JP6459664B2 - Constant velocity joint - Google Patents

Constant velocity joint Download PDF

Info

Publication number
JP6459664B2
JP6459664B2 JP2015051621A JP2015051621A JP6459664B2 JP 6459664 B2 JP6459664 B2 JP 6459664B2 JP 2015051621 A JP2015051621 A JP 2015051621A JP 2015051621 A JP2015051621 A JP 2015051621A JP 6459664 B2 JP6459664 B2 JP 6459664B2
Authority
JP
Japan
Prior art keywords
rolling
rolling element
shaft
opening
raceway groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015051621A
Other languages
Japanese (ja)
Other versions
JP2016169846A (en
Inventor
啓志 小畠
啓志 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015051621A priority Critical patent/JP6459664B2/en
Publication of JP2016169846A publication Critical patent/JP2016169846A/en
Application granted granted Critical
Publication of JP6459664B2 publication Critical patent/JP6459664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2023Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with linear rolling bearings between raceway and trunnion mounted shoes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、等速ジョイントに関するものである。   The present invention relates to a constant velocity joint.

特許文献1には、軸状転動体が外周を循環する転動体ユニットを備える等速ジョイントが記載されている。当該等速ジョイントにおいて、軸状転動体が外側ジョイント部材の軌道溝の側面を転動する。さらに、軸状転動体の転動部が、軌道溝の側面における凹状の転走面に対して、軌道溝の溝深さ方向に規制されている。その結果、転動体ユニットが、軌道溝に対して姿勢を規制される。   Patent Document 1 describes a constant velocity joint including a rolling element unit in which an axial rolling element circulates around an outer periphery. In the constant velocity joint, the axial rolling element rolls on the side surface of the raceway groove of the outer joint member. Furthermore, the rolling part of the axial rolling element is regulated in the groove depth direction of the raceway groove with respect to the concave rolling surface on the side surface of the raceway groove. As a result, the posture of the rolling element unit is restricted with respect to the raceway groove.

特開2013−174362号公報JP 2013-174362 A

ところで、基本的には転動体ユニットは軌道溝に対して姿勢を規制されているが、組み付け性のため、僅かではあるが転動体ユニットが軌道溝に対して傾動する。さらに、軸状転動体は転動体ユニットの外周を循環している。そのため、転動体ユニットが軌道溝に対して傾いている状態において、軸状転動体が転走面に進入する際には、軸状転動体が、凹状の転走面の肩部に接触してしまう。このときの接触力は、軸状転動体の循環の抵抗となる。軸状転動体の循環の抵抗は、等速ジョイントがスラスト力を誘起することになる。   By the way, although the rolling element unit is basically restricted in posture with respect to the raceway groove, the rolling element unit is tilted with respect to the raceway groove to a small extent for ease of assembly. Furthermore, the axial rolling element circulates around the outer periphery of the rolling element unit. Therefore, when the rolling element unit is tilted with respect to the raceway groove, when the rolling element enters the rolling surface, the rolling element comes into contact with the shoulder of the concave rolling surface. End up. The contact force at this time becomes the resistance of circulation of the axial rolling element. As for the circulation resistance of the shaft-like rolling element, the constant velocity joint induces a thrust force.

本発明は、軸状転動体が軌道溝の側面における転走面に進入する際に生じる接触力を抑制することにより、誘起スラスト力を低減することができる等速ジョイントを提供することを目的とする。   An object of the present invention is to provide a constant velocity joint capable of reducing the induced thrust force by suppressing contact force generated when the axial rolling element enters the rolling surface on the side surface of the raceway groove. To do.

第一発明の等速ジョイントは、筒状に形成され、内周面に複数の軌道溝が形成される外側ジョイント部材と、径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、前記脚軸の外周面に支持される内側部材と、前記内側部材の外周に沿って循環し、前記軌道溝の側面及び前記内側部材の外周面を転動する複数の軸状転動体と、を備える等速ジョイントである。   The constant velocity joint of the first invention is formed in a cylindrical shape, an outer joint member in which a plurality of raceway grooves are formed on an inner peripheral surface, an inner joint member provided with a plurality of leg shafts projecting radially outward, An inner member supported by the outer peripheral surface of the leg shaft, and a plurality of axial rolling elements that circulate along the outer periphery of the inner member and roll on the side surface of the raceway groove and the outer peripheral surface of the inner member. It is a constant velocity joint.

前記軌道溝の側面は、前記軸状転動体の転動部の軸長より大きな幅を有する転走面、前記転走面の前記軌道溝の開口側に形成される開口側肩部、及び、前記転走面の前記軌道溝の底面側に形成される底面側肩部を備える。前記軸状転動体の開口側端部が前記開口側肩部の第一接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、前記外側ジョイント部材の軸線方向に直交する平面上において、前記開口側端部が前記第一接触点へ進入する軌跡において前記第一接触点へ向かうベクトルを第一進入ベクトルと定義し、前記軌道溝の側面の接線において前記第一接触点の開口側から底面側へのベクトルを第一接線ベクトルと定義する。前記第一進入ベクトルと前記第一接線ベクトルとのなす角が鋭角となるように、前記開口側肩部が形成される。   The side surface of the raceway groove is a rolling surface having a width larger than the axial length of the rolling portion of the shaft-like rolling element, an opening side shoulder portion formed on the opening side of the raceway groove on the rolling surface, and A bottom side shoulder formed on the bottom side of the raceway groove of the rolling surface is provided. When the shaft-like rolling element enters the rolling surface after the opening-side end of the shaft-like rolling element contacts the first contact point of the opening-side shoulder, it is perpendicular to the axial direction of the outer joint member. A vector that is directed to the first contact point in a trajectory of the opening side end portion entering the first contact point on the plane to be defined as a first entry vector, and the first contact at a tangent to a side surface of the track groove A vector from the opening side of the point to the bottom side is defined as a first tangent vector. The opening-side shoulder is formed so that an angle formed by the first approach vector and the first tangent vector is an acute angle.

第二発明の等速ジョイントは、筒状に形成され、内周面に複数の軌道溝が形成される外側ジョイント部材と、径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、前記脚軸の外周面に支持される内側部材と、前記内側部材の外周に沿って循環し、前記軌道溝の側面及び前記内側部材の外周面を転動する複数の軸状転動体と、を備える等速ジョイントである。   The constant velocity joint of the second invention is formed in a cylindrical shape, an outer joint member formed with a plurality of raceway grooves on the inner peripheral surface, an inner joint member provided with a plurality of leg shafts projecting radially outward, An inner member supported by the outer peripheral surface of the leg shaft, and a plurality of axial rolling elements that circulate along the outer periphery of the inner member and roll on the side surface of the raceway groove and the outer peripheral surface of the inner member. It is a constant velocity joint.

前記軌道溝の側面は、前記軸状転動体の転動部の軸長より大きな幅を有する転走面、前記転走面の前記軌道溝の開口側に形成される開口側肩部、及び、前記転走面の前記軌道溝の底面側に形成される底面側肩部を備える。前記軸状転動体の開口側端部が前記開口側肩部の第一接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、前記開口側肩部は、前記転走面側に位置し、前記転走面を転動する前記軸状転動体の姿勢を規制する第一規制傾斜面と、前記第一規制傾斜面より前記軌道溝の開口側に位置し、前記第一接触点を有し、且つ、前記第一規制傾斜面より斜度の小さな第一導入傾斜面とを備える。   The side surface of the raceway groove is a rolling surface having a width larger than the axial length of the rolling portion of the shaft-like rolling element, an opening side shoulder portion formed on the opening side of the raceway groove on the rolling surface, and A bottom side shoulder formed on the bottom side of the raceway groove of the rolling surface is provided. In the case where the shaft-like rolling element enters the rolling surface after the opening-side end portion of the shaft-like rolling element contacts the first contact point of the opening-side shoulder, the opening-side shoulder portion is the rolling-side shoulder portion. A first regulating inclined surface that is located on the running surface side and regulates the attitude of the axial rolling element rolling on the rolling surface; and located on the opening side of the track groove from the first regulating inclined surface, A first introduction inclined surface having a first contact point and having a smaller inclination than the first regulating inclined surface.

第一発明の等速ジョイントによれば、第一進入ベクトルと第一接線ベクトルとのなす角が鋭角となるように開口側肩部が形成されることにより、転動体ユニットが軌道溝に対して傾いている状態において、軸状転動体が転走面に進入する際に、軸状転動体が転走面側へ誘導される。つまり、軸状転動体による開口側肩部への接触力が抑制される。従って、当該接触力による誘起スラスト力が低減する。   According to the constant velocity joint of the first invention, the opening-side shoulder is formed so that the angle formed by the first approach vector and the first tangent vector is an acute angle, so that the rolling element unit is in contact with the raceway groove. In the inclined state, when the axial rolling element enters the rolling surface, the axial rolling element is guided to the rolling surface side. That is, the contact force to the opening side shoulder by the axial rolling element is suppressed. Therefore, the induced thrust force due to the contact force is reduced.

第二発明の等速ジョイントによれば、開口側肩部が第一導入傾斜面を有することで、軸状転動体が軌道溝に対して傾いている状態において、軸状転動体が転走面に進入する際には、軸状転動体が斜度の小さな第一導入傾斜面に接触する。そのため、軸状転動体が転走面側へ誘導される。従って、軸状転動体による開口側肩部への接触力が小さくなり、当該接触力による誘起スラスト力が低減する。また、開口側肩部が第一規制傾斜面を有することで、軸状転動体が転走面を転動する際に、軸状転動体の姿勢が規制される。つまり、転動体ユニットの姿勢が確実に規制される。   According to the constant velocity joint of the second invention, the opening-side shoulder portion has the first introduction inclined surface, so that the axial rolling element is in contact with the raceway groove in a state where the axial rolling element is inclined with respect to the raceway groove. When entering, the shaft-like rolling element comes into contact with the first introduction inclined surface having a small inclination. Therefore, the axial rolling element is guided to the rolling surface side. Therefore, the contact force to the opening shoulder by the shaft-like rolling element is reduced, and the induced thrust force due to the contact force is reduced. Moreover, when the opening-side shoulder portion has the first restriction inclined surface, the posture of the axial rolling element is restricted when the axial rolling element rolls on the rolling surface. That is, the posture of the rolling element unit is reliably regulated.

本実施形態の等速ジョイントの外側ジョイント部材の軸方向断面及び転動体ユニットの一部の断面を示す斜視図である。It is a perspective view which shows the axial direction cross section of the outer joint member of the constant velocity joint of this embodiment, and a partial cross section of a rolling element unit. 内側ジョイント部材と、内側部材を分離された転動体ユニットとを示す斜視図である。It is a perspective view which shows an inner joint member and the rolling element unit from which the inner member was separated. 等速ジョイントの一部を外側ジョイント部材の軸線方向から見た図である。It is the figure which looked at a part of constant velocity joint from the axial direction of the outer joint member. 外側ジョイント部材の軌道溝の側面の法線方向から見た図であり、転動体ユニットが外側ジョイント部材の軌道溝に対して傾いた姿勢の状態を示す。It is the figure seen from the normal line direction of the side surface of the raceway groove | channel of an outer joint member, and shows the state of the attitude | position which the rolling element unit inclined with respect to the raceway groove | channel of an outer joint member. 外側ジョイント部材の軸線方向に直交する平面を示し、軌道溝及び軸状転動体の拡大図を示し、軸状転動体が開口側肩部の方から転走面に進入する直前の状態を示す図である。The figure which shows the plane orthogonal to the axial direction of an outside joint member, shows the enlarged view of a raceway groove and a shaft-like rolling element, and shows the state just before a shaft-like rolling element enters into a rolling surface from the direction of an opening side shoulder. It is. 軸状転動体が図5に示す状態から移動して軌道溝の側面における転走面に進入した時の状態を示す図である。It is a figure which shows a state when a shaft-shaped rolling element moves from the state shown in FIG. 5, and approached the rolling surface in the side surface of a track groove. 図5における軌道溝の側面における開口側肩部付近の拡大図である。FIG. 6 is an enlarged view of the vicinity of the opening-side shoulder on the side surface of the raceway groove in FIG. 5. 外側ジョイント部材の軸線方向に直交する平面を示し、軌道溝及び軸状転動体の拡大図を示し、軸状転動体が底面側肩部の方から転走面に進入する直前の状態を示す図である。The figure which shows the plane orthogonal to the axial direction of an outside joint member, shows an enlarged view of a raceway groove and a shaft-like rolling element, and shows a state just before a shaft-like rolling element enters a rolling surface from the bottom side shoulder It is. 軸状転動体が図8に示す状態から移動して軌道溝の側面における転走面に進入した時の状態を示す図である。It is a figure which shows a state when a shaft-like rolling element moves from the state shown in FIG. 8, and entered the rolling surface in the side surface of a raceway groove. 図8における軌道溝の側面における底面側肩部付近の拡大図である。FIG. 9 is an enlarged view of the vicinity of a bottom shoulder on the side surface of the raceway groove in FIG. 8.

(1.等速ジョイント1の全体構成)
本実施形態の等速ジョイント1について、図1−図3を参照して説明する。等速ジョイント1は、例えば、車両の動力伝達シャフトに用いられ、ディファレンシャルギヤ(図示せず)と車輪(図示せず)との連結部位に用いられる。
(1. Overall configuration of constant velocity joint 1)
The constant velocity joint 1 of this embodiment is demonstrated with reference to FIGS. 1-3. The constant velocity joint 1 is used, for example, for a power transmission shaft of a vehicle, and is used for a connection portion between a differential gear (not shown) and a wheel (not shown).

等速ジョイント1は、図1に示すように、トリポード型等速ジョイントを例示する。等速ジョイント1は、外側ジョイント部材10と、内側ジョイント部材20と、3つの転動体ユニット30とから構成される。図1には、シャフト2の回転軸と外側ジョイント部材10の回転軸とのなす角度(以下、「ジョイント角」とも称する)が0°の状態にある等速ジョイント1が示されている。   The constant velocity joint 1 exemplifies a tripod type constant velocity joint as shown in FIG. The constant velocity joint 1 includes an outer joint member 10, an inner joint member 20, and three rolling element units 30. FIG. 1 shows a constant velocity joint 1 in which the angle formed by the rotation axis of the shaft 2 and the rotation axis of the outer joint member 10 (hereinafter also referred to as “joint angle”) is 0 °.

外側ジョイント部材10は、軸方向一方側に開口部11を有する筒状に形成される。外側ジョイント部材10の底部外側は、ディファレンシャルに連結される。外側ジョイント部材10の筒状部分の内周面には、開口部11から外側ジョイント部材10の軸線方向(図1の左右方向)に延びる3本の軌道溝12が、周方向に等間隔に形成される。   The outer joint member 10 is formed in a cylindrical shape having an opening 11 on one side in the axial direction. The bottom outer side of the outer joint member 10 is connected to a differential. Three raceway grooves 12 extending in the axial direction of the outer joint member 10 from the opening 11 (left and right direction in FIG. 1) are formed at equal intervals in the circumferential direction on the inner peripheral surface of the cylindrical portion of the outer joint member 10. Is done.

軌道溝12における溝延伸方向に直交する断面形状は、外側ジョイント部材10の軸線に向かって開口する溝形状からなる。軌道溝12は、平面状に形成された底面12aと、底面12aの溝幅方向の両側に位置して互いに対向する一対の側面12bとにより構成される。   The cross-sectional shape orthogonal to the groove extending direction in the raceway groove 12 is a groove shape that opens toward the axis of the outer joint member 10. The raceway groove 12 is configured by a bottom surface 12a formed in a planar shape and a pair of side surfaces 12b located on both sides of the bottom surface 12a in the groove width direction and facing each other.

軌道溝12の側面12bは、図3に示すように、転動体ユニット30を構成する軸状転動体60の転動部61の軸長L(図4及び図5に示す)より大きな幅W(図4に示す)を有する転走面16、転走面16の軌道溝12の開口側に形成される開口側肩部17、及び、転走面16の軌道溝12の底面12a側に形成される底面側肩部18を備える。   As shown in FIG. 3, the side surface 12 b of the raceway groove 12 has a width W (which is larger than the axial length L (shown in FIGS. 4 and 5) of the rolling portion 61 of the shaft-like rolling body 60 constituting the rolling body unit 30. 4), the opening-side shoulder 17 formed on the opening side of the raceway groove 12 of the rolling surface 16, and the bottom surface 12 a side of the raceway groove 12 of the rolling surface 16. The bottom side shoulder 18 is provided.

内側ジョイント部材20は、図1に示すように、本実施形態においてはトリポードである。内側ジョイント部材20は、外側ジョイント部材10の内側に配置される。内側ジョイント部材20は、外側ジョイント部材10に対して、外側ジョイント部材10の軸線方向に移動可能であると共に傾動可能である。内側ジョイント部材20は、図2に示すように、環状に形成されたボス部21と、ボス部21から径方向外方に突出する3本の脚軸22とを備える。ボス部21は、内周側をシャフト2に一体的に連結される。各脚軸22の外周面は、球面凸状に形成され、脚軸22の軸線方向の中央部が最も膨出する形状に形成される。   As shown in FIG. 1, the inner joint member 20 is a tripod in the present embodiment. The inner joint member 20 is disposed inside the outer joint member 10. The inner joint member 20 is movable and tiltable with respect to the outer joint member 10 in the axial direction of the outer joint member 10. As shown in FIG. 2, the inner joint member 20 includes a boss portion 21 formed in an annular shape, and three leg shafts 22 projecting radially outward from the boss portion 21. The boss portion 21 is integrally connected to the shaft 2 on the inner peripheral side. The outer peripheral surface of each leg shaft 22 is formed in a spherical convex shape, and is formed in a shape in which the central portion in the axial direction of the leg shaft 22 bulges most.

転動体ユニット30は、図2に示すように、環状に形成される。本実施形態において、転動体ユニット30の外形形状は、ほぼ直方体状に近似する形状に形成される。転動体ユニット30は、脚軸22の外周側に支持され、且つ脚軸22の軸線に対して傾動可能に支持される。転動体ユニット30は、外側ジョイント部材10の軌道溝12の側面12bに沿って移動可能である。転動体ユニット30は、軌道溝12の側面12bと脚軸22との間に介在し、両部材間でのトルク伝達を可能に構成される。   As shown in FIG. 2, the rolling element unit 30 is formed in an annular shape. In the present embodiment, the outer shape of the rolling element unit 30 is formed in a shape that approximates a rectangular parallelepiped shape. The rolling element unit 30 is supported on the outer peripheral side of the leg shaft 22 and is supported to be tiltable with respect to the axis of the leg shaft 22. The rolling element unit 30 is movable along the side surface 12 b of the raceway groove 12 of the outer joint member 10. The rolling element unit 30 is interposed between the side surface 12b of the raceway groove 12 and the leg shaft 22, and is configured to be able to transmit torque between both members.

転動体ユニット30は、図2に示すように、内側部材40と、複数の軸状転動体60と、保持部材70とを備え、軸状転動体60が転動体ユニット30の外周側を循環するタイプである。内側部材40は、2つの分割部材41,42により構成され、全体としては環状に近似する形状に形成される。なお、内側部材40は、2つの分割部材41,42を一体に成形した部材とすることもできる。内側部材40は、複数の脚軸22の各々に対して傾動可能に設けられ、脚軸22に対する転動体ユニット30の傾動を可能にしている。また、内側部材40は、脚軸22との間で動力伝達可能に設けられる。また、分割部材41,42のそれぞれは、外周面に背向する平面状に形成された一対のトルク伝達面41a,42aを備える。トルク伝達面41a,42aは、軌道溝12の側面12bに対向する。   As shown in FIG. 2, the rolling element unit 30 includes an inner member 40, a plurality of axial rolling elements 60, and a holding member 70, and the axial rolling element 60 circulates on the outer peripheral side of the rolling element unit 30. Type. The inner member 40 includes two divided members 41 and 42, and is formed in a shape that approximates an annular shape as a whole. The inner member 40 may be a member obtained by integrally molding the two divided members 41 and 42. The inner member 40 is provided so as to be tiltable with respect to each of the plurality of leg shafts 22, and enables the rolling element unit 30 to tilt with respect to the leg shafts 22. Further, the inner member 40 is provided so as to be able to transmit power to and from the leg shaft 22. Each of the split members 41 and 42 includes a pair of torque transmission surfaces 41a and 42a formed in a planar shape facing away from the outer peripheral surface. The torque transmission surfaces 41 a and 42 a face the side surface 12 b of the raceway groove 12.

軸状転動体60は、軌道溝12の側面12bと内側部材40のトルク伝達面41a,42aとの間に、軌道溝12の側面12bにおける転走面16に沿って転動可能に設けられる。軸状転動体60は、円筒状の外周面を有し転走面16を転動する転動部61と、当該転動部61の両端から軸状転動体60の軸線方向に突出する突起部62とにより構成される。   The axial rolling element 60 is provided between the side surface 12 b of the raceway groove 12 and the torque transmission surfaces 41 a and 42 a of the inner member 40 so as to roll along the rolling surface 16 on the side surface 12 b of the raceway groove 12. The axial rolling element 60 has a cylindrical outer peripheral surface and a rolling part 61 that rolls on the rolling surface 16, and a protruding part that protrudes from both ends of the rolling part 61 in the axial direction of the axial rolling element 60. 62.

保持部材70は、複数の軸状転動体60が内側部材40の外周を循環可能となるように複数の軸状転動体60を保持する。保持部材70は、環状に形成され、内側部材40の外周を囲む形状をなしている。保持部材70は、軸状転動体60の循環路を形成し、且つ、軸状転動体60の突起部62を係止する一対の循環路形成部材により構成される。   The holding member 70 holds the plurality of shaft-like rolling elements 60 so that the plurality of shaft-like rolling elements 60 can circulate around the outer periphery of the inner member 40. The holding member 70 is formed in an annular shape and surrounds the outer periphery of the inner member 40. The holding member 70 is configured by a pair of circulation path forming members that form a circulation path of the shaft-like rolling element 60 and latch the protrusion 62 of the shaft-like rolling element 60.

(2.転動体ユニット30の姿勢)
次に、転動体ユニット30が軌道溝12の側面12bに沿って移動する際の姿勢について、図4を参照して説明する。軸状転動体60の転動部61が軌道溝12の側面12bにおける転走面16を転動する。つまり、転走面16を転動する複数の軸状転動体60の転動部61は、開口側肩部17及び底面側肩部18に係止されることで、転動体ユニット30が外側ジョイント部材10に対して姿勢を規制される。
(2. Posture of rolling element unit 30)
Next, the posture when the rolling element unit 30 moves along the side surface 12b of the raceway groove 12 will be described with reference to FIG. The rolling part 61 of the shaft-like rolling element 60 rolls on the rolling surface 16 on the side surface 12 b of the raceway groove 12. That is, the rolling part 61 of the plurality of shaft-like rolling elements 60 rolling on the rolling surface 16 is locked to the opening-side shoulder 17 and the bottom-side shoulder 18, so that the rolling element unit 30 is connected to the outer joint. The posture of the member 10 is restricted.

ただし、転走面16の幅Wは、軸状転動体60の転動部61の軸長L(図4及び図5に示す)より僅かではあるが大きい。そのため、図4に示すように、軸状転動体60の循環平面が、転走面16の延びる方向に対して僅かに傾く状態になる。転動体ユニット30が外側ジョイント部材10の奥側(図1の右側)から開口部11側(図1の左側)に移動する場合には、内側ジョイント部材20の脚軸22の傾動に伴って、転動体ユニット30は図4に示す姿勢となる。一方、転動体ユニット30が外側ジョイント部材10の開口部11側(図1の左側)から奥側(図1の右側)に移動する場合には、内側ジョイント部材20の脚軸22の傾動に伴って、転動体ユニット30は図4とは反対の方向に傾く姿勢となる。また、軸状転動体60が転走面16に進入するとき、軸状転動体60の循環方向に応じて、軸状転動体60が側面12bの開口側肩部17に接触する場合と、軸状転動体60が側面12bの底面側肩部18に接触する場合とが存在する。   However, the width W of the rolling surface 16 is slightly larger than the axial length L (shown in FIGS. 4 and 5) of the rolling part 61 of the axial rolling element 60. Therefore, as shown in FIG. 4, the circulation plane of the axial rolling element 60 is slightly inclined with respect to the direction in which the rolling surface 16 extends. When the rolling element unit 30 moves from the back side (right side in FIG. 1) of the outer joint member 10 to the opening 11 side (left side in FIG. 1), along with the tilt of the leg shaft 22 of the inner joint member 20, The rolling element unit 30 is in the posture shown in FIG. On the other hand, when the rolling element unit 30 moves from the opening 11 side (left side in FIG. 1) to the back side (right side in FIG. 1) of the outer joint member 10, the leg shaft 22 of the inner joint member 20 is tilted. Thus, the rolling element unit 30 is inclined in the direction opposite to that in FIG. Further, when the shaft-like rolling element 60 enters the rolling surface 16, the shaft-like rolling element 60 comes into contact with the opening-side shoulder 17 of the side surface 12 b according to the circulation direction of the shaft-like rolling element 60, and the shaft In some cases, the rolling element 60 contacts the bottom shoulder 18 of the side surface 12b.

(3.軌道溝12の側面12bの詳細形状)
次に、軌道溝12の側面12bの詳細形状について図5−図10を参照して説明する。軌道溝12の側面12bの詳細形状は、軸状転動体60の軌跡を参照して説明する。そこで、まず、図4に示すように転動体ユニット30が転走面16に対して傾く姿勢において、軸状転動体60が転走面16に進入する場合について説明する。
(3. Detailed shape of side surface 12b of raceway groove 12)
Next, the detailed shape of the side surface 12b of the raceway groove 12 will be described with reference to FIGS. The detailed shape of the side surface 12 b of the raceway groove 12 will be described with reference to the locus of the axial rolling element 60. Therefore, first, the case where the axial rolling element 60 enters the rolling surface 16 in a posture in which the rolling element unit 30 is inclined with respect to the rolling surface 16 as shown in FIG. 4 will be described.

図4に示すように転動体ユニット30が転走面16に対して傾く姿勢において、軸状転動体60が転走面16に進入する場合として、以下の2つの場合がある。第一の場合とは、図5に示す状態から図6に示す状態へ移行する場合、すなわち、軸状転動体60の転動部61の開口側端部61aが側面12bの開口側肩部17に接触した後に、軸状転動体60が転走面16に進入する場合である。第二の場合とは、図8に示す状態から図9に示す状態へ移行する場合、すなわち、軸状転動体60の底面側端部61bが側面12bの底面側肩部18に接触した後に、軸状転動体60が転走面16に進入する場合である。   As shown in FIG. 4, when the rolling element unit 30 is inclined with respect to the rolling surface 16, there are the following two cases where the axial rolling element 60 enters the rolling surface 16. The first case is a case where the state shown in FIG. 5 is shifted to the state shown in FIG. 6, that is, the opening side end 61a of the rolling part 61 of the shaft-like rolling element 60 is the opening side shoulder 17 of the side face 12b. This is a case where the shaft-like rolling element 60 enters the rolling surface 16 after contacting with. In the second case, when the state shown in FIG. 8 shifts to the state shown in FIG. 9, that is, after the bottom surface side end portion 61b of the shaft-shaped rolling element 60 contacts the bottom surface side shoulder portion 18 of the side surface 12b, This is a case where the shaft-shaped rolling element 60 enters the rolling surface 16.

図7において、細破線、中太破線、太破線は、いずれも軸状転動体60の転動部61の輪郭である。細破線にて示す転動部61は、軌道溝12の側面12bに接触していない状態であり、中太破線にて示す転動部61は、側面12bの開口側肩部17に接触する状態であり、太破線にて示す転動部61は、転走面16に接触する状態である。   In FIG. 7, the thin broken line, the middle thick broken line, and the thick broken line are all outlines of the rolling part 61 of the axial rolling element 60. The rolling part 61 indicated by the thin broken line is in a state where it does not contact the side surface 12b of the raceway groove 12, and the rolling part 61 indicated by the middle thick broken line is in contact with the opening side shoulder 17 of the side face 12b. The rolling part 61 indicated by a thick broken line is in a state of contacting the rolling surface 16.

軌道溝12の側面12bにおける開口側肩部17の形状は、図7に示すとおりである。図7に示すように、開口側肩部17は、第一規制傾斜面17aと第一導入傾斜面17bとを備える。第一規制傾斜面17aは、転走面16を転動する軸状転動体60の姿勢を規制する面である。第一規制傾斜面17aは、軸状転動体60のスキューを規制する。第一規制傾斜面17aは、転走面16に対して直交な面ではなく、軌道溝12の開口側に広がるように傾斜する。第一規制傾斜面17aは、転走面16を転動する軸状転動体60の転動部61の開口側端部61aが接触する第一規制点Pa1を備える。なお、本実施形態においては、第一規制傾斜面17aは平面状に形成するが、曲面状に形成してもよい。   The shape of the opening-side shoulder 17 on the side surface 12b of the raceway groove 12 is as shown in FIG. As shown in FIG. 7, the opening-side shoulder 17 includes a first regulating inclined surface 17a and a first introduction inclined surface 17b. The first regulating inclined surface 17 a is a surface that regulates the posture of the axial rolling element 60 that rolls on the rolling surface 16. The first regulating inclined surface 17a regulates the skew of the axial rolling element 60. The first regulating inclined surface 17 a is not a surface orthogonal to the rolling surface 16 but is inclined so as to spread toward the opening side of the raceway groove 12. The first restriction inclined surface 17 a includes a first restriction point Pa <b> 1 with which the opening-side end 61 a of the rolling part 61 of the shaft-like rolling element 60 that rolls on the rolling surface 16 contacts. In addition, in this embodiment, although the 1st control inclination surface 17a is formed in planar shape, you may form in curved surface shape.

第一導入傾斜面17bは、第一規制傾斜面17aより軌道溝12の開口側に位置し、第一規制傾斜面17aより斜度の小さな面である。ここでいう斜度とは、転走面16を基準とする斜度である。第一導入傾斜面17bは、上記の第一の場合である軸状転動体60の転動部61の開口側端部61aが側面12bの開口側肩部17に接触した後に軸状転動体60が転走面16に進入する場合において、軸状転動体60の転動部61の開口側端部61aとの第一接触点Pb1を備える。さらに、第一規制傾斜面17aと第一導入傾斜面17bとは、接面が連続的となるように接続される。なお、本実施形態においては、第一導入傾斜面17bは平面状に形成するが、曲面状に形成してもよい。   The first introduction inclined surface 17b is located closer to the opening side of the raceway groove 12 than the first restricting inclined surface 17a, and is a surface having a lower inclination than the first restricting inclined surface 17a. The inclination here is an inclination based on the rolling surface 16. The first introduction inclined surface 17b is formed in the axial rolling element 60 after the opening side end 61a of the rolling part 61 of the axial rolling element 60 in the first case contacts the opening side shoulder 17 of the side surface 12b. Is provided with a first contact point Pb1 with the opening-side end 61a of the rolling part 61 of the shaft-like rolling element 60. Further, the first regulating inclined surface 17a and the first introduction inclined surface 17b are connected so that the contact surfaces are continuous. In the present embodiment, the first introduction inclined surface 17b is formed in a flat shape, but may be formed in a curved surface shape.

図7には、外側ジョイント部材10の軸線方向に直交する平面を示し、軸状転動体60が図5に示す状態から図6に示す状態へ移行する場合において、仮に開口側肩部17が存在しないとした場合の軸状転動体60の転動部61の開口側端部61aの軌跡T1は、二点鎖線にて示す。つまり、当該軌跡T1は、第一接触点Pb1を通り、開口側肩部17の部位を通過して、転走面16へ進入する。当該軌跡T1は、A1→第一接触点Pb1→B1→転走面16の順となる。   FIG. 7 shows a plane orthogonal to the axial direction of the outer joint member 10, and the opening-side shoulder 17 exists when the axial rolling element 60 shifts from the state shown in FIG. 5 to the state shown in FIG. 6. The trajectory T1 of the opening-side end 61a of the rolling part 61 of the shaft-like rolling element 60 in the case of not being indicated is indicated by a two-dot chain line. That is, the trajectory T <b> 1 passes through the first contact point Pb <b> 1, passes through the site of the opening-side shoulder 17, and enters the rolling surface 16. The trajectory T1 is in the order of A1 → first contact point Pb1 → B1 → rolling surface 16.

ここで、図7に示すように、外側ジョイント部材10の軸線方向に直交する平面上において、軸状転動体60の転動部61の開口側端部61aが第一接触点Pb1へ進入する軌跡T1において第一接触点Pb1へ向かうベクトルを第一進入ベクトルVi1と定義する。また、同平面上において、軌道溝12の側面12bの接線において、第一接触点Pb1の軌道溝12の開口側から底面12a側へのベクトルを第一接線ベクトルVs1と定義する。   Here, as shown in FIG. 7, on the plane orthogonal to the axial direction of the outer joint member 10, the locus of the opening side end 61a of the rolling part 61 of the axial rolling element 60 entering the first contact point Pb1. A vector toward the first contact point Pb1 at T1 is defined as a first approach vector Vi1. Further, on the same plane, a vector from the opening side of the raceway groove 12 to the bottom surface 12a side of the first contact point Pb1 on the tangent line of the side surface 12b of the raceway groove 12 is defined as a first tangent vector Vs1.

そして、第一進入ベクトルVi1と第一接線ベクトルVs1とのなす角θ1が鋭角となるように、開口側肩部17の第一導入傾斜面17bが形成される。なお、なす角θ1とは、第一進入ベクトルVi1にて示す半直線と第一接線ベクトルVs1にて示す半直線とのなす劣角に相当する。また、特に、転走面16は脚軸22の軸線に平行に形成されており、第一接線ベクトルVs1が軌道溝12の開口側より底面側の方が脚軸22の軸線より遠くなるように、第一導入傾斜面17bが傾斜して形成される。   Then, the first introduction inclined surface 17b of the opening-side shoulder 17 is formed so that the angle θ1 formed by the first approach vector Vi1 and the first tangent vector Vs1 is an acute angle. The angle θ1 formed corresponds to an inferior angle formed by the half line indicated by the first approach vector Vi1 and the half line indicated by the first tangent vector Vs1. In particular, the rolling surface 16 is formed parallel to the axis of the leg shaft 22 so that the first tangent vector Vs1 is farther from the opening side of the raceway groove 12 to the bottom surface side than the axis of the leg shaft 22. The first introduction inclined surface 17b is formed to be inclined.

上記のように開口側肩部17が形成される場合において、開口側端部61aは、実際には、開口側肩部17の表面に沿って移動する。つまり、開口側端部61aの実際の軌跡は、A1→C1(第一接触点Pb1を含む)→D1→転走面16の順となる。従って、開口側端部61aは、第一接触点Pb1から転走面16へ滑らかに進入する。   In the case where the opening-side shoulder 17 is formed as described above, the opening-side end 61 a actually moves along the surface of the opening-side shoulder 17. That is, the actual trajectory of the opening side end 61a is in the order of A1 → C1 (including the first contact point Pb1) → D1 → the rolling surface 16. Therefore, the opening side end portion 61a smoothly enters the rolling surface 16 from the first contact point Pb1.

軌道溝12の側面12bにおける底面側肩部18の形状は、図10に示すとおりである。図10に示すように、底面側肩部18は、第二規制傾斜面18aと第二導入傾斜面18bとを備える。第二規制傾斜面18aは、第一規制傾斜面17aと共に、転走面16を転動する軸状転動体60の姿勢を規制する面である。第二規制傾斜面18aは、軸状転動体60のスキューを規制する。第二規制傾斜面18aは、転走面16に対して直交な面ではなく、軌道溝12の底面12a側に広がるように傾斜する。第二規制傾斜面18aは、転走面16を転動する軸状転動体60の転動部61の底面側端部61bが接触する第二規制点Pa2を備える。なお、本実施形態においては、第二規制傾斜面18aは平面状に形成するが、曲面状に形成してもよい。   The shape of the bottom-side shoulder 18 on the side surface 12b of the raceway groove 12 is as shown in FIG. As shown in FIG. 10, the bottom side shoulder 18 includes a second regulating inclined surface 18 a and a second introduction inclined surface 18 b. The 2nd control inclination surface 18a is a surface which controls the attitude | position of the axial rolling element 60 which rolls the rolling surface 16 with the 1st control inclination surface 17a. The second regulating inclined surface 18a regulates the skew of the axial rolling element 60. The second regulating inclined surface 18 a is not a surface orthogonal to the rolling surface 16 but is inclined so as to spread toward the bottom surface 12 a side of the raceway groove 12. The second restriction inclined surface 18 a includes a second restriction point Pa <b> 2 where the bottom surface side end 61 b of the rolling part 61 of the shaft-like rolling element 60 that rolls on the rolling surface 16 contacts. In addition, in this embodiment, although the 2nd control inclination surface 18a is formed in planar shape, you may form in curved surface shape.

第二導入傾斜面18bは、第二規制傾斜面18aより軌道溝12の底面12a側に位置し、第二規制傾斜面18aより斜度の小さな面である。第二導入傾斜面18bは、上記の第二の場合である軸状転動体60の転動部61の底面側端部61bが側面12bの底面側肩部18に接触した後に軸状転動体60が転走面16に進入する場合において、軸状転動体60の転動部61の底面側端部61bとの第二接触点Pb2を備える。さらに、第二規制傾斜面18aと第二導入傾斜面18bとは、接面が連続的となるように接続される。なお、本実施形態においては、第二導入傾斜面18bは平面状に形成するが、曲面状に形成してもよい。   The second introduction inclined surface 18b is located on the bottom surface 12a side of the raceway groove 12 with respect to the second restricting inclined surface 18a, and has a smaller inclination than the second restricting inclined surface 18a. The second introduction inclined surface 18b is formed in the axial rolling element 60 after the bottom surface side end 61b of the rolling part 61 of the axial rolling element 60 in the second case is in contact with the bottom surface side shoulder 18 of the side surface 12b. , When entering the rolling surface 16, the second contact point Pb <b> 2 with the bottom surface side end portion 61 b of the rolling portion 61 of the axial rolling element 60 is provided. Further, the second regulating inclined surface 18a and the second introduction inclined surface 18b are connected so that the contact surfaces are continuous. In the present embodiment, the second introduction inclined surface 18b is formed in a planar shape, but may be formed in a curved surface shape.

図10には、外側ジョイント部材10の軸線方向に直交する平面を示し、軸状転動体60が図8に示す状態から図9に示す状態へ移行する場合において、仮に底面側肩部18が存在しないとした場合の軸状転動体60の転動部61の底面側端部61bの軌跡T2は、二点鎖線にて示す。つまり、当該軌跡T2は、第二接触点Pb2を通り、底面側肩部18の部位を通過して、転走面16へ進入する。当該軌跡T2は、A2→第二接触点Pb2→B2→転走面16の順となる。   FIG. 10 shows a plane orthogonal to the axial direction of the outer joint member 10, and there is a bottom side shoulder 18 when the axial rolling element 60 transitions from the state shown in FIG. 8 to the state shown in FIG. 9. The trajectory T2 of the bottom surface side end portion 61b of the rolling portion 61 of the shaft-like rolling element 60 in the case of not being indicated is indicated by a two-dot chain line. That is, the trajectory T <b> 2 passes through the second contact point Pb <b> 2, passes through the bottom-side shoulder 18, and enters the rolling surface 16. The trajectory T2 is in the order of A2 → second contact point Pb2 → B2 → rolling surface 16.

ここで、図10に示すように、外側ジョイント部材10の軸線方向に直交する平面上において、軸状転動体60の転動部61の底面側端部61bが第二接触点Pb2へ進入する軌跡T2において第二接触点Pb2へ向かうベクトルを第二進入ベクトルVi2と定義する。また、同平面上において、軌道溝12の側面12bの接線において、第二接触点Pb2の軌道溝12の底面12a側から開口側へのベクトルを第二接線ベクトルVs2と定義する。   Here, as shown in FIG. 10, on the plane orthogonal to the axial direction of the outer joint member 10, the bottom surface side end portion 61b of the rolling portion 61 of the axial rolling element 60 enters the second contact point Pb2. A vector toward the second contact point Pb2 at T2 is defined as a second approach vector Vi2. In addition, on the same plane, a vector from the bottom surface 12a side of the raceway groove 12 to the opening side of the raceway groove 12 at the second contact point Pb2 on the tangent line of the side surface 12b of the raceway groove 12 is defined as a second tangent vector Vs2.

そして、第二進入ベクトルVi2と第二接線ベクトルVs2とのなす角θ2が鋭角となるように、底面側肩部18の第二導入傾斜面18bが形成される。なお、なす角θ2とは、第二進入ベクトルVi2にて示す半直線と第二接線ベクトルVs2にて示す半直線とのなす劣角に相当する。また、特に、転走面16は脚軸22の軸線に平行に形成されており、第二接線ベクトルVs2が軌道溝12の底面12a側より開口側の方が脚軸22の軸線より遠くなるように、第二導入傾斜面18bが傾斜して形成される。   Then, the second introduction inclined surface 18b of the bottom side shoulder 18 is formed so that the angle θ2 formed by the second approach vector Vi2 and the second tangent vector Vs2 is an acute angle. The angle θ2 formed corresponds to an inferior angle formed by the half line indicated by the second approach vector Vi2 and the half line indicated by the second tangent vector Vs2. In particular, the rolling surface 16 is formed parallel to the axis of the leg shaft 22 so that the second tangent vector Vs2 is farther from the bottom surface 12a side of the raceway groove 12 on the opening side than the axis of the leg shaft 22. In addition, the second introduction inclined surface 18b is formed to be inclined.

上記のように底面側肩部18が形成される場合において、底面側端部61bは、実際には、底面側肩部18の表面に沿って移動する。つまり、底面側端部61bの実際の軌跡は、A2→C2(第二接触点Pb2を含む)→D2→転走面16の順となる。従って、底面側端部61bは、第二接触点Pb2から転走面16へ滑らかに進入する。   When the bottom-side shoulder 18 is formed as described above, the bottom-side end 61 b actually moves along the surface of the bottom-side shoulder 18. That is, the actual trajectory of the bottom-side end 61b is in the order of A2 → C2 (including the second contact point Pb2) → D2 → the rolling surface 16. Therefore, the bottom surface side end 61b smoothly enters the rolling surface 16 from the second contact point Pb2.

(4.実施形態の効果)
上記実施形態の等速ジョイント1は、筒状に形成され、内周面に複数の軌道溝12が形成される外側ジョイント部材10と、径方向外方に突出する複数の脚軸22を備える内側ジョイント部材20と、脚軸22の外周面に支持される内側部材40と、内側部材40の外周に沿って循環し、軌道溝12の側面12b及び内側部材40の外周面を転動する複数の軸状転動体60とを備える。
(4. Effects of the embodiment)
The constant velocity joint 1 of the above embodiment is formed in a cylindrical shape, and includes an outer joint member 10 having a plurality of raceway grooves 12 formed on an inner peripheral surface, and an inner side provided with a plurality of leg shafts 22 projecting radially outward. The joint member 20, the inner member 40 supported by the outer peripheral surface of the leg shaft 22, and the plurality of members that circulate along the outer periphery of the inner member 40 and roll on the side surface 12 b of the raceway groove 12 and the outer peripheral surface of the inner member 40. A shaft-shaped rolling element 60 is provided.

軌道溝12の側面12bは、軸状転動体60の転動部61の軸長Lより大きな幅Wを有する転走面16、転走面16の軌道溝12の開口側に形成される開口側肩部17、及び、転走面16の軌道溝12の底面12a側に形成される底面側肩部18を備える。   The side surface 12b of the raceway groove 12 has a rolling surface 16 having a width W greater than the axial length L of the rolling part 61 of the axial rolling element 60, and an opening side formed on the opening side of the raceway groove 12 on the rolling surface 16. The shoulder part 17 and the bottom face side shoulder part 18 formed in the bottom face 12a side of the raceway groove | channel 12 of the rolling surface 16 are provided.

軸状転動体60の開口側端部61aが開口側肩部17の第一接触点Pb1に接触した後に軸状転動体60が転走面16に進入する場合において、外側ジョイント部材10の軸線方向に直交する平面上において、開口側端部61aが第一接触点Pb1へ進入する軌跡T1において第一接触点Pb1へ向かうベクトルを第一進入ベクトルVi1と定義し、軌道溝12の側面12bの接線において第一接触点Pb1の開口側から底面12a側へのベクトルを第一接線ベクトルVs1と定義し、第一進入ベクトルVi1と第一接線ベクトルVs1とのなす角θ1が鋭角となるように、開口側肩部17が形成される。   When the axial rolling element 60 enters the rolling surface 16 after the opening end 61a of the axial rolling element 60 contacts the first contact point Pb1 of the opening shoulder 17, the axial direction of the outer joint member 10 is reached. Is defined as a first approach vector Vi1 in a trajectory T1 where the opening-side end 61a enters the first contact point Pb1, and the tangent to the side surface 12b of the track groove 12 is defined as a first approach vector Vi1. , The vector from the opening side to the bottom surface 12a side of the first contact point Pb1 is defined as a first tangent vector Vs1, and the opening is set so that the angle θ1 formed by the first approach vector Vi1 and the first tangent vector Vs1 is an acute angle. A side shoulder 17 is formed.

等速ジョイント1によれば、第一進入ベクトルVi1と第一接線ベクトルVs1とのなす角θ1が鋭角となるように開口側肩部17が形成されることにより、転動体ユニット30が軌道溝12に対して傾いている状態において、軸状転動体60が転走面16に進入する際に、軸状転動体60が転走面16側へ誘導される。つまり、軸状転動体60による開口側肩部17への接触力が抑制される。従って、当該接触力による誘起スラスト力が低減する。   According to the constant velocity joint 1, the opening-side shoulder portion 17 is formed so that the angle θ1 formed by the first approach vector Vi1 and the first tangent vector Vs1 is an acute angle, whereby the rolling element unit 30 is formed in the raceway groove 12. When the shaft-like rolling element 60 enters the rolling surface 16 in a state of being inclined with respect to the shaft, the shaft-like rolling member 60 is guided to the rolling surface 16 side. That is, the contact force to the opening-side shoulder 17 by the axial rolling element 60 is suppressed. Therefore, the induced thrust force due to the contact force is reduced.

また、等速ジョイント1において、軸状転動体60の底面側端部61bが底面側肩部18の第二接触点Pb2に接触した後に軸状転動体60が転走面16に進入する場合において、外側ジョイント部材10の軸線方向に直交する平面上において、底面側端部61bが第二接触点Pb2へ進入する軌跡T2において第二接触点Pb2へ向かうベクトルを第二進入ベクトルVi2と定義し、軌道溝12の側面12bの接線において第二接触点Pb2の底面12a側から開口側へのベクトルを第二接線ベクトルVs2と定義し、第二進入ベクトルVi2と第二接線ベクトルVs2とのなす角θ2が鋭角となるように、底面側肩部18が形成される。   In the constant velocity joint 1, when the axial rolling element 60 enters the rolling surface 16 after the bottom end 61 b of the axial rolling element 60 contacts the second contact point Pb 2 of the bottom shoulder 18. In addition, on the plane perpendicular to the axial direction of the outer joint member 10, a vector toward the second contact point Pb2 in the trajectory T2 where the bottom surface side end 61b enters the second contact point Pb2 is defined as a second entry vector Vi2. A vector from the bottom surface 12a side to the opening side of the second contact point Pb2 on the tangent to the side surface 12b of the raceway groove 12 is defined as a second tangent vector Vs2, and an angle θ2 formed by the second approach vector Vi2 and the second tangent vector Vs2 is defined. The bottom-side shoulder 18 is formed so that is an acute angle.

等速ジョイント1によれば、第二進入ベクトルVi2と第二接線ベクトルVs2とのなす角θ2が鋭角となるように底面側肩部18が形成されることにより、転動体ユニット30が軌道溝12に対して傾いている状態において、軸状転動体60が転走面16に進入する際に、軸状転動体60が転走面16側へ誘導される。つまり、軸状転動体60による底面側肩部18への接触力が抑制される。従って、当該接触力による誘起スラスト力が低減する。   According to the constant velocity joint 1, the bottom surface side shoulder portion 18 is formed so that the angle θ2 formed by the second approach vector Vi2 and the second tangent vector Vs2 is an acute angle, whereby the rolling element unit 30 is formed in the raceway groove 12. When the shaft-like rolling element 60 enters the rolling surface 16 in a state of being inclined with respect to the shaft, the shaft-like rolling member 60 is guided to the rolling surface 16 side. That is, the contact force to the bottom side shoulder 18 by the axial rolling element 60 is suppressed. Therefore, the induced thrust force due to the contact force is reduced.

また、上記等速ジョイント1において、転走面16は、脚軸22の軸線に平行に形成され、第一接線ベクトルVs1が軌道溝12の開口側より底面12a側の方が脚軸22の軸線より遠くなるように、開口側肩部17が傾斜して形成される。これにより、軸状転動体60が開口側肩部17側から転走面16に進入する際に、軸状転動体60が確実に転走面16側へ誘導される。従って、軸状転動体60による開口側肩部17への接触力が確実に抑制される。   In the constant velocity joint 1, the rolling surface 16 is formed in parallel to the axis of the leg shaft 22, and the first tangent vector Vs 1 is closer to the bottom surface 12 a side than the opening side of the raceway groove 12. The opening-side shoulder 17 is formed so as to be further away. Thereby, when the axial rolling element 60 enters the rolling surface 16 from the opening side shoulder 17 side, the axial rolling element 60 is reliably guided to the rolling surface 16 side. Therefore, the contact force to the opening side shoulder 17 by the shaft-shaped rolling element 60 is reliably suppressed.

また、上記等速ジョイント1において、転走面16は、脚軸22の軸線に平行に形成され、第二接線ベクトルVs2が軌道溝12の底面12a側より開口側の方が脚軸22の軸線より遠くなるように、底面側肩部18が傾斜して形成される。これにより、軸状転動体60が底面側肩部18側から転走面16に進入する際に、軸状転動体60が確実に転走面16側へ誘導される。従って、軸状転動体60による底面側肩部18への接触力が確実に抑制される。   In the constant velocity joint 1, the rolling surface 16 is formed parallel to the axis of the leg shaft 22, and the second tangent vector Vs2 is the axis of the leg shaft 22 on the opening side from the bottom surface 12 a side of the raceway groove 12. The bottom-side shoulder 18 is formed so as to be farther away. Thereby, when the axial rolling element 60 enters the rolling surface 16 from the bottom side shoulder 18 side, the axial rolling element 60 is reliably guided to the rolling surface 16 side. Therefore, the contact force to the bottom-side shoulder 18 by the shaft-like rolling element 60 is reliably suppressed.

また、上記等速ジョイント1において、開口側肩部17は、転走面16側に位置し、転走面16を転動する軸状転動体60の姿勢を規制する第一規制傾斜面17aと、第一規制傾斜面17aより軌道溝12の開口側に位置し、第一接触点Pb1を有し、且つ、第一規制傾斜面17aより斜度の小さな第一導入傾斜面17bとを備える。   In the constant velocity joint 1, the opening-side shoulder 17 is positioned on the rolling surface 16 side, and the first regulating inclined surface 17 a that regulates the posture of the axial rolling element 60 that rolls on the rolling surface 16. The first regulating inclined surface 17b is located on the opening side of the raceway groove 12 with respect to the first regulating inclined surface 17a, has a first contact point Pb1, and has a first introduction inclined surface 17b having a smaller inclination than the first regulating inclined surface 17a.

開口側肩部17が第一導入傾斜面17bを有することで、軸状転動体60が軌道溝12に対して傾いている状態において、軸状転動体60が開口側肩部17側から転走面16に進入する際には、軸状転動体60が斜度の小さな第一導入傾斜面17bに接触する。そのため、軸状転動体60が転走面16側へ誘導される。従って、軸状転動体60による開口側肩部17への接触力が小さくなり、当該接触力による誘起スラスト力が低減する。また、開口側肩部17が第一規制傾斜面17aを有することで、軸状転動体60が転走面16を転動する際に、軸状転動体60の姿勢が規制される。つまり、転動体ユニット30の姿勢が確実に規制される。   Since the opening-side shoulder 17 has the first introduction inclined surface 17b, the axial-shaped rolling element 60 rolls from the opening-side shoulder 17 side in a state where the axial-shaped rolling element 60 is inclined with respect to the raceway groove 12. When entering the surface 16, the shaft-shaped rolling element 60 contacts the first introduction inclined surface 17b having a small inclination. Therefore, the axial rolling element 60 is guided to the rolling surface 16 side. Therefore, the contact force to the opening-side shoulder 17 by the shaft-like rolling element 60 is reduced, and the induced thrust force due to the contact force is reduced. Moreover, when the opening-side shoulder portion 17 has the first restriction inclined surface 17a, the posture of the axial rolling element 60 is restricted when the axial rolling element 60 rolls on the rolling surface 16. That is, the posture of the rolling element unit 30 is reliably regulated.

また、上記等速ジョイント1において、底面側肩部18は、転走面16側に位置し、転走面16を転動する軸状転動体60の姿勢を規制する第二規制傾斜面18aと、第二規制傾斜面18aより軌道溝12の底面12a側に位置し、第二接触点Pb2を有し、且つ、第二規制傾斜面18aより斜度の小さな第二導入傾斜面18bとを備える。   In the constant velocity joint 1, the bottom shoulder 18 is positioned on the rolling surface 16 side, and a second regulating inclined surface 18 a that regulates the posture of the axial rolling element 60 that rolls on the rolling surface 16. The second regulating inclined surface 18a is located on the bottom surface 12a side of the raceway groove 12, has a second contact point Pb2, and has a second introduction inclined surface 18b having a smaller inclination than the second regulating inclined surface 18a. .

底面側肩部18が第二導入傾斜面18bを有することで、軸状転動体60が軌道溝12に対して傾いている状態において、軸状転動体60が底面側肩部18側から転走面16に進入する際には、軸状転動体60が斜度の小さな第二導入傾斜面18bに接触する。そのため、軸状転動体60が転走面16側へ誘導される。従って、軸状転動体60による底面側肩部18への接触力が小さくなり、当該接触力による誘起スラスト力が低減する。また、底面側肩部18が第二規制傾斜面18aを有することで、軸状転動体60が転走面16を転動する際に、軸状転動体60の姿勢が規制される。つまり、転動体ユニット30の姿勢が確実に規制される。   Since the bottom-side shoulder 18 has the second introduction inclined surface 18b, the axial-shaped rolling element 60 rolls from the bottom-side shoulder 18 side in a state where the axial-shaped rolling element 60 is inclined with respect to the raceway groove 12. When entering the surface 16, the shaft-like rolling element 60 contacts the second introduction inclined surface 18b having a small inclination. Therefore, the axial rolling element 60 is guided to the rolling surface 16 side. Accordingly, the contact force of the shaft-like rolling element 60 to the bottom side shoulder 18 is reduced, and the induced thrust force due to the contact force is reduced. Further, since the bottom shoulder 18 has the second regulating inclined surface 18a, the attitude of the axial rolling element 60 is regulated when the axial rolling element 60 rolls on the rolling surface 16. That is, the posture of the rolling element unit 30 is reliably regulated.

また、第一規制傾斜面17aと第一導入傾斜面17bは、接面が連続的となるように接続される。ここで、軸状転動体60が第一導入傾斜面17bから第一規制傾斜面17aを通過して転走面16へ進入する際に、軸状転動体60は開口側肩部17に対して押し付けられる状態となる。しかし、上記のように、接面が連続的な接続であることにより、軸状転動体60が非常に滑らかに転走面16へ進入できる。   Further, the first regulating inclined surface 17a and the first introduction inclined surface 17b are connected so that the contact surfaces are continuous. Here, when the shaft-like rolling element 60 passes from the first introduction inclined surface 17 b through the first regulating inclined surface 17 a and enters the rolling surface 16, the shaft-like rolling element 60 is in contact with the opening-side shoulder 17. It will be in a state of being pressed. However, as described above, the contact surface is a continuous connection, so that the axial rolling element 60 can enter the rolling surface 16 very smoothly.

また、第二規制傾斜面18aと第二導入傾斜面18bは、接面が連続的となるように接続される。ここで、軸状転動体60が第二導入傾斜面18bから第二規制傾斜面18aを通過して転走面16へ進入する際に、軸状転動体60は底面側肩部18に対して押し付けられる状態となる。しかし、上記のように、接面が連続的な接続であることにより、軸状転動体60が非常に滑らかに転走面16へ進入できる。   Moreover, the 2nd control inclination surface 18a and the 2nd introduction inclination surface 18b are connected so that a contact surface may become continuous. Here, when the axial rolling element 60 enters the rolling surface 16 from the second introduction inclined surface 18b through the second regulating inclined surface 18a, the axial rolling element 60 is in contact with the bottom shoulder 18. It will be in a state of being pressed. However, as described above, the contact surface is a continuous connection, so that the axial rolling element 60 can enter the rolling surface 16 very smoothly.

1:等速ジョイント、 10:外側ジョイント部材、 12:軌道溝、 12a:底面、 12b:側面、 16:転走面、 17:開口側肩部、 17a:第一規制傾斜面、 17b:第一導入傾斜面、 18:底面側肩部、 18a:第二規制傾斜面、 18b:第二導入傾斜面、 20:内側ジョイント部材、 22:脚軸、 30:転動体ユニット、 40:内側部材、 60:軸状転動体、 61:転動部、 61a:開口側端部、 61b:底面側端部、 Pa1:第一規制点、 Pa2:第二規制点、 Pb1:第一接触点、 Pb2:第二接触点、 Vi1:第一進入ベクトル、 Vi2:第二進入ベクトル、 Vs1:第一接線ベクトル、 Vs2:第二接線ベクトル、 L:転動部の軸長、 W:幅、 θ1,θ2:なす角 1: constant velocity joint, 10: outer joint member, 12: raceway groove, 12a: bottom surface, 12b: side surface, 16: rolling surface, 17: opening side shoulder, 17a: first regulating inclined surface, 17b: first Introducing inclined surface, 18: bottom side shoulder, 18a: second regulating inclined surface, 18b: second introducing inclined surface, 20: inner joint member, 22: leg shaft, 30: rolling element unit, 40: inner member, 60 : Axial rolling element 61: rolling part 61a: opening side end part 61b: bottom side end part Pa1: first regulation point Pa2: second regulation point Pb1: first contact point Pb2: first Two contact points, Vi1: first approach vector, Vi2: second approach vector, Vs1: first tangent vector, Vs2: second tangent vector, L: axial length of rolling part, W: width, θ1, θ2: eggplant Corner

Claims (10)

筒状に形成され、内周面に複数の軌道溝が形成される外側ジョイント部材と、
径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、
前記脚軸の外周面に支持される内側部材と、
前記内側部材の外周に沿って循環し、前記軌道溝の側面及び前記内側部材の外周面を転動する複数の軸状転動体と、
を備える等速ジョイントであって、
前記軌道溝の側面は、前記軸状転動体の転動部の軸長より大きな幅を有する転走面、前記転走面の前記軌道溝の開口側に形成される開口側肩部、及び、前記転走面の前記軌道溝の底面側に形成される底面側肩部を備え、
前記軸状転動体の開口側端部が前記開口側肩部の第一接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、
前記外側ジョイント部材の軸線方向に直交する平面上において、前記開口側端部が前記第一接触点へ進入する軌跡において前記第一接触点へ向かうベクトルを第一進入ベクトルと定義し、前記軌道溝の側面の接線において前記第一接触点の開口側から底面側へのベクトルを第一接線ベクトルと定義し、
前記第一進入ベクトルと前記第一接線ベクトルとのなす角が鋭角となるように、前記開口側肩部が形成される、等速ジョイント。
An outer joint member formed in a cylindrical shape and having a plurality of raceway grooves formed on the inner peripheral surface;
An inner joint member comprising a plurality of leg shafts projecting radially outward;
An inner member supported on the outer peripheral surface of the leg shaft;
A plurality of axial rolling elements that circulate along the outer periphery of the inner member and roll on the side surfaces of the raceway grooves and the outer peripheral surface of the inner member;
A constant velocity joint comprising:
The side surface of the raceway groove is a rolling surface having a width larger than the axial length of the rolling portion of the shaft-like rolling element, an opening side shoulder portion formed on the opening side of the raceway groove on the rolling surface, and A bottom surface side shoulder formed on the bottom surface side of the raceway groove of the rolling surface,
In the case where the shaft-shaped rolling element enters the rolling surface after the opening-side end of the shaft-shaped rolling element contacts the first contact point of the opening-side shoulder,
On the plane perpendicular to the axial direction of the outer joint member, a vector heading toward the first contact point in a path of the opening-side end entering the first contact point is defined as a first approach vector, and the track groove A vector from the opening side to the bottom side of the first contact point in the tangent of the side surface is defined as a first tangent vector,
The constant velocity joint in which the opening side shoulder is formed so that an angle formed by the first approach vector and the first tangent vector is an acute angle.
前記軸状転動体の底面側端部が前記底面側肩部の第二接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、
前記外側ジョイント部材の軸線方向に直交する平面上において、前記底面側端部が前記第二接触点へ進入する軌跡において前記第二接触点へ向かうベクトルを第二進入ベクトルと定義し、前記軌道溝の側面の接線において前記第二接触点の底面側から開口側へのベクトルを第二接線ベクトルと定義し、
前記第二進入ベクトルと前記第二接線ベクトルとのなす角が鋭角となるように、前記底面側肩部が形成される、請求項1に記載の等速ジョイント。
In the case where the shaft-like rolling element enters the rolling surface after the bottom-side end of the shaft-like rolling element contacts the second contact point of the bottom-side shoulder,
On the plane perpendicular to the axial direction of the outer joint member, a vector toward the second contact point is defined as a second approach vector in a locus where the bottom surface side end part enters the second contact point, and the raceway groove A vector from the bottom surface side to the opening side of the second contact point in the tangent line of the side surface is defined as a second tangent vector,
The constant velocity joint according to claim 1, wherein the bottom shoulder is formed so that an angle formed by the second approach vector and the second tangent vector is an acute angle.
前記転走面は、前記脚軸の軸線に平行に形成され、
前記第一接線ベクトルが前記軌道溝の開口側より底面側の方が前記脚軸の軸線より遠くなるように、前記開口側肩部が傾斜して形成される、請求項1又は2に記載の等速ジョイント。
The rolling surface is formed parallel to the axis of the leg shaft,
The opening-side shoulder portion is formed to be inclined so that the first tangent vector is farther from the opening side of the raceway groove toward the bottom surface than the axis of the leg shaft. Constant velocity joint.
前記転走面は、前記脚軸の軸線に平行に形成され、
前記第二接線ベクトルが前記軌道溝の底面側より開口側の方が前記脚軸の軸線より遠くなるように、前記底面側肩部が傾斜して形成される、請求項2に記載の等速ジョイント。
The rolling surface is formed parallel to the axis of the leg shaft,
3. The constant velocity according to claim 2, wherein the bottom-side shoulder is inclined so that the second tangent vector is farther from the bottom side of the raceway groove toward the opening side than the axis of the leg shaft. Joint.
前記開口側肩部は、
前記転走面側に位置し、前記転走面を転動する前記軸状転動体の姿勢を規制する第一規制傾斜面と、
前記第一規制傾斜面より前記軌道溝の開口側に位置し、前記第一接触点を有し、且つ、前記第一規制傾斜面より斜度の小さな第一導入傾斜面と、
を備える、請求項1−4の何れか一項に記載の等速ジョイント。
The opening side shoulder is
A first regulating inclined surface that is located on the rolling surface side and regulates the posture of the axial rolling element that rolls on the rolling surface;
A first introduction inclined surface located on the opening side of the raceway groove from the first regulating inclined surface, having the first contact point, and having a smaller inclination than the first regulating inclined surface;
The constant velocity joint as described in any one of Claims 1-4 provided with these.
前記底面側肩部は、
前記転走面側に位置し、前記転走面を転動する前記軸状転動体の姿勢を規制する第二規制傾斜面と、
前記第二規制傾斜面より前記軌道溝の底面側に位置し、前記第二接触点を有し、且つ、前記第二規制傾斜面より斜度の小さな第二導入傾斜面と、
を備える、請求項2又は4に記載の等速ジョイント。
The bottom shoulder is
A second regulating inclined surface that is located on the rolling surface side and regulates the posture of the shaft-like rolling element rolling on the rolling surface;
A second introduction inclined surface located on the bottom surface side of the raceway groove from the second restricting inclined surface, having the second contact point, and having a smaller inclination than the second restricting inclined surface;
The constant velocity joint according to claim 2, comprising:
前記第一規制傾斜面と前記第一導入傾斜面は、接面が連続的となるように接続される、請求項5に記載の等速ジョイント。   The constant velocity joint according to claim 5, wherein the first regulation inclined surface and the first introduction inclined surface are connected so that a contact surface is continuous. 前記第二規制傾斜面と前記第二導入傾斜面は、接面が連続的となるように接続される、請求項6に記載の等速ジョイント。   The constant velocity joint according to claim 6, wherein the second regulating inclined surface and the second introduction inclined surface are connected so that a contact surface is continuous. 筒状に形成され、内周面に複数の軌道溝が形成される外側ジョイント部材と、
径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、
前記脚軸の外周面に支持される内側部材と、
前記内側部材の外周に沿って循環し、前記軌道溝の側面及び前記内側部材の外周面を転動する複数の軸状転動体と、
を備える等速ジョイントであって、
前記軌道溝の側面は、前記軸状転動体の転動部の軸長より大きな幅を有する転走面、前記転走面の前記軌道溝の開口側に形成される開口側肩部、及び、前記転走面の前記軌道溝の底面側に形成される底面側肩部を備え、
前記軸状転動体の開口側端部が前記開口側肩部の第一接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、
前記開口側肩部は、
前記転走面側に位置し、前記転走面を転動する前記軸状転動体の姿勢を規制する第一規制傾斜面と、
前記第一規制傾斜面より前記軌道溝の開口側に位置し、前記第一接触点を有し、且つ、前記第一規制傾斜面より斜度の小さな第一導入傾斜面と、
を備える、等速ジョイント。
An outer joint member formed in a cylindrical shape and having a plurality of raceway grooves formed on the inner peripheral surface;
An inner joint member comprising a plurality of leg shafts projecting radially outward;
An inner member supported on the outer peripheral surface of the leg shaft;
A plurality of axial rolling elements that circulate along the outer periphery of the inner member and roll on the side surfaces of the raceway grooves and the outer peripheral surface of the inner member;
A constant velocity joint comprising:
The side surface of the raceway groove is a rolling surface having a width larger than the axial length of the rolling portion of the shaft-like rolling element, an opening side shoulder portion formed on the opening side of the raceway groove on the rolling surface, and A bottom surface side shoulder formed on the bottom surface side of the raceway groove of the rolling surface,
In the case where the shaft-shaped rolling element enters the rolling surface after the opening-side end of the shaft-shaped rolling element contacts the first contact point of the opening-side shoulder,
The opening side shoulder is
A first regulating inclined surface that is located on the rolling surface side and regulates the posture of the axial rolling element that rolls on the rolling surface;
A first introduction inclined surface located on the opening side of the raceway groove from the first regulating inclined surface, having the first contact point, and having a smaller inclination than the first regulating inclined surface;
A constant velocity joint.
前記軸状転動体の底面側端部が前記底面側肩部の第二接触点に接触した後に前記軸状転動体が前記転走面に進入する場合において、
前記底面側肩部は、
前記転走面側に位置し、前記転走面を転動する前記軸状転動体の姿勢を規制する第二規制傾斜面と、
前記第二規制傾斜面より前記軌道溝の底面側に位置し、前記第二接触点を有し、且つ、前記第二規制傾斜面より斜度の小さな第二導入傾斜面と、
を備える、請求項9に記載の等速ジョイント。
In the case where the shaft-like rolling element enters the rolling surface after the bottom-side end of the shaft-like rolling element contacts the second contact point of the bottom-side shoulder,
The bottom shoulder is
A second regulating inclined surface that is located on the rolling surface side and regulates the posture of the shaft-like rolling element rolling on the rolling surface;
A second introduction inclined surface located on the bottom surface side of the raceway groove from the second restricting inclined surface, having the second contact point, and having a smaller inclination than the second restricting inclined surface;
The constant velocity joint according to claim 9, comprising:
JP2015051621A 2015-03-16 2015-03-16 Constant velocity joint Expired - Fee Related JP6459664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051621A JP6459664B2 (en) 2015-03-16 2015-03-16 Constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051621A JP6459664B2 (en) 2015-03-16 2015-03-16 Constant velocity joint

Publications (2)

Publication Number Publication Date
JP2016169846A JP2016169846A (en) 2016-09-23
JP6459664B2 true JP6459664B2 (en) 2019-01-30

Family

ID=56983393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051621A Expired - Fee Related JP6459664B2 (en) 2015-03-16 2015-03-16 Constant velocity joint

Country Status (1)

Country Link
JP (1) JP6459664B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014179A (en) * 2007-07-09 2009-01-22 Ntn Corp Tripod-type constant velocity universal joint
JP5240507B2 (en) * 2008-06-24 2013-07-17 株式会社ジェイテクト Sliding tripod type constant velocity joint
JP5376239B2 (en) * 2008-12-19 2013-12-25 株式会社ジェイテクト Sliding tripod type constant velocity joint

Also Published As

Publication number Publication date
JP2016169846A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US9003911B2 (en) Ball screw device
JP2006266329A (en) Fixed type constant velocity universal joint
JP6459664B2 (en) Constant velocity joint
US10837498B2 (en) Fixed constant velocity universal joint
JP2014228006A (en) Fixed constant velocity universal joint
TWI713938B (en) Ball screw spline
US20180119744A1 (en) Ball-type cross groove joint
US10364849B2 (en) Constant-velocity joint
JP2017036781A (en) Constant velocity joint of vehicle
US8029372B2 (en) Constant velocity universal joint
JP2006112495A (en) Uniform joint
JP2018155378A (en) Tripod type constant velocity universal joint
JP6904891B2 (en) Vehicle constant velocity universal joint
JP2017172765A5 (en)
JP7071854B2 (en) Constant velocity universal joint
JP2008215557A (en) Constant velocity universal joint
JP2018155379A (en) Tripod type constant velocity universal joint
JP6711747B2 (en) Fixed type constant velocity universal joint
JP2017145840A (en) Stationary constant velocity universal joint
US12055188B2 (en) Fixed type constant velocity universal joint
JPH11236926A (en) Bar field type constant velocity universal joint
US11566671B2 (en) Constant-velocity universal joint
JP2009103251A (en) Fixed type constant velocity universal joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
KR20180071707A (en) Fixed type constant velocity joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees