウモロコシ澱粉250mg+1%濃度L4酵素溶液50μL+大豆油50μL+水0、50、100、200、500μL、1mL、2.5mL、5mLを加えた試験区をW0〜W5mとし、全量をミニスパーテルでよく撹拌混合してから密栓をして、45℃で、一夜(15時間)反応させ、105℃、30分間失活処理して、AV測定により酵素活性の発現について検討した。
[Test Example 4]
(4) Effect of moisture in enzyme reaction in simulated powder state Regarding the effect of moisture in enzyme reaction in simulated powder state, corn starch 250 mg + L4 enzyme powder 1 mg + soybean oil 50 μL + water 0,5, dried at 105 ° C. for 2 hours. The test group to which 10, 25, 50 μL was added was defined as P0 to P50, and corn starch 250 mg + 1% concentration L4 enzyme solution 50 μL + soybean oil 50 μL + water 0, 50, 100, 200, 500 μL, 1 mL, 2.5 mL, 5 mL were added. The test area was set to W0 to W5m, and the whole amount was thoroughly stirred and mixed with a mini spatula, then sealed, reacted at 45 ° C overnight (15 hours), inactivated at 105 ° C for 30 minutes, and subjected to AV measurement. The expression of enzyme activity was examined.

図8に、擬似粉末状態での酵素反応における水分の影響を示す。
反応前の試料を撹拌・混合した際の試料の様子を観察した結果は、以下の通りである。
P0〜P50:ペンジュラー状態粉末
W0〜W50:ペンジュラー状態粉末
W100:キャピラリー状態粉末
W200:流動性が低いスラリー状態
W500〜W5m:流動性が高いスラリー状態
W200以上では、添加した油脂の油滴が液表面に浮かんだ状態であった。
FIG. 8 shows the influence of moisture on the enzyme reaction in the pseudo powder state.
The results of observing the state of the sample when stirring and mixing the sample before the reaction are as follows.
P0 to P50: Pendular state powder W0 to W50: Pendular state powder W100: Capillary state powder W200: Slurry state with low fluidity
W500 to W5m: In a slurry state W200 or higher with high fluidity, the added oil droplets were in a state of floating on the liquid surface.

反応を終了させ、失活処理後、これら試料にエタノール2.5mL添加、水総量が5mLになるように水を加えた。液表面に油滴が認められるものとしてはP0〜P10、W500〜W5mであり、これらの試験区では反応が進んでいないことを示した。各試験区の見かけの水分含有率は、乾燥処理澱粉粉末中の水分含有率を0、乾燥無処理澱粉粉末中の水分含有率を10%(W/W)とし、添加した酵素溶液中の水分量を50μLとして計算すると、P0、P5、P10、P25は、14%(W/W)、15、17、20%(W/W)、W0、W50、W100、W200は、21%(W/W)、30、39、45、50%(W/W)であり、これ以上の水分を含む試験区では懸濁液状となった。AVは水分分含有率20〜50%(W/W)で大きく、特に擬似粉末状態のP25〜W200で酵素反応値は極めて効率的に進むことを示した。   After terminating the reaction and deactivation treatment, 2.5 mL of ethanol was added to these samples, and water was added so that the total amount of water was 5 mL. Oil droplets observed on the liquid surface were P0 to P10 and W500 to W5 m, indicating that the reaction did not proceed in these test sections. The apparent moisture content in each test section is 0% for the moisture content in the dried starch powder and 10% (W / W) for the moisture content in the dried untreated starch powder. When the amount is calculated as 50 μL, P0, P5, P10 and P25 are 14% (W / W), 15, 17, 20% (W / W), W0, W50, W100 and W200 are 21% (W / W). W), 30, 39, 45, 50% (W / W), and in the test section containing more water, it became a suspension. AV was high at a moisture content of 20 to 50% (W / W), and it was shown that the enzyme reaction value proceeded very efficiently, particularly with P25 to W200 in a pseudo powder state.

本発明の方法で製造される素材には、遊離の脂肪酸が多量に含まれ、したがって、AVは高い。しかし、この素材を長期保存してもPOVはほとんど上がらず、脂肪酸の劣化は進まないものと考察された。遊離脂肪酸は、味、嗜好、機能性にも関与する成分として注目されつつあり、また、食品添加物の中で、指定添加物(平成19年10月26日改定)番号152 品名 脂肪酸類、とされている。   The raw material produced by the method of the present invention contains a large amount of free fatty acids and therefore has a high AV. However, it was considered that POV hardly increased even when this material was stored for a long period of time, and that the fatty acid did not deteriorate. Free fatty acids are gaining attention as components that are also involved in taste, taste, and functionality, and among food additives, designated additives (revised on October 26, 2007), number 152, product name, fatty acids, and Has been.

一方、「油の酸化に関する法規制」では、即席めん類(油揚げ麺)について、めんに含まれる油脂のAVが3を越え、又は過酸化物価(POV)が30を越えるものであってはならないとされ、油で処理した菓子(油脂分10%(W/W)以上)では、POVが30以下で、かつ、AVが5以下であること、あるいは、AVが3以下で、かつ、POVが50以下であること、とされている。   On the other hand, in the “Regulations on the Oxidation of Oil”, for instant noodles (fried noodles), the fat and oil contained in the noodles must not have an AV higher than 3 or a peroxide value (POV) higher than 30. In a confectionery treated with oil (oil content of 10% (W / W) or more), POV is 30 or less and AV is 5 or less, or AV is 3 or less and POV is 50 It is supposed to be the following.

AVが3以下の素材とするには、本発明の方法で製造される素材を、ソーダ灰などの成分、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、リン酸カルシウム、リン酸カリウム/カリウム塩、水酸化ナトリウム、水酸化カリウム、又はアンモニアなどのアルカリ性素材やカルマグS(商品名 オリエンタル酵母工業社製、原料 ドロマイト:カルシウム、マグネシウム含有物)などを計算量添加して撹拌混合することでAVを低下させることができる。   In order to obtain a material having an AV of 3 or less, the material produced by the method of the present invention is composed of components such as soda ash, sodium carbonate, potassium carbonate, calcium carbonate, calcium phosphate, potassium phosphate / potassium salt, sodium hydroxide, AV can be lowered by adding a calculated amount of alkaline material such as potassium hydroxide or ammonia or Calmag S (trade name: Oriental Yeast Kogyo Co., Ltd., raw material dolomite: calcium and magnesium-containing material) and stirring and mixing. .

更に、POVの上昇を抑制するには、還元末端をもつ単糖、グルコース、フルクトースなどを撹拌混合すればよく、POV上昇抑制用の単糖の混合率は、澱粉、穀粉の0.1から10%(W/W)程度であり、求める味質により、添加量を加減すればよい。   Furthermore, in order to suppress the increase in POV, a monosaccharide having a reducing end, glucose, fructose and the like may be mixed with stirring. The mixing ratio of the monosaccharide for suppressing POV increase is 0.1 to 10 for starch and flour. % (W / W), and the amount added may be adjusted depending on the desired taste quality.

AVを低下又は抑制させる可能性がある食品素材である、アルカリ性素材の添加率は、AVにより加減すればよく、通常の油脂であれば、遊離脂肪酸の分子量(オレイン酸の分子量282)からAVは200ほどであるので、炭酸ナトリウムの場合、その分子量から計算して、完全加水分解油脂g当たり376mgが必要量となる。また、アルカリ性素材を混合した状態で長時間保存する場合は、着色するので、混合してから数週間以内に使い切ることが薦められる。   The addition rate of the alkaline material, which is a food material that may reduce or suppress AV, may be adjusted by AV, and if it is a normal fat, the AV is calculated from the molecular weight of free fatty acid (molecular weight of oleic acid 282). Since it is about 200, in the case of sodium carbonate, the required amount is 376 mg per g of fully hydrolyzed fat and oil, calculated from its molecular weight. In addition, when storing for a long time in a mixed alkaline material, it will be colored, so it is recommended that it be used up within a few weeks after mixing.

本発明により、次のような効果が奏される。
(1)穀粉又は澱粉に、油脂を混合したもの、又は、油脂と有機酸を混合した後に加熱処理したものに対して、リパーゼを擬似粉末状態で酵素反応させて、油脂を水解することで、反応生成物全体を食品素材とすることができる。
(2)穀粉として、米粉、薄力小麦粉、中力小麦粉、澱粉として、馬鈴薯澱粉、タピオカ澱粉、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、小麦澱粉、又はサゴ澱粉を用い、リパーゼを擬似粉末状態で酵素反応させて、反応生成物全体を食品素材とすることができる。
(3)リパーゼを、穀粉、澱粉に対する水分含有率を20〜50%(W/W)、油脂含有率を5〜50%(W/W)の擬似粉末状態、あるいは、更に、有機酸含有率が0〜20%(W/W)かつ加熱処理を用いる場合には、加熱処理が150〜300℃の条件の擬似粉末状態で酵素反応させ、反応生成物全体を食品素材とすることができる。
(4)油脂として、液状から半固形状のサラダ油、ナタネ油、大豆油、パーム油、ヤシ油、中鎖脂肪酸トリグリセリド油、トウモロコシ油、べに花油、オリーブ油、ごま油、又はこめ油を用い、リパーゼを擬似粉末状態で酵素反応させて、食品素材とすることができる。
(5)穀粉又は澱粉に、油脂を混合し、リパーゼを擬似粉末状態で酵素反応させて、乳化能をもつ食品素材を製造することができる。
(6)穀粉として、米粉、薄力小麦粉、中力小麦粉、澱粉として、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、タピオカ澱粉、又は甘藷澱粉を用い、リパーゼを擬似粉末状態で酵素反応させて乳化能素材を製造することができる。
(7)有機酸として、クエン酸、イタコン酸、DL−リンゴ酸、L−酒石酸、フマル酸、アジピン酸、グルコノラクトン、グルコン酸、乳酸フィチン酸、又は酢酸を用い、好ましくはクエン酸を用い、リパーゼを擬似粉末状態で酵素反応させて乳化能素材を製造することができる。
(8)加熱処理温度として150〜300℃の過熱水蒸気及び伝導伝熱加熱を用い、好ましくは過熱水蒸気を用い、リパーゼを擬似粉末状態で酵素反応させて乳化能素材を製造することができる。
(9)擬似粉末状態の酵素反応で製造された素材に、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、リン酸カルシウム、リン酸カリウム/カリウム塩、水酸化ナトリウム、水酸化カリウム、又はアンモニアのアルカリ系素材やカルマグS(商品名 オリエンタル酵母工業社製、原料 ドロマイト:カルシウム、マグネシウム含有物)を添加して撹拌混合し、AVを低下させた食品素材とすることができる。
(10)穀粉又は澱粉に、油脂と、炭酸カルシウムを混合し、リパーゼを擬似粉末状態で酵素反応させて、油脂を水解することで、反応生成物全体を食品素材とすることができる。
(11)(1)〜(10)に記載した方法で製造した食品素材及びその乳化能を利用した加工食品が製造できる。
(12)(1)〜(10)に記載した方法で製造した食品素材を利用したベークド製品(パン、ケーキ、クッキーなど)が製造できる。
(13)(1)〜(10)に記載した方法で製造した食品素材を利用した水産練り製品が製造できる。
(14)(1)〜(10)に記載した方法で製造した食品素材を利用した従来使用されてきた既存乳化剤無添加の麺類(米粉うどん、ラーメン、うどんなど)が製造できる。
The present invention has the following effects.
(1) By subjecting cereal flour or starch to a mixture of fats or oils, or a mixture of fats and oils and an organic acid, followed by heat treatment, lipase is subjected to an enzymatic reaction in a simulated powder state to hydrolyze the fats and oils. The entire reaction product can be used as a food material.
(2) Rice flour, weak wheat flour, medium wheat flour as starch, potato starch, tapioca starch, sticky rice starch, sticky rice starch, corn starch, straw corn starch, wheat starch, or sago starch as cereals, mimicking lipase The whole reaction product can be used as a food material by an enzyme reaction in a powder state.
(3) The lipase is a pseudo-powder state with a moisture content of 20 to 50% (W / W) and fat and oil content of 5 to 50% (W / W), or an organic acid content. Is 0 to 20% (W / W), and when heat treatment is used, the whole reaction product can be used as a food material by performing an enzyme reaction in a pseudo powder state where the heat treatment is performed at 150 to 300 ° C.
(4) As fats and oils, lipase is used by using liquid to semi-solid salad oil, rapeseed oil, soybean oil, palm oil, palm oil, medium chain triglyceride oil, corn oil, bean flower oil, olive oil, sesame oil, or rice bran oil. An enzyme reaction can be performed in a simulated powder state to obtain a food material.
(5) A food material having emulsifying ability can be produced by mixing fats and oils with cereal flour or starch and subjecting lipase to an enzyme reaction in a pseudo-powder state.
(6) Rice flour, thin wheat flour, medium wheat flour, as starch, glutinous rice starch, glutinous rice starch, corn starch, corn starch, tapioca starch, or sweet potato starch are used, and lipase is allowed to undergo an enzyme reaction in a pseudo powder state. Thus, an emulsifiable material can be produced.
(7) As an organic acid, citric acid, itaconic acid, DL-malic acid, L-tartaric acid, fumaric acid, adipic acid, gluconolactone, gluconic acid, lactic acid phytic acid, or acetic acid is used, preferably citric acid is used. The lipase can be enzymatically reacted in a simulated powder state to produce an emulsifiable material.
(8) The superheated steam at 150 to 300 ° C. and conductive heat transfer heating are used as the heat treatment temperature, preferably superheated steam, and the lipase can be enzymatically reacted in a pseudo powder state to produce an emulsifiable material.
(9) Alkaline materials such as sodium carbonate, potassium carbonate, calcium carbonate, calcium phosphate, potassium phosphate / potassium salt, sodium hydroxide, potassium hydroxide, or ammonia, or calmag S (trade name, manufactured by Oriental Yeast Co., Ltd., raw material dolomite: calcium and magnesium-containing material) is added and mixed by stirring to obtain a food material with reduced AV.
(10) The whole reaction product can be used as a food material by mixing fat and calcium carbonate with cereal flour or starch, allowing lipase to undergo an enzymatic reaction in a simulated powder state and hydrolyzing the fat.
(11) A food material produced by the method described in (1) to (10) and a processed food utilizing its emulsifying ability can be produced.
(12) A baked product (bread, cake, cookie, etc.) using the food material produced by the method described in (1) to (10) can be produced.
(13) A fishery paste product using the food material produced by the method described in (1) to (10) can be produced.
(14) Noodles (rice flour udon, ramen, udon) with no existing emulsifiers that have been conventionally used using the food material produced by the method described in (1) to (10) can be produced.

ASSO法で測定した各種乳化剤の乳化能を示す。The emulsifying ability of various emulsifiers measured by the ASSO method is shown. 擬似粉末状態での酵素反応、失活処理した後、ASSO法で乳化能を目視観察した結果(図2A)、図2Aの試料を密閉系で撹拌しながら、10分間沸騰水浴中で溶解処理し、室温で一夜(15時間)放置した結果(図2B)を示す。After the enzyme reaction and deactivation treatment in the pseudo powder state, the result of visual observation of the emulsification ability by the ASSO method (FIG. 2A), the sample of FIG. 2A was dissolved in a boiling water bath for 10 minutes while stirring in a closed system. FIG. 2B shows the result of standing overnight (15 hours) at room temperature. トウモロコシ澱粉と大豆油を用いたRef、Bnkの乳化性・均一分散性を示す。The emulsifiability and uniform dispersibility of Ref and Bnk using corn starch and soybean oil are shown. 3種小麦粉のリパーゼ反応による乳化能をもつ小麦粉への変換可能性を示す。The possibility of conversion to flour having emulsifying ability by lipase reaction of three kinds of wheat flour is shown. 上新粉の乳化能発現に関与する要件を示す。The requirements relating to the emulsifying ability of the upper powder are shown. 各種市販油脂と上新粉の擬似粉末状態での酵素反応による乳化能の発現を示す。The expression of the emulsification ability by the enzyme reaction in the pseudo-powder state of various commercially available oils and fine powders is shown. 米油と、各種澱粉、穀粉によるリパーゼの擬似粉末状態での加水分解反応によるAVの値を示す。The AV value is shown by hydrolysis reaction in a quasi-powder state of lipase with rice oil and various starches and flours. 擬似粉末状態での酵素反応などにおける水分の影響を示す。The influence of moisture on the enzyme reaction in a simulated powder state is shown. ヘキサン抽出アスタキサンチン法(Hex−ASSO法)による、乳化能米粉が、油を吸着する能力の測定方法を示す。The measuring method of the capability that the emulsification ability rice flour adsorb | sucks oil by the hexane extraction astaxanthin method (Hex-ASSO method) is shown. 乳化能米粉の明度、回収率、乳化能とSHS処理条件との関係を示す。The relationship between lightness, recovery rate, emulsification ability and SHS treatment conditions of emulsifying rice powder is shown. SHS処理、リパーゼ処理と、乳化能との関係を示す。The relationship between SHS process, lipase process, and emulsification ability is shown. SHS処理した乳化能米粉の水溶性画分における糖組成分析のHPLC結果を示す。The HPLC result of the sugar composition analysis in the water-soluble fraction of the emulsification ability rice flour which carried out SHS processing is shown. GLCによる乳化能米粉の脂質組成を示す。The lipid composition of the emulsification ability rice flour by GLC is shown. 過熱水蒸気(SHS)処理及びリパーゼ処理条件を示す。The superheated steam (SHS) treatment and lipase treatment conditions are shown. 食パンの硬さ測定方法を示す。A method for measuring the hardness of bread is shown. 乳化能米粉を添加した食パンの膨らみを示す。The bulge of the bread which added emulsification ability rice flour is shown. 乳化能米粉を添加した食パン内相の保存中の硬さを示す。The hardness during preservation | save of the bread internal phase which added emulsification ability rice flour is shown. 乳化能米粉を添加したケーシング蒲鉾の、冷凍保存中の硬さ増加率を示す。The rate of increase in hardness during frozen storage of a casing koji to which emulsifiable rice flour is added is shown. 乳化能米粉を添加したケーシング蒲鉾の、冷凍保存中の離水量を示す。The amount of water separation during freezing storage of the casing koji to which the emulsifying ability rice flour is added is shown. アルミ箔袋の展開図を示す。An expanded view of the aluminum foil bag is shown. 試作した麺類(左:うどん、右:ラーメン)を示す。The prototype noodles (left: udon, right: ramen) are shown. うどんの茹で風景を示す。Show the scenery in the bowl of udon. 茹でうどんを示す。Show udon with boiled rice. 乳化能米粉添加米粉うどんの破断強度を示す。The breaking strength of rice flour udon with emulsifying ability rice flour is shown. ラーメンの破断強度(茹で時間1.5分)を示す。The breaking strength of ramen (boiled for 1.5 minutes) is shown.

次に、本発明を実施例により具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

[油脂の水解(加水分解)による食品素材の製造]
原材料として、市販上新粉10g、こめ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥し、しっとりした粉末調製品(本調製品をRPFLと略称する)に変換することができた。
[Production of food materials by hydrolyzing (hydrolyzing) fats and oils]
As raw materials, 10 g of commercially available fine powder, 2 mL of rice bran oil, 2 mL of 0.1% (W / W) L4 enzyme solution are placed in a PYREX (registered trademark) 100 mL pressure bottle, stirred and mixed with a medium-sized spatula, and sealed. Then, the enzyme reaction was performed in a pseudo powder state at 45 ° C. for 4 days. After completion of the reaction, the stopper is opened and treated at 105 ° C. for 1 hour in a heat dryer, dried at the same time as sterilization, and converted into a moist powder preparation (this preparation is abbreviated as RPFL). It was.

RPFLは、僅かに黄色に着色し、AVは195、POVは1以下であった。上新粉の代わりに、市販薄力小麦粉、乃至中力小麦粉を用いた以外は、同様にして、AVは50、POVは1以下の粉末調製品を得た。   RPFL was slightly colored yellow, AV was 195 and POV was 1 or less. A powder preparation having AV of 50 and POV of 1 or less was obtained in the same manner, except that commercially available thin wheat flour or medium wheat flour was used instead of the upper fresh flour.

[油脂の水解(加水分解)による食品素材の製造]
原材料として、馬鈴薯澱粉10g、パーム油2g、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥し、しっとりした粉末調製品に変換することができた。本調製品は白色で、AVは195、POVは1以下であった。
[Production of food materials by hydrolyzing (hydrolyzing) fats and oils]
As raw materials, 10 g of potato starch, 2 g of palm oil, 2 mL of 0.1% (W / W) L4 enzyme solution are placed in a PYREX (registered trademark) 100 mL pressure bottle, stirred and mixed with a medium-sized spatula, and sealed. The enzyme reaction was performed in a pseudo powder state at 45 ° C. for 4 days. After completion of the reaction, the stopper was opened and treated at 105 ° C. for 1 hour in a dry heat oven, dried simultaneously with sterilization, and converted into a moist powder preparation. This preparation was white, AV was 195 and POV was 1 or less.

馬鈴薯澱粉の代わりに、タピオカ澱粉を用いた以外は同様にして、同様の粉末調製品を得た。また、馬鈴薯澱粉の代わりに、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、小麦澱粉、乃至サゴ澱粉を用い、AVは各130、145、145、100、155、190の粉末調製品を得た。なお、POVは、全ての調製品で1以下であった。   A similar powder preparation was obtained in the same manner except that tapioca starch was used instead of potato starch. Further, instead of potato starch, glutinous rice starch, glutinous rice starch, corn starch, corn starch, wheat starch, or sago starch are used, and AV is obtained in 130, 145, 145, 100, 155, and 190 powder preparations, respectively. It was. In addition, POV was 1 or less in all the preparations.

[油脂の水解(加水分解)による食品素材の製造と、油脂の種類]
原材料として、上新粉10g、サラダ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥し、しっとりした粉末調製品に変換することができた。本調製品は極僅かに白黄色で、AVは195、POVは1以下であった。
[Production of food materials by hydrolyzing (hydrolyzing) fats and oils and types of fats and oils]
As raw materials, top fresh powder 10 g, salad oil 2 mL, 0.1% (W / W) L4 enzyme solution 2 mL is put in a PYREX (registered trademark) 100 mL pressure bottle, stirred and mixed with a medium-sized spatula, sealed, The enzyme reaction was performed in a pseudo powder state at 45 ° C. for 4 days. After completion of the reaction, the stopper was opened and treated at 105 ° C. for 1 hour in a dry heat oven, dried simultaneously with sterilization, and converted into a moist powder preparation. This preparation was slightly white-yellow, AV was 195, and POV was 1 or less.

サラダ油の代わりに、ナタネ油、大豆油、ヤシ油(2gを用いた)、中鎖脂肪酸トリグリセリド油、トウモロコシ油、べに花油、オリーブ油、乃至ごま油を用いた以外は同様にして、同様の調製品を得た。なお、魚介類、畜産類の油脂でも、液状、泥状、ラード状であれば適用可能であり、粉末状の硬化油でも、油脂分解率は低いが、一部の分解が可能であった。   In the same manner, except that rapeseed oil, soybean oil, coconut oil (2 g), medium chain fatty acid triglyceride oil, corn oil, bean flower oil, olive oil, or sesame oil were used instead of salad oil, Obtained. It should be noted that the oils and fats of seafood and livestock can be applied as long as they are liquid, mud, and lard, and even the powdered hardened oil can be partially decomposed although the oil decomposition rate is low.

[水分量と油脂量の限定;通常の米粉の水分含有率は14%程度であるが、ここで用いた上新粉は10%として計算した。]
原材料として、市販上新粉10g、こめ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、蒸留水を0、2mL、4mL、8mLを加えて水分含有率を21〜50%とし、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。
[Limitation of water content and fat and oil content; The water content of ordinary rice flour was about 14%, but the upper fresh flour used here was calculated as 10%. ]
As raw materials, commercial fresh powder 10g, koji oil 2mL, 0.1% (W / W) L4 enzyme solution 2mL is put in PYREX (registered trademark) 100mL pressure bottle, distilled water 0, 2mL, 4mL, 8mL Was added to make the water content 21 to 50%, stirred and mixed with a medium-sized spatula, tightly plugged, and subjected to an enzyme reaction in a pseudo powder state at 45 ° C. for 4 days.

反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥して、極僅かに白黄色、しっとりした粉末調製品を得た。AVは200〜70で、POVは1以下であった。なお、乾燥処理した上新粉を使用し、水分含有率を20%以下にすると、反応の程度は急激に低下し、逆に、50%以上では懸濁液となり、反応の程度は、AVは100程にはなるが、乾燥処理が難しくなった。   After completion of the reaction, the stopper was opened, treated at 105 ° C. for 1 hour in a dry heat oven, and dried at the same time as sterilization to obtain a slightly white-yellow, moist powder preparation. AV was 200-70 and POV was 1 or less. In addition, when the dried fresh upper powder is used and the water content is 20% or less, the degree of reaction rapidly decreases, and conversely, when it is 50% or more, it becomes a suspension, and the degree of reaction is AV. Although it was about 100, the drying process became difficult.

[乳化能・均一分散性の優れた食品素材の製造]
原材料として、市販上新粉10g、こめ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた 反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥し、乳化能・均一分散性の優れたしっとりした粉末調製品に変換することができた(本調製品をRPFLと略称する)。
[Production of food materials with excellent emulsifying ability and uniform dispersibility]
As raw materials, 10 g of commercially available fine powder, 2 mL of rice bran oil, 2 mL of 0.1% (W / W) L4 enzyme solution are placed in a PYREX (registered trademark) 100 mL pressure bottle, stirred and mixed with a medium-sized spatula, and sealed. The enzyme reaction was performed in a pseudo-powder state at 45 ° C for 4 days. After completion of the reaction, the stopper was opened, treated at 105 ° C for 1 hour in a dry heat oven, and dried at the same time as sterilization. It was possible to convert to a moist powder preparation with excellent dispersibility (this preparation is abbreviated as RPFL).

RPFLは僅かに黄色に着色し、AVは195、POVは1以下であった。上新粉の代わりに、市販薄力小麦粉、中力小麦粉を用いた以外は同様にして、AVは50、POVは1以下の粉末調製品を得た。   RPFL was slightly colored yellow, AV was 195, and POV was 1 or less. A powder preparation having AV of 50 and POV of 1 or less was obtained in the same manner except that commercially available thin wheat flour and medium wheat flour were used instead of the upper fresh flour.

[乳化能・均一分散性の優れた粉末食品素材の製造;馬鈴薯澱粉は除く AVは必要としない。]
原材料として、上新粉10g、こめ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。反応終了後、栓を開放して、乾熱器中105℃で1時間処理して殺菌と同時に乾燥し、乳化能・均一分散性の優れた、しっとりした粉末調製品に変換することができた。
[Production of powdered food materials with excellent emulsifying ability and uniform dispersibility; excluding potato starch, AV is not required. ]
As raw materials, top fresh powder 10g, rice oil 2mL, 0.1% (W / W) L4 enzyme solution 2mL is put in a PYREX (registered trademark) 100mL pressure bottle, stirred and mixed with medium-sized spatula, and sealed. The enzyme reaction was performed in a pseudo powder state at 45 ° C. for 4 days. After completion of the reaction, the stopper was opened, treated at 105 ° C. for 1 hour in a dry heat oven, dried simultaneously with sterilization, and converted into a moist powder preparation with excellent emulsifying ability and uniform dispersibility. .

本調製品は極僅かに白黄色であった。また、小麦粉WFL(薄力小麦粉)、同(中力小麦粉)、同(強力小麦粉)、小麦澱粉、糯米澱粉、粳米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、タピオカ澱粉、乃至甘藷澱粉用いた以外は同様にして、同様の調製品を得た。なお、油脂の種類としては、液状、ペースト状、半固形の素材を用いることができた。   This preparation was slightly white-yellow. Also, the same except that wheat flour WFL (thin wheat flour), the same (medium wheat flour), the same (strong wheat flour), wheat starch, sticky rice starch, sticky rice starch, corn starch, potato starch, tapioca starch, or sweet potato starch are used. A similar preparation was obtained. In addition, as a kind of fats and oils, a liquid, paste-like, and semi-solid material could be used.

[乳化能・均一分散性の優れた、しっとりした粉末調製品への変換]
原材料として、上新粉10g、サラダ油2mL、0.1%(W/W)L4酵素液2mLを、PYREX(登録商標)100mL耐圧ビンに入れて、中型スパーテルで撹拌・混合し、密栓して、4日間、45℃で、擬似粉末状態で酵素反応させた。反応終了後、栓を開放して、乾熱器中105℃で1時間処理して、殺菌と同時に乾燥し、乳化能・均一分散性の優れた、しっとりした粉末調製品に変換することができた。本調製品は極僅かに白黄色で、AVは195、POVは1以下であった。
[Conversion to moist powder preparation with excellent emulsifying ability and uniform dispersibility]
As raw materials, top fresh powder 10 g, salad oil 2 mL, 0.1% (W / W) L4 enzyme solution 2 mL is put in a PYREX (registered trademark) 100 mL pressure bottle, stirred and mixed with a medium-sized spatula, sealed, The enzyme reaction was performed in a pseudo powder state at 45 ° C. for 4 days. After completion of the reaction, the stopper is opened and treated at 105 ° C in a dry heat oven for 1 hour, dried at the same time as sterilization, and converted into a moist powder preparation with excellent emulsifying ability and uniform dispersibility. It was. This preparation was slightly white-yellow, AV was 195, and POV was 1 or less.

サラダ油の代わりに、ナタネ油、大豆油、ヤシ油(2gを用いた)、中鎖脂肪酸トリグリセリド油、トウモロコシ油、べに花油、オリーブ油、乃至ごま油を用いた以外は同様にして、同様の調製品を得た。なお、魚介類、畜産類の油脂でも、液状、泥状、ラード状であれば適用可能であり、粉末状の硬化油でも、油脂分解率は低いが、一部の分解が可能であった。   In the same manner, except that rapeseed oil, soybean oil, coconut oil (2 g), medium chain fatty acid triglyceride oil, corn oil, bean flower oil, olive oil, or sesame oil were used instead of salad oil, Obtained. It should be noted that the oils and fats of seafood and livestock can be applied as long as they are liquid, mud, and lard, and even the powdered hardened oil can be partially decomposed although the oil decomposition rate is low.

[AV抑制、POV抑制製品、高安定性食品素材の製造]
実施例1の上新粉での調製品は、AVは195、POVは1以下であったが、[菓子の製造・取扱いに関する衛生上の指導について(昭和52年11月16日環食第248号)]には、「菓子は、その製品中に含まれる油脂の酸価が3を超え、かつ、過酸化物価が30を超えるものであつてはならない」とされている。また、本調製品の保存安定性は、55℃で、7.5日保存後のPOVは17.5であり、利用にはAVとPOVの抑制が求められた。
[Production of AV suppression, POV suppression products, and highly stable food materials]
The preparation with the fresh powder of Example 1 had an AV of 195 and a POV of 1 or less, but [sanitary guidance on the manufacture and handling of confectionery (November 16, 1977, Circular Food No. 248 No.)] states that “the confectionery must not have an acid value of more than 3 and a peroxide value of more than 30 in the fats and oils contained in the product”. In addition, the storage stability of this preparation was 55 ° C. and the POV after 7.5 days of storage was 17.5, and the use of AV and POV was required for use.

そこで、POVを抑制するために、グルコース、フルクトース、マルトースなどの還元糖を用いて、高安定性にするとともに、塩基性食品素材を加えて反応させることで、AVを抑制した標品を調製することができた。この場合、利用できる素材は、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、リン酸カルシウム、リン酸カリウム/カリウム塩、水酸化ナトリウム、水酸化カリウム、又はアンモニア、のアルカリ系素材やカルマグS(商品名 オリエンタル酵母工業社製、原料 ドロマイト:カルシウム、マグネシウム含有物)であった。   Therefore, in order to suppress POV, using a reducing sugar such as glucose, fructose, maltose, etc., to make it highly stable, a basic food material is added and reacted to prepare a preparation that suppresses AV. I was able to. In this case, usable materials are sodium carbonate, potassium carbonate, calcium carbonate, calcium phosphate, potassium phosphate / potassium salt, sodium hydroxide, potassium hydroxide, or ammonia, alkaline material or Calmag S (trade name: Oriental Yeast Industry Made by the company, raw material dolomite: containing calcium and magnesium).

調製品の製造例としては、上新粉10g、米油2mL、グルコース1g、炭酸カルシウム1g、1%(W/W)L4酵素液200μL、蒸留水1.8mLを、100mLのデユーワ瓶に入れ、中型スパーテルで撹拌・混合、密栓して、45℃で、4日間、擬似粉末状態で反応させ、反応後、開放系で105℃、30分間、乾燥・失活処理し、極薄白黄色、しっとりした粉末調製品を得た。AVは28、POVは1.6に抑制された。   As an example of preparation of a preparation, 10 g of fine powder, 2 mL of rice oil, 1 g of glucose, 1 g of calcium carbonate, 1% (W / W) L4 enzyme solution 200 μL, and 1.8 mL of distilled water are put into a 100 mL deeuwa bottle, Stir, mix and seal with a medium-sized spatula and react in a pseudo-powder state at 45 ° C for 4 days. After the reaction, dry and inactivate at 105 ° C for 30 minutes in an open system, extremely light white yellow, moist A powdered preparation was obtained. AV was suppressed to 28 and POV was suppressed to 1.6.

なお、リン酸二水素カリウム(pH4.4〜4.9)は刺激味はなく、食べやすく、リン酸水素二カリウム(pH8.7〜9.3)は僅かに刺激味あるが、食べやすく、リン酸三カリウム(pH11.5〜12.5)は癖刺激味あり、やや食べにくいが、本発明では、リン酸二水素カリウムとリン酸水素二カリウムを利用することができ、澱粉系素材でも、類似した結果を得た。   In addition, potassium dihydrogen phosphate (pH 4.4 to 4.9) is not irritating and easy to eat, while dipotassium hydrogen phosphate (pH 8.7 to 9.3) is slightly irritating but easy to eat. Tripotassium phosphate (pH 11.5 to 12.5) has an irritating taste and is somewhat difficult to eat, but in the present invention, potassium dihydrogen phosphate and dipotassium hydrogen phosphate can be used, and even starch-based materials Similar results were obtained.

[AV抑制、POV抑制製品の製造]
実施例1の上新粉での調製品は、AVは195であるので、これに、予め、ソーダ灰を加えて、AVが0になる添加量を求めた後、当該量を添加して、乳鉢で摩砕・混合し、AVが10以下の調製品とすることができた。なお、本調製品は室温1週間程度で黄色が強くなるので、製造後は短時間で使用することが望まれた。アンモニア水、水酸化ナトリウムでも同様にして同様の結果が得られた。
[Production of AV and POV suppression products]
Since the preparation of the top fresh powder of Example 1 has an AV of 195, soda ash is added to this in advance, and after determining the amount of addition that AV becomes 0, the amount is added, By grinding and mixing in a mortar, it was possible to prepare a preparation having an AV of 10 or less. In addition, since this product became yellowish at room temperature for about one week, it was desired to use it for a short time after production. Similar results were obtained with aqueous ammonia and sodium hydroxide.

[反応効率の促進]
上新粉10g、米油2mL、グルコース1g、リン酸二水素カリウム1g、1%(W/W)L4酵素液200μL、蒸留水1.8mLを、100mLのデユーワ瓶に入れ、中型スパーテルで撹拌・混合し、密栓して、擬似粉末状態で酵素反応させることで、反応効率を1.3倍に高めることができた。リン酸二水素カリウム1gの代わりに、リン酸水素二カリウム1gを用いた以外は同様にして、反応効率を1.2倍に高めることができた。
[Promotion of reaction efficiency]
Place 10g of Kamishin powder, 2mL of rice oil, 1g of glucose, 1g of potassium dihydrogen phosphate, 1% (W / W) L4 enzyme solution 200µL and 1.8mL of distilled water in a 100mL deuterium bottle, and stir with a medium-sized spatula. By mixing, sealing and carrying out an enzyme reaction in a pseudo powder state, the reaction efficiency could be increased 1.3 times. The reaction efficiency could be increased 1.2 times in the same manner except that 1 g of dipotassium hydrogen phosphate was used instead of 1 g of potassium dihydrogen phosphate.

1.乳化能米粉の製造条件
乳化能をもつ米粉(乳化能米粉と記載することがある)を以下の製造条件で製造した。
(1)配合条件(クエン酸量、油量)
配合条件は、米粉93:ナタネ油5:クエン酸2とした。
(2)過熱水蒸気(SHS)処理条件/SHS処理条件は、SHS温度250℃、電磁誘導加熱(IH)によるキルン壁面温度140℃、処理時間10分間とした。
(3)リパーゼ処理条件
リパーゼ処理条件は、米粉由来素材20gに、0.1%(W/W)リパーゼ水溶液及び蒸留水を4mL添加して攪拌し、45℃で15時間反応処理をした後、105℃の恒温槽に30分入れ、失活処理した。室温で放冷し、ミルで粉砕した。
1. Production conditions for emulsifying ability rice flour Rice flour having emulsification ability (sometimes referred to as emulsification ability rice flour) was produced under the following production conditions.
(1) Compounding conditions (citric acid amount, oil amount)
The blending conditions were rice flour 93: rapeseed oil 5: citric acid 2.
(2) Superheated steam (SHS) treatment conditions / SHS treatment conditions were as follows: SHS temperature 250 ° C., kiln wall surface temperature 140 ° C. by electromagnetic induction heating (IH), and treatment time 10 minutes.
(3) Lipase treatment conditions The lipase treatment conditions were as follows: 4 mL of 0.1% (W / W) lipase aqueous solution and distilled water were added to 20 g of rice flour-derived material and stirred, followed by reaction treatment at 45 ° C. for 15 hours. It was put into a constant temperature bath at 105 ° C. for 30 minutes and deactivated. The mixture was allowed to cool at room temperature and pulverized with a mill.

2.可溶性及び不溶性画分の簡易乳化能試験方法
可溶性及び不溶性画分の簡易乳化能試験を以下の方法により行った。
(1)アスタキサンチン法(ASSO法)
試薬:0.001%(V/V)アスタキサンチン溶液:アスタックス1000(アスタキサンチン1%含有)0.1gに、植物油99.9g添加し、撹拌して均一にして使用した。
1)試験管に蒸留水5mLと試料粉0.5gを入れた。
2)試験管ミキサーで1分間撹拌した。
3)0.001%(V/V)アスタキサンチン溶液を0.1mL添加した。
4)試験管ミキサーで1分間撹拌した。
5)遠心分離を7,000×g、10分間行った。
6)水相を採取して470nmで吸光度を測定した。
2. Simple emulsification ability test method for soluble and insoluble fractions Simple emulsification ability test for soluble and insoluble fractions was carried out by the following method.
(1) Astaxanthin method (ASSO method)
Reagent: 0.001% (V / V) astaxanthin solution: Astax 1000 (containing 1% astaxanthin) 0.1 g was added 99.9 g of vegetable oil, stirred and used uniformly.
1) 5 mL of distilled water and 0.5 g of sample powder were placed in a test tube.
2) The mixture was stirred for 1 minute with a test tube mixer.
3) 0.1 mL of 0.001% (V / V) astaxanthin solution was added.
4) Stir with a test tube mixer for 1 minute.
5) Centrifugation was performed at 7,000 × g for 10 minutes.
6) The aqueous phase was collected and the absorbance was measured at 470 nm.

(2)ヘキサン抽出アスタキサンチン法(Hex−ASSO法)
Hex−ASSO法により、乳化能米粉が、油を吸着する能力を測定した。
測定方法は、図9に示す方法にしたがった。
(2) Hexane-extracted astaxanthin method (Hex-ASSO method)
The ability of emulsifiable rice flour to adsorb oil was measured by the Hex-ASSO method.
The measurement method was according to the method shown in FIG.

3.結果
その結果を、図10〜11に示す。
(1)米粉由来素材の明度、回収率、乳化能が高いSHS処理条件は、SHS温度250℃、電磁誘導加熱によるキルン壁面温度140℃、処理時間10分間であることを明らかにした(図5)。
(2)SHSで処理した米粉由来素材の乳化能を維持しながら油及びクエン酸の割合を軽減するための配合割合は、米粉93:ナタネ油5:クエン酸2であることを明らかにした(図6)。
(3)SHS処理した米粉由来素材20gに、0.1%(W/W)リパーゼ水溶液及び蒸留水をそれぞれ4mL添加してかき混ぜ、45℃で15時間反応処理をすることで、不溶性成分の乳化能が強化された米粉由来素材を製造することができた(図6)。
3. Results The results are shown in FIGS.
(1) It was clarified that the SHS conditions under which the brightness, recovery rate, and emulsification capacity of the rice flour-derived material were high were an SHS temperature of 250 ° C., a kiln wall surface temperature of 140 ° C. by electromagnetic induction heating, and a processing time of 10 minutes (FIG. 5). ).
(2) It was clarified that the blending ratio for reducing the ratio of oil and citric acid while maintaining the emulsifying capacity of the rice flour-derived material treated with SHS was rice flour 93: rapeseed oil 5: citric acid 2 ( FIG. 6).
(3) Add 4 mL of 0.1% (W / W) lipase aqueous solution and distilled water to 20 g of SHS-treated rice flour-derived material, stir and emulsify insoluble components by reacting at 45 ° C. for 15 hours. A rice flour-derived material with enhanced performance could be produced (FIG. 6).

1.材料及び方法
(1)乳化能米粉製造条件
1)配合条件(クエン酸量、油量)
配合条件は、以下の通りとした。
・ 米粉74:ナタネ19:クエン酸7
・ 米粉100%
1. Materials and methods (1) Emulsification ability Rice flour production conditions 1) Blending conditions (citric acid amount, oil amount)
The blending conditions were as follows.
・ Rice flour 74: Rapeseed 19: Citric acid 7
・ 100% rice flour

2)過熱水蒸気(SHS)処理条件
SHS処理条件は、SHS温度170℃、キルン壁面温度(伝導伝熱加熱)170℃、処理時間20分間とした。
3)乳化能米粉及び米粉の水溶性画分の糖組成分析
米粉が10%(W/W)になるように米粉と脱塩水を100mL容量のガラス製ビーカーに計り入れ、これを30℃に設定した恒温水槽[NTT1200、東京理化器械(株)]に浸漬し、マグネチックスターラー[M3、(株)井内盛栄堂]にて30分間撹拌して水溶性成分を抽出した。
2) Superheated steam (SHS) treatment conditions The SHS treatment conditions were an SHS temperature of 170 ° C, a kiln wall surface temperature (conduction heat transfer heating) of 170 ° C, and a treatment time of 20 minutes.
3) Sugar composition analysis of emulsifiable rice flour and water-soluble fraction of rice flour Rice flour and desalted water were weighed into a 100 mL glass beaker so that the rice flour would be 10% (W / W), and this was set at 30 ° C. Was immersed in a constant temperature water bath [NT1200, Tokyo Rika Kikai Co., Ltd.] and stirred for 30 minutes with a magnetic stirrer [M3, Inei Seieido Co., Ltd.] to extract water-soluble components.

小型高速冷却遠心機[M201−IVD、(株)佐久間製作所]により10℃、15,000×gで10分間遠心分離して、この分散液の上清液を得た。これを、除粒子用シリンジフィルターユニット[クロマトディスクNY025080及びクロマトディスクNY013045、大阪ケミカル(株)/クロマトディスク13A、ジーエルサイエンス(株)]と、汎用注射筒[テルモシリンジ、テルモ(株)]により精密ろ過して固形分を除去し、水溶性成分水溶液を得た。   Centrifugation was performed at 10 ° C. and 15,000 × g for 10 minutes using a small high-speed cooling centrifuge [M201-IVD, Sakuma Seisakusho Co., Ltd.] to obtain a supernatant of this dispersion. This is precisely performed by a particle filter syringe filter unit [Chromatodisc NY0250080 and Chromatodisc NY013045, Osaka Chemical Co., Ltd./Chromatodisc 13A, GL Science Co., Ltd.] and a general-purpose syringe [Termo Syringe, Terumo Co., Ltd.]. The solid content was removed by filtration to obtain a water-soluble component aqueous solution.

送液ポンプ[4溶媒低圧グラジエントポンプ、PU−2089、日本分光(株)]、示差屈折検出器[RI−2031、日本分光(株)]、カラムオーブン[CO−2065、日本分光(株)]、インジェクタ(20μL、7725(i)、Reodyne 社)から構成される高速液体クロマトグラフ[LC2000Plus、日本分光(株)]を用い、分離カラムには、MCI GEL CK04SSカラム[10mm I.D×L 200mm、粒子径11μm、三菱化学(株)]を用いた。   Liquid feed pump [4-solvent low pressure gradient pump, PU-2089, JASCO Corporation], differential refraction detector [RI-2031, JASCO Corporation], column oven [CO-2065, JASCO Corporation] , An injector (20 μL, 7725 (i), Reodyne), and a separation column, MCI GEL CK04SS column [10 mm I.D., LC2000Plus, JASCO Corporation]. D × L 200 mm, particle diameter 11 μm, Mitsubishi Chemical Corporation] was used.

流速を0.3mL・min−1、カラム温度を80℃に設定し、脱塩水を溶離液にして定組成送液モードで溶出した。また、得られたクロマトグラムのデータ処理には、クロマトデータ処理プログラム[JASCO Borwin−NT、日本分光(株)]、装置制御には、システムコントロールプログラム[HSS−2000、日本分光(株)]を用いた。ベースラインが安定した後、マイクロシリンジ(25μL、#702、HAMILTON CO.社)を用いて、インジェクタに試料を20μL注入した。クロマトデータ処理プログラムを用いて得られたデータから溶出ピークを検出し、保持時間からマルトオリゴ糖を同定した。なお、内部標準にはmyo−イノシトールを用いた。 The flow rate was set to 0.3 mL · min −1 , the column temperature was set to 80 ° C., and deionized water was used as an eluent to elute in a constant composition liquid feeding mode. The chromatogram data processing program [JASCO Borwin-NT, JASCO Corporation] is used for data processing of the obtained chromatogram, and the system control program [HSS-2000, JASCO Corporation] is used for device control. Using. After the baseline was stabilized, 20 μL of sample was injected into the injector using a microsyringe (25 μL, # 702, HAMILTON CO.). Elution peaks were detected from the data obtained using the chromatographic data processing program, and maltooligosaccharides were identified from the retention time. In addition, myo-inositol was used as an internal standard.

4)乳化能米粉及び米粉の脂溶性成分の分析
米粉が10%(W/W)になるように米粉とクロロホルム−メタノール混液(2:1、 by Vol)を00mL容量のガラス製ビーカーに計り入れ、これを30℃に設定した恒温水槽に浸漬し、マグネチックスターラーにて30分間撹拌して、脂溶性成分を抽出した。この分散液を、小型高速冷却遠心機により15,000×g、10℃で10分間遠心分離して、上清液を得た。除粒子用シリンジフィルターユニット[「クロマトディスク(有機溶媒系)」、ジーエルサイエンス(株)]と、ルアーロック式注射器(GLASS SYRINGE、(有)石沢製作所)により精密ろ過して固形分を除去し、ろ液をロータリーエバポレータ[N−1、東京理化器械(株)]にて55℃で濃縮・乾固したものを脂溶性画分とした。
4) Analysis of emulsifying ability rice flour and fat-soluble component of rice flour Weigh rice flour and chloroform-methanol mixture (2: 1, by Vol) in a glass beaker with a capacity of 00 mL so that the rice flour is 10% (W / W). This was immersed in a constant temperature water bath set at 30 ° C., and stirred for 30 minutes with a magnetic stirrer to extract a fat-soluble component. This dispersion was centrifuged at 15,000 × g and 10 ° C. for 10 minutes with a small high-speed cooling centrifuge to obtain a supernatant. Remove the solid content by microfiltration with a syringe filter unit for particle removal [“Chromatodisc (organic solvent)”, GL Sciences Inc.] and a luer lock syringe (GLASS SYRINGE, Ishizawa Seisakusho) The filtrate was concentrated and dried at 55 ° C. with a rotary evaporator [N-1, Tokyo Rika Kikai Co., Ltd.] to obtain a fat-soluble fraction.

試料中の不揮発性成分の沸点を低下させるために、試料をトリメチルシリル(TMS)化してGLC試料を得た。次に、GLC試料をオートインジェクタ専用バイアル[容量1.5mL、(株)島津製作所]に約1mL採取し、水素発生器[OPGU−2100S、(株)島津製作所]、オートサンプラ[AOC−20s、(株)島津製作所]、オートインジェクタ[AOC−20i、(株)島津製作所]及び水素炎イオン化検出器(FID)から構成されるガスクロマトグラフ[GC−1700、(株)島津製作所]、キャピラリカラム(ZB−1、カラム内径 0.25mm、カラム長 10m、phenomenex社)、コミュニケーションバスモジュール[CBM−101、(株)島津製作所]、データ処理ソフトウェア[CLASS−GC10、(株)島津製作所]がインストールされたパーソナルコンピュータ[FMV6433DX3c、富士通(株)]により構成されるGLC装置を用いて、モノアシルグリセロール(MAG)、ジアシルグリセロール(DAG)、トリアシルグリセロール(TAG)及び遊離脂肪酸(FFA)を分析した。   In order to lower the boiling point of the non-volatile component in the sample, the sample was trimethylsilyl (TMS) to obtain a GLC sample. Next, about 1 mL of a GLC sample was collected in an autoinjector dedicated vial [capacity 1.5 mL, Shimadzu Corporation], a hydrogen generator [OPGU-2100S, Shimadzu Corporation], an autosampler [AOC-20s, Shimadzu Corporation], auto-injector [AOC-20i, Shimadzu Corporation] and gas chromatograph [GC-1700, Shimadzu Corporation] composed of a flame ionization detector (FID), capillary column ( ZB-1, column inner diameter 0.25 mm, column length 10 m, phenomenex), communication bus module [CBM-101, Shimadzu Corporation], data processing software [CLASS-GC10, Shimadzu Corporation] are installed. Personal computer [FMV6433DX3c, wealth Monoacylglycerol (MAG), diacylglycerol (DAG), triacylglycerol (TAG) and free fatty acid (FFA) were analyzed using a GLC apparatus constituted by Shitsu Co., Ltd.].

なお、キャリーガスを窒素、キャリーガス流量を1mL・min−1、メイクアップガスを窒素及び圧縮乾燥空気とした。また、温度プログラムを50℃で5分間保持後に温度勾配5℃・min−1で350℃まで昇温し、350℃で10分間保持するように設定した。また、圧力プログラムを33kPaで5分間保持後に昇圧速度0.8kPa・min−1で81kPaまで昇圧し、そして、81kPaで10分間保持するように設定した。 The carry gas was nitrogen, the carry gas flow rate was 1 mL · min −1 , and the makeup gas was nitrogen and compressed dry air. Further, the temperature program was set to be held at 50 ° C. for 5 minutes, then heated to 350 ° C. with a temperature gradient of 5 ° C. · min −1 and held at 350 ° C. for 10 minutes. The pressure program was set to hold at 33 kPa for 5 minutes, then increase the pressure to 81 kPa at a pressure increase rate of 0.8 kPa · min −1 , and then hold at 81 kPa for 10 minutes.

2.結果
米粉に、油脂及びクエン酸を混合した試料に過熱水蒸気処理した乳化能米粉の水溶性画分及び脂溶性画分に含まれる成分を分析した結果を、図12〜図13に示す。
2. Result The result of having analyzed the component contained in the water-soluble fraction and fat-soluble fraction of the emulsification ability rice flour which carried out the superheated steam process to the sample which mixed fats and citric acid with rice flour is shown in FIGS.

その結果、水溶性画分には、米粉には通常存在しないデンプンの加水分解物であるマルトオリゴ糖やデキストリンが含まれていることを確認した。一方、脂溶性画分には、やはり米粉には通常存在しない油脂分解物である遊離脂肪酸、ジアシル及びモノアシルグリセロールが含まれていることを確認した。特に、油脂分解物は、独自に乳化能を有することが知られている。また、水溶性画分及び脂溶性画分に確認できた成分を利用してリパーゼ反応を行うことで、水溶性・脂溶性の界面活性物質、エステル類を生成し、米粉への乳化能付与が期待できた。   As a result, it was confirmed that the water-soluble fraction contained malto-oligosaccharide and dextrin, which are starch hydrolysates that are not usually present in rice flour. On the other hand, it was confirmed that the fat-soluble fraction contained free fatty acids, diacyl and monoacylglycerol, which are oil and fat decomposition products that are not usually present in rice flour. In particular, it is known that the oil and fat decomposition product has an emulsifying ability by itself. In addition, by performing a lipase reaction using components that can be confirmed in the water-soluble fraction and the fat-soluble fraction, water-soluble and fat-soluble surfactants and esters are generated, and emulsifying ability is imparted to rice flour. I was expecting.

1.乳化能米粉の製造条件
(1)配合条件(クエン酸量、油量)
配合条件は、下記の表1の通りとした。
1. Emulsification ability Rice flour production conditions (1) Mixing conditions (citric acid amount, oil amount)
The blending conditions were as shown in Table 1 below.

(2)過熱水蒸気(SHS)処理及びリパーゼ処理条件
SHS処理及びリパーゼ処理条件を、図14に示す。
(2) Superheated steam (SHS) treatment and lipase treatment conditions The SHS treatment and lipase treatment conditions are shown in FIG.

(3)界面張力の測定方法
脱塩水に、マグネチックスターラー[M3、(株)井内盛栄堂]で撹拌しながら乳化剤を加えて溶解させたものを乳化剤水溶液とした。また、100mL容量のガラス製ビーカーに各米粉が10%(W/W)になるように米粉と脱塩水を計り入れ、マグネチックスターラーを用いて目盛を3に設定し、30℃に設定した恒温水槽[NTT1200、東京理化器械(株)]中で30分間撹拌して水溶性成分を抽出した。
(3) Method for measuring interfacial tension An emulsifier aqueous solution was prepared by adding an emulsifier to demineralized water while stirring with a magnetic stirrer [M3, Iuchi Seiseido Co., Ltd.]. In addition, the rice flour and demineralized water were weighed into a 100 mL capacity glass beaker so that each rice flour would be 10% (W / W), the scale was set to 3 using a magnetic stirrer, and the temperature was set to 30 ° C. Water-soluble components were extracted by stirring for 30 minutes in a water tank [NTT 1200, Tokyo Rika Kikai Co., Ltd.].

小型高速冷却遠心機[M201−IVD、(株)佐久間製作所]により10℃、15,000×gで10分間遠心分離して、この分散液の上清液を得た。これを、除粒子用シリンジフィルターユニット[クロマトディスクNY025080、孔径0.8μm、大阪ケミカル(株)、クロマトディスクNY013045、孔径0.4μm、大阪ケミカル(株)、クロマトディスク13A、孔径0.2μm、ジーエルサイエンス(株)]と、汎用注射筒[テルモシリンジ、テルモ(株)]により精密ろ過して固形分を除去し、水溶性成分水溶液を得た。   Centrifugation was performed at 10 ° C. and 15,000 × g for 10 minutes using a small high-speed cooling centrifuge [M201-IVD, Sakuma Seisakusho Co., Ltd.] to obtain a supernatant of this dispersion. Particle removal syringe filter unit [Chromatodisc NY0250080, pore size 0.8 μm, Osaka Chemical Co., Ltd., Chromatodisc NY013045, pore size 0.4 μm, Osaka Chemical Co., Ltd., Chromatodisc 13A, pore size 0.2 μm, GL Science Co., Ltd.] and a general-purpose syringe [Terumo Syringe, Terumo Co., Ltd.] were subjected to microfiltration to remove solids, thereby obtaining a water-soluble component aqueous solution.

25℃での乳化剤水溶液又は水溶性成分水溶液と大豆油における界面張力を計測システム(CCDカメラ、光源)、コントロールボックス及びパーソナルコンピュータから構成されている自動接触角計[DM−501、協和界面科学(株)]を用いて測定した。すなわち、大豆油を石英ガラスセル(W25mm×D25mm×H30mm)に注入し、テフロン(登録商標)コート針(22G、外径:0.7mm、内径:0.4mm)を装着した注射筒より、乳化剤水溶液又は水溶性成分水溶液をインジェクタ針先から5μL懸滴した。なお、解析にはYoung−Laplace法を用いた。   Automatic contact angle meter [DM-501, Kyowa Interface Science, which consists of a measurement system (CCD camera, light source), a control box and a personal computer to measure the interfacial tension between an emulsifier aqueous solution or water-soluble component aqueous solution and soybean oil at 25 ° C Strain)]. That is, soybean oil was injected into a quartz glass cell (W25 mm × D25 mm × H30 mm), and an emulsifier was introduced from a syringe equipped with a Teflon (registered trademark) coated needle (22G, outer diameter: 0.7 mm, inner diameter: 0.4 mm). An aqueous solution or a water-soluble component aqueous solution was dropped from the injector needle tip by 5 μL. In addition, Young-Laplace method was used for the analysis.

2.結果
その結果を、下記の表2に示す。
2. Results The results are shown in Table 2 below.

過熱水蒸気処理条件が300℃で処理した乳化能米粉においてもリパーゼ処理をすることで乳化能米粉には水溶性・脂溶性の界面活性物質が生成することを確認し、それぞれの画分が界面張力を低下させることを明らかにした(表2)。   It was confirmed that water-soluble and fat-soluble surface-active substances were formed in emulsifiable rice flour by treating with lipase even in emulsifiable rice flour treated at 300 ° C under superheated steam treatment conditions. (Table 2).

1.乳化能米粉を用いた食パンの評価
実施例13で試作した乳化能米粉を用いて製パン試験を行った。
(1)配合条件
一般的な食パン配合にて食パンを製造し、製パン性能、製品品質の評価を行った。
配合は下記の表3の通りとした。
1. Evaluation of Bread Using Emulsifiable Rice Flour A bread-making test was conducted using the emulsifiable rice flour produced in Example 13.
(1) Blending conditions Bread bread was produced by general bread blending, and bread making performance and product quality were evaluated.
The composition was as shown in Table 3 below.

(2)食パンの膨らみ測定方法
各テスト区の食パン生地を一定重量に分割し、ロール形状に整形した後、ワンローフ型に入れ、発酵後、蓋なしで焼成した。製品重量は、焼成後1時間時点の重量を計測し、製品の容積をボリューム測定装置(3DレーザースキャナSELNAC−VM150)で測定することで、製品の比容積を求めた。ここで、比容積=製品体積/製品重量、である。
(2) Bread bulge measurement method The bread dough of each test section was divided into a constant weight, shaped into a roll shape, placed in a one-loaf mold, baked without a lid after fermentation. For the product weight, the specific volume of the product was determined by measuring the weight at 1 hour after firing and measuring the volume of the product with a volume measuring device (3D laser scanner SELNAC-VM150). Here, specific volume = product volume / product weight.

(3)食パンの硬さ測定方法
食パンの硬さ測定方法は、図15に示す通りである。
(3) Measuring method of bread bread hardness The measuring method of bread bread hardness is as shown in FIG.

2.結果
その結果を、図16に示す。乳化剤と乳化能米粉どちらも0.5%(W/W)添加した。乳化剤添加の値より±0.02以内が正常値と評価した。乳化能米粉を添加した食パンの膨らみは、乳化剤添加と同等であった。
2. Results The results are shown in FIG. Both emulsifier and emulsifiable rice flour were added at 0.5% (W / W). The value within ± 0.02 from the value of the emulsifier addition was evaluated as a normal value. The bulge of the bread to which the emulsifying ability rice flour was added was equivalent to the addition of the emulsifier.

図17に、乳化能米粉を添加した食パン内相の保存中の硬さを示す。乳化剤と乳化能米粉どちらも0.5%添加した。乳化能米粉を添加した食パンが乳化剤添加より常に柔らかかった。   In FIG. 17, the hardness during preservation | save of the bread | pan internal phase which added the emulsification ability rice flour is shown. Both emulsifier and emulsifiable rice flour were added at 0.5%. The bread with added rice flour was always softer than the added emulsifier.

製パン利用における乳化能米粉の適正使用量(0.5%)を確立した。乳化能米粉を配合したパンは、乳化剤を使用したパンと同等の比容積を示した。また、乳化能米粉を配合したパンの内相は、製造3日後でも乳化能米粉を添加した食パンが乳化剤添加より常に柔らかかった。柔らかさの程度から評価すると、乳化剤を使用したパンと同等の硬さと評価できた。
以上の結果より、食パン製造において、乳化能米粉は、乳化剤と同等の利用効果を有することを確認した。
Established an appropriate amount (0.5%) of emulsifying rice flour for bread making. The bread blended with the emulsifying ability rice flour showed a specific volume equivalent to that of the bread using the emulsifier. Moreover, as for the internal phase of the bread | pan which mix | blended emulsification ability rice flour, the bread | pan which added emulsification ability rice flour was always softer than emulsifier addition even 3 days after manufacture. When evaluated from the degree of softness, it was possible to evaluate the hardness equivalent to bread using an emulsifier.
From the above results, it was confirmed that emulsifying ability rice flour has the same utilization effect as an emulsifier in bread production.

1.乳化能米粉を用いたケーシング蒲鉾の評価
実施例13で試作した乳化能米粉を用いて蒲鉾を試作して評価を行った。具体的には、擂潰機を用いて蒲鉾原料を擂潰し、蒲鉾生地とした。次に、ミキサーを用いて、乳化能米粉を様々な濃度で蒲鉾生地に混合した。この蒲鉾生地を、それぞれ、充填器にて48mm塩化ビニリデンケーシングに充填し、90℃、20分の蒸気加熱後、流水中で冷却し、ケーシング蒲鉾とした。
1. Evaluation of casing rice bran using emulsifying ability rice flour Using the emulsifying ability rice flour experimentally produced in Example 13, a trial production of rice bran was performed. Specifically, the koji raw material was crushed using a masher to obtain a koji dough. Next, the emulsifiable rice flour was mixed with the koji dough at various concentrations using a mixer. Each of the straw dough was filled in a 48 mm vinylidene chloride casing with a filling device, heated at 90 ° C. for 20 minutes, and then cooled in running water to obtain a casing straw.

作製したケーシング蒲鉾は冷凍保存し、試験に用いた。経日的にケーシング蒲鉾を解凍し、硬さ及び離水量を測定した。硬さの測定では、試料を厚さ3cmにカットし、その中央部を測定した。測定機器は、直径5mmの球形プランジャーを用いたレオメーターを使用した。離水量は、4gの小片にカットした試料を、遠心分離器にて3000rpm、5分の遠心分離に供し、強制離水後、重量の減少量から離水率を算出した。   The produced casing was stored frozen and used for testing. Casing troughs were thawed over time and the hardness and water separation were measured. In the measurement of hardness, the sample was cut into a thickness of 3 cm, and the central part was measured. As a measuring instrument, a rheometer using a spherical plunger having a diameter of 5 mm was used. The amount of water separation was obtained by subjecting a sample cut into 4 g pieces to centrifuge at 3000 rpm for 5 minutes, and after forced water separation, the water separation rate was calculated from the decrease in weight.

2.結果
その結果を、図18〜19に示す。乳化能米粉を添加したケーシング蒲鉾の冷凍保存中の硬さ増加率については、製造直後の値を100として表示した。乳化能米粉は、1%(W/W)添加で蒲鉾の経時変化を2ヶ月間抑制することを確認した。
2. Results The results are shown in FIGS. About the hardness increase rate during the freezing preservation | save of the casing koji which added the emulsification ability rice flour, the value immediately after manufacture was displayed as 100. It was confirmed that 1% (W / W) addition of emulsifying ability rice flour suppresses the change of koji over time for 2 months.

乳化能米粉を添加したケーシング蒲鉾の冷凍保存中の離水量については、製造直後の値を100として表示した。乳化能米粉は、1%(W/W)添加で蒲鉾の経時変化を2ヶ月間抑制することを確認した。   About the water separation amount in the freezing preservation | save of the casing koji which added emulsification ability rice flour, the value immediately after manufacture was displayed as 100. It was confirmed that 1% (W / W) addition of emulsifying ability rice flour suppresses the change of koji over time for 2 months.

乳化能米粉を様々な濃度でケーシング蒲鉾に添加し、冷凍保存した。経日的に硬さや離水量を評価した結果、乳化能米粉は、1%(W/W)添加で蒲鉾の経時変化を2ヶ月間抑制することを確認した。
The emulsifying ability rice flour was added to the casing koji at various concentrations and stored frozen. As a result of evaluating the hardness and the amount of water separation over time, it was confirmed that emulsifying ability rice flour suppresses the temporal change of koji for 2 months with the addition of 1% (W / W).

1.乳化能米粉の麺類に対する加工適性の評価
(1)試験方法
米粉うどん[米粉30%(W/W)添加、大麦玄麦8%(W/W)添加]、ラーメン、うどんの加工適正について試験した。
1. Evaluation of processing suitability of emulsifying rice flour for noodles (1) Test method Rice flour udon [rice flour 30% (W / W) added, barley brown wheat 8% (W / W) added], ramen, and udon were tested for suitability.

1)試料
供試試料として、米粉うどん、ラーメン、うどんについて、以下のように、乳化能米粉無添加の対照と、米粉うどん:乳化能米粉0.5%、1.0%、1.5%(W/W)添加、ラーメン:乳化能米粉0.1%、0.5%、0.8%(W/W)添加、うどん:乳化能米粉0.03%、0.1%、0.3%、0.6%、1.0%、2.0%(W/W)添加した試料を準備して試験した。
1) Sample As a test sample, rice flour udon, ramen, and udon, as shown below, a control with no emulsifying ability rice flour added, and rice flour udon: 0.5%, 1.0%, 1.5% emulsifying ability rice flour (W / W) addition, ramen: emulsifying ability rice flour 0.1%, 0.5%, 0.8% (W / W) addition, udon: emulsifying ability rice flour 0.03%, 0.1%,. Samples added with 3%, 0.6%, 1.0%, 2.0% (W / W) were prepared and tested.

米粉うどん:
a)乳化能米粉0.5%、b)同1.0%、c)同1.5%(W/W)
ラーメン:
a)対照(乳化能米粉無添加)、b)乳化能米粉0.1%、c)同0.5%、d)同0.8%(W/W)
うどん:
a)対照(乳化能米粉無添加)、b)乳化能米粉0.03%、c)同0.1%、d)同0.3%、e)同0.6%、f)同1.0%、g)同2.0%(W/W)
Rice flour udon:
a) Emulsification ability rice flour 0.5%, b) 1.0%, c) 1.5% (W / W)
ramen:
a) Control (no emulsification ability rice flour added), b) Emulsification ability rice flour 0.1%, c) 0.5%, d) 0.8% (W / W)
Udon:
a) Control (no emulsifying rice flour added), b) Emulsifying rice flour 0.03%, c) 0.1%, d) 0.3%, e) 0.6%, f) 1. 0%, g) 2.0% (W / W)

2)麺類の含水率の測定方法
以下の方法により、麺類の含水率を測定した。
a)麺類の茹で方法
以下の手順で茹で上げた麺類を調製した。
(1)2Lビーカ―に蒸留水1.5Lを入れた。
(2)電気コンロ1200Wでビーカー内の水温を98℃にまで沸かした。その際に、時計皿でビーカーに蓋をした。
(3)冷凍麺類100g投入して茹でた。茹で時間は、うどん10,12,15分、ラーメン1,1.5,2,3分とした。
(4)麺をザルですくい水を切った。
2) Measuring method of moisture content of noodles The moisture content of noodles was measured by the following method.
a) Method for boiled noodles Noodles boiled by the following procedure were prepared.
(1) 1.5 L of distilled water was put into a 2 L beaker.
(2) The water temperature in the beaker was boiled to 98 ° C. with an electric stove of 1200 W. At that time, the beaker was covered with a watch glass.
(3) 100 g of frozen noodles were added and boiled. The boiled time was set to 10, 12, 15 minutes for udon and 1, 1.5, 2, 3 minutes for ramen.
(4) Dried noodles with colander and drained water.

b)麺試料の調製
(1)茹で上げた麺を厚手のポリ袋(0.08mm、ジッパー付き)に入れて、袋の外から麺サンプルを手揉みした後に麺棒をローラーとして袋の外側から圧延を繰り返して、ペースト状に均質化した。
(2)ポリ袋を2重にして室温で1時間冷却し、試料品温を室温にした。
b) Preparation of noodle sample (1) Put noodles raised in a bowl into a thick plastic bag (0.08mm, with zipper), and after rolling the noodle sample from the outside of the bag, rolling it from the outside of the bag using a rolling pin as a roller Was repeated to homogenize the paste.
(2) The plastic bag was doubled and cooled at room temperature for 1 hour, and the sample product temperature was brought to room temperature.

c)含水率の測定
以下の方法で含水率を測定した。
(1)横20cm×縦18cmの図20に示したようなアルミ箔袋を0.1mgまで秤量した。
(2)均質化した麺サンプルの入った袋の隅をはさみで切り、試料を押し出してアルミ箔袋に2.5〜3g入れた。
(3)袋の口を折って気密として、0.1mgまで秤量した。
(4)麺棒で試料を均一に薄く圧延した。袋の口と底は、上下1.5cm位づつ残した。
(5)袋を展開して135℃で2時間通風乾燥した。
(6)デシケーターで30分放冷後、0.1mgまで秤量した。その際に、1サンプル5連で行い、平均値を各試料の水分とした。
図20に、アルミ箔袋の展開図を示す。
c) Measurement of moisture content The moisture content was measured by the following method.
(1) An aluminum foil bag as shown in FIG. 20 measuring 20 cm wide × 18 cm long was weighed to 0.1 mg.
(2) The corner of the bag containing the homogenized noodle sample was cut with scissors, the sample was extruded, and 2.5 to 3 g was put into an aluminum foil bag.
(3) The bag mouth was folded to make it airtight and weighed to 0.1 mg.
(4) The sample was uniformly and thinly rolled with a rolling pin. The mouth and bottom of the bag were left about 1.5 cm above and below.
(5) The bag was developed and dried by ventilation at 135 ° C. for 2 hours.
(6) The mixture was allowed to cool for 30 minutes with a desiccator and then weighed to 0.1 mg. In that case, it carried out by 1 sample 5 series, and made the average value the water | moisture content of each sample.
FIG. 20 shows a development view of the aluminum foil bag.

3)官能試験
麺類の茹で時間を変えて調理して、茹であがりの食感を官能評価によって評価した。茹で上げたうどんを釜揚げうどんとして麺つゆで試食して官能評価した。ラーメンでは、茹で上げたラーメンをスープに入れて試食して官能評価した。図21に、試作した麺類(左:うどん、右:ラーメン)を示す。また、図22に、うどんの茹で風景を示し、図23に、茹で上がったうどんを示す。
3) Sensory test The noodles were cooked at different times with the rice cake, and the texture of the rice cake was evaluated by sensory evaluation. Boiled udon noodles were tasted as noodle soup for sensory evaluation. For ramen, we put the ramen boiled in a soup and sampled it for sensory evaluation. FIG. 21 shows the prototype noodles (left: udon, right: ramen). In addition, FIG. 22 shows a landscape with a bowl of udon, and FIG. 23 shows a udon raised with a bowl.

4)物性試験
米粉うどん、ラーメンについて、以下により、その物性(破断強度)を調べた。
供試試料:
米粉うどんについては、乳化能米粉添加量0,0.3,0.5,1.0,1.5%(W/W)の米粉うどんを茹で時間:10、12、15分で調理した麺を試料として用いた。また、ラーメンについては、乳化能米粉添加量0,0.1,0.5,0.8%(W/W)のラーメンを茹で時間:1.5分で調理した麺を試料として用いた。
測定方法:
物性測定は、レオメーター(サン科学社製:CR−500DX)を用いて供試試料の麺を3cm程度に切り、中央部に対して歯形プランジャー(サン科学社製:プランジャー番号35番歯形(B))を用いて破断強度を測定した。
4) Physical property test The physical properties (breaking strength) of rice flour udon and ramen were examined as follows.
Test sample:
For rice flour udon, rice flour udon with emulsifying ability rice flour addition amount 0, 0.3, 0.5, 1.0, 1.5% (W / W) boiled for noodles cooked in time: 10, 12, 15 minutes Was used as a sample. Moreover, about the ramen, the noodles which cooked the ramen of the emulsification ability rice flour addition amount 0,0.1,0.5,0.8% (W / W) in the boil for 1.5 minutes were used as a sample.
Measuring method:
The physical properties were measured using a rheometer (manufactured by Sun Science Co., Ltd .: CR-500DX). (B)) was used to measure the breaking strength.

(2)実験結果
1)米粉うどんへの効果
乳化能米粉を添加した米粉うどんの茹で麺水分を調べた。茹で時間は10分、12分、15分とした。また、乳化能米粉を添加した米粉うどんの破断強度を調べた。米粉うどんの茹で麺水分は、基準となる茹で時間15分では、対照の乳化能米粉無添加の麺水分より乳化能米粉を0.5%や、1.5%(W/W)添加した方が高く、1.0%(W/W)添加でも対照とほぼ近い麺水分であった。また、茹で時間12分では、無添加の麺水分に比べ、乳化能米粉を0.5〜1.5%(W/W)添加した全ての米粉うどんの麺水分が無添加に比べ1%以上高かった。このことから、米粉うどんに乳化能米粉を0.5%(W/W)以上添加することで茹で工程での吸水性が向上することが確認された。その結果を表4に示す。
(2) Experimental results 1) Effect on rice flour udon Noodle moisture was examined using rice bran udon with added emulsifying ability rice flour. The cooking time was 10 minutes, 12 minutes, and 15 minutes. Moreover, the breaking strength of the rice flour udon to which the emulsifying ability rice flour was added was examined. Rice flour udon boiled noodles with a standard boiled time of 15 minutes, with the addition of emulsifying rice flour 0.5% or 1.5% (W / W) than the control noodle moisture without adding emulsifying ability rice flour Even when 1.0% (W / W) was added, the noodle moisture was almost similar to that of the control. In addition, in the boiled time of 12 minutes, the noodle moisture of all rice flour udon to which 0.5 to 1.5% (W / W) of emulsifying ability rice flour is added is 1% or more compared to the additive-free noodle moisture. it was high. From this, it was confirmed that by adding 0.5% (W / W) or more of the emulsifying ability rice flour to the rice flour udon, water absorption in the boiling process is improved. The results are shown in Table 4.

茹で麺の麺水分の結果より、米粉うどんに乳化能米粉を0.5%(W/W)以上添加することで、より早く給水する傾向が認められ、茹で時間が15分未満に短縮できることが確認された。   From the result of the noodle water content of boiled noodles, adding 0.5% (W / W) or more of emulsifying ability rice flour to rice flour udon indicates that there is a tendency to supply water faster, and boiling time can be shortened to less than 15 minutes confirmed.

また、乳化能米粉の添加濃度と茹で時間別に米粉うどんの破断強度を評価した。その結果を、図24に示す。乳化能米粉を0.5%(W/W)以上添加した米粉うどんは、無添加の米粉うどんに比べて、破断強度が2倍以上に高く、その傾向は、茹で時間が長くなっても維持された。   Moreover, the breaking strength of rice flour udon was evaluated according to the addition concentration of the emulsifying ability rice flour and the koji time. The result is shown in FIG. Rice flour udon with 0.5% (W / W) or more of emulsifiable rice flour has a breaking strength more than twice that of rice flour udon with no additive, and this tendency is maintained even if the time is long with boil It was done.

以上の麺水分、破断強度の結果をまとめると、米粉うどんに乳化能米粉を0.5%〜1.5%(W/W)の範囲で添加することで、茹で工程での吸水性が向上して茹で時間が向上するとともに、茹で麺の物性が強化されることが明らかとなった。   Summarizing the above noodle moisture and breaking strength results, adding water in the range of 0.5% to 1.5% (W / W) of emulsifying ability to rice flour udon improves the water absorption in the boiling process. As a result, it was revealed that the boiled noodles were improved in time and the physical properties of the boiled noodles were enhanced.

2)ラーメンへの効果
乳化能米粉添加ラーメンの茹で麺水分を調べた。その結果を、表5に示す。また、ラーメンの破断強度(茹で時間1.5分)を調べた。その結果を、図25に示す。
2) Effect on ramen The water content of noodles was investigated by boiling rice noodles with emulsifying ability. The results are shown in Table 5. Further, the breaking strength of the ramen (boiled time 1.5 minutes) was examined. The result is shown in FIG.

ラーメンの茹で麺水分は、基準となる茹で時間3分では、対照の乳化能米粉無添加の麺水分より乳化能米粉を0.1%や、0.8%(W/W)添加した方が高く、0.5%(W/W)添加でも対照とほぼ近い麺水分であった。また、茹で時間2分では、無添加の麺水分に比べ、乳化能米粉を0.1〜0.8%(W/W)添加した全てのラーメンの麺水分が、無添加に比べ2%以上高かった。このことから、ラーメンに乳化能米粉を0.1%(W/W)以上添加することで茹で工程での吸水性が向上することが確認された(表5)。茹で麺の麺水分の結果より、ラーメンにおいても、乳化能米粉を添加することで、茹で時間が3分未満に短縮できることが確認された。   In the case of ramen boiled noodles, it is better to add 0.1% or 0.8% (W / W) of emulsifying rice flour than the control noodle moisture without adding emulsifying rice flour in the standard boiling time of 3 minutes. Even when 0.5% (W / W) was added, the noodle moisture was almost similar to that of the control. In addition, in the boiling time of 2 minutes, the noodle moisture of all ramen with 0.1 to 0.8% (W / W) of emulsifying ability rice flour is 2% or more compared to the additive-free noodle moisture compared to the additive-free noodle moisture. it was high. From this, it was confirmed that the water absorption in the boiling process is improved by adding 0.1% (W / W) or more of the emulsifiable rice flour to the ramen (Table 5). From the results of the noodle water content of the boiled noodles, it was confirmed that the boiled time can be shortened to less than 3 minutes by adding the emulsifiable rice flour in the ramen.

また、乳化能米粉の添加濃度別に茹で時間1.5分間のラーメンの破断強度を評価した。その結果、乳化能米粉を0.1〜0.8%(W/W)添加したラーメンは、無添加のラーメンに比べて、破断強度が向上した(図25)。特に、乳化能米粉を0.5%(W/W)添加したラーメンが最も破断強度が高かった(図25)。   Moreover, the breaking strength of the ramen for 1.5 minutes was boiled according to the addition density | concentration of emulsification ability rice flour. As a result, the breaking strength of the ramen added with 0.1 to 0.8% (W / W) of emulsifiable rice flour was improved as compared to the ramen without addition (FIG. 25). In particular, the ramen to which 0.5% (W / W) of emulsifiable rice flour was added had the highest breaking strength (FIG. 25).

以上の麺水分、破断強度の結果をまとめると、ラーメンに乳化能米粉を0.1%〜0.8%(W/W)の範囲で添加することで、茹で工程での吸水性が向上して茹で時間が向上するとともに、茹で麺の物性が強化されることが明らかとなった。   Summarizing the results of the above noodle moisture and breaking strength, by adding emulsifying ability rice flour to the ramen in the range of 0.1% to 0.8% (W / W), the water absorption in the boiling process is improved. It has been clarified that boiled noodles are improved in time and the physical properties of boiled noodles are enhanced.

4)うどんへの効果
乳化能米粉添加うどんの茹で麺水分を調べた、その結果を、表6に示す。うどんの茹で麺水分は、乳化能米粉の添加割合が高くなるほど麺水分が高くなる傾向が認められた(表3)。ただし、それを食してみると、乳化能米粉の添加割合が0.1〜0.3%(W/W)までは、茹であがった良好な食感であると評価された。乳化能米粉の添加割合が0.6%(W/W)以上では、逆にコシが強くて硬い食感があると評価された。
4) Effects on Udon Table 6 shows the results of examining the moisture content of the noodles in the rice bran with emulsifying ability rice flour added. As for the noodle moisture in the bowl of the udon, the tendency for the noodle moisture to become higher was recognized as the addition ratio of the emulsifying ability rice flour increased (Table 3). However, when it was eaten, it was evaluated that it was a good texture that was boiled until the addition ratio of the emulsifying ability rice flour was 0.1 to 0.3% (W / W). On the contrary, when the addition ratio of the emulsifying ability rice flour was 0.6% (W / W) or more, it was evaluated that there was a strong and hard texture.

以上の結果より、うどんに対する乳化能米粉の添加による効果として、基準となる対照の乳化能米粉無添加のうどんの通常の茹で時間15分間で得られる約72.5%の麺水分に対して、うどんに乳化能米粉を0.3%〜2.0%(W/W)添加することで、より早く給水する傾向が認められ、茹で時間が15分間未満に短縮できることが確認された。   From the above results, as an effect of the addition of the emulsifying ability rice flour to the udon, about 72.5% noodles moisture obtained in a normal rice bran of the reference control emulsification ability rice flour addition-free for 15 minutes, By adding 0.3% to 2.0% (W / W) of emulsifiable rice powder to udon, a tendency to supply water earlier was recognized, and it was confirmed that the boiling time could be shortened to less than 15 minutes.

以上詳述したように、本発明は、リパーゼを擬似粉末状態で作用させて、穀粉又は澱粉と油脂を反応させる油脂分解物・油脂−糖質複合体の製造法とその製品に係るものであり、本発明によれば、穀粉又は澱粉と油脂を混合したもの、又は、油脂と有機酸を混合した後に加熱処理したものに対して、ある一定の水分含量の擬似粉末状態でリパーゼと反応させることで、反応効率が高く、乳化能・均一分散性をもつ粉末調製品を製造することができる。本発明では、余計な水分を使わないので、乾燥も容易で、主として乾燥粉末製品を製造でき、食品加工での利用に便利で安価な製品を提供することができる。     As described above in detail, the present invention relates to a method for producing an oil-degraded product / fat-sugar complex in which lipase is allowed to act in a quasi-powder state to react flour or starch with fats and oils and its product. According to the present invention, a mixture of flour or starch and fat or oil, or a mixture of fat and organic acid and heat-treated and then reacted with lipase in a pseudo-powder state with a certain water content Thus, it is possible to produce a powder preparation having high reaction efficiency and having emulsifying ability and uniform dispersibility. In the present invention, since unnecessary moisture is not used, drying is easy, and mainly a dry powder product can be produced, and a product that is convenient and inexpensive for use in food processing can be provided.

また、本発明では、アルカリ性素材の添加で品質改良と反応効率を更に高めることができる。また、パン製品製造においては、従来使用されてきた既存乳化剤を使用したパンと同等の比容積を示すとともに、製造3日後でも乳化能米粉を添加した食パンが既存乳化剤添加より常に柔らく、柔らかさの程度から評価すると、既存乳化剤を使用したパンと同等の硬さと評価できるパンを製造することができる。また、蒲鉾においては、冷凍保存した場合、経時変化を抑制することができる。また、麺製品(米粉うどん、ラーメン、うどんなど)製造においては、茹で麺の水分が増加し、茹で時間を短縮でき、破断強度が高くコシの強い麺を製造することができる。更に、これら素材は、目的に応じて利用でき、食品に限らず、化粧品、医薬品の製造にも適用できるものとして有用であり、化粧品としては、洗浄作用による洗浄用としての利用、医薬品としては、錠剤製造用としての利用が期待できる。
Moreover, in this invention, quality improvement and reaction efficiency can further be heightened by addition of an alkaline raw material. Moreover, in bread product production, while showing a specific volume equivalent to bread using existing emulsifiers that have been used in the past, bread that has added emulsifying ability rice flour even after 3 days of production is always softer and softer than the addition of existing emulsifiers. If it evaluates from the grade of this, the bread | pan which can be evaluated with the hardness equivalent to the bread | pan using the existing emulsifier can be manufactured. In addition, when the cocoon is stored frozen, the change with time can be suppressed. Further, in the production of noodle products (rice flour udon, ramen, udon), the moisture content of boiled noodles can be increased, the time required for boiling can be shortened, and noodles with high breaking strength and strong stiffness can be produced. Furthermore, these materials can be used according to the purpose, and are useful not only for foods but also applicable to the manufacture of cosmetics and pharmaceuticals. It can be expected to be used for tablet production.

Claims (15)

穀粉又は澱粉と、油脂を混合し、リパーゼを該穀粉又は澱粉に対して20〜50%(W/W)の水分含有率並びに5〜50%(W/W)の油脂含有率の、粉末の水分がペンジュラー域からキャピラリー域の全体が散ける「擬似粉末状態で反応させて、油脂を加水分解することにより、これら反応混合物から構成される遊離脂肪酸を含有する油脂複合体としての食品素材を製造することを特徴とする該食品素材の製造方法。 A flour or starch, oils and fats were mixed and fat content of 20-50% lipase against該穀flour or starch (W / W) moisture content and 5-50% of (W / W), powder By reacting in a pseudo-powder state ” in which moisture is scattered from the pendulum region to the entire capillary region , and hydrolyzing the fats and oils, a food material as a fat and oil complex containing free fatty acids composed of these reaction mixtures is obtained. A method for producing the food material, characterized by producing the food material. 穀粉又は澱粉と、油脂と、有機酸を混合し、かつ加熱処理したものを用いる、請求項1に記載の方法。   The method of Claim 1 using what mixed flour and starch, fats and oils, and the organic acid, and heat-processed. 更に有機酸含有率が0〜20%(W/W)(但し、0は0超を表わす。)、かつ加熱処理したものを用いる場合の加熱処理温度が150〜300℃の条件の擬似粉末状態で反応させる、請求項2に記載の方法。 Furthermore, the organic acid content is 0 to 20% (W / W) (where 0 represents more than 0) , and the heat treatment temperature in the case of using the heat-treated material is a pseudo powder state under the condition of 150 to 300 ° C. The method according to claim 2 , wherein the reaction is performed. 穀粉が、米粉、薄力小麦粉、又は中力小麦粉であり、澱粉が、馬鈴薯澱粉、タピオカ澱粉、粳米澱粉、糯米澱粉、トウモロコシ澱粉、糯トウモロコシ澱粉、小麦澱粉、又はサゴ澱粉である、請求項1又は2に記載の方法。   2. The cereal flour is rice flour, thin wheat flour, or medium strength wheat flour, and the starch is potato starch, tapioca starch, glutinous rice starch, glutinous rice starch, corn starch, corn starch, wheat starch, or sago starch. Or the method of 2. 油脂が、液状乃至半固形状の、サラダ油、ナタネ油、大豆油、パーム油、ヤシ油、中鎖脂肪酸トリグリセリド油、トウモロコシ油、べに花油、オリーブ油、ごま油、又はこめ油である、請求項1又は2に記載の方法。   The oil or fat is liquid or semi-solid, salad oil, rapeseed oil, soybean oil, palm oil, palm oil, medium-chain fatty acid triglyceride oil, corn oil, bean flower oil, olive oil, sesame oil, or rice bran oil. 2. The method according to 2. 有機酸が、クエン酸、イタコン酸、DL−リンゴ酸、L−酒石酸、フマル酸、アジピン酸、グルコノラクトン、グルコン酸、乳酸フィチン酸、又は酢酸である、請求項2に記載の方法。   The method according to claim 2, wherein the organic acid is citric acid, itaconic acid, DL-malic acid, L-tartaric acid, fumaric acid, adipic acid, gluconolactone, gluconic acid, lactic phytic acid, or acetic acid. 加熱処理が、150〜300℃の過熱水蒸気及び伝導伝熱加熱である、請求項2に記載の方法。   The method according to claim 2, wherein the heat treatment is superheated steam at 150 to 300 ° C. and conduction heat transfer heating. 穀粉又は澱粉と、油脂を混合し、あるいは、更に、有機酸を混合し、かつ加熱処理を行った後に、リパーゼを上記擬似粉末状態で反応させて、乳化能をもつ油脂複合体としての食品素材を製造する、請求項1又は2に記載の方法。 After mixing cereal flour or starch and fats and oils, or further mixing organic acids and heat-treating, the lipase is reacted in the above-mentioned pseudo-powder state, and the food material as a fat and oil complex having emulsifying ability The method of Claim 1 or 2 which manufactures. 穀粉又は澱粉と、油脂と、炭酸カルシウムを混合し、リパーゼを上記擬似粉末状態で反応させて、油脂を加水分解することにより、酸価(AV)を低下させた油脂複合体としての食品素材とする請求項1に記載の方法。 A food material as a fat and oil complex having a reduced acid value (AV) by mixing cereal flour or starch, fat and oil, calcium carbonate, reacting lipase in the above pseudo powder state and hydrolyzing the fat and oil The method of claim 1. 請求項1から7のいずれか一項に記載の方法で製造した油脂複合体としての食品素材に、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、リン酸カルシウム、リン酸カリウム/カリウム塩、水酸化ナトリウム、水酸化カリウム、又はアンモニアのアルカリ系素材やカルマグS(商品名 オリエンタル酵母工業社製、原料 ドロマイト:カルシウム、マグネシウム含有物)の一種以上を添加し、撹拌混合して、酸価(AV)を低下させた食品素材とすることを特徴とする該食品素材の製造方法。 A food material as an oil-and-fat complex produced by the method according to any one of claims 1 to 7, sodium carbonate, potassium carbonate, calcium carbonate, calcium phosphate, potassium phosphate / potassium salt, sodium hydroxide, hydroxide One or more kinds of alkaline materials such as potassium or ammonia and Calmag S (trade name, manufactured by Oriental Yeast Co., Ltd., raw material dolomite: calcium and magnesium-containing material) were added and mixed by stirring to lower the acid value (AV). A method for producing a food material, characterized in that the food material is used. 請求項9又は10に記載の方法で酸価(AV)を低下させた油脂複合体としての食品素材。 The food material as an oil-fat complex which reduced the acid value (AV) by the method of Claim 9 or 10. 請求項1から10のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする加工食品。 Processed food characterized by using a food material as an oil and fat composite produced by the method according to any one of claims 1 to 10. 請求項1から10のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とするベークド製品。 A baked product using a food material as an oil and fat complex produced by the method according to any one of claims 1 to 10. 請求項1から10のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする水産練り製品。 A marine product obtained by using a food material as an oil / fat complex produced by the method according to any one of claims 1 to 10. 請求項1から10のいずれか一項に記載の方法で製造した油脂複合体としての食品素材を利用したことを特徴とする麺製品。 A noodle product using a food material as an oil-and-fat complex produced by the method according to any one of claims 1 to 10.
JP2014173167A 2013-10-25 2014-08-27 Method for producing a food material having emulsifying ability and the food material Active JP6467573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173167A JP6467573B2 (en) 2013-10-25 2014-08-27 Method for producing a food material having emulsifying ability and the food material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013222823 2013-10-25
JP2013222823 2013-10-25
JP2014173167A JP6467573B2 (en) 2013-10-25 2014-08-27 Method for producing a food material having emulsifying ability and the food material

Publications (2)

Publication Number Publication Date
JP2015107097A JP2015107097A (en) 2015-06-11
JP6467573B2 true JP6467573B2 (en) 2019-02-13

Family

ID=53438003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173167A Active JP6467573B2 (en) 2013-10-25 2014-08-27 Method for producing a food material having emulsifying ability and the food material

Country Status (1)

Country Link
JP (1) JP6467573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200044369A (en) * 2018-10-19 2020-04-29 한국식품연구원 Method for manufacturing of aretrogradation-inhibited amylaceous material and amylaceous material prepared thereby

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184675A (en) * 2016-04-07 2017-10-12 昭一 小林 Method of producing material with foamability and/or emulsifiability by action of lipase on low moisture state fats and product obtained thereby
CN106106614A (en) * 2016-08-04 2016-11-16 安徽丹研食品有限公司 A kind of heat treated powder cake stable emulsifying foaming agent and preparation method thereof
JP6297200B1 (en) * 2017-12-20 2018-03-20 三和澱粉工業株式会社 Method for producing oil-modified starch
KR102326737B1 (en) * 2019-07-16 2021-11-15 고려대학교 산학협력단 Preparation of phosphorylated starches using phytic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292505A (en) * 1993-04-09 1994-10-21 Kanegafuchi Chem Ind Co Ltd Oil in water type emulsion composition and its production
JP5282252B2 (en) * 2009-03-25 2013-09-04 石川県 Method for producing lipase with immobilized starch granules or cellulose powder, method for producing emulsified material and emulsifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200044369A (en) * 2018-10-19 2020-04-29 한국식품연구원 Method for manufacturing of aretrogradation-inhibited amylaceous material and amylaceous material prepared thereby
KR102136724B1 (en) 2018-10-19 2020-07-22 한국식품연구원 Method for manufacturing of aretrogradation-inhibited amylaceous material and amylaceous material prepared thereby

Also Published As

Publication number Publication date
JP2015107097A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP6467573B2 (en) Method for producing a food material having emulsifying ability and the food material
Ferreira-Dias et al. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries
Gerits et al. Wheat starch swelling, gelatinization and pasting: Effects of enzymatic modification of wheat endogenous lipids
US9462820B2 (en) Acidic emulsified liquid seasoning containing sesame
Khaskheli et al. Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy
CN1981046B (en) Enzymatic production of hydrolyzed lecithin products
Pokorny et al. 22 Lipid–Protein and Lipid–-Saccharide Interactions
Wirkowska-Wojdyła et al. Effect of enzymatic interesterification on physiochemical and thermal properties of fat used in cookies
WO2019212050A1 (en) Microcapsule
HU215035B (en) Process for the preparation of heat stabil oil-in-water emulsion
Monié et al. Enzymatic hydrolysis of rapeseed oil with a non-GMO lipase: A strategy to substitute mono-and diglycerides of fatty acids and improve the softness of sponge cakes
JP6246788B2 (en) Emulsified oil and fat composition
JP3865294B2 (en) Powdered fat and oil containing novel hyperbranched cyclic dextrin, method for producing the same and food and drink using the same
Wang et al. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application
Hamam et al. Synthesis of structured lipids via acidolysis of docosahexaenoic acid single cell oil (DHASCO) with capric acid
JP5292169B2 (en) Cake manufacturing method
Cervantes-Paz et al. Bioaccessibility of fat-soluble bioactive compounds (FSBC) from avocado fruit as affected by ripening and FSBC composition in the food matrix
JP2008184385A (en) Dispersed hesperetin
JP2012135295A (en) Sesame-containing acidic emulsified liquid seasoning
MEDVID et al. The use of sunflower lecithin in the technology on gluten-free bread with enzymatic modification of flour starch
Zhao et al. Influence of phospholipase A2 (PLA2)-treated dried egg yolk on wheat dough rheological properties
EP2177608B1 (en) Immobilized lipase and method for producing the same
JP2017184675A (en) Method of producing material with foamability and/or emulsifiability by action of lipase on low moisture state fats and product obtained thereby
US20160000121A1 (en) Powder emulsifying agent composition and method for producing same
JP2009060875A (en) Method for producing functional food material by mixing carbohydrate and other food ingredient together followed by high-temperature treatment in the air, and the resultant functional food material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6467573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250