JP6464354B1 - Fish meat production method and fish meat salinity measurement method - Google Patents

Fish meat production method and fish meat salinity measurement method Download PDF

Info

Publication number
JP6464354B1
JP6464354B1 JP2018115543A JP2018115543A JP6464354B1 JP 6464354 B1 JP6464354 B1 JP 6464354B1 JP 2018115543 A JP2018115543 A JP 2018115543A JP 2018115543 A JP2018115543 A JP 2018115543A JP 6464354 B1 JP6464354 B1 JP 6464354B1
Authority
JP
Japan
Prior art keywords
fish meat
salinity
fish
concentration
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115543A
Other languages
Japanese (ja)
Other versions
JP2019219225A (en
Inventor
貴浩 前川
貴浩 前川
康之亮 川端
康之亮 川端
文仁 村山
文仁 村山
允朗 佐藤
允朗 佐藤
康宣 木下
康宣 木下
菅原 智明
智明 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUBLIC INTEREST INCORPORATED FOUNDATION HAKODATE REGIONAL INDUSTRY PROMOTION ORGANIZATION
Kyokuyo Co Ltd
Original Assignee
PUBLIC INTEREST INCORPORATED FOUNDATION HAKODATE REGIONAL INDUSTRY PROMOTION ORGANIZATION
Kyokuyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUBLIC INTEREST INCORPORATED FOUNDATION HAKODATE REGIONAL INDUSTRY PROMOTION ORGANIZATION, Kyokuyo Co Ltd filed Critical PUBLIC INTEREST INCORPORATED FOUNDATION HAKODATE REGIONAL INDUSTRY PROMOTION ORGANIZATION
Priority to JP2018115543A priority Critical patent/JP6464354B1/en
Application granted granted Critical
Publication of JP6464354B1 publication Critical patent/JP6464354B1/en
Publication of JP2019219225A publication Critical patent/JP2019219225A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

【課題】魚肉全体に亘って塩分濃度のバラつきを低減するための魚肉の製造方法及び魚肉の塩分濃度測定方法を提供する。【解決手段】本発明の1つの魚肉の製造方法は、少なくとも食塩を含む第1溶液を皮つき魚肉の一部に注入する注入工程と、該第1溶液が注入された前記魚肉を、少なくとも食塩を含む第2溶液中に浸漬する浸漬工程と、該魚肉の複数の異なる領域の塩分濃度を、少なくとも以下の(1)及び(2)の段階において、蛍光X線分析装置により測定する測定工程と、を含む。(1)前記注入工程の後であって、前記浸漬工程の前(2)前記浸漬工程における浸漬から前記魚肉が取り出された後【選択図】図3The present invention provides a method for producing fish meat and a method for measuring the salt concentration of fish meat for reducing the variation in salt concentration throughout the whole fish meat. According to one aspect of the present invention, there is provided a method for producing fish meat, an injecting step of injecting a first solution containing at least salt into a part of the skinned fish meat, and at least adding the fish meat into which the first solution has been injected. A dipping step of immersing in a second solution containing, and a measurement step of measuring a salinity concentration in a plurality of different regions of the fish meat with a fluorescent X-ray analyzer at least in the following steps (1) and (2): ,including. (1) After the pouring step and before the soaking step (2) After the fish meat is taken out from the soaking in the soaking step

Description

本発明は、魚肉の製造方法及び魚肉の塩分濃度測定方法に関する。   The present invention relates to a method for producing fish meat and a method for measuring the salinity of fish meat.

市民の生活水準が向上し豊富な食材が供給可能な環境下では美食家が増える。他の食材と同様、平均的な消費者が魚肉(商品)を選ぶ目は、市民の生活水準が向上するにつれて肥えてくるため、特に海産物に慣れ親しんだ国の消費者の魚肉に対する目は、非常に厳しいといえる。魚肉を製造販売する企業にとっては、消費者の舌を満足させる商品の開発と提供を常に追い求めていくことが市場において求められる。   The number of gourmets increases in an environment where the standard of living of citizens improves and abundant ingredients can be supplied. As with other ingredients, the average consumer chooses fish meat (products) as they become more fertile as the standard of living of the citizens improves, so consumers in countries that are familiar with seafood are particularly concerned about fish meat. It can be said that it is severe. Companies that manufacture and sell fish meat are required to constantly pursue the development and provision of products that satisfy the consumer's tongue.

これまで比較的多くの塩分を含む魚肉の製造販売においては、その塩分濃度の、一個体の魚肉内におけるバラつきは、いわば経験的に把握され、調整されてきた面が少なからず存在していた。魚肉に含まれ得る塩分濃度という指標は、加工又は調理された魚肉の仕上がり状態、あるいはその魚肉の味を含む種々の品質に関わってくる。   Until now, in the production and sale of fish meat containing a relatively large amount of salt, there has been a considerable amount of variation in the salinity concentration in one fish meat that has been empirically grasped and adjusted. The index of salinity that can be contained in fish meat is related to the finished state of the processed or cooked fish meat, or various qualities including the taste of the fish meat.

本願発明者らは、これまでに走査型電子顕微鏡−エネルギー分散型X線分析装置(SEM−EDS)分析法を用いた低塩塩漬魚肉中の食塩濃度分析技術を開示している(非特許文献1)。また、過去には、SEM−EDS分析法による塩漬魚肉の乾燥にともなう食塩の分散過程の解析結果が開示されている(非特許文献2)。   The present inventors have so far disclosed a technique for analyzing salt concentration in low-salt salted fish meat using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS) analysis method (non-patent document). Reference 1). Moreover, in the past, the analysis result of the dispersion | distribution process of the salt accompanying the drying of the salted fish meat by SEM-EDS analysis method is disclosed (nonpatent literature 2).

佐藤,他5名、「SEM−EDSを用いた低塩塩漬魚肉中の食塩濃度分析技術に関する研究」,公益社団法人日本食品科学工学会 第63回大会講演集,2016年8月25日,p93Sato et al., “Study on analysis technology of salt concentration in low-salt salted fish using SEM-EDS”, Japanese Society for Food Science and Technology 63rd Annual Meeting, August 25, 2016, p93 大泉,他3名、「SEM−EDSによる塩漬魚肉の乾燥にともなう食塩の分散過程の解析」,公益社団法人日本食品科学工学会 第59回大会講演集,2012年8月30日,p115Oizumi and three others, "Analysis of salt dispersion process during drying of salted fish meat by SEM-EDS", The 59th Annual Meeting of the Japan Society for Food Science and Technology, August 30, 2012, p115

しかしながら、魚肉中の塩分濃度のバラつき方は、魚肉に対する塩分の供給方法及び魚肉の保管方法の違いによって大きく異なる。そのため、単に食塩溶液中に魚肉を浸漬することによって塩分を供給した魚肉と、注射針を用いて食塩水を魚肉中に注入することによって塩分を供給した魚肉と、注射針を用いて食塩水を魚肉中に注入した上で更に魚肉を食塩溶液中に浸漬することによって塩分を供給した魚肉とでは、その供給時における塩分濃度のバラつき方のみならず、供給後の塩分濃度のバラつきの時間変化の状況も全く異なる。従って、ある特定の塩分の供給方法を採用した上で、塩分濃度、及び塩分濃度のバラつきを、それらの時間変化も含めて分析しなければ、最終的な製品(魚肉)の状況を確度高く把握又は予測することはできない。例えば、魚肉を食するときに、魚肉中の塩分濃度のバラつきが大きいと味の偏りが生じてしまう。また、魚肉中の塩分濃度のバラつきが大きい状態のままで製造元から出荷されると、例えばスーパーマーケットに陳列している間にも時間変化に伴って魚肉中の塩分濃度の変動が生じ易く、又は該変動が大きくなる。   However, how the salt concentration in fish meat varies varies greatly depending on the difference in salt supply method and fish storage method for fish meat. Therefore, the fish meat that has been supplied with salt by simply immersing the fish meat in a salt solution, the fish meat that has been supplied with salt by injecting the saline into the fish meat using an injection needle, and the saline using the injection needle With fish meat that has been injected into fish meat and further supplied with salt by immersing the fish in a salt solution, not only how the salt concentration varies at the time of supply, but also the time variation of the variation in salt concentration after supply. The situation is quite different. Therefore, if a specific salinity supply method is adopted and the salinity concentration and variations in salinity concentration are not analyzed, including their changes over time, the final product (fish meat) status will be grasped with high accuracy. Or it cannot be predicted. For example, when eating fish meat, if the variation in the salt concentration in the fish meat is large, an uneven taste will occur. In addition, when shipped from the manufacturer with a large variation in the salinity of the fish meat, the salinity of the fish meat tends to fluctuate with time, even during display in a supermarket, or the Fluctuation increases.

従って、魚肉全体に亘って塩分濃度のバラつきを低減するための科学的かつ定量的な魚肉の製造方法及び魚肉の塩分濃度測定方法を見出すことができれば、魚肉を取り扱う業界の発展に大きく貢献することになる。従って、生産者、物流に携わる者、及び需要者(消費者)にとって、魚肉の品質に影響を及ぼし得る塩分濃度のバラつきを定量的に知ること、及び/又は該バラつきを抑えることは、特に「食の安心・安全」が注目されている昨今の事情を踏まえれば、極めて重大な関心事であるといえる。   Therefore, if a scientific and quantitative method for producing fish meat and a method for measuring the salinity of fish meat can be found to reduce the variation in salinity throughout the fish meat, it will greatly contribute to the development of the fish handling industry. become. Therefore, it is particularly important for producers, logistics personnel, and consumers (consumers) to know quantitatively the salinity variation that can affect the quality of fish meat and / or to suppress such variation. Considering the recent situation in which “safety and security of food” has attracted attention, it can be said that it is a very important concern.

本発明は、魚肉全体に亘って塩分濃度のバラつきを低減するための魚肉の製造方法及び魚肉の塩分濃度測定方法の実現に大きく貢献するものである。   The present invention greatly contributes to the realization of a method for producing fish meat and a method for measuring the salt concentration of fish meat for reducing the variation in salt concentration throughout the fish meat.

本発明者は、これまでの研究と分析により、単に食塩溶液中に浸漬することによって塩分を供給した魚肉よりも、複数の注射針を用いて食塩水を魚肉中に注入する方法(以下、便宜上「注入法」という)を実施した上で更に食塩溶液中に浸漬することによって塩分を供給した魚肉の方が、魚肉全体に亘って塩分濃度のバラつきが低減され易いという知見を得ていた。そこで、魚肉における(注入された領域かそれ以外の領域かを限定しない)ある領域の、いわば局所的な塩分濃度(該濃度のバラつきを含む)と、その時間変化とを定量的に把握することができれば、魚肉の品質に影響を及ぼす塩分濃度のバラつきをより確度高く把握し得るとともに、塩分濃度のバラつきが十分に低減されるまでの時間を予測し得ると考え、鋭意研究に取り組んだ。   The present inventor has conducted research and analysis so far on a method of injecting saline into fish meat using a plurality of injection needles (hereinafter referred to as convenience) rather than fish meat supplied with salt by simply immersing it in a salt solution. It has been found that fish meat that has been subjected to the “injection method” and further supplied with salt by immersing it in a salt solution is more likely to reduce the variation in salt concentration throughout the fish meat. Therefore, it is necessary to quantitatively grasp the local salinity concentration (including variations in the concentration) of a certain region (not limited to the injected region or the other region) in fish meat and its temporal change. If we were able to do so, we could grasp the variation in salinity that affects the quality of fish meat with a higher degree of accuracy, and thought that it would be possible to predict the time until the variation in salinity was sufficiently reduced.

その結果、本発明者は、注入法を採用した上で、魚肉における複数の異なる領域の、蛍光X線分析法による測定結果の時間変化を定量的に把握することによって、塩分濃度のバラつきが十分に低減された魚肉を製造し得ることを見出した。本発明は、上述の各視点に基づいて創出された。   As a result, the inventor adopted the injection method, and quantitatively grasped the temporal change of the measurement result by the fluorescent X-ray analysis method in a plurality of different regions in the fish meat, so that the variation in the salinity concentration is sufficient. It has been found that fish meat reduced in size can be produced. The present invention was created based on the above-described viewpoints.

上述の技術的効果を奏させるための本発明の1つの魚肉の製造方法は、少なくとも食塩を含む第1溶液を皮つき魚肉の一部に注入する注入工程と、前述の第1溶液が注入された該魚肉を、少なくとも食塩を含む第2溶液中に浸漬する浸漬工程と、前述の魚肉の複数の異なる領域の塩分濃度を、少なくとも以下の(1)及び(2)の段階において、蛍光X線分析装置により測定する測定工程と、を含む。
(1)前記注入工程の後であって、前記浸漬工程の前
(2)前記浸漬工程における浸漬から前記魚肉が取り出された後
One method for producing fish meat according to the present invention for achieving the above technical effect includes an injection step of injecting a first solution containing at least sodium chloride into a part of the skinned fish meat, and the aforementioned first solution is injected. In addition, an immersion step of immersing the fish meat in a second solution containing at least salt, and a salt concentration of a plurality of different regions of the aforementioned fish meat at least in the following steps (1) and (2) And a measuring step for measuring with an analyzer.
(1) After the injection step and before the immersion step (2) After the fish meat is taken out from the immersion in the immersion step

この魚肉の製造方法によれば、魚肉中の複数の異なる領域における塩分濃度、及びその塩分濃度のバラつきを、それらの時間変化も含めて定量的に把握することができる。従って、各領域における塩分濃度、及びその塩分濃度のバラつきの時間変化に基づいて、魚肉中の塩分濃度のバラつきが十分に低減された状態を知る、又は予測することが可能となるため、塩分濃度のバラつきが十分に低減された魚肉をより信頼性高く又はより安定的に製造することができる。なお、この魚肉の製造方法によれば、魚肉を食するときに、魚肉中の塩分濃度のバラつきに基づく味の偏りを低減し得るとともに、例えばスーパーマーケットに陳列している間の時間変化に伴う該塩分濃度の変動を生じ難く、又は該変動を小さくし得る。   According to this method for producing fish meat, it is possible to quantitatively grasp the salinity concentration in a plurality of different regions in the fish meat and the variations in the salinity concentration, including their temporal changes. Therefore, since it becomes possible to know or predict a state in which the variation of the salinity concentration in the fish meat has been sufficiently reduced based on the salinity concentration in each region and the change in the salinity concentration variation over time, the salinity concentration It is possible to manufacture fish meat with a sufficiently reduced variation in reliability or more stably. In addition, according to this method for producing fish meat, when eating fish meat, it is possible to reduce the bias in taste based on the variation in the salt concentration in the fish meat, and for example, the It is difficult to cause fluctuations in the salinity, or the fluctuations can be reduced.

また、本発明の1つの魚肉の塩分濃度測定方法は、少なくとも食塩を含む第1溶液を皮つき魚肉の一部に注入する注入工程と、前述の第1溶液が注入された該魚肉を、少なくとも食塩を含む第2溶液中に浸漬する浸漬工程と、前述の魚肉の複数の異なる領域の塩分濃度を、少なくとも以下の(1)及び(2)の段階において、蛍光X線分析装置により測定する測定工程と、を含む、
(1)前記注入工程の後であって、前記浸漬工程の前
(2)前記浸漬工程における浸漬から前記魚肉が取り出された後
Also, one method for measuring the salinity of fish meat according to the present invention includes an injection step of injecting a first solution containing at least salt into a part of the skinned fish meat, and at least the fish meat injected with the first solution described above. A dipping step of immersing in a second solution containing salt, and a measurement in which the salt concentration of a plurality of different regions of the aforementioned fish meat is measured by a fluorescent X-ray analyzer at least in the following steps (1) and (2): Including a process,
(1) After the injection step and before the immersion step (2) After the fish meat is taken out from the immersion in the immersion step

この魚肉の塩分濃度測定方法によれば、魚肉中の複数の異なる領域における塩分濃度、及びその塩分濃度のバラつきを、それらの時間変化も含めて定量的に把握することができる。従って、各領域における塩分濃度、及びその塩分濃度のバラつきの時間変化に基づいて、魚肉中の塩分濃度のバラつきが十分に低減された状態を知る、又は予測することが可能となる。   According to this method for measuring the salinity of fish meat, it is possible to quantitatively grasp the salinity concentration in a plurality of different regions in the fish meat and variations in the salinity concentration, including their temporal changes. Therefore, it is possible to know or predict a state in which the variation of the salinity concentration in the fish meat is sufficiently reduced based on the salinity concentration in each region and the temporal change in the variation of the salinity concentration.

ところで、上述の各発明における測定工程においては、例えば上述の(1)と(2)の各段階で測定される箇所が必ずしも完全に一致することを要しないため、「(測定)点」という表現ではなく「領域」と記載している。また、前述の(1)と(2)の各段階で測定される魚肉が互いに異なる場合も、上述の各発明において採用し得る一態様である。   By the way, in the measurement process in each of the above-described inventions, for example, the location measured in each stage of (1) and (2) described above does not necessarily need to completely match, so the expression “(measurement) point” Instead of “area”. Further, the case where the fish meat measured in each stage of (1) and (2) is different from each other is also an aspect that can be adopted in each of the above-described inventions.

本発明の1つの魚肉の製造方法及び本発明の1つの魚肉の塩分濃度測定方法によれば、魚肉中の複数の異なる領域における塩分濃度、及びその塩分濃度のバラつきを、それらの時間変化も含めて定量的に把握することができる。従って、各領域における塩分濃度、及びその塩分濃度のバラつきの時間変化に基づいて、魚肉中の塩分濃度のバラつきが十分に低減された状態を知る、又は予測することが可能となる。   According to one fish meat production method of the present invention and one fish meat salt concentration measurement method of the present invention, the salinity concentration in a plurality of different regions in the fish meat, and variations in the salinity concentration, including their temporal changes, are also included. Can be grasped quantitatively. Therefore, it is possible to know or predict a state in which the variation of the salinity concentration in the fish meat is sufficiently reduced based on the salinity concentration in each region and the temporal change in the variation of the salinity concentration.

第1の実施形態の予備的実験における試料の作製工程図である。It is a manufacturing process figure of the sample in the preliminary experiment of a 1st embodiment. 第1の実施形態の予備的実験によって得られたCl強度の検量線である。It is a calibration curve of Cl intensity obtained by a preliminary experiment of the first embodiment. 第1の実施形態の魚肉の製造方法の一部又は魚肉の塩分濃度測定方法の一部を示す処理工程図である。It is a processing-process figure which shows a part of manufacturing method of the fish meat of 1st Embodiment, or a part of fish salt concentration measuring method. 第1の実施形態における、魚が開かれた状態の一例を示す模式図((a)皮側,(b)身側)である。It is a schematic diagram ((a) skin side, (b) body side) which shows an example of the state in which the fish was opened in 1st Embodiment. 第1の実施形態の測定工程における、魚肉中の各領域を示す図である。It is a figure which shows each area | region in fish meat in the measurement process of 1st Embodiment. 第1実施形態における、味覚官能試験の結果を示すグラフである。It is a graph which shows the result of the taste sensory test in 1st Embodiment. 第2の実施形態における、注入工程の後であって浸漬工程の前の段階と、浸漬工程における浸漬から魚肉が取り出された後の段階との計2回の測定工程に基づく、部位Aのうちの皮の近傍(領域X)と、部位Cのうちの中央部(領域Y)との塩分濃度差の時間変化を示すグラフである。Of the part A based on a total of two measurement steps after the injection step and before the soaking step and after the fish meat is taken out of the soaking in the soaking step in the second embodiment It is a graph which shows the time change of the salinity difference of the vicinity (area | region X) of the skin of the skin, and the center part (area | region Y) of the site | parts C.

本発明の実施形態として、魚肉の製造方法及び魚肉の塩分濃度測定方法を、添付する図面に基づいて詳細に述べる。また、図中、本実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。   As an embodiment of the present invention, a method for producing fish meat and a method for measuring the salinity of fish meat will be described in detail with reference to the accompanying drawings. In the drawings, elements of the present embodiment are not necessarily described with each other kept to scale.

<第1の実施形態>
以下に、本実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法について説明する。
<First Embodiment>
Below, the manufacturing method of the fish meat of this embodiment and the salt concentration measuring method of fish meat are demonstrated.

[予備的実験(検量線の取得)]
まず、本願発明者らは、予備的実験として、本実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法を実施するための検量線を取得した。
[Preliminary experiment (acquisition of calibration curve)]
First, the inventors of the present application acquired a calibration curve for carrying out the fish meat production method and fish salinity measurement method of the present embodiment as a preliminary experiment.

具体的には、該検量線を取得するための試料が作製された。図1は、本実施形態の予備的実験における試料の作製工程図である。   Specifically, a sample for obtaining the calibration curve was prepared. FIG. 1 is a production process diagram of a sample in a preliminary experiment of this embodiment.

まず、水揚げした後、頭及び内臓が取り除かれた状態で冷凍された魚体(例えば、サケ、以下、単に「魚」ともいう。)を解凍する作業が行われる(ステップPS1)。その後、魚のヒレ(背びれ等)を取り除く作業が行われる(ステップPS2)。なお、本実施形態のステップPS1においては、水揚げ後に頭及び内臓が取り除かれた状態で冷凍された魚が用いられているが、本実施形態はそのような状態の魚に限定されない。例えば、頭及び内臓を取り除くことなく冷凍された魚、内臓のみが取り除かれた状態で冷凍された魚も、採用し得る本実施形態の一態様である。換言すれば、魚体における頭又は内臓の有無にかかわらず、水揚げ後に周囲の氷又はその他の公知の冷却方法によって冷凍された魚体が、予備的実験の魚体となり得る。   First, after landing, an operation of thawing a frozen fish body (for example, salmon, hereinafter simply referred to as “fish”) with the head and internal organs removed is performed (step PS1). Thereafter, an operation of removing fish fins (such as fins) is performed (step PS2). In step PS1 of the present embodiment, a frozen fish is used with the head and internal organs removed after landing, but the present embodiment is not limited to such a fish. For example, a fish frozen without removing the head and internal organs and a fish frozen with only the internal organs removed are also one aspect of this embodiment that can be employed. In other words, regardless of the presence or absence of heads or internal organs in the fish body, the fish body frozen by the surrounding ice or other known cooling method after landing can be the fish body of the preliminary experiment.

その後、魚を開く作業(例えば、三枚に開く作業)が行われる(ステップPS3)。さらにその後、魚体中の内臓等が除去された上で、皮及び骨も除去される(ステップPS4)。なお、魚を三枚ではなく、二枚に開いても良いことは言うまでもない。また、内臓等が除去されることが上述のステップPS2において行われることも、採用し得る他の一態様である。   Thereafter, an operation of opening the fish (for example, an operation of opening the fish in three) is performed (step PS3). Furthermore, after removing the internal organs and the like in the fish body, the skin and bone are also removed (step PS4). Needless to say, it is possible to open two fish instead of three. Moreover, it is another one aspect | mode which can be employ | adopted that internal organs etc. are removed in the above-mentioned step PS2.

本実施形態においては、その後、上述のステップPS4の工程を経た魚肉を、公知のペースト方法を用いて魚肉ペーストを作製する(ステップPS5)。さらにその後、食塩を水に溶解させることによって複数の異なる塩分濃度に調製した塩水の各々と、該魚肉ペーストとを混合する。その結果、複数の異なる塩分濃度の塩水を含有する魚肉ペーストである、各試料が作製される(ステップPS6)。なお、本実施形態においては、所望の塩分濃度によっては、塩水ではなく、塩を直接魚肉ペーストに接触させることによって該所望の塩分濃度を有する試料を作製することも採用され得る。   In this embodiment, after that, a fish paste is produced from the fish meat that has undergone the above-described step PS4 using a known paste method (step PS5). Thereafter, each of the salt waters prepared to have a plurality of different salt concentrations by dissolving salt in water and the fish paste are mixed. As a result, each sample, which is a fish paste containing salt water having a plurality of different salt concentrations, is produced (step PS6). In the present embodiment, depending on the desired salinity concentration, it is also possible to adopt a sample having the desired salinity concentration by directly contacting the salt with the fish paste instead of salt water.

その後、公知の凍結方法を採用した凍結工程(ステップPS7)を経ることにより、予備的実験のための試料が作製される。   Thereafter, a sample for a preliminary experiment is prepared through a freezing process (step PS7) employing a known freezing method.

本実施形態においては、上述の工程によって作製された、塩分濃度が異なる複数の試料のCl強度(cps/mA)を、蛍光X線分析法によって測定した。なお、該試料の塩分濃度は、電量滴定法を用いて求められた値を採用する。本実施形態においては、東亜ディーケーケー株式会社社製(型式SAT−210)の電量滴定装置が用いられた。   In the present embodiment, the Cl intensity (cps / mA) of a plurality of samples with different salinity concentrations prepared by the above-described steps was measured by fluorescent X-ray analysis. In addition, the value calculated | required using the coulometric titration method is employ | adopted for the salt concentration of this sample. In this embodiment, a coulometric titration apparatus manufactured by Toa DKK Corporation (model SAT-210) was used.

図2は、本実施形態の予備的実験によって得られたClの検量線である。なお、図2は、Cl強度(cps/mA)をx軸に表し、電量滴定塩分濃度(%)をy軸に表した場合のグラフである。また、本予備的実験においては、図2のグラフ上に示されている点の数が試料数である。   FIG. 2 is a calibration curve of Cl obtained by the preliminary experiment of this embodiment. FIG. 2 is a graph in which Cl intensity (cps / mA) is represented on the x-axis and coulometric titration salt concentration (%) is represented on the y-axis. In the preliminary experiment, the number of points shown on the graph of FIG. 2 is the number of samples.

図2に基づいて検量線を作成すると、下式(F1)に示される数式が得られた。
(数1)
y=(2×10−9)x+(2×10−6)x+0.0043 ・・・(F1)
When a calibration curve was created based on FIG. 2, a mathematical formula represented by the following formula (F1) was obtained.
(Equation 1)
y = (2 × 10 −9 ) x 2 + (2 × 10 −6 ) x + 0.0043 (F1)

上述のとおり、一例としての検量線を得ることができる。   As described above, an exemplary calibration curve can be obtained.

次に、本実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法においては、図3に示す各処理工程が、それぞれの方法における全工程の一部を担っている。   Next, in the method for producing fish meat and the method for measuring the salinity of fish meat according to the present embodiment, each processing step shown in FIG. 3 bears a part of all the steps in each method.

具体的には、図3に示すように、水揚げして冷凍されていた魚体(例えば、サケ、以下、単に「魚」ともいう。)を解凍する作業が行われる(ステップS1)。その後、魚のヒレ(背びれ等)を取り除く作業が行われる(ステップS2)。なお、既に述べたステップPS1及びステップPS2と同様に、ステップS1及びステップS2においても、魚体における頭又は内臓の有無にかかわらず、水揚げ後に周囲の氷又はその他の公知の冷却方法によって冷凍された魚体が、本実施形態の魚体となり得る。   Specifically, as shown in FIG. 3, a work of thawing a fish body (for example, salmon, hereinafter, also simply referred to as “fish”) that has been landed and frozen is performed (step S <b> 1). Thereafter, an operation for removing fish fins (such as fins) is performed (step S2). As with steps PS1 and PS2 already described, in steps S1 and S2, the fish frozen by the surrounding ice or other known cooling methods after landing, regardless of the presence or absence of the head or internal organs in the fish However, it can be the fish body of this embodiment.

その後、魚を開く作業が行われる。本実施形態においては、図4(a),(b)に示すように、一例として、二枚に開かれた状態が形成される(ステップS3)。さらにその後、魚体中の内臓等が除去された上で、魚体の形を整える作業が行われることによって皮つきの魚肉が形成される(ステップS4)。   After that, the work of opening the fish is performed. In the present embodiment, as shown in FIGS. 4A and 4B, as an example, a state in which two sheets are opened is formed (step S3). After that, after removing the internal organs and the like in the fish body, the work for adjusting the shape of the fish body is performed, whereby a skinned fish meat is formed (step S4).

本実施形態においては、その後、食塩を水に溶解させることによって形成した約8質量%の濃度の塩水(本実施形態における「第1溶液」)を、複数の針から同時に吐出させて注入することができる注射器を用いて、皮つきの魚肉中に、身側(図4(b)に示す側)から注入する作業(注入工程)が行われる(ステップS5)。この注入工程においては、注射器を用いた注入作業が、魚肉における互いに異なる場所に対して、できるだけ均等に注入されるように複数回行われる。   In this embodiment, after that, salt water having a concentration of about 8% by mass ("first solution" in this embodiment) formed by dissolving sodium chloride in water is simultaneously discharged from a plurality of needles and injected. An operation (injection step) of injecting into the skinned fish meat from the body side (the side shown in FIG. 4B) is performed using a syringe capable of performing (step S5). In this injecting step, the injecting operation using a syringe is performed a plurality of times so as to inject as evenly as possible into different places in the fish meat.

注入工程が行われた後、上述の予備的実験と同様に、蛍光X線分析法により、該魚肉の複数の異なる領域の塩分濃度(第1塩分濃度)を測定する測定工程が行われる(図3のV1)。なお、この測定工程の前に、市販の凍結真空乾燥装置を用いて魚肉の凍結乾燥を行うことが好ましい。   After the injection step is performed, the measurement step of measuring the salinity concentration (first salinity concentration) of a plurality of different regions of the fish meat by the fluorescent X-ray analysis method is performed as in the preliminary experiment described above (see FIG. 3 V1). In addition, it is preferable to freeze-dry fish meat using this commercially available freeze-drying apparatus before this measurement process.

また、本実施形態の測定工程においては、大気圧下において、センサー領域(約0.36πmm)、測定面積約62mm×約62mm(検量線用)及び約45mm×約45mm(検量線以外の測定用)、測定時間が約1000秒、及び電圧が約30kVという測定条件が採用された。なお、この測定工程の例においては、積算回数が3回であった。 In the measurement process of the present embodiment, the sensor area (about 0.36πmm 2 ), the measurement area of about 62 mm × about 62 mm (for the calibration curve), and about 45 mm × about 45 mm (measurement other than the calibration curve) at atmospheric pressure. ), A measurement time of about 1000 seconds and a voltage of about 30 kV were employed. In the example of this measurement process, the number of integrations was three.

本実施形態の測定工程において採用された領域は、図4のRに示す破線の部位(図4においては複数個所のRが描かれている)を切断した切り身のうち、図5に示す9個の領域である。具体的には、注入工程において注入が開始される側である身側から皮側にかけて3つ領域(身側からZ、Y、X)が測定される。本実施形態においては、「身の近傍」(領域Z)は、身の端部から1cm以下の範囲の魚肉をいい、「皮の近傍」(領域X)は、皮から1cm以下の範囲の魚肉をいう。また、中央部(領域Y、特に限定されないが、代表的には図5における身の端部から1cm超2cm未満の深さ領域)は、領域Zと領域Xとの間の略中間に位置する領域である。   The area adopted in the measurement process of the present embodiment is nine pieces shown in FIG. 5 among the cut pieces obtained by cutting the broken-line parts indicated by R in FIG. 4 (the plurality of Rs are drawn in FIG. 4). It is an area. Specifically, three regions (Z, Y, and X from the body side) are measured from the body side to the skin side where injection is started in the injection process. In the present embodiment, “near the body” (region Z) refers to fish meat in the range of 1 cm or less from the edge of the body, and “near the skin” (region X) refers to fish meat in the range of 1 cm or less from the skin. Say. Further, the central portion (region Y, which is not particularly limited, but typically a depth region of more than 1 cm and less than 2 cm from the edge of the body in FIG. 5) is located approximately in the middle between region Z and region X. It is an area.

また、本実施形態においては、注射針によって注入された部位Aと、注入されていない部位B,部位Cの塩分濃度及びそのバラつきが測定される。より具体的には、図5に示すように、部位Cは、注射針によって注入された部位A(より具体的には、1つの魚肉に対して互いに異なる場所に注入された場合の各部位A)から最も離れている。また、部位Bは、部位Aと部位Cとの間の略中間に位置する部位である。   Further, in the present embodiment, the salinity concentration and the variation of the site A injected by the injection needle, the sites B and C not injected are measured. More specifically, as shown in FIG. 5, the part C is a part A injected by the injection needle (more specifically, each part A when injected into different locations with respect to one fish meat) ) Most distant. Part B is a part located approximately in the middle between part A and part C.

本実施形態においては、魚肉の塩分濃度及びそのバラつきをより正確に把握するために、上述の予備的実験によって得られた検量線の式(特に、F1)と、本実施形態の魚肉について実測された値から算出されるデータとを対比することによって、該魚肉における領域の塩分濃度が導出された。なお、本実施形態においては、塩化ナトリウムを構成する元素のうち塩素を対比の対象とした。   In this embodiment, in order to more accurately grasp the salinity of fish meat and its variation, the calibration curve formula (particularly F1) obtained by the above preliminary experiment and the fish meat of this embodiment were measured. The salinity of the region in the fish meat was derived by comparing with the data calculated from the values. In the present embodiment, chlorine is used as a comparison target among the elements constituting sodium chloride.

表1は、本実施形態の注入工程が行われた後の段階において実施された測定工程によって得られた、魚肉の塩分濃度及びそのバラつきを示している。なお、表1に加えて、後述する表2及び表3のいずれの塩分濃度は、対応する各工程後の魚肉の測定対象領域を測定することによって得られたCl強度を上述の予備的実験によって得られた検量線の式に当て嵌めることによって算出される塩分濃度である。   Table 1 shows the salinity of fish meat and its variation obtained by the measurement process performed in the stage after the injection process of the present embodiment. In addition to Table 1, the salinity concentrations in Table 2 and Table 3 to be described later are obtained by measuring the Cl intensity obtained by measuring the measurement target region of the fish meat after each corresponding step by the above preliminary experiment. It is a salinity concentration calculated by fitting to the equation of the obtained calibration curve.

表1に示すように注入工程が行われた後の段階においては、部位Aの塩分濃度が高く、部位Aから離れるにつれて塩分濃度が低下する傾向が確認された。   As shown in Table 1, at the stage after the injection process was performed, the salinity concentration at the site A was high, and the tendency for the salinity concentration to decrease with distance from the site A was confirmed.

なお、本実施形態の測定工程において測定の対象となる魚肉は、その魚肉が属する製造ロットにおいて製造される全ての魚肉であることを要しない。換言すれば、その製造ロットの魚肉の一部に対して本実施形態の測定工程が行われることも採用し得る一態様である。なお、そのような一部の魚肉に対してのみ本実施形態の測定工程が行われることは、製造効率を向上させる観点、製造コストの低減を実現する観点、及び/又は製造された魚肉の均質性を高める観点から好適である。   Note that the fish meat to be measured in the measurement process of the present embodiment does not need to be all fish meat produced in the production lot to which the fish meat belongs. In other words, the measurement process of the present embodiment is also performed on a part of the fish meat of the production lot. Note that the measurement process of the present embodiment is performed only on such a portion of the fish meat from the viewpoint of improving the production efficiency, the viewpoint of realizing a reduction in production cost, and / or the homogeneity of the produced fish meat. It is suitable from the viewpoint of enhancing the properties.

その後、皮つきの魚肉が、食塩を水に溶解させることによって形成した約8質量%の濃度の塩水(本実施形態における「第2溶液」)中に浸漬される、浸漬工程(ステップS6)が行われる。本実施形態の浸漬工程においては、10時間以上の浸漬状態が維持される。なお、本実施形態においては、第1溶液と第2溶液が同濃度の塩水であったが、互いに異なる濃度(例えば、数質量%〜25質量%)の塩水を用いることも、採用し得る他の一態様である。また、本実施形態においては、第1溶液と第2溶液がいずれも塩水であったが、人体に影響を及ぼさない他の物質を追加的に溶解した第1溶液及び/又は第2溶液を用いることも、採用し得る他の一態様である。   After that, a dipping step (step S6) is performed in which the fish meat with skin is immersed in a salt water ("second solution" in the present embodiment) having a concentration of about 8% by mass formed by dissolving salt in water. Is called. In the immersion process of this embodiment, the immersion state for 10 hours or more is maintained. In the present embodiment, the first solution and the second solution are salt water having the same concentration, but it is also possible to employ salt water having different concentrations (for example, several mass% to 25 mass%). It is one aspect | mode. In the present embodiment, the first solution and the second solution are both salt water, but the first solution and / or the second solution in which other substances that do not affect the human body are additionally dissolved are used. This is another aspect that can be adopted.

浸漬工程が行われた後、すなわち、浸漬工程における浸漬から魚肉が取り出された後に、再度、上述と同様に、蛍光X線分析法により、該魚肉の複数の異なる領域の塩分濃度(第2塩分濃度)を測定する測定工程が行われる(図3のV2)。   After the immersion process is performed, that is, after the fish meat is taken out from the immersion in the immersion process, the salinity concentration (second salt content) of a plurality of different regions of the fish meat is again obtained by fluorescent X-ray analysis, as described above. A measurement step for measuring (concentration) is performed (V2 in FIG. 3).

表2は、本実施形態の浸漬工程が行われた後の段階において実施された測定工程によって得られた魚肉の塩分濃度及びそのバラつきを示している。   Table 2 shows the salinity concentration of fish meat obtained by the measurement process performed in the stage after the immersion process of the present embodiment and the variation thereof.

表2に示すように、部位によらずに領域Zの塩分濃度が増加している。他方、領域X及び領域Yについては、注入工程が行われた後の段階と比較して、塩分濃度のバラつきが低減されているとともに、均一性が向上していることが確認された。領域Zの塩分濃度の増加は、主として、浸漬工程において領域Zが最も第2溶液と近い位置にあるために生じた現象であると考えられる。   As shown in Table 2, the salinity concentration in the region Z increases regardless of the site. On the other hand, as for the region X and the region Y, it was confirmed that the variation in the salinity concentration was reduced and the uniformity was improved as compared with the stage after the injection process. The increase in the salt concentration in the region Z is considered to be a phenomenon that occurs mainly because the region Z is closest to the second solution in the dipping process.

本実施形態においては、その後、魚肉を所定の時間、冷凍庫内に保管する保管工程(ステップS7)が行われる。さらにその後、魚肉の凍結工程(ステップS8)を経た後、本実施形態の魚肉が製造される。なお、本実施形態においては、保管工程後の魚肉の塩分濃度及びそのバラつきを把握するために、保管工程後においても、上述の同様の測定工程が行われた(図3のV3)。以下の表3は、約9時間の保管工程が行われた後の該測定工程による結果である。また、表4は、約24時間の保管工程が行われた後の該測定工程による結果である。   In the present embodiment, a storage process (step S7) is then performed in which the fish meat is stored in the freezer for a predetermined time. Further, after the fish meat freezing step (step S8), the fish meat of this embodiment is manufactured. In the present embodiment, the same measurement process as described above was performed after the storage process in order to ascertain the salinity of the fish meat after the storage process and its variation (V3 in FIG. 3). Table 3 below shows the results of the measurement process after a storage process of about 9 hours. Table 4 shows the results of the measurement process after a storage process of about 24 hours.

表3及び表4に示すように、身の近傍(領域Z)における塩分濃度のバラつき(部位A〜C間の最大差)が、保管工程における保管時間が長くなるほど低減されていることが分かる。特に、身の近傍(領域Z)における塩分濃度の各部位の値が、保管工程における保管時間が長くなるほど顕著に低減することが確認された。   As shown in Tables 3 and 4, it can be seen that the variation in salinity concentration (maximum difference between the parts A to C) in the vicinity of the body (region Z) is reduced as the storage time in the storage process becomes longer. In particular, it was confirmed that the value of each part of the salinity concentration in the vicinity of the body (area Z) was significantly reduced as the storage time in the storage process became longer.

具体的には、浸漬工程が行われた後の第2塩分濃度における身の近傍(領域Z)とその他の領域(領域X又は領域Z)との最大差が12.35%であったが、表3に示す保管工程後の最大差は5.59%であり、表4に示す保管工程後の最大差は3.23%であった。従って、保管工程によって塩分濃度に関する魚肉の高度な均質化が実現されていることは特筆に値する。加えて、表4に示すように、皮の近傍(領域X)、身の近傍(領域Z)、及び中央部(領域Y)のいずれにおいても、塩分濃度のバラつき(部位A〜C間の最大差)が1%以下にまで低減されていることが分かる。   Specifically, the maximum difference between the vicinity of the body (region Z) and the other region (region X or region Z) in the second salinity concentration after the immersion process was performed was 12.35%. The maximum difference after the storage step shown in Table 3 was 5.59%, and the maximum difference after the storage step shown in Table 4 was 3.23%. Therefore, it is worthy of special mention that the fish meat is highly homogenized with respect to the salinity by the storage process. In addition, as shown in Table 4, the salinity concentration varies (maximum between the parts A to C) in any of the vicinity of the skin (region X), the vicinity of the body (region Z), and the central portion (region Y). It can be seen that the difference is reduced to 1% or less.

また、第1塩分濃度、第2塩分濃度、及び保管工程後の塩分濃度において、各領域(領域X、Y、Z)における部位A〜Cの塩分濃度の最大差(例えば、第1塩分濃度の領域XにおけるA〜Cの最大差1.45%)に着目すると、興味深い1つの知見が得られる。具体的には、各測定時(図3のV1〜V3)における皮の近傍(領域X)の該最大差の変化が、他の領域(領域Y又は領域Z)における該最大差の変化よりも小さいことが確認された。   Further, in the first salinity concentration, the second salinity concentration, and the salinity concentration after the storage step, the maximum difference in salinity concentration of the parts A to C in each region (region X, Y, Z) (for example, the first salinity concentration Focusing on the maximum difference of A to C in region X (1.45%), one interesting finding is obtained. Specifically, the change in the maximum difference in the vicinity of the skin (region X) at each measurement (V1 to V3 in FIG. 3) is more than the change in the maximum difference in other regions (region Y or region Z). It was confirmed to be small.

魚肉の一部を測定することによって該魚肉の全体としての塩分濃度のばらつきの指標を見出すという観点から言えば、時間変化による該最大差の大きな変動は、塩分濃度のバラつきが抑えられた状態を知るための指標としては好ましくないと考えられるため、皮の近傍(領域X)の塩分濃度の時間変化を調べることが、魚肉全体として塩分濃度のバラつきを代表する一例となり得る。従って、塩分濃度に関する魚肉の高度な均質化を目的として魚肉を製造する場合は、皮の近傍(Xの領域)の塩分濃度を代表値の1つとして調べることによって、魚肉全体に亘って塩分濃度のバラつきが低減された魚肉の製造を実現し得ると考えられる。   From the viewpoint of finding an indicator of the variation in the salinity of the whole fish meat by measuring a part of the fish meat, a large variation in the maximum difference due to the change over time indicates that the variation in the salinity concentration is suppressed. Since it is considered that it is not preferable as an index for knowing, examining the temporal change in the salinity concentration in the vicinity of the skin (region X) can be an example representing the variation in salinity concentration for the whole fish meat. Therefore, when producing fish meat for the purpose of highly homogenizing fish with respect to salinity, the salinity of the entire fish meat is examined by examining the salinity in the vicinity of the skin (region X) as one of the representative values. It is thought that it is possible to produce fish meat with reduced variation.

本実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法によれば、魚肉中の複数の異なる領域における塩分濃度、及びその塩分濃度のバラつきを、それらの時間変化も含めて定量的に把握することができる。従って、各領域における塩分濃度、及びその塩分濃度のバラつきの時間変化に基づいて、魚肉中の塩分濃度のバラつきが十分に低減された状態を知る、又は予測することが可能となるため、塩分濃度のバラつきが十分に低減された魚肉を製造することができる。   According to the method for producing fish meat and the method for measuring the salinity of fish meat according to the present embodiment, the salinity concentration in a plurality of different regions in the fish meat and the variation in the salt concentration are quantitatively grasped including their temporal changes. be able to. Therefore, since it becomes possible to know or predict a state in which the variation of the salinity concentration in the fish meat has been sufficiently reduced based on the salinity concentration in each region and the change in the salinity concentration variation over time, the salinity concentration It is possible to produce fish meat with a sufficiently reduced variation.

なお、本実施形態においては、上述のとおり、注入工程の後であって浸漬工程の前の段階と、浸漬工程における浸漬から魚肉が取り出された後の段階と、保管工程の後の段階との計3回の測定工程が行われているが、本実施形態は、その3回の測定工程のみが行われる態様には限定されない。例えば、上述の3回の測定工程に代えて、注入工程の後であって浸漬工程の前の段階と、浸漬工程の後(つまり、浸漬工程における浸漬から魚肉が取り出された後)、1時間〜2時間が経過した段階、及び/又は、浸漬工程の後、3時間〜4時間が経過した段階において1回又は複数回測定工程が行われることも、採用し得る他の一態様である。前述の段階においても測定工程が行われることにより、より確度高く、魚肉中の複数の異なる領域における塩分濃度、及びその塩分濃度のバラつきを、それらの時間変化も含めて定量的に把握することができる。   In the present embodiment, as described above, after the injection process and before the immersion process, the stage after the fish meat is taken out from the immersion in the immersion process, and the stage after the storage process Although a total of three measurement steps are performed, the present embodiment is not limited to an embodiment in which only the three measurement steps are performed. For example, instead of the above three measurement steps, after the injection step and before the immersion step, after the immersion step (that is, after the fish meat is taken out from the immersion in the immersion step), 1 hour It is another aspect that can be adopted that the measurement step is performed once or a plurality of times in the stage after ˜2 hours have passed and / or the stage after 3 hours to 4 hours have passed after the dipping process. By performing the measurement process also in the above-mentioned stage, it is more accurate and can quantitatively grasp the salinity concentration in a plurality of different areas in the fish meat and the variation in the salinity concentration including their temporal changes. it can.

<味覚に関する官能試験>
本発明者らは、さらに、本実施形態の保管工程によって実現し得る塩分濃度に関する魚肉の高度な均質化が、実際にその魚肉を食したときの味覚に反映することを確認するための官能試験を行った。
<Sensory test on taste>
The present inventors further have a sensory test for confirming that the high degree of homogenization of fish meat related to the salt concentration that can be realized by the storage process of the present embodiment is reflected in the taste when the fish meat is actually eaten. Went.

具体的には、注入工程が行われた後、浸漬工程が行われた後、約9時間の保管工程が行われた後、及び約24時間の保管工程が行われた後の、略同じ大きさであって同じ鮮度の各々の魚肉(サケ)について、8人のパネラーが、4点(最も美味しいと感じる)から1点(最も美味しくないと感じる)までの4段階評価で点数評価した。なお、前述のとおり、数字が大きいほど美味しいと該パネラーが感じたことを示す。加えて、4つの各試験区分に対して、必ず異なる点数となるように、換言すれば、同じ点数とならないように各パネラーが評価した。   Specifically, after the injection process is performed, the immersion process is performed, the storage process is performed for about 9 hours, and the storage process is performed for about 24 hours. Then, about each fish meat (salmon) of the same freshness, eight panelists evaluated score by four-step evaluation from 4 points (feeling the most delicious) to 1 point (feeling the least delicious). In addition, as above-mentioned, it shows that this panelist felt that it was delicious, so that a number was large. In addition, each panelist evaluated each of the four test categories so that the score was always different, in other words, not the same score.

図6は、味覚官能試験の結果を示すグラフである。横軸のAは注入工程が行われた後の魚肉の評価点を示し、Bは浸漬工程が行われた後の魚肉の評価点を示し、Cは約9時間の保管工程が行われた後の魚肉の評価点を示し、Dは約24時間の保管工程が行われた後の魚肉の評価点を示す。また、A〜Dの各段階における評価点数の平均値は縦軸の棒グラフとして表され、標準偏差がエラーバーとして表されている。   FIG. 6 is a graph showing the results of a taste sensory test. A on the horizontal axis indicates the evaluation point of the fish meat after the injection step is performed, B indicates the evaluation point of the fish meat after the immersion step is performed, and C is after the storage step of about 9 hours is performed The evaluation score of the fish meat is shown, and D shows the evaluation score of the fish meat after the storage process of about 24 hours. Moreover, the average value of the evaluation score in each stage of AD is represented as a vertical bar graph, and the standard deviation is represented as an error bar.

図6に示すように、保管工程が実施されたCとDにおいて評価点が3点以上という高い値になった。従って、魚肉中の塩分濃度のバラつきが低減された、保管工程を経た魚肉は、味覚上も美味しい魚肉になることが確認された。   As shown in FIG. 6, in C and D in which the storage process was performed, the evaluation score was a high value of 3 or more. Therefore, it was confirmed that the fish meat that had undergone the storage process, in which the variation in the salt concentration in the fish meat was reduced, would be delicious in terms of taste.

<第2の実施形態>
本実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法は、第1の実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法における保管工程の後の測定工程(図3のV3)が行われない代わりに後述する予測工程が行われる点を除いて、第1の実施形態と同様である。従って、第1の実施形態と重複する説明は省略され得る。
<Second Embodiment>
The fish meat production method and fish meat salinity measurement method of the present embodiment are performed by the measurement process (V3 in FIG. 3) after the storage process in the fish meat production method and fish meat salinity measurement method of the first embodiment. It is the same as that of 1st Embodiment except the point which the prediction process mentioned later is performed instead. Therefore, the description which overlaps with 1st Embodiment may be abbreviate | omitted.

まず、第1の実施形態と同様に、図3のステップS1からステップS6までの各工程、並びにステップS5及びステップS6の後の、第1の実施形態と同様の蛍光X線分析法による測定工程が行われる。   First, as in the first embodiment, each process from step S1 to step S6 in FIG. 3, and the measurement process by the fluorescent X-ray analysis method similar to the first embodiment after step S5 and step S6. Is done.

ここで、本発明者は、第1の実施形態の魚肉の製造方法及び魚肉の塩分濃度測定方法を用いて、浸漬工程(ステップS6)後の測定工程まで終えた魚肉についての、特に以下の2つの領域(P)及び(Q)に着目した。というのも、下記の(P)の領域が注入工程において最も時間的に早く塩分濃度が高くなる領域であるという特徴を有し、下記の(Q)の領域が、最も時間的に遅れて塩分が浸透する領域であるという特徴を有するためである。
(P)部位Aのうちの皮の近傍(領域X)
(Q)部位Cのうちの中央部(領域Y)
Here, the present inventor uses the fish meat production method and the fish salinity concentration measurement method of the first embodiment, and particularly the following 2 for fish meat that has been finished up to the measurement process after the immersion process (step S6). We focused on two regions (P) and (Q). This is because the following region (P) is characterized in that the salinity concentration becomes the highest in time in the injection process, and the following region (Q) is the most delayed in time. It is because it has the characteristic that it is an area | region which osmose | permeates.
(P) The vicinity of the skin in region A (region X)
(Q) Central portion of region C (region Y)

図7は、本実施形態における、注入工程の後であって浸漬工程の前の段階と、浸漬工程における浸漬から魚肉が取り出された後の段階との計2回の測定工程に基づく、上述の(P)と(Q)と間の塩分濃度差の時間変化を示すグラフである。なお、図7の例においては、注入工程後、速やかに測定工程が行われた。また、該測定工程後に速やかに浸漬工程が22時間行われた後に、速やかに測定工程が行われた場合の結果を示している。また、注入工程後の経過時間が横軸に記載されている。また、図7のグラフにおける点線は、(P)の塩分濃度差の値と(Q)の塩分濃度差の値とを直線で結んだ場合の、該直線と横軸(x軸)との交点を示すための線である。   FIG. 7 is based on the above-described two measurement steps, that is, a stage after the injection process and before the soaking process, and a stage after the fish meat is taken out from the soaking in the soaking process in the present embodiment. It is a graph which shows the time change of the salt concentration difference between (P) and (Q). In the example of FIG. 7, the measurement process was performed immediately after the injection process. Moreover, the result when the measurement process is performed rapidly after the immersion process is performed for 22 hours immediately after the measurement process is shown. Further, the elapsed time after the injection step is shown on the horizontal axis. In addition, the dotted line in the graph of FIG. 7 indicates the intersection of the straight line and the horizontal axis (x-axis) when the salt concentration difference value (P) and the salt concentration difference value (Q) are connected by a straight line. It is a line for showing.

図7に示すように、(P)の塩分濃度差の値と(Q)の塩分濃度差の値とを直線で結んだ場合の該直線と横軸(x軸)との交点、すなわち塩分濃度の差が0(ゼロ)になる点は、約35時間を示していることが分かる。この値は、第1の実施形態において、蛍光X線分析法による測定結果によって塩分濃度のバラつきが低減されたことが確認された保管工程の段階の魚肉であることが分かる。また、第1の実施形態において説明したとおり、約35時間という時点は、味覚に関する官能試験におけるCとDの間に位置するため、味覚においても好ましい魚肉が製造され得ることが示されている。   As shown in FIG. 7, when the value of the salt concentration difference in (P) and the value of the salt concentration difference in (Q) are connected by a straight line, the intersection of the straight line and the horizontal axis (x-axis), that is, the salinity concentration It can be seen that the point at which the difference of 0 indicates 0 (zero) indicates about 35 hours. It can be seen that this value is the fish at the stage of the storage process in which it was confirmed in the first embodiment that the variation in the salinity concentration was reduced by the measurement result by X-ray fluorescence analysis. In addition, as described in the first embodiment, since the time point of about 35 hours is located between C and D in the sensory test related to taste, it has been shown that fish meat that is preferable in taste can be produced.

従って、本実施形態においては、ステップS6の後の測定工程後に、図7に基づいて、塩分濃度(%)の差が0(ゼロ)になる点を算出すことにより、塩分濃度のバラつきが低減された時点を予測する予測工程が実現され得ることを示している。その結果、本実施形態によれば、浸漬工程における浸漬から魚肉が取り出された後の時間を予測することが可能となるため、塩分濃度のバラつきが十分に低減された魚肉を、より確度高く製造し得る。   Therefore, in this embodiment, after the measurement process after step S6, the difference in salinity concentration is reduced by calculating the point where the difference in salinity concentration (%) becomes 0 (zero) based on FIG. It shows that a prediction step for predicting the point in time can be realized. As a result, according to the present embodiment, since it becomes possible to predict the time after the fish meat is taken out from the immersion in the immersion process, the fish meat in which the variation in the salt concentration is sufficiently reduced is manufactured with higher accuracy. Can do.

<第2の実施形態の変形例>
ところで、第2の実施形態においては、(P)の塩分濃度差の値と(Q)の塩分濃度の差が0(ゼロ)になる点を算出することにより、魚肉中の塩分濃度のバラつきが十分に低減された状態を予測することが可能となることを説明しているが、塩分濃度の差が0(ゼロ)になる点以外の点又は数値範囲であっても、塩分濃度のバラつきが低減された時点を予測する予測工程が実現され得る。
<Modification of Second Embodiment>
By the way, in the second embodiment, by calculating the point where the difference between the salt concentration difference of (P) and the difference of the salt concentration of (Q) becomes 0 (zero), the variation of the salt concentration in the fish meat is varied. Although it is explained that it is possible to predict a sufficiently reduced state, even if it is a point or a numerical range other than the point where the difference in salinity concentration is 0 (zero), the variation in salinity concentration A prediction step for predicting the reduced time can be realized.

具体的には、例えば、図7に示すグラフにおいて、(P)の塩分濃度差の値と(Q)の塩分濃度差の値とを直線で結んだ場合に、塩分濃度の差が所定の範囲内(一例として、1%以下(より好適には、0.5%以下であり、更に好適には0.1%以下))の範囲に収まる時間帯を算出することによっても、塩分濃度のバラつきが低減された時点を予測する予測工程が実現され得る。その結果、本変形例においても、浸漬工程における浸漬から魚肉が取り出された後の時間を予測することが可能となるため、塩分濃度のバラつきが十分に低減された魚肉を、より確度高く製造し得る。   Specifically, for example, in the graph shown in FIG. 7, when the value of the salt concentration difference (P) and the value of the salt concentration difference (Q) are connected by a straight line, the difference in salt concentration is within a predetermined range. Variation of the salinity concentration by calculating the time zone within the range (for example, 1% or less (more preferably 0.5% or less, and further preferably 0.1% or less)). A prediction step for predicting the point in time when the reduction is made can be realized. As a result, also in this modified example, it becomes possible to predict the time after the fish meat is taken out from the soaking in the soaking process, so that the fish meat in which the variation in the salt concentration is sufficiently reduced can be manufactured with higher accuracy. obtain.

本発明の1つの魚肉の製造方法及び1つの魚肉の塩分濃度測定方法は、魚肉全体に亘って塩分濃度のバラつきを低減した魚肉を求める食品業及び水産業に限らず、塩分濃度の測定という観点を踏まえれば、畜肉業及び肥料業を含む農業においても極めて有用である。   One fish meat production method and one fish salinity measurement method according to the present invention are not limited to the food industry and fishery industry that seek fish meat with reduced salinity variation throughout the entire fish meat, but also from the viewpoint of measurement of salt concentration. Therefore, it is extremely useful in agriculture including livestock and fertilizer industries.

Claims (8)

少なくとも食塩を含む第1溶液を皮つき魚肉の一部に注入する注入工程と、
前記第1溶液が注入された前記魚肉を、少なくとも食塩を含む第2溶液中に浸漬する浸漬工程と、
前記魚肉の複数の異なる領域の塩分濃度を、少なくとも以下の(1)及び(2)の段階において、蛍光X線分析装置により測定する測定工程と、を含む、
魚肉の製造方法。
(1)前記注入工程の後であって、前記浸漬工程の前
(2)前記浸漬工程における浸漬から前記魚肉が取り出された後
An injection step of injecting a first solution containing at least salt into a part of the skinned fish meat;
An immersion step of immersing the fish meat injected with the first solution in a second solution containing at least salt;
Measuring a salinity concentration of a plurality of different regions of the fish meat with a fluorescent X-ray analyzer at least in the following steps (1) and (2):
A method for producing fish meat.
(1) After the injection step and before the immersion step (2) After the fish meat is taken out from the immersion in the immersion step
前記領域が、前記皮の近傍の領域を含む、
請求項1に記載の魚肉の製造方法。
The region includes a region near the skin;
The method for producing fish meat according to claim 1.
前記領域が、前記魚肉の前記第1溶液が注入された部位と、前記魚肉の前記第1溶液が注入されていない部位とを含む、
請求項1に記載の魚肉の製造方法。
The region includes a portion where the first solution of the fish meat is injected and a portion where the first solution of the fish meat is not injected.
The method for producing fish meat according to claim 1.
さらに、前記(1)の段階の第1塩分濃度と、前記(2)の段階の第2塩分濃度との時間変化に基づいて、複数の前記領域の間における塩分濃度の差が所定の範囲内になる、前記浸漬工程における前記浸漬から前記魚肉が取り出された後の時間を予測する、予測工程と、を含む、
請求項1乃至請求項3のいずれか1項に記載の魚肉の製造方法。
Further, the difference in salinity concentration between the plurality of regions is within a predetermined range based on the temporal change between the first salinity concentration in the step (1) and the second salinity concentration in the step (2). Predicting the time after the fish meat is removed from the soaking in the soaking step, including a predicting step,
The method for producing fish meat according to any one of claims 1 to 3.
少なくとも食塩を含む第1溶液を皮つき魚肉の一部に注入する注入工程と、
前記第1溶液が注入された前記魚肉を、少なくとも食塩を含む第2溶液中に浸漬する浸漬工程と、
前記魚肉の複数の異なる領域の塩分濃度を、少なくとも以下の(1)及び(2)の段階において、蛍光X線分析装置により測定する測定工程と、を含む、
魚肉の塩分濃度測定方法。
(1)前記注入工程の後であって、前記浸漬工程の前
(2)前記浸漬工程における浸漬から前記魚肉が取り出された後
An injection step of injecting a first solution containing at least salt into a part of the skinned fish meat;
An immersion step of immersing the fish meat injected with the first solution in a second solution containing at least salt;
Measuring a salinity concentration of a plurality of different regions of the fish meat with a fluorescent X-ray analyzer at least in the following steps (1) and (2):
Fish salinity measurement method.
(1) After the injection step and before the immersion step (2) After the fish meat is taken out from the immersion in the immersion step
前記領域が、前記皮の近傍の領域を含む、
請求項5に記載の魚肉の塩分濃度測定方法。
The region includes a region near the skin;
The method for measuring the salinity of fish meat according to claim 5.
前記領域が、前記魚肉の前記第1溶液が注入された部位と、前記魚肉の前記第1溶液が注入されていない部位とを含む、
請求項5に記載の魚肉の塩分濃度測定方法。
The region includes a portion where the first solution of the fish meat is injected and a portion where the first solution of the fish meat is not injected.
The method for measuring the salinity of fish meat according to claim 5.
さらに、前記(1)の段階の第1塩分濃度と、前記(2)の段階の第2塩分濃度との時間変化に基づいて、複数の前記領域の間における塩分濃度の差が所定の範囲内になる、前記浸漬工程における前記浸漬から前記魚肉が取り出された後の時間を予測する、予測工程と、を含む、
請求項5乃至請求項7のいずれか1項に記載の魚肉の塩分濃度測定方法。
Further, the difference in salinity concentration between the plurality of regions is within a predetermined range based on the temporal change between the first salinity concentration in the step (1) and the second salinity concentration in the step (2). Predicting the time after the fish meat is removed from the soaking in the soaking step, including a predicting step,
The method for measuring the salinity of fish meat according to any one of claims 5 to 7.
JP2018115543A 2018-06-18 2018-06-18 Fish meat production method and fish meat salinity measurement method Active JP6464354B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115543A JP6464354B1 (en) 2018-06-18 2018-06-18 Fish meat production method and fish meat salinity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115543A JP6464354B1 (en) 2018-06-18 2018-06-18 Fish meat production method and fish meat salinity measurement method

Publications (2)

Publication Number Publication Date
JP6464354B1 true JP6464354B1 (en) 2019-02-06
JP2019219225A JP2019219225A (en) 2019-12-26

Family

ID=65270452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115543A Active JP6464354B1 (en) 2018-06-18 2018-06-18 Fish meat production method and fish meat salinity measurement method

Country Status (1)

Country Link
JP (1) JP6464354B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092664A (en) * 2018-12-13 2020-06-18 株式会社極洋 Production method of meat, and analytical method of meat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171164A (en) * 1977-12-12 1979-10-16 The Kartridg Pak Co. Continuous X-ray analysis for meat blending system
JPH02306148A (en) * 1989-05-19 1990-12-19 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Method for measuring moisture content of ground fish meat and detection device by said method
JPH0951758A (en) * 1995-08-11 1997-02-25 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai Evaluation of progress degree of curing of cured meat treated by pickle injecting method
JP2013250178A (en) * 2012-06-01 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> Corrosion risk investigation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171164A (en) * 1977-12-12 1979-10-16 The Kartridg Pak Co. Continuous X-ray analysis for meat blending system
JPH02306148A (en) * 1989-05-19 1990-12-19 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Method for measuring moisture content of ground fish meat and detection device by said method
JPH0951758A (en) * 1995-08-11 1997-02-25 Shokuhin Sangyo Intelligence Control Gijutsu Kenkyu Kumiai Evaluation of progress degree of curing of cured meat treated by pickle injecting method
JP2013250178A (en) * 2012-06-01 2013-12-12 Nippon Telegr & Teleph Corp <Ntt> Corrosion risk investigation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAYAM M. IBRAHIM: "Prediction of meat and meat products by gamma rays, electron beams and X-ray irradiations-A Review", INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES, vol. Vol. 3 No. 5, JPN6018037005, June 2013 (2013-06-01), pages pp. 521-534 *
中野ひとみ、他: "X線分析顕微鏡を用いた,食品中元素の定量マッピング機能の検討", X線分析の進歩 49, JPN6018037001, 31 March 2018 (2018-03-31), pages P.241−248 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092664A (en) * 2018-12-13 2020-06-18 株式会社極洋 Production method of meat, and analytical method of meat
JP7042205B2 (en) 2018-12-13 2022-03-25 株式会社極洋 Meat manufacturing method and meat analysis method

Also Published As

Publication number Publication date
JP2019219225A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
Hughes et al. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness
Straadt et al. Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss–A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study
Cheng et al. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: a review
Mortensen et al. Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities
Adiletta et al. Moisture migration by magnetic resonance imaging during eggplant drying: a preliminary study
Manzocco et al. Monitoring dry-curing of S. Daniele ham by magnetic resonance imaging
Pérez-Esteve et al. Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata)
Sánchez-Valencia et al. Low-field nuclear magnetic resonance of proton (1 H LF NMR) relaxometry for monitoring the time and temperature history of frozen hake (Merluccius merluccius L.) muscle
Telis-Romero et al. Ultrasonic assessment of fresh cheese composition
Gudjónsdóttir et al. Shrimp processing assessed by low field nuclear magnetic resonance, near infrared spectroscopy, and physicochemical measurements—the effect of polyphosphate content and length of prebrining on shrimp muscle
Anderssen et al. Predicting liquid loss of frozen and thawed cod from hyperspectral imaging
Filomena-Ambrosio et al. Changes of the water-holding capacity and microstructure of panga and tilapia surimi gels using different stabilizers and processing methods
Aheto et al. Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging
JP6464354B1 (en) Fish meat production method and fish meat salinity measurement method
Saber et al. Stereological comparison of oocyte recruitment and batch fecundity estimates from paraffin and resin sections using spawning albacore (Thunnus alalunga) ovaries as a case study
He et al. Effects of muscle protein denaturation and water distribution on the quality of false abalone (Volutharpa ampullacea perryi) during wet heating
Jakhar et al. Optimization of process parameters for gelatin extraction from the skin of Blackspotted croaker using response surface methodology
Liu et al. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin: On the basis of molecular docking
Rosenvold et al. Temporal, biochemical and structural factors that influence beef quality measurement using near infrared spectroscopy
Neyrinck et al. Application of near-infrared spectroscopy for the classification of fresh pork quality in cooked ham production
Andersen et al. Curing‐induced water mobility and distribution within intra‐and extra‐myofibrillar spaces of three pork qualities
Schmidt et al. Gastrophysical and chemical characterization of structural changes in cooked squid mantle
JP6360928B1 (en) Fish meat production method and fish meat salinity measurement method
Chevalier et al. Development of a non-destructive salt and moisture measurement method in salmon (Salmo salar) fillets using impedance technology
JP7042205B2 (en) Meat manufacturing method and meat analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180813

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180813

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6464354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250