JP6465368B2 - Heat dissipation material using mixed graphite and method for producing the same - Google Patents

Heat dissipation material using mixed graphite and method for producing the same Download PDF

Info

Publication number
JP6465368B2
JP6465368B2 JP2017100415A JP2017100415A JP6465368B2 JP 6465368 B2 JP6465368 B2 JP 6465368B2 JP 2017100415 A JP2017100415 A JP 2017100415A JP 2017100415 A JP2017100415 A JP 2017100415A JP 6465368 B2 JP6465368 B2 JP 6465368B2
Authority
JP
Japan
Prior art keywords
graphite
mixed
expanded graphite
filler
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100415A
Other languages
Japanese (ja)
Other versions
JP2018026527A5 (en
JP2018026527A (en
Inventor
勝朗 塚本
勝朗 塚本
浩晃 塚本
浩晃 塚本
中村 雄三
雄三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Matex KK
Original Assignee
Japan Matex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017530929A external-priority patent/JPWO2017018493A1/en
Application filed by Japan Matex KK filed Critical Japan Matex KK
Priority to JP2017100415A priority Critical patent/JP6465368B2/en
Priority to KR1020170090963A priority patent/KR101838853B1/en
Publication of JP2018026527A publication Critical patent/JP2018026527A/en
Publication of JP2018026527A5 publication Critical patent/JP2018026527A5/ja
Application granted granted Critical
Publication of JP6465368B2 publication Critical patent/JP6465368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/04Inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、混合グラファイトを用いた放熱材に関する。さらに詳しくは、異なる粒径を有する二種の発泡黒鉛と、均一に配合された熱伝導性フィラーからなる混合グラファイトとシート体から構成され厚み方向(Z軸方向)の熱伝導率を向上させた放熱材に関する。   The present invention relates to a heat dissipation material using mixed graphite. More specifically, the thermal conductivity in the thickness direction (Z-axis direction) is improved by being composed of two types of expanded graphite having different particle sizes, mixed graphite composed of a thermally conductive filler uniformly mixed, and a sheet body. It relates to heat dissipation material.

従来からテレビやパーソナルコンピュータなどの電気製品の放熱材には膨張黒鉛シートを用いた放熱材が使用されている。   Conventionally, a heat radiating material using an expanded graphite sheet has been used as a heat radiating material for electric products such as televisions and personal computers.

特許文献1には、膨張黒鉛シートの両面を金属箔で挟んだ構造を有する積層体をコルゲート状に曲げ加工した放熱材が記載されている。   Patent Document 1 describes a heat dissipation material obtained by bending a laminated body having a structure in which both surfaces of an expanded graphite sheet are sandwiched between metal foils into a corrugated shape.

特許文献2には、高分子フィルムをグラファイト化し熱伝導性を発現した人造黒鉛シートを金属板に貼り付け、金属板と共に波状に曲げ加工した放熱材が記載されている。   Patent Document 2 describes a heat dissipating material in which a polymer film is graphitized and an artificial graphite sheet exhibiting thermal conductivity is attached to a metal plate and bent into a wave shape together with the metal plate.

特開2015−46557号公報JP 2015-46557 A 特許第3649150号Japanese Patent No. 3649150

特許文献1及び2に記載の従来の膨張黒鉛シートを使用する放熱器は、面方向(XY軸方向)には熱伝導性が優れているが厚み方向(Z軸方向)には熱伝導性が低いという問題がある。   The heat radiator using the conventional expanded graphite sheet described in Patent Documents 1 and 2 has excellent thermal conductivity in the plane direction (XY axis direction), but has thermal conductivity in the thickness direction (Z axis direction). There is a problem that it is low.

本発明の第1の態様は、上記した課題を解決することを目的としてなされたものであり、人造黒鉛、ボロンナイトライド(boron nitride)、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを粒径の異なる2種の発泡黒鉛(発泡黒鉛)に均一に混合することで、厚み方向の熱伝導性を上げ、さらにシート体で挟むことで面方向の熱伝導性も高めた放熱材を提供する。   The first aspect of the present invention has been made for the purpose of solving the above problems, and is one or more selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled. The thermal conductivity in the thickness direction can be increased by uniformly mixing the thermally conductive fillers in two types of expanded graphite (foamed graphite) with different particle sizes, and the thermal conductivity in the surface direction can also be increased by sandwiching between the sheets. Provide enhanced heat dissipation material.

請求項1に係る発明は、粒子径30〜50μmの第一の発泡黒鉛と粒子径200〜250μmの第二の発泡黒鉛から構成された混合発泡黒鉛にフィラーが均一に配合されてなる混合グラファイトと、厚さ0.10〜1.65mmのシート体からなり、前記フィラーは人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、前記混合発泡黒鉛中の前記第一の発泡黒鉛は30〜45重量%、前記第二の発泡黒鉛は50〜65重量%であり、前記混合発泡黒鉛は前記混合グラファイト全体の80〜95重量%含まれ、
前記混合グラファイトの密度は0.8〜1.5g/cmであり、
前記混合グラファイトと前記シート体が積層されてなり、熱伝導率は厚み方向が3〜10W/m・K、面方向が50〜250W/m・Kであることを特徴とする放熱材に関する。
The invention according to claim 1 is a mixed graphite in which a filler is uniformly blended with a mixed expanded graphite composed of a first expanded graphite having a particle size of 30 to 50 μm and a second expanded graphite having a particle size of 200 to 250 μm; The filler is a sheet body having a thickness of 0.10 to 1.65 mm, and the filler is at least one heat conductive filler selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled, and the mixture The first expanded graphite in the expanded graphite is 30 to 45% by weight, the second expanded graphite is 50 to 65% by weight, and the mixed expanded graphite is 80 to 95% by weight of the entire mixed graphite,
The density of the mixed graphite is 0.8 to 1.5 g / cm 3 ,
The mixed graphite and the sheet body are laminated, and the heat conductivity relates to a heat radiating material having a thickness direction of 3 to 10 W / m · K and a surface direction of 50 to 250 W / m · K.

請求項2に係る発明は、前記シート体がポリエステルシートであることを特徴とする請求項1に記載の放熱材に関する。   The invention according to claim 2 relates to the heat dissipation material according to claim 1, wherein the sheet body is a polyester sheet.

請求項3に係る発明は、前記シート体がアルミニウム箔であることを特徴とする請求項1に記載の放熱材に関する。   The invention according to claim 3 relates to the heat dissipating material according to claim 1, wherein the sheet body is an aluminum foil.

請求項に記載の発明は、請求項1乃至3のいずれか1項に記載の放熱材を製造する方法であって、天然グラファイトを酸浸漬し発泡黒鉛を製造する工程、
発泡黒鉛に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを加え混合グラファイトを製造する工程、
前記工程でできた混合グラファイトを圧延しシート状にする工程、及び
シート状にしたグラファイトをシート体に挟む工程と、を含む
ことを特徴とする、
放熱材の製造方法に関する。
Invention of Claim 4 is the method of manufacturing the thermal radiation material of any one of Claims 1 thru | or 3 , Comprising: The process of acid-immersing natural graphite and manufacturing expanded graphite,
A process for producing mixed graphite by adding one or more heat conductive fillers selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled to expanded graphite;
The step of rolling the mixed graphite produced in the step into a sheet, and the step of sandwiching the sheeted graphite in a sheet body,
The present invention relates to a method for manufacturing a heat dissipation material.

請求項にかかる発明は、前記発泡黒鉛を製造する工程は、天然グラファイトを粉砕し粒子状にした後、硫酸浸漬をし、中和洗浄して発泡黒鉛を得る工程からなり、
前記混合グラファイトを製造する工程は、炉に天然グラファイトを入れ高温下で高温発泡し、更に炉に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを入れ混合する工程からなる
ことを特徴とする請求項に記載の製造方法に関する。
According to a fifth aspect of the present invention, the step of producing the expanded graphite comprises a step of pulverizing and pulverizing natural graphite, then immersing in sulfuric acid, neutralizing and washing to obtain expanded graphite,
The process of producing the mixed graphite includes one or more thermal conductivity selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled in a furnace by placing natural graphite in a furnace and foaming at a high temperature. The method according to claim 4 , comprising a step of mixing and mixing a filler.

本発明の第2の態様は、上記の課題を解決することを目的としてなされたものであり、人造黒鉛、シリコンカーバイド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを粒径の異なる2種の発泡黒鉛(発泡黒鉛)に均一になるよう混合して有することで、厚み方向の熱伝導性を上げ、さらに熱伝導性フィラーを粒径の異なる2種の発泡黒鉛(発泡黒鉛)に均一になるよう混合したものをシート体で挟むことで面方向の熱伝導性も高めた放熱材を提供する。 The second aspect of the present invention has been made for the purpose of solving the above problems, and is one or more kinds of thermally conductive fillers selected from the group consisting of artificial graphite, silicon carbide, and pitch-based carbon fiber milled. Is mixed with two types of expanded graphite (foamed graphite) with different particle sizes so as to be uniform, thereby increasing the thermal conductivity in the thickness direction, and further adding two types of expanded graphite with different particle sizes. Provided is a heat dissipating material in which the thermal conductivity in the surface direction is enhanced by sandwiching a mixture of foamed graphite (foamed graphite) so as to be uniform.

請求項6に係る発明によれば、粒子径30乃至50μmの第一の発泡黒鉛と、粒子径200乃至250μmの第二の発泡黒鉛からなる混合発泡黒鉛にフィラーが均一に配合された混合グラファイトからなる放熱材であって、
前記フィラーは、人造黒鉛、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、
前記混合発泡黒鉛には、前記第一の発泡黒鉛が30乃至45重量%含まれ、前記第二の発泡黒鉛が50乃至65重量%含まれ、
前記混合発泡黒鉛は、前記混合グラファイト100重量%のうちの80乃至95重量%が含まれ、
前記混合グラファイトの密度は0.8〜1.5g/cmであり、
前記混合グラファイトはシート状に形成され、かつシート状にされたグラファイトがシート体に挟持され、
熱伝導率は厚み方向が3〜10W/m・K、面方向が50〜250W/m・Kであることを特徴とする放熱材に関する
According to the invention of claim 6, from the mixed graphite in which the filler is uniformly blended with the mixed expanded graphite composed of the first expanded graphite having a particle diameter of 30 to 50 μm and the second expanded graphite having a particle diameter of 200 to 250 μm. A heat dissipating material,
The filler is artificial black lead, one or more thermally conductive filler selected from the group consisting of pitch-based carbon fiber milled,
The mixed expanded graphite includes 30 to 45% by weight of the first expanded graphite, 50 to 65% by weight of the second expanded graphite,
The mixed expanded graphite includes 80 to 95% by weight of 100% by weight of the mixed graphite.
The density of the mixed graphite is 0.8 to 1.5 g / cm 3 ,
The mixed graphite is formed in a sheet shape, and the sheeted graphite is sandwiched between sheet bodies,
Thermal conductivity thickness direction 3~10W / m · K, the plane direction about heat dissipating material, which is a 50~250W / m · K.

請求項1に係る発明によれば、粒子径30〜50μmの第一の発泡黒鉛と粒子径200〜250μmの第二の発泡黒鉛から構成された混合発泡黒鉛にフィラーを均一に配合した混合グラファイトと、該混合グラファイトを挟持する厚さ0.10〜1.65mmのシート体からなり、前記フィラーは人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、前記混合発泡黒鉛中の前記第一の発泡黒鉛は30〜45重量%、前記第二の発泡黒鉛は50〜65重量%であり、前記混合発泡黒鉛は前記混合グラファイト全体の80重量%〜95重量%含まれており、前記フィラーを均一に配合することで、厚み方向の熱伝導率は3〜10W/m・K、面方向熱の伝導率は50〜250W/m・Kとなる優れた放熱材が得られる。
According to the first aspect of the invention, the mixed graphite obtained by uniformly blending the filler with the mixed expanded graphite composed of the first expanded graphite having a particle diameter of 30 to 50 μm and the second expanded graphite having a particle diameter of 200 to 250 μm; , A sheet body having a thickness of 0.10 to 1.65 mm sandwiching the mixed graphite, and the filler is one or more kinds of thermal conductivity selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled a filler, wherein said first foamed graphite mixture foamed in the graphite 30-45% by weight, said second foamed graphite is 50 to 65 wt%, the mixed foamed graphite 80 weight of the total mixture of graphite % to 95 included wt%, by uniformly mixing the filler, the thermal conductivity in the thickness direction 3~10W / m · K, conductivity in a plane direction heat 50~250W / An excellent heat dissipation material of m · K is obtained.

請求項2に係る発明によれば、前記混合グラファイトを挟むシート体としてはポリエステルシートを用いることができるので、当該放熱材を使用する機器の内部で黒鉛粉末が飛散し、ひいては電気障害を起こすことを防止することができる。   According to the second aspect of the present invention, since a polyester sheet can be used as the sheet body sandwiching the mixed graphite, the graphite powder is scattered inside the device using the heat dissipation material, which causes electrical failure. Can be prevented.

請求項3に係る発明によれば、混合グラファイトを挟むシート体としてアルミ箔を用いることができるので、当該放熱材を使用する機器の内部で黒鉛粉末が飛散し、ひいては電気障害を起こすことを防止することができる。   According to the invention of claim 3, since aluminum foil can be used as the sheet body sandwiching the mixed graphite, it is possible to prevent the graphite powder from being scattered inside the equipment using the heat radiating material, and thus causing an electrical failure. can do.

請求項に係る発明によれば、請求項1乃至3のいずれか1項に記載の放熱材を製造する方法であり、発泡黒鉛に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを加え混合グラファイトを製造する工程と、前記工程でできた混合グラファイトを圧延しシート状にする工程と、シート状にしたグラファイトをシート体に挟む工程と、を要件として具備しているので、発泡黒鉛にフィラーを均一に混合でき厚み方向の熱伝導率が高い放熱材が製造できる。さらに、放熱材を使用する機器の内部で黒鉛粉末が飛散し、ひいては電気障害を起こすことを防止することができる。
The invention according to claim 4 is a method for producing the heat dissipation material according to any one of claims 1 to 3 , wherein the foamed graphite is made of artificial graphite, boron nitride, and pitch-based carbon fiber mill. A step of producing a mixed graphite by adding one or more thermally conductive fillers selected from the following: a step of rolling the mixed graphite produced in the above step into a sheet, and a step of sandwiching the sheet-shaped graphite in a sheet body; Therefore, it is possible to manufacture a heat dissipating material that can uniformly mix a filler with foamed graphite and has a high thermal conductivity in the thickness direction. Furthermore, it is possible to prevent the graphite powder from being scattered inside the device using the heat dissipation material and eventually causing an electrical failure.

請求項に係る発明によれば、前記発泡黒鉛を製造する工程は、天然グラファイトを粉砕し粒子状にした後、硫酸浸漬をし、中和洗浄して発泡黒鉛を得る工程からなり、
前記混合グラファイトを製造する工程は、炉に天然グラファイトを入れ高温下で高温発泡し、更に炉に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを入れ混合する工程からなる構成を有しているので、炉の中で発泡黒鉛とフィラーを混合することでより均一にフィラーを配合できる。
According to the invention according to claim 5 , the step of producing the expanded graphite comprises a step of pulverizing and pulverizing natural graphite, then immersing in sulfuric acid, neutralizing and washing to obtain expanded graphite,
The process of producing the mixed graphite includes one or more thermal conductivity selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled in a furnace by placing natural graphite in a furnace and foaming at a high temperature. Since it has the structure which consists of a process which puts a filler and mixes, a filler can be mix | blended more uniformly by mixing an expanded graphite and a filler in a furnace.

請求項6に係る発明によれば、粒子径30乃至50μmの第一の発泡黒鉛と、粒子径200乃至250μmの第二の発泡黒鉛からなる混合発泡黒鉛にフィラーが均一に配合された混合グラファイトからなる放熱材であって、前記フィラーは、人造黒鉛、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、前記混合発泡黒鉛には、前記第一の発泡黒鉛が30乃至45重量%含まれ、前記第二の発泡黒鉛が50乃至65重量%含まれ、前記混合発泡黒鉛は、前記混合グラファイト100重量%のうちの80乃至95重量%が含まれ、前記混合グラファイトの密度は0.8〜1.5g/cmであり、前記混合グラファイトはシート状に形成され、かつシート状にされたグラファイトがシート体に挟持され、熱伝導率は厚み方向が3〜10W/m・K、面方向が50〜250W/m・Kであることを構成上の特徴としているので、さらに熱伝導性フィラーを粒径の異なる2種の発泡黒鉛(発泡黒鉛)に均一になるよう混合したものをシート体で挟むことで面方向の熱伝導性も高めた放熱材を提供することができる。
本発明は、シート状に形成された前記混合グラファイトの一方の面にバインダーを含む水系塗料が塗布されてなる構成を具備しても良くこの場合、放熱材の厚さ方向に高い熱伝導性を達成することができる。
According to the invention of claim 6, from the mixed graphite in which the filler is uniformly blended with the mixed expanded graphite composed of the first expanded graphite having a particle diameter of 30 to 50 μm and the second expanded graphite having a particle diameter of 200 to 250 μm. a becomes heat dissipating material, the filler is artificial black lead is one or more of thermally conductive filler selected from the group consisting of pitch-based carbon fiber milled, performing the mixing foaming graphite, said first foamed graphite 30 to 45 wt%, the second expanded graphite is 50 to 65 wt%, the mixed expanded graphite includes 80 to 95 wt% of the mixed graphite 100 wt%, and the mixed graphite The density of the graphite is 0.8 to 1.5 g / cm 3 , the mixed graphite is formed into a sheet shape, and the graphite formed into a sheet shape is sandwiched between the sheet bodies, The conductivity is characterized in that the thickness direction is 3 to 10 W / m · K, and the surface direction is 50 to 250 W / m · K. By sandwiching a mixture of graphite (foamed graphite) so as to be uniform between sheets, a heat dissipation material having improved thermal conductivity in the surface direction can be provided.
The present invention may include a configuration in which water-based paint containing a binder on one surface of the mixing graphite in the form of a sheet is formed by coating, in this case, high thermal conductivity in the thickness direction of the heat dissipating material Can be achieved.

本発明の混合グラファイトとは、粒径の異なる2種の発泡黒鉛とフィラーとが均一に混合しているものをいう。
本発明の混合グラファイトは、発泡黒鉛の粒子間にフィラーが配合されることで、従来の膨張黒鉛シートでは低かった厚み方向(Z軸方向)の熱伝導率を向上させ、発泡黒鉛とフィラーとを混合して有することで発泡黒鉛はフィラー分子間のつなぎとなり、混合グラファイトをシート状に延ばすことを可能にした混合グラファイトである。
面方向とはシートの面に対して平行の方向をいい、厚み方向とはシートの面に対して垂直に交わる方向をいう。
発泡黒鉛とは天然グラファイト(黒鉛)を粉砕し粒子状にしたのち硫酸浸漬、中和洗浄し、さらに高温加熱発泡させてできたものである。
当該発泡黒鉛は粒子径が30〜50μmの第一の発泡黒鉛と粒子径が200〜250μmの第二の発泡黒鉛との大きさの異なる2種類の発泡黒鉛から構成されるので、同一の粒径の発泡黒鉛にフィラーが配合されたもより、厚さ方向の熱伝導率が向上する。
大きさの異なる2種類の発泡黒鉛から構成する場合の比率は発泡黒鉛中の第一の発泡黒鉛は30〜45重量%、第二の発泡黒鉛は50〜65重量%である。
高温加熱発泡は、例えば高温下で空気を遮断し熱することで行い、温度は1000℃以上2000℃以下で行ってもよい。
天然グラファイト(黒鉛)を高温処理するためには、黒鉛化炉などの炉を用いるのが望ましい。
本発明のフィラーとは高熱伝導率を有する充填材のことであり、六方晶窒化ホウ素、炭素化合物が挙げられ、例えばピッチ系炭素繊維ミルドファイバー、ボロンナイトライド、人造黒鉛が挙げられるがこれに限定されない。
本発明の人造黒鉛には、コークスとピッチを原料としたものや、ポリイミドフィルムを不活性ガス中で加熱焼成し、黒鉛化したものを含む。
混合グラファイトは、例えば、天然グラファイトを上述のように処理して作成した発泡黒鉛にフィラーを混合させて製造する。
また、天然グラファイトを粉砕し粒子状にしたのち硫酸浸漬、中和洗浄した酸処理黒鉛粉末にフィラーを混合し、高温加熱発泡させて製造してもよい。フィラーに人造黒鉛を用いた場合、酸処理した黒鉛粉末にフィラーを混合し、高温加熱発泡させても人造黒鉛は発泡しない。
発泡黒鉛とフィラーを混合させる方法、及び酸処理黒鉛粉末とフィラーを混合させる方法には、攪拌機で回転させ混合する方法などが挙げられるがこれに限定されない。
発泡黒鉛とフィラーの混合比率は8:2が好ましい。
また混合グラファイトの密度は0.8−1.65g/cmであり、特に1.50g/cmが好ましい。
The mixed graphite of the present invention refers to a mixture in which two types of foamed graphite having different particle diameters and a filler are uniformly mixed.
The mixed graphite of the present invention improves the thermal conductivity in the thickness direction (Z-axis direction), which was low in the conventional expanded graphite sheet, by blending filler between particles of expanded graphite. By having it mixed, expanded graphite becomes a bond between filler molecules, and is a mixed graphite that makes it possible to extend the mixed graphite into a sheet.
The surface direction refers to a direction parallel to the sheet surface, and the thickness direction refers to a direction perpendicular to the sheet surface.
Foamed graphite is obtained by pulverizing natural graphite (graphite) into particles, soaking in sulfuric acid, neutralizing and washing, and further foaming by heating at high temperature.
Since the expanded graphite is composed of two types of expanded graphite, the first expanded graphite having a particle diameter of 30 to 50 μm and the second expanded graphite having a particle diameter of 200 to 250 μm, the same particle diameter The thermal conductivity in the thickness direction is improved by adding a filler to the expanded graphite.
In the case of constituting from two types of expanded graphite having different sizes, the first expanded graphite in the expanded graphite is 30 to 45% by weight, and the second expanded graphite is 50 to 65% by weight.
The high temperature heating foaming may be performed, for example, by blocking and heating air at a high temperature, and the temperature may be 1000 ° C. or more and 2000 ° C. or less.
In order to treat natural graphite (graphite) at a high temperature, it is desirable to use a furnace such as a graphitization furnace.
The filler of the present invention is a filler having a high thermal conductivity, and examples include hexagonal boron nitride and carbon compounds. Examples include pitch-based carbon fiber milled fiber, boron nitride, and artificial graphite, but are not limited thereto. Not.
The artificial graphite of the present invention includes those using coke and pitch as raw materials and those obtained by heating and baking a polyimide film in an inert gas.
Mixed graphite is produced, for example, by mixing filler with foamed graphite prepared by treating natural graphite as described above.
Alternatively, natural graphite may be pulverized into particles, mixed with acid-treated graphite powder that has been immersed in sulfuric acid and neutralized and washed, and then heated and foamed at a high temperature. When artificial graphite is used as the filler, the artificial graphite does not foam even if the filler is mixed with the acid-treated graphite powder and foamed by heating at high temperature.
Examples of the method of mixing the foamed graphite and the filler and the method of mixing the acid-treated graphite powder and the filler include a method of rotating and mixing with a stirrer, but are not limited thereto.
The mixing ratio of expanded graphite and filler is preferably 8: 2.
The density of the mixed graphite is 0.8-1.65 g / cm 3 , and particularly preferably 1.50 g / cm 3 .

発泡黒鉛自体は強度が低く、使用する機器の内部で黒鉛粉末が飛散し、電気障害をおこすおそれがあるので、2枚のシートの間にグラファイト層を挟むことでその点を改善する。
シート体はポリエチレンテレフタレート(PET)等の樹脂製シートを使用してもよく、金属箔好ましくは、アルミニウム箔を使用してもよい。
シート体の厚さは0.25〜1.65mmである。
混合グラファイトをシート体に挟む際は、シート体をあらかじめ敷いておき、その上に混合グラファイトを延ばし更にシート体を貼り付けてもよく、また粘着剤を塗布したシート体と共に混合グラファイトをローラで圧延してもよく、また予めローラ等で圧延した混合グラファイトを2枚のシートで挟むことで製造してもよい。
Foamed graphite itself has low strength, and graphite powder is scattered inside the equipment to be used, which may cause an electrical failure. Therefore, the problem is improved by sandwiching a graphite layer between two sheets.
As the sheet body, a resin sheet such as polyethylene terephthalate (PET) may be used, and a metal foil, preferably an aluminum foil may be used.
The thickness of the sheet body is 0.25 to 1.65 mm.
When the mixed graphite is sandwiched between the sheet bodies, the sheet body may be laid in advance, and the mixed graphite may be further spread on the sheet body, and further the sheet body may be attached, or the mixed graphite is rolled with a roller together with the sheet body coated with the adhesive. Alternatively, it may be produced by sandwiching mixed graphite that has been previously rolled with a roller or the like between two sheets.

図1は本発明の実施例に係る放熱材の製法を示す断面説明図である。FIG. 1 is a cross-sectional explanatory view showing a method for manufacturing a heat dissipation material according to an embodiment of the present invention.

(実施例1)
本発明の放熱材の製造方法の一例を記載するが、本発明はこれらの実施例に限定されるものでない。
発泡黒鉛の製造方法
天然グラファイトを粉砕し粒子状にしたのち硫酸浸漬、中和洗浄し、さらに高温発泡させて発泡黒鉛を製造する。
混合グラファイトの製造方法
発泡黒鉛にフィラーとして日本グラファイトファイバー株式会社製のGRANOCミルドファイバー(HC−600−15M、繊維長150μm)を2重量%添加しポリ袋を振って発泡黒鉛とGRANOCミルドファイバーが均一になるように撹拌し105mm角の金型に入れ成形圧7500N(面圧約68kg/cm)で混合グラファイトを成形する。
放熱材の製造方法
事前に接着剤処理した11μmのアルミ箔をセットしその上から成形した混合グラファイトを投入しさらにアルミ箔を重ねプレス成型をすることで厚さ250μmの積層体を作製した。
Example 1
Although an example of the manufacturing method of the thermal radiation material of this invention is described, this invention is not limited to these Examples.
Production Method of Foamed Graphite Natural graphite is pulverized into particles, immersed in sulfuric acid, neutralized and washed, and further foamed at a high temperature to produce expanded graphite.
Method for producing mixed graphite 2% by weight of GRANOC milled fiber (HC-600-15M, fiber length 150 μm) manufactured by Nippon Graphite Fiber Co., Ltd. is added to the expanded graphite as a filler. The mixed graphite is molded at a molding pressure of 7500 N (surface pressure of about 68 kg / cm 2 ).
Manufacturing Method of Heat Dissipating Material A 11 μm-thick aluminum foil that had been treated with an adhesive in advance was set, mixed graphite formed thereon was added, and the aluminum foil was stacked and press-molded to produce a 250 μm-thick laminate.

(実施例2)
フィラーとして日本グラファイトファイバー株式会社製のGRANOCミルドファイバー(HC−600−15M、繊維長150μm)を5重量%混合すること及び積層体の厚さを200μmにすること以外は実施例1と同じである。
(Example 2)
The same as Example 1 except that 5% by weight of GRANOC milled fiber (HC-600-15M, fiber length 150 μm) manufactured by Nippon Graphite Fiber Co., Ltd. is used as a filler and the thickness of the laminate is 200 μm. .

(実施例3)
フィラーとして電気化学工業株式会社製の電荷ボロンナイトライド(GP 粒径8.2μm)を5重量%混合すること及び積層体の厚さを220μmとすること以外は実施例1と同じである。
(Example 3)
Example 1 is the same as Example 1 except that 5% by weight of charge boron nitride (GP particle size 8.2 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. is mixed as the filler and the thickness of the laminate is 220 μm.

(実施例4)
フィラーとして電気化学工業株式会社製の電荷ボロンナイトライド(GP 粒径8.2μm)を10重量%混合すること及び積層体の厚さを330μmとすること以外は実施例1と同じである。
Example 4
Example 1 is the same as Example 1 except that 10% by weight of charge boron nitride (GP particle size 8.2 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. is mixed as a filler and the thickness of the laminate is 330 μm.

(実施例5)
フィラーとして粒径20μmのSECカーボン株式会社製のSECファインパウダー SGL−25を10重量%混合すること及び積層体の厚さを250μmとすること以外は実施例1と同じである。
(Example 5)
Example 1 is the same as Example 1 except that 10% by weight of SEC fine powder SGL-25 manufactured by SEC Carbon Co., Ltd. having a particle diameter of 20 μm is mixed as the filler and the thickness of the laminate is 250 μm.

(実施例6)
フィラーとして粒径20μmのSECカーボン株式会社製のSECファインパウダー SGL−25を20重量%混合すること及び積層体の厚さを320μmとすること以外は実施例1と同じである。
(Example 6)
Example 1 is the same as Example 1 except that 20% by weight of SEC fine powder SGL-25 manufactured by SEC Carbon Co., Ltd. having a particle diameter of 20 μm is mixed as a filler and the thickness of the laminate is 320 μm.

(実施例7)
フィラーとして粒径50μmのSECカーボン株式会社製のSECファインパウダー SGL−50を10重量%混合すること及び積層体の厚さを215μmとすること以外は実施例1と同じである。
(Example 7)
Example 1 is the same as Example 1 except that 10% by weight of SEC fine powder SGL-50 manufactured by SEC Carbon Co., Ltd. having a particle size of 50 μm is mixed as the filler and the thickness of the laminate is 215 μm.

(実施例8)
フィラーとして粒径50μmのSECカーボン株式会社製のSECファインパウダー SGL−50を20重量%混合すること及び積層体の厚さを410μmとすること以外は実施例1と同じである。
(Example 8)
Example 1 is the same as Example 1 except that 20% by weight of SEC fine powder SGL-50 manufactured by SEC Carbon Co., Ltd. having a particle size of 50 μm is mixed as a filler and the thickness of the laminate is 410 μm.

(実施例9)
1.混合グラファイトの製造方法
天然黒鉛粉末を硫酸浸漬、中和洗浄した酸処理黒鉛粉末に、フィラーの人造黒鉛として粒径50μmのSECカーボン株式会社製のSECファインパウダー SGL−50を20重量%混合し、均一になるように高温加熱発泡させた後に、105mm角の金型に入れ成形圧7500N(面圧約68kg/cm)で混合グラファイトを成形する。
2.放熱材の製造方法
事前に接着剤処理した30μmのPETシートをセットし、その上から成形した混合グラファイトを投入し、さらに30μmのPETシートを重ねプレス成型をすることで厚さ1560μmの積層体を作製した。
Example 9
1. Manufacturing method of mixed graphite 20% by weight of SEC fine powder SGL-50 manufactured by SEC Carbon Co., Ltd. having a particle size of 50 μm as artificial graphite as a filler is mixed with acid-treated graphite powder obtained by immersing natural graphite in sulfuric acid and neutralizing and washing, After high-temperature heating and foaming so as to be uniform, the mixed graphite is molded at a molding pressure of 7500 N (surface pressure of about 68 kg / cm 2 ) in a 105 mm square mold.
2. Manufacturing method of heat dissipating material A 30 μm PET sheet that has been previously treated with an adhesive is set, mixed graphite molded from the top is added, and a 30 μm PET sheet is stacked and press-molded to form a 1560 μm thick laminate. Produced.

(実施例10)
放熱材として50μmのアルミ箔を用いること及び積層体の厚さを1600μmとすること以外は実施例9と同じである。
(比較例)
比較例1は膨張黒鉛をPETシートで積層してなる厚さ157μmの積層体を用いる。
比較例2は膨張黒鉛をPETシートで積層してなる厚さ300μmの積層体を用いる。
比較例3は発泡黒鉛のみを用いる。
(Example 10)
Example 9 is the same as Example 9 except that a 50 μm aluminum foil is used as the heat dissipating material and the thickness of the laminate is 1600 μm.
(Comparative example)
Comparative Example 1 uses a laminate having a thickness of 157 μm obtained by laminating expanded graphite with a PET sheet.
Comparative Example 2 uses a laminate having a thickness of 300 μm formed by laminating expanded graphite with a PET sheet.
Comparative Example 3 uses only expanded graphite.

上記実施例1乃至10及び比較例1乃至3を夫々5mm角を試料としアイフェイズ・モバイル1u(株式会社アイフェイズ社製)で放熱材の厚み方向の熱拡散率、熱伝導率を測定し比較した。   The above Examples 1 to 10 and Comparative Examples 1 to 3 were measured by comparing the thermal diffusivity and thermal conductivity in the thickness direction of the heat radiating material with 5 mm square samples using Eye Phase Mobile 1u (made by Eye Phase Co., Ltd.). did.

表(N=3の平均値)
表に示すように、従来の放熱材である比較例1の熱伝導率が0.5W/m・K、比較例2の熱伝導率が1.0W/m・Kであるのに対し、実施例1の熱伝導率は3.6W/m・K、実施例2の熱伝導率は4.4W/m・Kと高い結果となっている。
比較例3は熱伝導率が高いが、発泡黒鉛の粉末が使用する機器の内部で飛散し、電気障害を起こすため実際は放熱材には用いることができない。
また実施例1が3.6W/m・Kであるのに対し、実施例2は4.4W/m・Kとフィラーを配合する量が多い程熱伝導率が向上する。
また、天然黒鉛粉末の酸処理黒鉛粉末に人造黒鉛を混合してから発泡させた実施例9、10は、熱伝導率がそれぞれ10.9W/m・K、12.1W/m・Kと、比較例よりもはるかに高い値を示した。これは、人造黒鉛を混合してから発泡させることにより、発泡黒鉛と人造黒鉛との密着性が高まったためと思われる。
また従来の放熱材と比べこの発明の放熱材は熱拡散率が高くなっている。比較例1が6.07E−07m/s、比較例2が14.1E−07m/sであるのに比べて実施例1では41.8E−07m/s、実施例2では52.0E−07m/sと高い値を示している。そして、実施例9、10は、熱拡散率がそれぞれ128.0E−07m/s、141.7E−07m/sと、比較例よりもはるかに高い値を示した。
Table (average value of N = 3)
As shown in the table, the thermal conductivity of Comparative Example 1 which is a conventional heat radiating material is 0.5 W / m · K, whereas the thermal conductivity of Comparative Example 2 is 1.0 W / m · K. The thermal conductivity of Example 1 is 3.6 W / m · K, and the thermal conductivity of Example 2 is as high as 4.4 W / m · K.
Comparative Example 3 has a high thermal conductivity, but the powder of expanded graphite is scattered inside the equipment used and causes electrical failure, so it cannot be used as a heat dissipation material.
Moreover, while Example 1 is 3.6 W / m · K, in Example 2, the thermal conductivity improves as the amount of the filler compounded with 4.4 W / m · K increases.
Further, in Examples 9 and 10 in which artificial graphite was mixed with acid-treated graphite powder of natural graphite and then foamed, thermal conductivity was 10.9 W / m · K and 12.1 W / m · K, respectively. The value was much higher than that of the comparative example. This is probably because the adhesion between the expanded graphite and the artificial graphite was increased by mixing the artificial graphite and then foaming.
In addition, the heat dissipation material of the present invention has a higher thermal diffusivity than the conventional heat dissipation material. Comparative Example 1 6.07E-07m 2 / s, Comparative Example 2 is 14.1E-07m 2 / s at which compared to Example 1, 41.8E-07m 2 / s, in the second embodiment 52. It shows a high value of 0E-07 m 2 / s. The examples 9 and 10, the thermal diffusivity is shown and 128.0E-07m 2 /s,141.7E-07m 2 / s, respectively, much higher than the comparative examples.

(実施例11)
フィラーとして日本グラファイトファイバー株式会社製のGRANOCミルドファイバー(HC−600−15M、繊維長150μm、熱伝導率600W/m・K、密度2.22)を用い、膨張黒鉛:フィラー=12g:3gの割合で混合撹拌しプレスシートを作成した。プレスシートから厚み1mm、直径110mmの円盤を作成し、円盤の三カ所から三つの試料、厚みが約0.97mmのもの(試料[1])、厚みが1.11mmのもの(試料[2])、厚みが1.12mmのもの(試料[3])に対してサンプリングし厚み方向の熱伝導性を測定した。試料[1]乃至[3]の3カ所夫々で熱伝導率α(W/m・K)を5回測定し、密度ρを1.58g/cm、比熱Cpを1.25J/(g・K)として熱拡散率κ(10−6/s)を求めた。また5回測定した熱伝導率からそれぞれの箇所の平均熱伝導率を求めた。
(Example 11)
GRANOC milled fiber (HC-600-15M, fiber length 150 μm, thermal conductivity 600 W / m · K, density 2.22) manufactured by Nippon Graphite Fiber Co., Ltd. was used as the filler, and the ratio of expanded graphite: filler = 12 g: 3 g Was mixed and stirred to prepare a press sheet. A disk having a thickness of 1 mm and a diameter of 110 mm was prepared from the press sheet, and three samples from three positions of the disk, a thickness of about 0.97 mm (sample [1]), and a thickness of 1.11 mm (sample [2] ), The sample having a thickness of 1.12 mm (sample [3]) was sampled, and the thermal conductivity in the thickness direction was measured. The thermal conductivity α (W / m · K) was measured five times at each of the three locations of the samples [1] to [3], the density ρ was 1.58 g / cm 3 , and the specific heat Cp was 1.25 J / (g · The thermal diffusivity κ (10 −6 m 2 / s) was determined as K). Moreover, the average heat conductivity of each location was calculated | required from the heat conductivity measured 5 times.

試料[1]では以下の通りであり、平均熱伝導率(W/m・K)は17.73である。   Sample [1] has the following structure and an average thermal conductivity (W / m · K) of 17.73.

試料[2]では以下の通りであり、平均熱伝導率(W/m・K)は15.25である。   In sample [2], the average thermal conductivity (W / m · K) is 15.25 as follows.

試料[3]では以下の通りであり、平均熱伝導率(W/m・K)は19.01である。   Sample [3] has the following structure and the average thermal conductivity (W / m · K) is 19.01.

実施例11で作成した円盤の熱伝導率を求めるため、試料[1]から[3]の3カ所の熱伝導率の平均値を求めたところ、17.33W/m・Kであった。膨張黒鉛単体の厚み方向の熱伝導率を測定した結果、5乃至7W/m・Kという値を示した。このことから本発明は膨張黒鉛単体に比べ厚み方向の熱伝導率が高く高性能であるといえる。   In order to obtain the thermal conductivity of the disk prepared in Example 11, the average value of the thermal conductivities at the three locations of Samples [1] to [3] was determined to be 17.33 W / m · K. As a result of measuring the thermal conductivity in the thickness direction of the expanded graphite alone, a value of 5 to 7 W / m · K was shown. From this, it can be said that the present invention has high thermal conductivity in the thickness direction and high performance as compared with the expanded graphite alone.

(実施例12)
発泡黒鉛の別の製造方法を記載する
1.発泡黒鉛の製造方法
天然グラファイトを粉砕し粒子状にしたのち硫酸浸漬、中和洗浄したあと、炉の中にいれ、1350℃の温度にさらすことで発泡させて発泡黒鉛を製造する。
2.混合グラファイトの製造方法
炉の中の発泡黒鉛に、フィラーとして人造黒鉛を15重量%添加し撹拌し、混合グラファイトを成形する。
3.放熱材の製造方法
混合グラファイトを炉の排出口から排出し、上下に配された複数個のローラの間に通すことで、前記混合グラファイトを圧延する。圧延した混合グラファイトを二枚のアルミ箔で挟み、厚さ1.5μmの積層体を作製した。
(Example 12)
1. Another method for producing expanded graphite is described. Production Method of Foamed Graphite Natural graphite is pulverized and granulated, immersed in sulfuric acid, neutralized and washed, then placed in a furnace and exposed to a temperature of 1350 ° C. to produce foamed graphite.
2. Manufacturing method of mixed graphite 15% by weight of artificial graphite as a filler is added to the expanded graphite in the furnace and stirred to form mixed graphite.
3. Manufacturing method of heat dissipation material The mixed graphite is rolled by discharging the mixed graphite from a discharge port of the furnace and passing it between a plurality of rollers arranged above and below. The rolled mixed graphite was sandwiched between two aluminum foils to produce a laminate having a thickness of 1.5 μm.

(実施例13)
発泡黒鉛のさらに別の製造方法を記載する
1.発泡黒鉛の製造方法
天然グラファイトを粉砕し粒子状にしたのち硫酸浸漬、中和洗浄したあと、炉の中にいれ、1350℃の温度にさらすことで発泡させて発泡黒鉛を製造する。
2.混合グラファイトの製造方法
炉の中の発泡黒鉛に、フィラーとして人造黒鉛を20重量%添加し撹拌し、混合グラファイトを成形する。
3.放熱材の製造方法
混合グラファイトを炉の排出口から排出し、上下に配された複数個のローラの間に通すことで、前記混合グラファイトを圧延する。圧延した混合グラファイトを二枚のアルミ箔で挟み、厚さ1.5μmの積層体を作製した。
(Example 13)
1. Another method for producing expanded graphite is described. Production Method of Foamed Graphite Natural graphite is pulverized and granulated, immersed in sulfuric acid, neutralized and washed, then placed in a furnace and exposed to a temperature of 1350 ° C. to produce foamed graphite.
2. Production method of mixed graphite 20% by weight of artificial graphite as a filler is added to foamed graphite in a furnace and stirred to form mixed graphite.
3. Manufacturing method of heat dissipation material The mixed graphite is rolled by discharging the mixed graphite from a discharge port of the furnace and passing it between a plurality of rollers arranged vertically. The rolled mixed graphite was sandwiched between two aluminum foils to produce a laminate having a thickness of 1.5 μm.

(実施例14)
本発明の請求項7に相当する実施例に係る放熱材を作製した(図1の(a)参照)。粒径が30乃至50μmの第1の発泡黒鉛(1)40重量%と粒径が200乃至250μmの第2の発泡黒鉛(2)60重量%に、人造黒鉛フィラー(3)を配合した。配合割合は第1及び第2の発泡黒鉛(1、2)80重量%に対して人造黒鉛フィラー(3)を20重量%配合して混合グラファイトを得た。ついで、事前に接着剤処理した0.02mmのアルミ箔(4、5)をセットしその上から成形した前記混合グラファイト(1、2、3)を投入し、さらにアルミ箔(4、5)を重ね(図1の(a)参照)、プレス成型をすることで厚さ0.5mmの積層体を作製した。輻射率は45.6%、面方向(xy軸方向)の熱伝導率は284.6W/m・K、厚さ方向(z軸方向)の熱伝導率は5.44W/m・Kであった。
(Example 14)
A heat dissipating material according to an example corresponding to claim 7 of the present invention was produced (see FIG. 1A). The artificial graphite filler (3) was blended with 40% by weight of the first expanded graphite (1) having a particle size of 30 to 50 μm and 60% by weight of the second expanded graphite (2) having a particle size of 200 to 250 μm. The blending ratio was 20% by weight of artificial graphite filler (3) with respect to 80% by weight of the first and second expanded graphites (1, 2) to obtain mixed graphite. Next, 0.02 mm aluminum foil (4, 5) treated in advance with adhesive is set, and the mixed graphite (1, 2, 3) formed thereon is added, and the aluminum foil (4, 5) is further added. A laminated body having a thickness of 0.5 mm was manufactured by stacking (see FIG. 1A) and press molding. The emissivity was 45.6%, the thermal conductivity in the plane direction (xy-axis direction) was 284.6 W / m · K, and the thermal conductivity in the thickness direction (z-axis direction) was 5.44 W / m · K. It was.

(実施例15)
本発明の請求項8に相当する実施例に係る放熱材を作製した(図1の(b)参照)。粒径が30乃至50μmの第1の発泡黒鉛(1)40重量%と粒径が200乃至250μmの第2の発泡黒鉛(2)60重量%に、緑色シリコンカーバイドのフィラー(3)を配合した。配合割合は第1及び第2の発泡黒鉛(1、2)80重量%に対して人造黒鉛フィラー(3)を20重量%配合して混合グラファイトを得た。ついで、事前に接着剤処理した0.02mmのアルミ箔(4、5)をセットしその上から成形した前記混合グラファイト(1、2、3)を投入し、さらにアルミ箔(4、5)を重ね(図1の(a)参照)、プレス成型をすることで厚さ0.5mmの積層体を作製した。
更に、アルミ箔(5)に水系塗料(6)を塗布して放熱材を得た。水系塗料としてセイコーアドバンス社製のスクリーン印刷用の塗料(水系塗料)を用いた。この塗料(バインダーを含む)の成分はヘキサン、エチレングリコール、カーボンブラック、アクリル樹脂、溶剤からなる。輻射率は49.2%、面方向(xy軸方向)の熱伝導率は218.2W/m・K、厚さ方向(z軸方向)の熱伝導率は5.38W/m・Kであった。
(Example 15)
A heat dissipating material according to an example corresponding to claim 8 of the present invention was produced (see FIG. 1B). Green silicon carbide filler (3) was added to 40% by weight of the first expanded graphite (1) having a particle size of 30 to 50 μm and 60% by weight of the second expanded graphite (2) having a particle size of 200 to 250 μm. . The blending ratio was 20% by weight of artificial graphite filler (3) with respect to 80% by weight of the first and second expanded graphites (1, 2) to obtain mixed graphite. Next, 0.02 mm aluminum foil (4, 5) treated in advance with adhesive is set, and the mixed graphite (1, 2, 3) formed thereon is added, and the aluminum foil (4, 5) is further added. A laminated body having a thickness of 0.5 mm was manufactured by stacking (see FIG. 1A) and press molding.
Further, a water-based paint (6) was applied to the aluminum foil (5) to obtain a heat dissipation material. As a water-based paint, a screen printing paint (water-based paint) manufactured by Seiko Advance Co., Ltd. was used. The components of the paint (including the binder) are hexane, ethylene glycol, carbon black, acrylic resin, and solvent. The emissivity was 49.2%, the thermal conductivity in the plane direction (xy-axis direction) was 218.2 W / m · K, and the thermal conductivity in the thickness direction (z-axis direction) was 5.38 W / m · K. It was.

(比較例4)
比較例4に係る放熱材を作製した。粒径が30乃至50μmの第1の発泡黒鉛40重量%と粒径が200乃至250μmの第2の発泡黒鉛60重量%のグラファイトを得た。ついで、事前に接着剤処理した0.02mmのアルミ箔をセットしその上から成形した前記混合グラファイトを投入し、さらにアルミ箔を重ね、プレス成型をすることで厚さ0.5mmの積層体を作製した。輻射率は37.7%、面方向(xy軸方向)の熱伝導率は267.0W/m・K、厚さ方向(z軸方向)の熱伝導率は4.64W/m・Kであった。
実施例14、15の放熱材と、比較例4の放熱材とを比較すると、実施例14、15の放熱材は面方向(xy軸方向)及び厚さ方向(z軸方向)の熱伝導率とも比較例4の放熱材より優れていた。
(Comparative Example 4)
A heat dissipating material according to Comparative Example 4 was produced. A graphite having 40% by weight of the first expanded graphite having a particle size of 30 to 50 μm and 60% by weight of the second expanded graphite having a particle size of 200 to 250 μm was obtained. Next, a 0.02 mm aluminum foil that has been treated with an adhesive in advance is set, and the mixed graphite formed thereon is added. Further, the aluminum foil is overlaid and press molded to form a 0.5 mm thick laminate. Produced. The emissivity was 37.7%, the thermal conductivity in the plane direction (xy-axis direction) was 267.0 W / m · K, and the thermal conductivity in the thickness direction (z-axis direction) was 4.64 W / m · K. It was.
Comparing the heat dissipation materials of Examples 14 and 15 with the heat dissipation material of Comparative Example 4, the heat dissipation materials of Examples 14 and 15 have thermal conductivity in the surface direction (xy axis direction) and the thickness direction (z axis direction). Both were superior to the heat dissipation material of Comparative Example 4.

本発明の混合グラファイトはZ軸方向及びX−Y軸方向の熱伝導率が高いため、使用する機器の薄さに合わせて放熱材としてだけでなく熱導体としても用いてもよい。例えばコンピュータのような厚みのある機器に用いる場合は、フィンとCPUが重なっておりその間に配置するため面方向の熱伝導率が高い樹脂系シート体或いは金属箔で挟んだ混合グラファイトを用いることができ、薄型テレビのように薄い機器はCPUとフィンが並べて配置されそれを繋ぐヒートパイプとして用いることからX―Y軸方向の熱伝導率が高い金属箔、特にアルミニウム箔で積層した混合グラファイトを用いることが出来る。   Since the mixed graphite of the present invention has a high thermal conductivity in the Z-axis direction and the XY-axis direction, it may be used not only as a heat radiating material but also as a heat conductor according to the thinness of the equipment used. For example, when used in a thick device such as a computer, it is necessary to use a mixed graphite sandwiched between a resin sheet or a metal foil having a high thermal conductivity in the surface direction because the fin and CPU overlap and are arranged between them. A thin device such as a flat-screen television uses a CPU and fins arranged side by side and used as a heat pipe to connect them, so use a metal foil with high thermal conductivity in the XY axis direction, especially mixed graphite laminated with aluminum foil. I can do it.

1 第1の発泡黒鉛
2 第2の発泡黒鉛
3 フィラー
4、5 アルミ箔
6 水系塗料
DESCRIPTION OF SYMBOLS 1 1st expanded graphite 2 2nd expanded graphite 3 Filler 4, 5 Aluminum foil 6 Water-based paint

Claims (6)

粒子径30〜50μmの第一の発泡黒鉛と粒子径200〜250μmの第二の発泡黒鉛から構成された混合発泡黒鉛にフィラーが均一に配合されてなる混合グラファイトと、
厚さ0.10〜1.65mmのシート体からなり、
前記フィラーは人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、
前記混合発泡黒鉛中の前記第一の発泡黒鉛は30〜45重量%、前記第二の発泡黒鉛は50〜65重量%であり、
前記混合発泡黒鉛は前記混合グラファイト全体の80〜95重量%含まれ、
前記混合グラファイトの密度は0.8〜1.5g/cmであり、
前記混合グラファイトと前記シート体が積層されてなり、
熱伝導率は厚み方向が3〜10W/m・K、面方向が50〜250W/m・Kであることを特徴とした放熱材。
A mixed graphite in which a filler is uniformly mixed in a mixed expanded graphite composed of a first expanded graphite having a particle size of 30 to 50 μm and a second expanded graphite having a particle size of 200 to 250 μm;
It consists of a sheet body with a thickness of 0.10 to 1.65 mm,
The filler is one or more thermally conductive fillers selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled,
The first expanded graphite in the mixed expanded graphite is 30 to 45 wt%, the second expanded graphite is 50 to 65 wt%,
The mixed expanded graphite is included in an amount of 80 to 95% by weight of the entire mixed graphite.
The density of the mixed graphite is 0.8 to 1.5 g / cm 3 ,
The mixed graphite and the sheet body are laminated,
A heat dissipation material having a thermal conductivity of 3 to 10 W / m · K in the thickness direction and 50 to 250 W / m · K in the surface direction.
前記シート体がポリエステルシートであることを特徴とする請求項1に記載の放熱材。   The heat dissipation material according to claim 1, wherein the sheet body is a polyester sheet. 前記シート体がアルミニウム箔であることを特徴とする請求項1に記載の放熱材。   The heat dissipation material according to claim 1, wherein the sheet body is an aluminum foil. 請求項1乃至3のいずれか1項に記載の放熱材を製造する方法であって、
天然グラファイトを酸浸漬し発泡黒鉛を製造する工程と、
発泡黒鉛に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを加え混合グラファイトを製造する工程と、
前記工程でできた混合グラファイトを圧延しシート状にする工程と、
及びシート状にしたグラファイトをシート体に挟む工程と、
を含むことを特徴とする放熱材の製造方法。
A method of manufacturing the heat dissipation material according to any one of claims 1 to 3,
A process for producing expanded graphite by acid dipping natural graphite;
A step of producing mixed graphite by adding one or more thermally conductive fillers selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled to expanded graphite;
Rolling the mixed graphite produced in the process into a sheet; and
And a step of sandwiching the sheet-like graphite between the sheet bodies,
The manufacturing method of the heat radiating material characterized by including.
前記発泡黒鉛を製造する工程は、天然グラファイトを粉砕し粒子状にした後、硫酸浸漬をし、中和洗浄して発泡黒鉛を得る工程からなり、
前記混合グラファイトを製造する工程は、炉に天然グラファイトを入れ高温下で高温発泡し、更に炉に人造黒鉛、ボロンナイトライド、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーを入れ混合する工程からなることを特徴とする請求項4に記載の製造方法。
The step of producing the expanded graphite comprises a step of pulverizing natural graphite into particles, then immersing in sulfuric acid, neutralizing and washing to obtain expanded graphite,
The process of producing the mixed graphite includes one or more thermal conductivity selected from the group consisting of artificial graphite, boron nitride, and pitch-based carbon fiber milled in a furnace by placing natural graphite in a furnace and foaming at a high temperature. The manufacturing method according to claim 4, comprising a step of mixing and mixing a filler.
粒子径30乃至50μmの第一の発泡黒鉛と、粒子径200乃至250μmの第二の発泡黒鉛からなる混合発泡黒鉛にフィラーが均一に配合された混合グラファイトからなる放熱材であって、
前記フィラーは、人造黒鉛、ピッチ系炭素繊維ミルドからなる群から選択される一種以上の熱伝導性フィラーであり、
前記混合発泡黒鉛には、前記第一の発泡黒鉛が30乃至45重量%含まれ、前記第二の発泡黒鉛が50乃至65重量%含まれ、
前記混合グラファイトの密度は0.8〜1.5g/cmであり、
前記混合発泡黒鉛は、前記混合グラファイト100重量%のうちの80乃至95重量%が含まれ、
前記混合グラファイトはシート状に形成され、かつシート状にされたグラファイトがシート体に挟持され、熱伝導率は厚み方向が3〜10W/m・K、面方向が50〜250W/m・Kであることを特徴とする放熱材。
A heat dissipating material made of mixed graphite in which a filler is uniformly mixed with mixed foamed graphite composed of a first foamed graphite having a particle diameter of 30 to 50 μm and a second foamed graphite having a particle diameter of 200 to 250 μm,
The filler is artificial graphite, pitch-based one or more of thermally conductive filler selected from the group consisting of carbon fiber milled,
The mixed expanded graphite includes 30 to 45% by weight of the first expanded graphite, 50 to 65% by weight of the second expanded graphite,
The density of the mixed graphite is 0.8 to 1.5 g / cm 3 ,
The mixed expanded graphite includes 80 to 95% by weight of 100% by weight of the mixed graphite.
The mixed graphite is formed into a sheet shape, and the sheeted graphite is sandwiched between the sheet bodies, and the thermal conductivity is 3 to 10 W / m · K in the thickness direction and 50 to 250 W / m · K in the surface direction. A heat dissipation material characterized by being.
JP2017100415A 2016-07-28 2017-05-19 Heat dissipation material using mixed graphite and method for producing the same Active JP6465368B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017100415A JP6465368B2 (en) 2016-07-28 2017-05-19 Heat dissipation material using mixed graphite and method for producing the same
KR1020170090963A KR101838853B1 (en) 2016-07-28 2017-07-18 Heat radiation material using graphite mixture and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017530929 2016-07-28
JP2017530929A JPWO2017018493A1 (en) 2015-07-29 2016-07-28 Heat dissipation material using mixed graphite and method for producing the same
JP2017100415A JP6465368B2 (en) 2016-07-28 2017-05-19 Heat dissipation material using mixed graphite and method for producing the same

Publications (3)

Publication Number Publication Date
JP2018026527A JP2018026527A (en) 2018-02-15
JP2018026527A5 JP2018026527A5 (en) 2018-08-23
JP6465368B2 true JP6465368B2 (en) 2019-02-06

Family

ID=61193229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100415A Active JP6465368B2 (en) 2016-07-28 2017-05-19 Heat dissipation material using mixed graphite and method for producing the same

Country Status (2)

Country Link
JP (1) JP6465368B2 (en)
KR (1) KR101838853B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003051A (en) * 2019-07-01 2021-01-11 씨트론 어드밴스드 머티리얼 씨오 엘티디 Elastic heat-dissipation structure and electronic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899854B1 (en) * 2018-04-02 2018-11-08 재단법인 철원플라즈마 산업기술연구원 Heat-dissipating filler, sheet and production method for same
CN112357915A (en) * 2020-12-02 2021-02-12 武汉言诺嘉科技有限公司 Graphene film with high heat conductivity and good buffering property for liquid crystal screen and preparation method thereof
CN114854326A (en) * 2021-02-04 2022-08-05 德莎欧洲股份公司 Acrylic acid adhesive tape and electronic product comprising same
JP2023056922A (en) 2021-10-08 2023-04-20 大日本印刷株式会社 Film for wavelength conversion sheet, wavelength conversion sheet, backlight and display device
CN114573358B (en) * 2022-01-26 2023-05-26 常州富烯科技股份有限公司 Graphene heat conducting film, graphene heat conducting sheet, preparation method and mold

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168882A (en) * 2001-11-30 2003-06-13 Sony Corp Heat conductive sheet
WO2005019132A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Highly heat-conductive member, method for producing same, and heat dissipating system using same
JP2005252190A (en) * 2004-03-08 2005-09-15 Kotobuki Kogyo Kk Radiator plate and its manufacturing method
JP2006298718A (en) * 2005-04-22 2006-11-02 Japan Matekkusu Kk Expanded graphite sheet and method for manufacturing the same
JP2007291267A (en) 2006-04-26 2007-11-08 Teijin Ltd Thermally conductive molding material and molded sheet using this
JP2012104628A (en) 2010-11-10 2012-05-31 Panasonic Corp Heat conductive sheet
JP2012195467A (en) * 2011-03-17 2012-10-11 Sansha Electric Mfg Co Ltd Heat sink and manufacturing method of the same
KR101343568B1 (en) * 2013-05-29 2013-12-20 주식회사 그라셀 Graphite heat emitting materials with high density pressed expandable graphite particles and method for manufacturing the same
JP2015046557A (en) * 2013-08-29 2015-03-12 Jnc株式会社 Radiator
JP5582553B1 (en) * 2014-05-02 2014-09-03 清二 加川 High thermal conductivity heat dissipation sheet and method for manufacturing the same
WO2016088682A1 (en) * 2014-12-02 2016-06-09 積水化学工業株式会社 Thermally-conductive sheet and method for producing same
JP6750617B2 (en) * 2015-05-28 2020-09-02 日本ゼオン株式会社 Insulating heat conductive sheet and method for manufacturing the same
JP2017034219A (en) * 2015-07-29 2017-02-09 ジャパンマテックス株式会社 Heat radiating material comprising mixed graphite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003051A (en) * 2019-07-01 2021-01-11 씨트론 어드밴스드 머티리얼 씨오 엘티디 Elastic heat-dissipation structure and electronic device
KR102417851B1 (en) 2019-07-01 2022-07-05 씨트론 어드밴스드 머티리얼 씨오 엘티디 Elastic heat-dissipation structure and electronic device

Also Published As

Publication number Publication date
KR20180013724A (en) 2018-02-07
KR101838853B1 (en) 2018-04-27
JP2018026527A (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6465368B2 (en) Heat dissipation material using mixed graphite and method for producing the same
US10609810B2 (en) Method for producing heat-dissipating sheet having high thermal conductivity
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
TWI533767B (en) Graphene printed pattern circuit structure
JPWO2017018493A1 (en) Heat dissipation material using mixed graphite and method for producing the same
JP6746540B2 (en) Heat conduction sheet
CN108128768B (en) Graphene-carbon quantum dot composite heat-conducting film with bionic laminated structure and preparation method thereof
WO2010055878A1 (en) Method for producing insulating thermally conductive sheet, insulating thermally conductive sheet and heat dissipating member
JP4893415B2 (en) Heat dissipation film
JP2012064691A (en) Thermal diffusion sheet
JP2018026527A5 (en)
CN111410190B (en) Graphene-boron nitride composite film with insulating and heat-conducting properties and preparation method thereof
KR20170091508A (en) Thermally-conductive sheet and method for producing same
CN112708274A (en) Heat-conducting insulating polyimide film and preparation method thereof
JP2015052095A (en) Coating agent for forming heat radiation film, heat radiation film-fitted base material, and method for producing the heat radiation film-fitted base material
CN113261398A (en) Method for preparing radiating fin
KR20180066347A (en) Method for Manufacturing Non Metallic Silicon Complex Using Nano Hole of CNT and the Silicon Complex
KR101919654B1 (en) Heat radiation sheet having heat and ultrasonic treated expanded graphite, preparation method thereof and structure of radiant heat
WO2021149690A1 (en) Thermally conductive sheet, laminate, and semiconductor device
CN110741034B (en) Heat conducting fin
KR101874959B1 (en) Heat radiated grapheme sheet and manufacturing method thereof
US20170028675A1 (en) Heat radiating material comprising mixed graphite
KR20240065068A (en) Composition, method of making the composition and method of making the sheet
KR20220154622A (en) Method for manufacturing graphene-ceramic heat sink materials with improved electrical insulation and resin compatibility
CN116970198A (en) Preparation method of high-in-plane thermal conductivity and high-insulation composite thermal interface material and prepared composite thermal interface material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180711

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6465368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250