JP6466773B2 - How to install stabilization pipes for embankment - Google Patents

How to install stabilization pipes for embankment Download PDF

Info

Publication number
JP6466773B2
JP6466773B2 JP2015092694A JP2015092694A JP6466773B2 JP 6466773 B2 JP6466773 B2 JP 6466773B2 JP 2015092694 A JP2015092694 A JP 2015092694A JP 2015092694 A JP2015092694 A JP 2015092694A JP 6466773 B2 JP6466773 B2 JP 6466773B2
Authority
JP
Japan
Prior art keywords
pipe
steel pipe
thin
embankment
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015092694A
Other languages
Japanese (ja)
Other versions
JP2016211155A (en
Inventor
青木 宏
宏 青木
俊守 前
俊守 前
真 神村
真 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Something Co Ltd
Original Assignee
Something Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Something Co Ltd filed Critical Something Co Ltd
Priority to JP2015092694A priority Critical patent/JP6466773B2/en
Publication of JP2016211155A publication Critical patent/JP2016211155A/en
Application granted granted Critical
Publication of JP6466773B2 publication Critical patent/JP6466773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Piles And Underground Anchors (AREA)

Description

本発明は、盛土の安定化に使用する盛土埋設用水平パイプの設置方法に関するものである。   The present invention relates to a method for installing a horizontal pipe for embedding embedding used for stabilization of embankment.

我が国では、地震や豪雨などによる斜面崩壊が多発しており、盛土保全が急務である。   In Japan, slope failures due to earthquakes and heavy rains occur frequently, and embankment conservation is an urgent issue.

盛土斜面の崩壊防止には、適切な排水対策により盛土内の地下水位を盛土の排水が有効である。   In order to prevent collapse of the embankment slope, drainage of embankment is effective for groundwater level in the embankment by appropriate drainage measures.

排水パイプを盛土へ直接打設する際、パイプのスリットへの土粒子の充填、いわゆる目詰まりや、パイプ内への土粒子の流出現象が生じる可能性があることや、長期間に亘る地下水位の変動に伴う盛土地盤の飽和・不飽和の繰り返しにより、スリット周辺への細粒分の蓄積が進行し、排水性能が低下する等の現象が懸念される。   When the drainage pipe is directly placed on the embankment, it may cause clogging of the soil particles into the slits of the pipe, so-called clogging, or the outflow phenomenon of the soil particles into the pipe, and the groundwater level over a long period of time. Due to repeated saturation and unsaturation of the embankment due to fluctuations in the soil, there is a concern that the accumulation of fine particles around the slit will progress and the drainage performance will decline.

また、従来、パイプの設置間隔は1m程度として経験的工学的に施工されており、最適な設置間隔や施工配置といった具体的な設計法が未確立である。   Conventionally, pipe installation intervals have been empirically engineered to be about 1 m, and specific design methods such as optimal installation intervals and installation arrangements have not been established.

高盛土下埋設を扱っている現行の埋設管設計基準には、道路土工カルパート工指針1(以下、道路土工指針と呼ぶ)と農水省土地改良事業計画設計基準設計「パイプライン」2(以下、農水基準と呼ぶ)の2つがあり、両者とも、高盛土下に埋設される管の設計はMarston−Spangler理論に基づいて行うことになっている。   The current buried pipe design standards dealing with embankments under high embankments include road earthwork carpart construction guidelines 1 (hereinafter referred to as road earthwork guidelines) and the Ministry of Agriculture and Water land improvement project plan design standards design “pipeline” 2 (hereinafter referred to as agriculture water). Both of them are designed based on the Marston-Spangler theory.

ところが、この理論は多くの不合理な仮定に基づいて構築されているため、この理論によって算定された土圧や管の変形は実際とはかなり異なることが従来から指摘されている。   However, since this theory is constructed based on many unreasonable assumptions, it has been pointed out that earth pressure and pipe deformation calculated by this theory are quite different from the actual ones.

さらに、道路土工指針では、管体に生じる曲げモーメントと管のたわみ率をMarston−Spangler理論によって算定し、これらが管の有する抵抗曲げモーメントと許容たわみ率を超えないように、一盛土下に埋設されるカルバートの最大土被り高を、剛なボックスカルバートとコンクリートパイプについては20mまで、たわみ性のコルゲートメタルカルバート、硬質塩化ビニル管、強化プラスチック複合管については、それぞれ30m、7m、10mまでと規定しているが、それ以上の土被り高の場合は「詳細な検討を加え、合理的な設計を行う必要がある」と述べているのみで、具体的な設計法を示していない。   Furthermore, in the road earthwork guidelines, the bending moment generated in the pipe body and the deflection rate of the pipe are calculated by the Marston-Spangler theory, and it is buried under the embankment so that these do not exceed the resistance bending moment and allowable deflection rate of the pipe. The maximum cover height of culverts is specified as 20 m for rigid box culverts and concrete pipes, and 30 m, 7 m and 10 m for flexible corrugated metal culverts, rigid vinyl chloride pipes and reinforced plastic composite pipes, respectively. However, if the cover is higher than that, it only states that it is necessary to make a rational design with detailed examination, and no specific design method is shown.

一方、農水基準では、剛な管についてはMarston−Spangler理論が適用できる限界土被り高を示していないが、たわみ性管については土被り高15mをM・S理論の適用限界としている。   On the other hand, the agricultural water standard does not indicate the limit soil cover height to which the Marston-Spangler theory can be applied for rigid pipes, but for flexible pipes, the soil cover height of 15 m is the application limit of the MS theory.

しかし、これを超える土被り高の場合の設計法はやはり示されていない。このように、高盛土下埋設を扱っている現行の設計基準はいずれも、実態を反映しないMarston−Spangler理論に基づいて構築され、盛土高さが15mあるいは30mを超える場合に対する具体的な設計法を示していない。   However, the design method for the overburden height exceeding this is not shown. In this way, all of the current design standards dealing with burying under high embankments are constructed based on the Marston-Spangler theory that does not reflect the actual situation, and concrete design methods for cases where the embankment height exceeds 15 m or 30 m Not shown.

例えば、高盛土下に埋設される排水管として近年、使用頻度が高まっているHIPE(高密度ポリエチレン)管の変形挙動と過度の変形を防ぐための対策工の効果を調べ、クリープ挙動を有するHDPE排水管のパックリングを防ぐためには、堤設施工時の鉛直たわみ率δを、短期供用の場合は15%以下、50年に及ぶ長期供用の場合は10%以下とすべきである。   For example, we investigated the deformation behavior of HIPE (High Density Polyethylene) pipe, which has been used frequently in recent years as a drain pipe buried under high embankment, and the effect of countermeasure work to prevent excessive deformation, HDPE having creep behavior In order to prevent drain ring packing, the vertical deflection rate δ at the time of embankment construction should be 15% or less for short-term service and 10% or less for long-term service for 50 years.

鉄等の剛体からなるパイプ本体を用いて耐震構造とする試みとしては下記特許文献があり、鉄等の剛体からなるパイプ本体を用いるものである。
特開2006−188940号公報
As an attempt to make an earthquake-resistant structure using a pipe body made of a rigid body such as iron, there is the following patent document, which uses a pipe body made of a rigid body such as iron.
JP 2006-188940 A

この特許文献1では、図17に示すように、排水パイプ2は、長手方向に多数の孔4が貫設されている。前記孔4は長穴形状に形成され且つ周方向に対しては略千鳥状に列設されている。さらに、該排水パイプ2は、一端が平面状に圧潰されて略尖鋭状に閉塞されてなる閉塞部を有している。図中9は盛土による地盤、8は傾斜面を示す。   In this patent document 1, as shown in FIG. 17, the drainage pipe 2 has many holes 4 penetrating in the longitudinal direction. The holes 4 are formed in a long hole shape and are arranged in a staggered pattern in the circumferential direction. Furthermore, the drainage pipe 2 has a closed portion in which one end is crushed flat and closed in a substantially sharp shape. In the figure, 9 indicates the ground by embankment, and 8 indicates an inclined surface.

前記特許文献1もそうであるが、狭隘空間における施工では短尺な小口径薄肉鋼管を溶接などにより接続して施工する必要がある。   As is also the case with Patent Document 1, in construction in a narrow space, it is necessary to perform construction by connecting a short small-diameter thin-walled steel pipe by welding or the like.

通常、薄肉鋼管の溶接接続には熟練の技術者を必要とし、施工環境も限定されるなどの課題がある。   Usually, a welded connection of a thin-walled steel pipe requires a skilled engineer, and there are problems such as a limited construction environment.

そのため、現場で鋼管を簡単に接続できる利便性の良い技術の開発が強く望まれている。   Therefore, development of convenient technology that can easily connect steel pipes at the site is strongly desired.

本発明の目的は前記従来例の不都合を解消し、盛土に打設することで、補強土機能を発揮することで、上載荷重や交通荷重による振動、降雨や地震に対する盛土の耐力の向上にも寄与できる剛性を有するとともに、盛土へ直接打設する際、現場で簡単に接続できる利便性のよい、盛土の安定化パイプの設置方法を提供することにある。   The purpose of the present invention is to eliminate the inconveniences of the conventional example, and by placing it on the embankment, by demonstrating the reinforced soil function, it is also possible to improve the embankment's resistance to vibrations due to overloading and traffic loads, rainfall and earthquakes. An object of the present invention is to provide a method for installing a stabilizing pipe for embankment that has a rigidity that can be contributed and is convenient to be directly connected to the embankment when it is directly placed on the embankment.

前記目的を達成するため本発明は、薄肉鋼管を接続して盛土に水平もしくは0〜5°の傾斜で打設する場合に、薄肉鋼管の地中への圧入は、薄肉鋼管の先端に掘削ヘッドを配置し、推進機により推進させ、さや管を介在させての薄肉鋼管の接合は、既埋設の薄肉鋼管に対して推進機にセットする新たな薄肉鋼管をもって行うもので、先に埋設した薄肉鋼管に対して接続すべき薄肉鋼管を突合せるように配置し、2液混合型のアクリル接着剤を薄肉鋼管の外側およびさや管内部に塗布し、薄肉鋼管をスライドさせてさや管にはめ込む形で接着させて所定の長さとして地中に圧入することを要旨とするものである。 In order to achieve the above object, the present invention provides a method in which a thin steel pipe is connected to the embankment horizontally or inclined at 0 to 5 °. The thin-walled steel pipe is inserted into the existing thin-walled steel pipe with a new thin-walled steel pipe set in the propulsion machine. Place the thin-walled steel pipe to be connected to the steel pipe so that it will butt, apply a two-component acrylic adhesive to the outside of the thin-walled steel pipe and the inside of the sheath, and slide the thin-walled steel pipe into the sheath. The gist is to bond and press fit into the ground as a predetermined length.

請求項1記載の本発明によれば、薄肉鋼管はこれを排水パイプとして埋め込むことで盛土内の水位を低下させる機能とともに、補強土機能を発揮させ上載荷重や交通荷重による振動、降雨や地震に対する盛土の耐力の向上にも寄与できる。   According to the first aspect of the present invention, the thin-walled steel pipe has a function of lowering the water level in the embankment by embedding it as a drainage pipe, and exerts a reinforced soil function to prevent vibration, rain and earthquake due to an overload or traffic load. It can also contribute to improving the proof stress of embankments.

また、さや管を用いることで、螺子等によるメカニカルジョイントや溶接による接続とは異なり現場で簡易的に接続できるものであり、しかも、接続部分が本管部分と同等もしくはそれ以上の曲げ強度、圧縮強度引張強度を有するものとすることができる。   In addition, by using a sheath pipe, it can be easily connected on site, unlike a mechanical joint using a screw or welding, and the connection part has a bending strength and compression equal to or higher than the main part. It can have a tensile strength.

さらに盛土に施工するもので、周囲に草木や建物(隣接構造物)などがあり広い作業スペースを取れない場合も比較的狭い作業スペースを確保すれば施工可能であり、溶接作業がないので火器等の使用もなく、環境汚染のおそれもない。   In addition, it is to be constructed on embankment, and even if there are vegetation and buildings (adjacent structures) around it and a large work space cannot be secured, it can be done if a relatively narrow work space is secured, and there is no welding work, etc. There is no risk of environmental pollution.

また、2液混合型のアクリル接着剤は2液室温硬化型接着剤として属接着専用に開発された構造用接着剤として本発明での使用で最適なものである。 The two-component mixed acrylic adhesive is optimal for use in the present invention as a structural adhesive developed exclusively for genus bonding as a two-component room temperature curable adhesive.

これに加えて、小径薄肉鋼管は先端に掘削ヘッドを設けての推進機による圧入であり、摩擦抵抗なく、簡易かつ迅速に圧入でき、また、さや管を介在させての薄肉鋼管の接合も簡単に行うことができる。 In addition to this, small diameter thin steel pipes are press-fitted by a propulsion machine with an excavation head at the tip, and can be easily and quickly press-fitted without frictional resistance, and thin-walled steel pipes can also be easily joined via a sheath Can be done.

請求項2記載の本発明は、接着剤の接着厚さは1mm以下、さや管は長さが200mm以上のものとすることを要旨とするものである。 The gist of the present invention described in claim 2 is that the adhesive has an adhesive thickness of 1 mm or less and the sheath tube has a length of 200 mm or more.

請求項記載の本発明によれば、接着厚さ(クリアランス)の薄い方が、鋼管とさや管を接着しやすく厚い方よりムラなく接着できたことにより高い強度が得られ、また、さや管長さが長いものが高い強度が得られる。 According to the second aspect of the present invention, the thinner the bonding thickness (clearance) is, the easier it is to bond the steel pipe and the sheath pipe, and the higher thickness can be obtained more uniformly than the thicker one. Higher strength can be obtained with longer length.

以上述べたように本発明の盛土の安定化パイプの設置方法は、盛土に打設することで、補強土機能を発揮することで、上載荷重や交通荷重による振動、降雨や地震に対する盛土の耐力の向上にも寄与できる剛性を有するとともに、盛土へ直接打設する際、現場で簡単に接続できる利便性のよいものである。   As described above, the method for installing the stabilization pipe of the embankment according to the present invention is to place the embankment on the embankment and demonstrate the function of reinforcing soil, so that the resistance of the embankment to vibrations due to overloading and traffic loads, rainfall and earthquakes. In addition to having the rigidity that can contribute to the improvement of the structure, it is convenient because it can be easily connected on site when it is directly placed on the embankment.

以下、本発明の実施の形態を詳細に説明する。本発明は図12に示すように薄肉鋼管3を接続して盛土1に水平もしくは0〜5°の傾斜で打設するものであり、これら薄肉鋼管3同士の接続は図1に示すように、薄肉鋼管3同士を突合せるように配置し、接着剤を薄肉鋼管3の外側およびさや管24の内部に塗布し、薄肉鋼管3およびさや管24の高さを調節し、薄肉鋼管3をスライドさせてさや管にはめ込む形で接着させて所定の長さとして地中に圧入するものである。   Hereinafter, embodiments of the present invention will be described in detail. In the present invention, as shown in FIG. 12, the thin steel pipe 3 is connected and placed on the embankment 1 horizontally or at an inclination of 0 to 5 °. The connection between the thin steel pipes 3 is as shown in FIG. The thin steel pipes 3 are arranged so as to face each other, the adhesive is applied to the outside of the thin steel pipe 3 and the inside of the sheath pipe 24, the height of the thin steel pipe 3 and the sheath pipe 24 is adjusted, and the thin steel pipe 3 is slid. It is glued in a form that fits into a sheath and is pressed into the ground as a predetermined length.

薄肉鋼管3は、長さ550〜1100mm、外径76.3mm、内径67.9mm、板厚4.2mmとする。   The thin steel pipe 3 has a length of 550 to 1100 mm, an outer diameter of 76.3 mm, an inner diameter of 67.9 mm, and a plate thickness of 4.2 mm.

また、さや管24は、長さ210mm、外径89.1mm、内径80.7もしくは78.1mm、板厚4.2もしくは5.5mmとする。   The sheath tube 24 has a length of 210 mm, an outer diameter of 89.1 mm, an inner diameter of 80.7 or 78.1 mm, and a plate thickness of 4.2 or 5.5 mm.

接着剤は、2液混合型のアクリル接着剤は2液室温硬化型接着剤として金属接着専用に開発された構造用接着剤を使用する。   As the adhesive, a two-component mixed acrylic adhesive uses a structural adhesive developed exclusively for metal bonding as a two-component room temperature curable adhesive.

主剤Aは、アクリルモノマー、エラストマー、重合開始剤、主剤Bは、アクリルモノマー、エラストマー、重合促進剤で、2液主剤なので、配合比がぶれても性能が落ちないし、アクリルモノマーは界面油分洗浄するので油面接着性がよく、アクリルモノマーは極性基を含み、水素結合など接着性に寄与する。また、硬化物は強靭性を発現する海島構造である。   Main agent A is an acrylic monomer, elastomer, polymerization initiator, main agent B is an acrylic monomer, elastomer, and polymerization accelerator. Since it is a two-component main agent, the performance does not deteriorate even if the blending ratio fluctuates, and the acrylic monomer is washed with interfacial oil. Therefore, the oil surface adhesion is good, and the acrylic monomer contains a polar group and contributes to adhesion such as hydrogen bonding. The cured product has a sea-island structure that exhibits toughness.

一例として接着剤にはセメダイン株式会社の「メタルロック」(登録商標)Y600シリーズが好適であり、その性状を下記表1に示す。

Figure 0006466773
As an example, “Metal Rock” (registered trademark) Y600 series manufactured by Cemedine Co., Ltd. is suitable for the adhesive, and the properties are shown in Table 1 below.
Figure 0006466773

なお、接着剤の接着厚さは1mm以下、さや管は長さが200mm以上のものが好ましい。   The adhesive thickness is preferably 1 mm or less, and the sheath tube is preferably 200 mm or more in length.

また、現場での盛土1への打設は、図4〜図12に示すように先端管3aとなる薄肉鋼管3の先端にフィッシュテールを有する尖り状の掘削ヘッド12を設け、推進機14を用いて行う。   In addition, as shown in FIGS. 4 to 12, the placement on the embankment 1 at the site is performed by providing a pointed excavation head 12 having a fishtail at the tip of the thin steel tube 3 that becomes the tip tube 3 a, and the propulsion machine 14. To do.

推進機14は薄肉鋼管3のチャック装置および回転駆動装置15を有し、該チャック装置および回転駆動装置15で回転するロッド5をセットする薄肉鋼管3内に挿通して掘削ヘッド12を回転駆動するようにしたもので、図4に示すように掘削ヘッド12に1本目の薄肉鋼管3(先端管3a)とロッド5を接続し、図5に示すように掘削ヘッド12と肉鋼管3(先端管3a)をセットする。   The propulsion device 14 has a chuck device and a rotation drive device 15 for the thin steel pipe 3, and is inserted into the thin steel tube 3 in which the rod 5 rotated by the chuck device and the rotation drive device 15 is set to rotate the excavation head 12. As shown in FIG. 4, the first thin-walled steel pipe 3 (tip tube 3a) and the rod 5 are connected to the excavation head 12 as shown in FIG. 4, and the excavation head 12 and the meat steel pipe 3 (tip tube) are connected as shown in FIG. 3a) is set.

図6に示すように、掘削ヘッド12で掘削し、チャック装置および回転駆動装置15を押し出して推進させる。   As shown in FIG. 6, excavation is performed by the excavation head 12, and the chuck device and the rotary drive device 15 are pushed out and propelled.

図7に示すように、ロッド5のネジを外し、チャック装置および回転駆動装置15を後退させ、アダプタパイプ6およびロッド5をセットする。   As shown in FIG. 7, the screw of the rod 5 is removed, the chuck device and the rotary drive device 15 are retracted, and the adapter pipe 6 and the rod 5 are set.

図8に示すように、アダプタパイプ6により推進させ、図9に示すようにアダプタパイプ6およびロッド5を取り外し、図10に示すように2本目の薄肉鋼管3をセットする。   As shown in FIG. 8, the adapter pipe 6 is used for propulsion, the adapter pipe 6 and the rod 5 are removed as shown in FIG. 9, and the second thin steel pipe 3 is set as shown in FIG.

この時、継ぎ足す薄肉鋼管3には先端外側およびさや管24の内部に接着剤を塗布し、さや管24付きの薄肉鋼管3をスライドさせて既設の薄肉鋼管3にさや管24にはめ込む形で接着させて薄肉鋼管3同士を接続する。既設の薄肉鋼管3の後端外側にも接着剤を塗布しておく。   At this time, an adhesive is applied to the thin-walled steel pipe 3 to be added to the outside of the tip and the inside of the sheath pipe 24, and the thin-walled steel pipe 3 with the sheath pipe 24 is slid to fit into the existing thin-walled steel pipe 3 into the sheath pipe 24. The thin steel pipes 3 are connected by bonding. An adhesive is also applied to the outside of the rear end of the existing thin steel pipe 3.

図11に示すように、2本目の薄肉鋼管3を推進させる。   As shown in FIG. 11, the second thin steel pipe 3 is propelled.

以後、図9から図10までの工程を繰り返し、3本目以降の薄肉鋼管3を接続させる。   Thereafter, the steps from FIG. 9 to FIG. 10 are repeated to connect the third and subsequent thin steel pipes 3.

このようにチャック装置および回転駆動装置15を油圧ジャッキ等で前後動させ、薄肉鋼管3を1ピース分回転圧入させたならば、チャック装置および回転駆動装置15を後退させ、新たな薄肉鋼管3のピースをセットしてその後端に接続して順次、押し込むものである。   When the chuck device and the rotation drive device 15 are moved back and forth with a hydraulic jack or the like in this way and the thin steel pipe 3 is rotationally press-fitted by one piece, the chuck device and the rotation drive device 15 are retracted, and a new thin steel tube 3 Pieces are set, connected to the rear end, and sequentially pushed.

本発明は薄肉鋼管3相互の接続は、薄肉鋼管3、3の接手部外周面に鋼管によるさや管24を嵌め、接着剤により接着固定して一体化するものであり、薄肉鋼管の接続部分の曲げ、圧縮、引張に対する変形性能、強度を検証し、薄肉鋼管の本管部分と同等の性能を保有するかを試験により確認した。   In the present invention, the thin-walled steel pipes 3 are connected to each other by fitting a sheath pipe 24 made of a steel pipe to the outer peripheral surface of the joints of the thin-walled steel pipes 3 and 3 and bonding and fixing them with an adhesive. The deformation performance and strength against bending, compression, and tension were verified, and it was confirmed by tests whether or not the same performance as that of the main part of the thin-walled steel pipe was possessed.

試験は、接着接合した小口径薄肉鋼管の曲げ試験を実施し、曲げ強度ならびに力学的挙動を把握し、供用時に作用する盛土土被り圧に対する安全性を検証するものである。   The test is to conduct a bending test of small-diameter thin-walled steel pipes that have been bonded together, to grasp the bending strength and mechanical behavior, and to verify the safety against the embankment pressure that acts during service.

曲げ試験では、選定した接着剤を用いて、薄肉鋼管3を接着した。接合方法は、薄肉鋼管3同士を突合せるように配置し、その接合部にさや管24を被せ、接合した。接着方法を図1に示す。   In the bending test, the thin steel pipe 3 was bonded using the selected adhesive. The joining method arrange | positions so that the thin steel pipes 3 may be faced | matched, and covered the sheath pipe | tube 24 to the junction part, and joined. The bonding method is shown in FIG.

接着方法は、薄肉鋼管3およびさや管24の高さを台座7で調節し、両サイドから薄肉鋼管3をスライドさせ、さや管24にはめ込む形で接着を行った。   The bonding method was performed by adjusting the height of the thin steel pipe 3 and the sheath pipe 24 with the pedestal 7, sliding the thin steel pipe 3 from both sides, and fitting into the sheath pipe 24.

接着剤は薄肉鋼管3の外側およびさや管24の内部に塗布している。薄肉鋼管3の接着のために使用した接着剤は、前記セメダイン社の2液混合型のアクリル接着剤を用いている。下記表2に接着剤の物性を示す。

Figure 0006466773
The adhesive is applied to the outside of the thin-walled steel pipe 3 and the inside of the sheath pipe 24. The adhesive used for bonding the thin-walled steel pipe 3 is a two-component mixed acrylic adhesive manufactured by Cemedine. Table 2 below shows the physical properties of the adhesive.
Figure 0006466773

曲げ試験の概要図を図2に示す。接合部に同様の曲げ応力が作用するように4点曲げ試験とした。試験体の寸法を下記表3に示す。

Figure 0006466773
A schematic diagram of the bending test is shown in FIG. A four-point bending test was performed so that the same bending stress acts on the joint. The dimensions of the test specimen are shown in Table 3 below.
Figure 0006466773

図2中、7は台座、10はローラー、11は治具で、荷重A、等曲げ区間支点間Bである。   In FIG. 2, reference numeral 7 denotes a pedestal, 10 denotes a roller, 11 denotes a jig, a load A, and B between the equal bending section fulcrums B.

試験体は、接着剤の厚さ(クリアランス)ならびにさや管長さをパラメータとした。本試験での計測項目は、ひずみおよび変位とし、鋼管およびさや管部分にひずみゲージを貼りつけ計測した。変位計の計測箇所は、5点とし両側支点部、試験体全長に対して1/4および3/4の位置、試験体中央とした。   The test specimens used the adhesive thickness (clearance) and sheath tube length as parameters. The measurement items in this test were strain and displacement, and measurement was performed by attaching a strain gauge to the steel pipe and the sheath. The measurement points of the displacement meter were 5 points, both fulcrum portions, 1/4 and 3/4 positions with respect to the total length of the test body, and the center of the test body.

試験結果を下記表4に示す。

Figure 0006466773
The test results are shown in Table 4 below.
Figure 0006466773

接着厚さが厚く、さや管長さが短いもの以外では、薄肉鋼管3単体よりも大きな強度(最大荷重)を発揮する結果となった。   Except for the case where the adhesive thickness is large and the sheath length is short, the strength (maximum load) is greater than that of the thin steel tube 3 alone.

各試験ケースでの荷重-変位曲線を図3に示す。図の丸部分にもあるように今回の試験では、載荷中に何度か異音が発生しており、変位の増大および荷重の減少が見られた。   The load-displacement curve in each test case is shown in FIG. As shown in the circle in the figure, in this test, abnormal noise was generated several times during loading, and an increase in displacement and a decrease in load were observed.

接着面の剥離時の応力分布および試験体中央の荷重−ひずみ曲線を図13〜図16に示す。図13は接着厚さ0.9mmの場合の剥離時の応力分布を示す図、図14は荷重−ひずみ曲線を示す図、図15は接着厚さ2.2mmの場合の剥離時の応力分布を示す図、図16は荷重−ひずみ曲線を示す図である。   The stress distribution at the time of peeling of the adhesive surface and the load-strain curve at the center of the specimen are shown in FIGS. FIG. 13 is a diagram showing the stress distribution during peeling when the adhesive thickness is 0.9 mm, FIG. 14 is a diagram showing a load-strain curve, and FIG. 15 is the stress distribution during peeling when the adhesive thickness is 2.2 mm. FIG. 16 is a diagram showing a load-strain curve.

実線および点線は、理論値を示している。実線は、接着剤によって薄肉鋼管3およびさや管24が完全に接着されており、完全な合成断面と想定したものであるの対し、点線は薄肉鋼管3とさや管24が接着できておらず、さや管24のみが有効断面と考えたものである。   Solid lines and dotted lines indicate theoretical values. The solid line indicates that the thin steel pipe 3 and the sheath pipe 24 are completely bonded by the adhesive, and is assumed to be a complete synthetic cross section, whereas the dotted line indicates that the thin steel pipe 3 and the sheath pipe 24 are not bonded, Only the sheath 24 is considered an effective cross section.

これらのグラフにおいて、実験値が実線に近いほど薄肉鋼管3とさや管24が接着できていることを示しており、点線に近いほど接着できていないことを意味する。   In these graphs, the closer the experimental value is to the solid line, the more the thin-walled steel pipe 3 and the sheath 24 are bonded, and the closer to the dotted line, the less the bonding is.

このグラフを見ると、接着厚さが厚い方では、接着できていない部分が多いのに対し、接着厚さが薄い方ではしっかり接着できていることがわかる。   From this graph, it can be seen that the thicker the adhesive thickness, the more the parts that are not bonded, while the thinner the adhesive thickness, the more firmly bonded.

これは、接着厚さ(クリアランス)の薄い方が、鋼管とさや管を接着しやすく厚い方よりムラなく接着できたことにより、強度が高くなったものと考える。   This is considered to be because the thinner the bonding thickness (clearance), the easier it was to bond the steel pipe and the sheath, and the higher the thickness, the higher the strength.

供用時の安全性の検討として、埋設管の設計法2を参照し、盛土深さ20mにおける土圧を算出したところ、33.3MPaであった。各試験ケースで1回目の異音発生時の荷重の曲げ応力と比較すると強度が1番小さいケースであっても約5倍程度の強度が得られ、十分な安全性を有することが示された。   As a study of safety during operation, the earth pressure at the embankment depth of 20 m was calculated with reference to the design method 2 of the buried pipe, and it was 33.3 MPa. Compared with the bending stress of the load at the time of the first abnormal noise generation in each test case, the strength was about 5 times even in the case where the strength is the smallest, indicating that it has sufficient safety. .

さや管24の長さおよび接着厚さをパラメータに強度を比較すると、接着厚さが薄く、さや管24の長さが長いものほど高い強度を有した。   When the strength was compared using the length of the sheath tube 24 and the adhesive thickness as parameters, the thinner the sheath thickness and the longer the sheath tube 24, the higher the strength.

よって、接着剤の接着厚さは1mm以下、さや管は長さが200mm以上のものとするのが望ましい。   Therefore, it is desirable that the adhesive has a thickness of 1 mm or less and the sheath tube has a length of 200 mm or more.

また、埋設管の設計法に基づき、盛土深さ20mで鋼管に作用する土圧を算出し、各試験ケースで1回目の異音発生時の荷重の曲げ応力と比較すると1番小さいケースでも約5倍程度の強度が得られた。   In addition, based on the design method of buried pipe, the earth pressure acting on the steel pipe at the embankment depth of 20m is calculated, and in each test case, even the smallest case is about A strength of about 5 times was obtained.

本発明の盛土の安定化パイプの設置方法の薄肉鋼管の接着を示す説明図である。It is explanatory drawing which shows adhesion | attachment of the thin steel pipe of the installation method of the stabilization pipe of the embankment of this invention. 本発明の盛土の安定化パイプの設置方法の接着接合した薄肉鋼管の曲げ試験の概要図である。It is a schematic diagram of the bending test of the thin-walled steel pipe which carried out the adhesive joining of the installation method of the stabilization pipe of the embankment of this invention. 試験での荷重―変位曲線を示す図である。It is a figure which shows the load-displacement curve in a test. 推進機での薄肉鋼管埋設の第1工程を示す側面図である。It is a side view which shows the 1st process of thin steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第2工程を示す側面図である。It is a side view which shows the 2nd process of thin steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第3工程を示す側面図である。It is a side view which shows the 3rd process of thin-walled steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第4工程を示す側面図である。It is a side view which shows the 4th process of thin-walled steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第5工程を示す側面図である。It is a side view which shows the 5th process of thin-walled steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第6工程を示す側面図である。It is a side view which shows the 6th process of thin steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第7工程を示す側面図である。It is a side view which shows the 7th process of thin-walled steel pipe embedding with a propulsion machine. 推進機での薄肉鋼管埋設の第8工程を示す側面図である。It is a side view which shows the 8th process of thin-walled steel pipe embedding with a propulsion machine. 本発明の盛土の安定化パイプの設置方法の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the installation method of the stabilization pipe of the embankment of this invention. 接着剤の接着厚さ0.9mmの場合の剥離時の応力分布を示す図である。It is a figure which shows the stress distribution at the time of peeling in the case of the adhesive thickness of 0.9 mm of an adhesive agent. 接着剤の接着厚さ0.9mmの場合の荷重―ひずみ曲線を示す図である。It is a figure which shows the load-strain curve in case the adhesion thickness of an adhesive agent is 0.9 mm. 接着剤の接着厚さ2.2mmの場合の剥離時の応力分布を示す図である。It is a figure which shows the stress distribution at the time of peeling in the case of the adhesive thickness of 2.2 mm of an adhesive agent. 接着剤の接着厚さ2.2mmの場合の荷重―ひずみ曲線を示す図である。It is a figure which shows the load-strain curve in case the adhesion thickness of an adhesive agent is 2.2 mm. 従来例を示す要部の概略断面図である。It is a schematic sectional drawing of the principal part which shows a prior art example.

1…盛土 2…排水パイプ
2a…パイプ本体 3…薄肉鋼管
3a…先端管 4…孔
5…ロッド 6…アダプタパイプ
7…台座 8…傾斜面
9…地盤 10…ローラー
11…治具 12…掘削ヘッド
14…推進機 15…チャック装置および回転駆動装置
24…さや管
DESCRIPTION OF SYMBOLS 1 ... Filling 2 ... Drainage pipe 2a ... Pipe main body 3 ... Thin-walled steel pipe 3a ... End pipe 4 ... Hole 5 ... Rod 6 ... Adapter pipe 7 ... Base 8 ... Inclined surface
9 ... Ground 10 ... Roller 11 ... Jig 12 ... Drilling head
DESCRIPTION OF SYMBOLS 14 ... Propulsion machine 15 ... Chuck apparatus and rotation drive device 24 ... Sheath pipe

Claims (2)

薄肉鋼管を接続して盛土に水平もしくは0〜5°の傾斜で打設する場合に、薄肉鋼管の地中への圧入は、薄肉鋼管の先端に掘削ヘッドを配置し、推進機により推進させ、さや管を介在させての薄肉鋼管の接合は、既埋設の薄肉鋼管に対して推進機にセットする新たな薄肉鋼管をもって行うもので、先に埋設した薄肉鋼管に対して接続すべき薄肉鋼管を突合せるように配置し、2液混合型のアクリル接着剤を薄肉鋼管の外側およびさや管内部に塗布し、薄肉鋼管をスライドさせてさや管にはめ込む形で接着させて所定の長さとして地中に圧入することを特徴とした盛土の安定化パイプの設置方法。 When connecting a thin steel pipe and placing it on the embankment horizontally or at an inclination of 0 to 5 °, the thin steel pipe is pressed into the ground by placing a drilling head at the tip of the thin steel pipe and propelled by a propulsion machine. The thin-walled steel pipe is joined with a thin-walled steel pipe that is to be connected to the previously-embedded thin-walled steel pipe. Place the two-component mixed acrylic adhesive on the outside of the thin steel pipe and the inside of the sheath pipe, and slide the thin steel pipe so that it fits into the sheath pipe. A method of installing a stabilization pipe for embankments characterized by being pressed into 接着剤の接着厚さは1mm以下、さや管は長さが200mm以上のものとする請求項1記載の盛土の安定化パイプの設置方法。
Adhesive Adhesive thickness 1mm or less, the sheath tube installation method of stabilizing the pipe of claim 1 Symbol placement of fill in length and more than 200 mm.
JP2015092694A 2015-04-30 2015-04-30 How to install stabilization pipes for embankment Active JP6466773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092694A JP6466773B2 (en) 2015-04-30 2015-04-30 How to install stabilization pipes for embankment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092694A JP6466773B2 (en) 2015-04-30 2015-04-30 How to install stabilization pipes for embankment

Publications (2)

Publication Number Publication Date
JP2016211155A JP2016211155A (en) 2016-12-15
JP6466773B2 true JP6466773B2 (en) 2019-02-06

Family

ID=57551380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092694A Active JP6466773B2 (en) 2015-04-30 2015-04-30 How to install stabilization pipes for embankment

Country Status (1)

Country Link
JP (1) JP6466773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020246B (en) * 2023-10-09 2023-12-15 中北大学 Large cylinder posture adjusting method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945077B2 (en) * 1977-09-01 1984-11-02 機動建設工業株式会社 Method for promoting and burying small diameter soft ducts
JPS58178725A (en) * 1982-04-12 1983-10-19 Pioneer Sangyo Kk Water draining pipe
JPH0313329U (en) * 1989-06-21 1991-02-12
JPH0738391Y2 (en) * 1989-10-31 1995-08-30 新光産業株式会社 Embankment reinforcement pile
US5904447A (en) * 1997-07-02 1999-05-18 Integrated Stabilization Technologies Inc. Drive device used for soil stabilization
JP3242604B2 (en) * 1997-07-31 2001-12-25 電気化学工業株式会社 How to connect steel pipes
JP2000179281A (en) * 1998-12-16 2000-06-27 Kopurosu:Kk Connecting method for corrugated thin-walled steel pipe
JP2003172481A (en) * 2001-12-05 2003-06-20 Shin Nippon Air Technol Co Ltd Connecting method of copper pipes
JP5291336B2 (en) * 2007-12-27 2013-09-18 日本管洗工業株式会社 Method and structure for joining metal members
JP5340067B2 (en) * 2009-07-27 2013-11-13 株式会社ケー・エフ・シー Embankment reinforcement structure
JP6067991B2 (en) * 2012-04-11 2017-01-25 日鐵住金建材株式会社 Low strength pipe erection device and erection method

Also Published As

Publication number Publication date
JP2016211155A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Poulos et al. Piled raft foundations for tall buildings
Nimityongskul et al. Full-scale tests on effects of slope on lateral capacity of piles installed in cohesive soils
JP4643364B2 (en) Pile head reinforcement method
Zhang et al. Field study of construction effects in jacked and driven steel H-piles
Achmus et al. Evaluation of py approaches for large diameter monopiles in sand
KR100985823B1 (en) The foundation means of reinforcement work for which pulling out resistance pile and this were used
JP6466773B2 (en) How to install stabilization pipes for embankment
JP2015504123A (en) Pile driving device and method for installing pile material assembly
Lee et al. Deflection of buried prestressed concrete cylinder pipe with soil-pipe interaction
JP5976050B2 (en) Drainage pipe for embankment
KR100842372B1 (en) Pretension soil nail method of top-down
Babu et al. Stabilisation of vertical cut supporting a retaining wall using soil nailing: a case study
KR20090050562A (en) The installation method of long piles using steel pipe with taper shape
Mehdizadeh et al. Static load testing of concrete free reticulated micropiles system
Meskele et al. Drivability analyses for pipe-ramming installations
JP2013023978A (en) Method for reinforcing foundation for small-scale building
Takashi et al. Efficiency of micropile for seismic retrofit of foundation system
Prabhu et al. Effects of lift thickness, backfill material, and compaction energy on utility trench backfill compaction using hydraulic plate compactors
KR20160075189A (en) pile supporter
Krolis et al. Determining the embedded pile length for large-diameter monopiles
JP5039229B1 (en) Steel pipe pile and ground reinforcement method using the same
Wang et al. Utility trench backfill compaction using vibratory plate compactor versus excavator-mounted hydraulic plate compactor
CN212956502U (en) Embedded rock type steel pipe pile is gone into to awl
Abbasiverki et al. Seismic response of large diameter buried concrete pipelines subjected to high frequency earthquake excitations
Park et al. Experimental study on axial and lateral bearing capacities of nonwelded composite piles based on pile load test results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6466773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250