JP6456986B2 - Ultra-high strength and ultra-tough oil well pipe and method for producing the same - Google Patents
Ultra-high strength and ultra-tough oil well pipe and method for producing the same Download PDFInfo
- Publication number
- JP6456986B2 JP6456986B2 JP2016575505A JP2016575505A JP6456986B2 JP 6456986 B2 JP6456986 B2 JP 6456986B2 JP 2016575505 A JP2016575505 A JP 2016575505A JP 2016575505 A JP2016575505 A JP 2016575505A JP 6456986 B2 JP6456986 B2 JP 6456986B2
- Authority
- JP
- Japan
- Prior art keywords
- ultra
- oil well
- well pipe
- strength
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003129 oil well Substances 0.000 title claims description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 238000000034 method Methods 0.000 claims description 18
- 238000009749 continuous casting Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 238000005096 rolling process Methods 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 238000004513 sizing Methods 0.000 claims description 10
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 8
- 229910052729 chemical element Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000005553 drilling Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 238000007670 refining Methods 0.000 claims description 4
- -1 C: 0.12 to 0.18% Inorganic materials 0.000 claims 2
- 241001244373 Carex spissa Species 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 21
- 238000005204 segregation Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 238000005065 mining Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Continuous Casting (AREA)
Description
本発明は、冶金製品およびその製造方法に関して、特に油井管およびその製造方法に関する。 The present invention relates to a metallurgical product and a manufacturing method thereof, and more particularly to an oil well pipe and a manufacturing method thereof.
現在、世界中の深井、超深井の油ガス資源の開発はますます重視されている。わが国の西部の油田資源埋蔵は極めて深く、その地質構造が複雑である。最も深い油ガス井は8000mを超えたため、油ガス井を採掘する油井管の強度についての要求は顕著的に向上されている。公知のように、鋼級が高くなることと、材料の降伏強度が増大されることに連れて、材料の硬度が相応的に増大され、材料の靱性が徐徐に低下され、表面欠陥に対する材料の感度がさらに増大される恐れがある。深井と超深井を採掘するための油井管は、強度と靱性についての要求が非常に高いである。高強度を満足すると共に、靱性の指標をできるだけ向上して、生産使用の安全性を保証できる。 Currently, the development of oil and gas resources in Fukai and Ultra-Fukai around the world is increasingly emphasized. The oil field reserves in the western part of Japan are extremely deep and the geological structure is complicated. Since the deepest oil and gas well exceeds 8000 m, the demand for the strength of the oil well pipe for mining the oil and gas well is remarkably improved. As is well known, as the steel grade increases and the yield strength of the material increases, the hardness of the material increases correspondingly, the toughness of the material decreases gradually, and the material's resistance to surface defects increases. Sensitivity may be further increased. Oil well pipes for mining deep wells and ultra deep wells have very high demands on strength and toughness. Satisfying high strength and improving the toughness index as much as possible to ensure the safety of production use.
だが、鋼の強度、靱性および可塑性は一般的にトレードオフの関係を持つ。つまり、高い強度を有する鋼はその可塑性と靱性が一般的により低いである。同様に、鋼により高い可塑性と靱性をさせると、鋼の強度が低下される。そうすると、高い靱性と高い強度を有する鋼材料についての開発は極めて困難である。今、工業応用を実現できた油井管の強度は170ksiであるが、該油井管の衝撃靱性は50−80Jだけである。関係な指導文献によれば、圧力容器に用いられる高強度鋼の衝撃靱性はその降伏強度の10%に達成する必要である。そうすると、国内の各大油田、例えば、タリム油田も深井と超深井用の油井管性能に対して同様な標準を提出した。だが、現有の強度150ksi(降伏強度1034MPa)以上である高強度鋼の衝撃靱性の性能は該標準よりも遥かに低いである。 However, steel strength, toughness and plasticity generally have a trade-off relationship. That is, steel with high strength is generally lower in plasticity and toughness. Similarly, increasing the plasticity and toughness of steel reduces the strength of the steel. Then, it is very difficult to develop a steel material having high toughness and high strength. At present, the strength of an oil well pipe capable of realizing industrial application is 170 ksi, but the impact toughness of the oil well pipe is only 50-80 J. According to the relevant teaching literature, the impact toughness of high strength steel used for pressure vessels needs to reach 10% of its yield strength. In doing so, each major oil field in the country, such as the Tarim oil field, submitted similar standards for oil well pipe performance for Fukai and Ultra-Fukai. However, the impact toughness performance of high strength steels with an existing strength of 150 ksi (yield strength 1034 MPa) or higher is much lower than the standard.
中国特許文献CN101586450A(公開日:2008年8月27日、名称:「高強度と高靱性のある油井管およびその製造方法」)は油井管用の鋼種に関する。該鋼種の化学元素成分(wt%)は、C:0.22〜0.4%、Si:0.17〜0.35%、Mn:0.45〜0.60%、Cr:0.95〜1.10%、Mo:0.70〜0.80%、Al:0.015〜0.040%、Ni<0.20%、Cu<0.20%、V:0.070〜0.100%、Ca>0.0015%、P<0.010%、S<0.003%であり、残部が鉄である。該文献は該油井管の製造方法を提供した。該方法は、1)配料精錬、2)連続鋳造・連続圧延、および3)管加工を含んだ。該文献の鋼種の強度は1100Mpaであるが、横向衝撃靱性は90Jだけであり、靱性の指標はより低いである。 Chinese Patent Document CN101586450A (publication date: August 27, 2008, name: “oil well pipe having high strength and high toughness and manufacturing method thereof”) relates to a steel grade for oil well pipe. The chemical element components (wt%) of the steel types are: C: 0.22 to 0.4%, Si: 0.17 to 0.35%, Mn: 0.45 to 0.60%, Cr: 0.95 -1.10%, Mo: 0.70-0.80%, Al: 0.015-0.040%, Ni <0.20%, Cu <0.20%, V: 0.070-0. 100%, Ca> 0.0015%, P <0.010%, S <0.003%, and the balance is iron. The document provided a method for manufacturing the oil well pipe. The method included 1) distribution refining, 2) continuous casting and continuous rolling, and 3) pipe processing. The strength of the steel grade in this document is 1100 Mpa, but the lateral impact toughness is only 90 J, and the toughness index is lower.
中国特許文献CN101250671A (公開日:2009年11月25日、名称:「高強度と高靱性のある油井管およびその製造方法」)は油井管用の鋼種に関する。該鋼種の化学元素成分(wt%)は、C:0.16〜0.28、Si:≦0.5、Mn:0.3〜1.10、Cr:0.3〜1.10、Mo:0.60〜0.95、Al:0.015〜0.060、その内、酸可溶Als/Al≧0.8、Ni:<0.60、 Cu:0.05〜0.25、V:0.06〜0.20、Ca>0.0015、Nb:≦0.05、Ti:≦0.05、P<0.010、S<0.002、O:<0.0024、H:<0.0002、N:<0.008、B:0.0〜0.005であり、残部が鉄である。該文献の油井管の横向衝撃靱性は80Jだけであり、靱性の指標もより低いである。 Chinese Patent Document CN101250671A (Release Date: November 25, 2009, Name: “Oil Well Pipe with High Strength and Toughness and Method for Producing the Same”) relates to a steel grade for oil well pipe. The chemical element components (wt%) of the steel types are: C: 0.16-0.28, Si: ≦ 0.5, Mn: 0.3-1.10, Cr: 0.3-1.10, Mo : 0.60 to 0.95, Al: 0.015 to 0.060, of which acid-soluble Als / Al ≧ 0.8, Ni: <0.60, Cu: 0.05 to 0.25, V: 0.06-0.20, Ca> 0.0015, Nb: ≦ 0.05, Ti: ≦ 0.05, P <0.010, S <0.002, O: <0.0024, H : <0.0002, N: <0.008, B: 0.0 to 0.005, and the balance is iron. The oil well pipe of the literature has a lateral impact toughness of only 80 J and a lower index of toughness.
日本特許文献JP平11−131189A(公開日:1999年5月18日、名称:「1種鋼管の製造方法」)は1種鋼管の製造方法を公開した。該製造方法は、750〜400℃温度範囲で加熱した後に、20%或いは60%以上の変形量の範囲で圧延を施して、降伏強度950Mpa以上であり、良好な靱性を有する鋼管製品を獲得したことを提出した。だが、該方法は加熱温度が低いため、圧延の難度が大きいである。尚、圧延温度が低くなると、マルテンサイト組織が生成しやすい。該微細組織は油井管製品に許されない微細組織である。 Japanese Patent Document JP Hei 11-131189A (Release Date: May 18, 1999, Name: “Method for Producing Type 1 Steel Pipe”) disclosed a method for producing Type 1 steel pipe. In this manufacturing method, after heating in a temperature range of 750 to 400 ° C., rolling was performed in a deformation amount range of 20% or 60% or more, and a steel pipe product having a yield strength of 950 Mpa or more and good toughness was obtained. Submitted that. However, this method has a high degree of difficulty in rolling because of the low heating temperature. When the rolling temperature is lowered, a martensite structure is likely to be generated. The fine structure is a fine structure that is not allowed for oil well pipe products.
本発明の目的は、超高強度・超高靱性油井管を提供するものである。該油井管は、超高強度と超高靱性を有し、その強度が150ksi鋼級以上になると共に、その0°横向シャルピー衝撃功が150ksi鋼級の降伏強度の10%以上であるため、深井、超深井の油ガス田が油井管へ提出した強度と靱性との要求を満足できる。 An object of the present invention is to provide an ultra-high strength and ultra-high toughness oil well pipe. The oil well pipe has ultra-high strength and ultra-high toughness, and its strength is 150 ksi steel grade or higher, and its 0 ° transverse Charpy impact is 10% or more of the yield strength of 150 ksi steel grade. It can satisfy the requirements of strength and toughness submitted to the oil well pipe by the oil and gas field of Ultra Fukai.
前記目的を実現するために、本発明は、下のような超高強度・超高靱性油井管を提出した。 In order to achieve the above object, the present invention has submitted the following ultra-high strength and ultra-tough oil well pipe.
超高強度・超高靱性油井管は、化学元素の質量百分率表示で、
C:0.12〜0.18%;
Si:0.1〜0.4%;
Mn:1.1〜1.6%;
Cr:0.1〜0.4%;
Mo:0.2〜0.5%;
Nb:0.02〜0.04%;
Ti:0.02〜0.05%;
B:0.0015〜0.005%;
Al:0.01〜0.05%;
Ca:0.0005〜0.005%;
N≦0.008%を含有し、
且つ0<(Ti−3.4N)≦0.02%、Ti/B≧10を満足し、
残部がFeおよび他の不可避不純物である。
Ultra-high strength and ultra-tough oil well pipes are expressed in mass percentages of chemical elements.
C: 0.12-0.18%;
Si: 0.1 to 0.4%;
Mn: 1.1-1.6%;
Cr: 0.1 to 0.4%;
Mo: 0.2-0.5%;
Nb: 0.02-0.04%;
Ti: 0.02 to 0.05%;
B: 0.0015 to 0.005%;
Al: 0.01 to 0.05%;
Ca: 0.0005 to 0.005%;
N ≦ 0.008%,
And 0 <(Ti-3.4N) ≦ 0.02%, Ti / B ≧ 10 is satisfied,
The balance is Fe and other inevitable impurities.
本技術方案中の不可避不純物は主にPとS元素であり、P≦0.015%、S≦0.003%であるようにコントロールされる。 Inevitable impurities in this technical plan are mainly P and S elements, and are controlled so that P ≦ 0.015% and S ≦ 0.003%.
本発明の前記超高強度・超高靱性油井管中の各化学元素についての設計原理は下のようである。 The design principle for each chemical element in the ultra-high strength / ultra-tough oil well pipe of the present invention is as follows.
C:Cは炭化物を形成する元素であり、鋼の強度を向上できる。Cの含有量が0.12wt%よりも低いであると、鋼の焼入性が低下され、鋼の靱性が低下される。Cの含有量が0.18wt%よりも高いであると、鋼の偏析を顕著的に劣化させ、鋼の靱性の低下をも引き起こす。油井管の高強度と高靱性への要求を達成するために、本発明の技術方案において、C元素の含有量を0.12〜0.18wt%にすることが必要である。 C: C is an element that forms carbides, and can improve the strength of steel. When the C content is lower than 0.12 wt%, the hardenability of the steel is lowered and the toughness of the steel is lowered. When the content of C is higher than 0.18 wt%, the segregation of the steel is remarkably deteriorated and the toughness of the steel is also lowered. In order to achieve the demand for high strength and high toughness of the oil country tubular goods, it is necessary to make the content of C element 0.12 to 0.18 wt% in the technical solution of the present invention.
Si:Siはフェライトに固溶し、鋼の降伏強度を向上できる。しかし、Si元素の添加量が高すぎることは望ましくない。Si元素が高すぎると、鋼の加工性と靱性を劣化させる。Si元素が0.1wt%未満であると、油井管が酸化されやすい。そうすると、Siの含有量を0.10〜0.40wt%にすべきである。 Si: Si dissolves in ferrite and can improve the yield strength of steel. However, it is not desirable that the amount of Si element added is too high. If the Si element is too high, the workability and toughness of the steel deteriorate. If the Si element is less than 0.1 wt%, the oil well pipe is likely to be oxidized. Then, the Si content should be 0.10 to 0.40 wt%.
Mn:Mnはオーステナイトの形成元素であり、鋼の焼入性を向上できる。 本発明の前記超高強度・超高靱性油井管の鋼種体系において、Mn含有量が1.1wt%未満であると、鋼の焼入性が顕著的に低下され、鋼のマルテンサイトの比率を減少して鋼の靱性を低下する。Mnの含有量が1.6wt%を超えると、鋼中の組織偏析が顕著的に増加され、熱圧延組織の均一性と衝撃性能へ影響が出る。該原因に基づいて、本発明の技術方案においてMn含有量を1.10〜1.60wt%にした。 Mn: Mn is an austenite forming element and can improve the hardenability of steel. In the steel type system of the ultra-high strength and ultra-tough oil well pipe of the present invention, if the Mn content is less than 1.1 wt%, the hardenability of the steel is significantly reduced, and the martensite ratio of the steel is reduced. Decrease and reduce the toughness of the steel. When the Mn content exceeds 1.6 wt%, the structure segregation in the steel is remarkably increased, which affects the uniformity of the hot rolled structure and the impact performance. Based on this cause, the Mn content was 1.10 to 1.60 wt% in the technical solution of the present invention.
Cr:Crは鋼の焼入性を強烈的に向上する元素であり、強炭化物を形成する元素である。焼き戻しの時に析出された強炭化物が鋼の強度を向上できる。だが、Cr含有量が0.4wt%を超えると、晶界に粗大なM23C6炭化物は析出されやすいため、鋼の靱性を低下する。Cr含有量が0.1wt%未満であると、鋼の焼入性を向上しにくいため、添加効果が明確ではない。本発明の前記の超高強度・超高靱性油井管では、Cr含有量を0.1〜0.4wt%に設計した。 Cr: Cr is an element that strongly improves the hardenability of steel and is an element that forms strong carbides. Strong carbides precipitated during tempering can improve the strength of the steel. However, if the Cr content exceeds 0.4 wt%, coarse M 23 C 6 carbide is likely to be precipitated at the crystal boundaries, so that the toughness of the steel is lowered. If the Cr content is less than 0.1 wt%, it is difficult to improve the hardenability of the steel, so the effect of addition is not clear. In the ultra-high strength / ultra-tough oil well pipe of the present invention, the Cr content was designed to be 0.1 to 0.4 wt%.
Mo:Moは、主に炭化物と固溶強化の形式によって鋼の強度と焼戻し安定性を向上する。本発明の技術方案では、C含有量が低いため、Mo含有量が0.5wt%以上を越えると、MoはCとより多い炭化物析出相を形成しにくいため、添加合金の浪費を引き起こす。Mo含有量が0.2wt%未満であると、油井管の強度は高強度の要求に満足できない。該原因に基づいて本発明では、Mo含有量を0.2〜0.5wt%にした。 Mo: Mo improves the strength and tempering stability of steel mainly by the form of carbide and solid solution strengthening. In the technical solution of the present invention, since the C content is low, when the Mo content exceeds 0.5 wt% or more, Mo hardly forms a carbide precipitation phase with C, which causes waste of the added alloy. If the Mo content is less than 0.2 wt%, the strength of the oil well pipe cannot satisfy the requirement for high strength. Based on the cause, in the present invention, the Mo content is set to 0.2 to 0.5 wt%.
Nb:Nbは、鋼中の細晶と析出強化の元素であり、C含有量の低減による強度の低下を補う。Nb含有量が0.02wt%未満であると、添加作用は明確ではない。Nb含有量が0.04wt%を超えると、粗大なNb(CN)を形成しやすいため、鋼の靱性を低下する。そうすると、本発明の技術方案では、Nb含有量を0.02〜0.04wt%にコントロールする。 Nb: Nb is an element of fine crystals and precipitation strengthening in steel, and compensates for a decrease in strength due to a reduction in the C content. When the Nb content is less than 0.02 wt%, the addition action is not clear. When the Nb content exceeds 0.04 wt%, coarse Nb (CN) is easily formed, and thus the toughness of the steel is lowered. Then, in the technical solution of the present invention, the Nb content is controlled to 0.02 to 0.04 wt%.
Ti:Tiは、強炭窒化物を形成する元素であり、鋼中のオーステナイト晶粒を顕著的に細化でき、C含有量の低減による強度の低下を補う。Ti含有量>0.05wt%であると、粗大なTiNを形成しやすいため、材料の靱性を低下する恐れがある。Ti含有量<0.02wt%であると、TiがNと十分に反応してTiNを形成できないため、鋼中のBがNと反応してBNの脆性相を形成する恐れがあり、材料の靱性を低下する。本発明の超高強度・超高靱性油井管では、Ti含有量を0.02〜0.05wt%にコントロールする必要がある。 Ti: Ti is an element that forms strong carbonitrides, can remarkably reduce austenite grains in steel, and compensates for a decrease in strength due to a reduction in C content. If the Ti content is> 0.05 wt%, coarse TiN is likely to be formed, which may reduce the toughness of the material. If the Ti content is less than 0.02 wt%, Ti cannot sufficiently react with N to form TiN, so that B in the steel may react with N to form a brittle phase of BN. Reduce toughness. In the ultra-high strength / ultra-tough oil well pipe of the present invention, it is necessary to control the Ti content to 0.02 to 0.05 wt%.
B:Bは鋼の焼入性を顕著的に向上する元素である。C含有量が低いである鋼種において、B元素はC含有量の低減による焼入性の劣化問題を解決できる。B含有量が0.0015wt%未満であると、鋼の焼入性を向上する作用は顕著ではない。B含有量が0.005wt%を超えると、BN脆性相を形成しやすいため、鋼の靱性を低下する。そうすると、本発明の技術方案では、B含有量を0.0015〜0.005wt%に設定する。 B: B is an element that significantly improves the hardenability of steel. In steel types with low C content, B element can solve the problem of deterioration of hardenability due to reduction of C content. When the B content is less than 0.0015 wt%, the effect of improving the hardenability of the steel is not remarkable. If the B content exceeds 0.005 wt%, a BN brittle phase is likely to be formed, so that the toughness of the steel is reduced. Then, in the technical solution of the present invention, the B content is set to 0.0015 to 0.005 wt%.
Al:Al元素は良好な脱酸素固窒元素であり、晶粒を細化できる。重量百分率でその含有量を0.01〜0.05%にすることが好ましい。 Al: Al element is a good deoxygenated solid nitrogen element, and can refine crystal grains. The content is preferably 0.01 to 0.05% by weight percentage.
Ca:Caは鋼液を浄化する元素であり、MnS球化を促進でき、鋼材の衝撃靱性を向上できる。だが、Ca含有量が高すぎると、鋼中に粗大な非金属異物を形成しやすい。そうすると、本発明の技術方案では、Ca含有量を0.0005〜0.005wt%にコントロールする。 Ca: Ca is an element that purifies the steel liquid, can promote MnS spheroidization, and can improve the impact toughness of the steel material. However, if the Ca content is too high, coarse non-metallic foreign matter tends to be formed in the steel. Then, in the technical solution of the present invention, the Ca content is controlled to 0.0005 to 0.005 wt%.
N:本技術方案では、できるだけN元素の含有量を少ない範囲にすることが好ましい。
同時に、BとNがBN脆性相を形成することによって鋼材の靱性指標が低下してしまうことを回避して、TiとNとが十分に結合することを保証するために、Ti、BおよびNは下式をさらに満足する必要である。
N: In this technical scheme, it is preferable to make the content of N element as small as possible.
At the same time, in order to avoid that the toughness index of the steel material is lowered due to B and N forming a BN brittle phase, and to ensure that Ti and N are sufficiently bonded, Ti, B and N Needs to satisfy the following formula.
0<(Ti−3.4N)≦0.02%;且つTi/B≧10。
また、本発明の前記超高強度・超高靱性油井管はV元素をさらに含有する。V元素範囲は0<V≦0.1wt%である。
0 <(Ti-3.4N) ≦ 0.02%; and Ti / B ≧ 10.
Moreover, the ultra-high strength / ultra-tough oil well pipe of the present invention further contains a V element. The V element range is 0 <V ≦ 0.1 wt%.
V元素は鋼中の晶粒を細化できる。該元素と形成された炭化物は鋼の強度を大幅に向上できる。だが、V元素の添加量が一定程度になると、その増強効果は明確ではない。そうすると、本発明の技術方案に対しては、V元素を添加すれば、その添加量は≦0.10wt%である。 V element can make crystal grains in steel finer. The carbide formed with the element can greatly improve the strength of the steel. However, the enhancement effect is not clear when the amount of V element added becomes constant. If it does so, with respect to the technical solution of this invention, if V element is added, the addition amount will be <= 0.10 wt%.
さらに、本発明の前記超高強度・超高靱性油井管中のミクロ組織は焼戻ソルバイトである。 Furthermore, the microstructure in the ultra-high strength and ultra-tough oil well pipe of the present invention is tempered sorbite.
油井管が良好な強靱性の配合を獲得するために、鋼中のミクロ組織は焼戻ソルバイトである。該種ミクロ組織は最高の強靱性を有する。該種ミクロ組織はマルテンサイト組織から転化される。鋼材料を焼入れた後に形成されたマルテンサイト組織が多いほど、その後に得られた焼戻ソルバイト組織も多くなれる。 The microstructure in the steel is tempered sorbite so that the wellbore acquires a good toughness formulation. The seed microstructure has the highest toughness. The seed microstructure is converted from a martensite structure. The more martensite structures formed after quenching the steel material, the more tempered sorbite structures obtained thereafter.
鋼管管生地の凝結過程中で枝晶が偏析されて、圧延後の管体に大量な偏析帯が存在されている。該偏析帯にC、Mn、CrおよびMoなどの合金元素が富集され、局部に合金成分の分布が不均一であるため、偏析帯に形成された炭化物は多い且つ粗大である。同時に、偏析帯にある鋼の硬度と強度がより高いため、その靱性がより低い。油井管の成分偏析を低下するために、C、Mn、CrおよびMoなどの合金元素を減少する手段を使用してもよい。一方、油井管が良好な強靱性の配合を獲得するために、鋼材料のミクロ組織は焼戻ソルバイトである。該種ミクロ組織は最高の強靱性を有する。該種ミクロ組織はマルテンサイト組織から転化される。鋼材料を焼入れた後に形成されたマルテンサイト組織が多いほど、その後に得られた焼戻ソルバイト組織も多くなれる。そうすると、焼入性を向上して、より多いマルテンサイト組織を獲得するのは材料の強靱性を保証するキーポイントである。C、Mn、CrおよびMoなどの合金元素を減少することによって低偏析組織を獲得し、鋼の靱性を向上する措置の採用は、鋼の焼入性を低下するはずであり、鋼の強靱性をさらに低下する。該内容に基づいて、高強度・高靱性鋼種は鋼の偏析と焼入性を合理的にバランスする必要である。本発明の技術方案では、低炭と低合金の成分体系を採用して低偏析のミクロ組織を獲得すると共に、BとTiをさらに加入して焼入性を向上して鋼の靱性を増加して均一な焼戻ソルバイトを獲得することを保証できる。 Branch crystals are segregated during the setting process of the steel tube dough, and a large amount of segregation zones exist in the rolled tube. Since the segregation zone is rich in alloy elements such as C, Mn, Cr and Mo and the distribution of alloy components is uneven in the local area, the carbides formed in the segregation zone are many and coarse. At the same time, the hardness and strength of the steel in the segregation zone is higher, so its toughness is lower. In order to reduce the component segregation of the oil country tubular goods, means for reducing alloy elements such as C, Mn, Cr and Mo may be used. On the other hand, the microstructure of the steel material is tempered sorbite in order for the oil well pipe to obtain a good toughness blend. The seed microstructure has the highest toughness. The seed microstructure is converted from a martensite structure. The more martensite structures formed after quenching the steel material, the more tempered sorbite structures obtained thereafter. In this case, improving the hardenability and obtaining a larger martensite structure is a key point for guaranteeing the toughness of the material. Adopting measures to acquire low segregation structure by reducing alloy elements such as C, Mn, Cr and Mo and improve the toughness of steel should reduce the hardenability of steel, and toughness of steel Is further reduced. Based on this content, high strength and high toughness steel grades need to reasonably balance steel segregation and hardenability. The technical solution of the present invention adopts a low-carbon and low-alloy component system to obtain a low segregation microstructure, and further adds B and Ti to improve hardenability and increase steel toughness. And ensure uniform tempering sorbite.
相応的に、本発明は超高強度・超高靱性油井管の製造方法をさらに提供した。該方法は、精錬工程、連続鋳造工程、穿孔工程、圧延工程、サイジング工程、熱処理工程を含む。 Correspondingly, the present invention further provides a method for producing an ultra-high strength and ultra-tough oil well pipe. The method includes a refining process, a continuous casting process, a piercing process, a rolling process, a sizing process, and a heat treatment process.
さらに、本発明の前記超高強度・超高靱性油井管の製造方法の前記連続鋳造工程において、溶鋼の過熱度を30℃未満にして、連続鋳造の引き上げ速度を1.8〜2.2m/minである。 Furthermore, in the continuous casting step of the production method of the ultra-high strength / ultra-tough oil well pipe of the present invention, the superheat degree of the molten steel is made less than 30 ° C., and the pulling speed of continuous casting is set to 1.8 to 2.2 m / min.
連続鋳造の引き上げ速度を1.8〜2.2m/minにコントロールするのは鋼中の成分偏析を低下するためである。 The reason for controlling the pulling speed of continuous casting to 1.8 to 2.2 m / min is to reduce component segregation in the steel.
好ましくは、本発明の前記超高強度・超高靱性油井管の製造方法において、前記穿孔工程では、連続鋳造工程で得られた丸ビレットを1200〜1240℃の炉内で均一的に加熱して、穿孔温度を1180〜1240℃にする。 Preferably, in the method for producing an ultra-high strength / ultra-tough oil country tubular good of the present invention, in the drilling step, the round billet obtained in the continuous casting step is uniformly heated in a furnace at 1200 to 1240 ° C. The drilling temperature is 1180-1240 ° C.
より好ましくは、本発明の前記超高強度・超高靱性油井管の製造方法において、前記圧延工程では、最終圧延温度を900〜950℃にする。 More preferably, in the manufacturing method of the ultra-high strength / ultra-tough oil well pipe of the present invention, the final rolling temperature is set to 900 to 950 ° C. in the rolling step.
より好ましくは、本発明の前記超高強度・超高靱性油井管の製造方法において、前記サイジング工程では、サイジング温度が850〜900℃である。 More preferably, in the method for manufacturing an ultra-high strength / ultra-tough oil country tubular good according to the present invention, the sizing temperature is 850 to 900 ° C. in the sizing step.
より好ましくは、本発明の前記超高強度・超高靱性油井管の製造方法において、前記熱処理工程では、オーステナイト化温度を900〜930℃にして、30〜60min保温後に焼入れして、450〜550℃で焼き戻し、保温時間を50〜80minにして、最後に400〜550℃で熱サイジングを行う。 More preferably, in the method for producing an ultra-high strength / ultra-tough oil country tubular good according to the present invention, in the heat treatment step, the austenitizing temperature is set to 900 to 930 ° C., and after quenching for 30 to 60 minutes, 450 to 550 is performed. Tempering is performed at a temperature of 50 to 80 minutes, and finally heat sizing is performed at a temperature of 400 to 550 ° C.
より低い焼戻温度を使用して、鋼材がより高い温度を獲得できるようにしたため、強靱性を向上したと共に、合金の添加コストをも大幅に減少した。 A lower tempering temperature was used to allow the steel to gain higher temperatures, thus improving toughness and significantly reducing the cost of alloy addition.
本発明の前記超高強度・超高靱性油井管は、150ksi以上鋼級であり、超高強度と超高靱性を有する油井管の製造に用いられる。 The ultra-high strength and ultra-high toughness oil well pipe of the present invention is a steel grade of 150 ksi or more, and is used for manufacturing an oil well pipe having ultra-high strength and ultra-high toughness.
本発明の前記超高強度・超高靱性油井管で得られた150ksi鋼級油井管は、その降伏強度が1034〜1241MPaであり、引張強度≧1103MPaであり、伸び率が20%〜30%であり、0°横向シャルピー衝撃功が150ksi鋼級の降伏強度の10%以上(≧120J)であり、靱脆遷移温度が−70℃以下である。 The 150 ksi steel grade oil well pipe obtained from the ultra-high strength / high toughness oil well pipe of the present invention has a yield strength of 1034 to 1241 MPa, a tensile strength ≧ 1103 MPa, and an elongation of 20% to 30%. Yes, the 0 ° transverse Charpy impact is 10% or more (≧ 120 J) of the yield strength of the 150 ksi steel grade, and the tough / brittle transition temperature is −70 ° C. or less.
本発明の前記超高強度・超高靱性油井管で得られた155ksi鋼級油井管は、その降伏強度が1069〜1276MPaであり、引張強度≧1138MPaであり、伸び率が20%〜25%であり、0°横向シャルピー衝撃功が155ksi鋼級の降伏強度の10%以上(≧120J)であり、靱脆遷移温度が−60℃以下である。 The 155 ksi steel grade oil well pipe obtained with the ultra high strength / high toughness oil well pipe of the present invention has a yield strength of 1069 to 1276 MPa, a tensile strength ≧ 1138 MPa, and an elongation of 20% to 25%. Yes, the 0 ° transverse Charpy impact is 10% or more (≧ 120 J) of the yield strength of the 155 ksi steel grade, and the tough / brittle transition temperature is −60 ° C. or less.
本発明の前記超高強度・超高靱性油井管は、Bを添加して鋼の焼入性を増加したため、普通鋼種に添加されたCrとMoなどの合金元素を代替したことによって油井管の合金添加コストを低下して、強度が高く、且つ靱性がよい。 The ultra-high strength and ultra-tough oil well pipe of the present invention increases the hardenability of steel by adding B. Therefore, by replacing alloy elements such as Cr and Mo added to ordinary steel grade, The alloy addition cost is reduced, the strength is high, and the toughness is good.
本発明の前記超高強度・超高靱性油井管の製造方法は、熱処理工程に対する制御で鋼材がより高い強度とより良い靱性を獲得できるようになった。過程操作が簡単になり、大規模の生産製造を実現しやすいため、良好な経済利益を有する。 The manufacturing method of the ultra-high strength / ultra-tough oil well pipe of the present invention has made it possible to obtain higher strength and better toughness of the steel material by controlling the heat treatment process. The process operation is simple and it is easy to realize large-scale production manufacturing, so it has good economic benefits.
以下、具体的な実施例に基づいて、本発明の前記超高強度・超高靱性油井管およびその製造方法をさらに説明する。だが、具体的な実施例および関係な説明は本発明の技術方案の不当限定になれない。 Hereinafter, the ultra-high strength / ultra-tough oil well pipe of the present invention and the manufacturing method thereof will be further described based on specific examples. However, specific embodiments and related descriptions are not unduly limited to the technical solutions of the present invention.
実施例A1−A5と比較例B1−B4
下の工程の通りに、実施例A1−A5と比較例B1−B4の油井管を製造した。
Example A1-A5 and Comparative Examples B1-B4
The oil well pipe of Example A1-A5 and Comparative Example B1-B4 was manufactured as the following process.
1)精錬:実施例A1−A5と比較例B1−B4中の各化学元素の質量百分率の配合を表1のようにコントロールした。 1) Refining: The composition of mass percentage of each chemical element in Examples A1-A5 and Comparative Examples B1-B4 was controlled as shown in Table 1.
2)連続鋳造:連続鋳造して管生地を形成して、溶鋼の過熱度を30℃未満にして、連続鋳造の引き上げ速度を1.8〜2.2m/minにした。 2) Continuous casting: A tube material was formed by continuous casting, the superheat degree of the molten steel was set to less than 30 ° C, and the pulling speed of continuous casting was set to 1.8 to 2.2 m / min.
3)穿孔:連続鋳造工程で得られた丸ビレットを1200〜1240℃の環形炉内で均一的に加熱して、穿孔温度を1180〜1240℃にした。 3) Drilling: The round billet obtained in the continuous casting process was uniformly heated in a ring furnace at 1200 to 1240 ° C., so that the drilling temperature was 1180 to 1240 ° C.
4)圧延:最終圧延温度を900〜950℃にした。
5)サイジング:サイジング温度を850〜900℃にした。
4) Rolling: The final rolling temperature was 900 to 950 ° C.
5) Sizing: The sizing temperature was 850 to 900 ° C.
6)熱処理:オーステナイト化温度を900〜930℃にして、30〜60min保温後に焼入れして、450〜550℃で焼戻して、保温時間を50〜80minにして、最後に400〜550℃で熱サイジングを行った。 6) Heat treatment: Austenitizing temperature is 900 to 930 ° C, quenching is performed after incubation for 30 to 60 minutes, tempering is performed at 450 to 550 ° C, incubation time is set to 50 to 80 minutes, and finally heat sizing is performed at 400 to 550 ° C. Went.
表1は、実施例A1−A5と比較例B1−B4中の各化学元素の質量百分率の配合を挙げた。 Table 1 listed the mass percentage formulations for each chemical element in Example A1-A5 and Comparative Examples B1-B4.
表2は、実施例A1−A5と比較例B1−B4の各工程のパラメーターを挙げた。 Table 2 lists the parameters of each step of Example A1-A5 and Comparative Example B1-B4.
表3は、実施例A1−A5と比較例B1−B4中の油井管の力学性能を示した。 Table 3 shows the mechanical performance of the oil well pipes in Examples A1-A5 and Comparative Examples B1-B4.
表3から分かるように、前記各実施例A1−A5中の油井管のいずれも、その降伏強度が≧1050Mpa(150ksi鋼級以上の強度を達成した)、引張強度が≧1090Mpa、0°横向衝撃功が≧128J、伸び率が≧23%、靱脆遷移温度が≦−60℃だった。つまり、実施例A1−A5中の油井管のいずれも超高強度と超高靱性を有したため、深井、超深井を採掘する油井管を製造するのに適合である。反面、比較例B1中のMnとCrが本発明の技術方案に限定された範囲を超えたことと、比較例B2中でBとTiを添加しなかったことと、比較例B3中のC、Mn、CrおよびMoが本発明の技術方案に限定された範囲を超えたことと、比較例B4中のTiとNの元素が0<(Ti−3.4N)≦0.02%、 Ti/B≧10の条件を満足しなかったことがあったため、比較例B1−B4中の油井管の少なくとも1項の力学性能は高強度と高靱性の油井管の標準を達成しなかった。 As can be seen from Table 3, all of the oil well pipes in Examples A1-A5 had a yield strength of ≧ 1050 Mpa (achieved a strength of 150 ksi grade or higher), a tensile strength of ≧ 1090 Mpa, and 0 ° lateral impact. Gong was ≧ 128 J, the elongation was ≧ 23%, and the tough / brittle transition temperature was ≦ −60 ° C. That is, since all of the oil well pipes in Examples A1-A5 had ultra high strength and ultra high toughness, they are suitable for manufacturing oil well pipes for mining Fukai and ultra deep wells. On the other hand, Mn and Cr in Comparative Example B1 exceeded the range limited to the technical solution of the present invention, B and Ti were not added in Comparative Example B2, and C in Comparative Example B3, Mn, Cr and Mo exceeded the range limited to the technical solution of the present invention, and Ti and N elements in Comparative Example B4 were 0 <(Ti-3.4N) ≦ 0.02%, Ti / Since the condition of B ≧ 10 was sometimes not satisfied, the mechanical performance of at least one term of the oil well pipe in Comparative Examples B1-B4 did not achieve the standard of the high strength and high toughness well pipe.
図1は、実施例A5中の超高強度・超高靱性油井管の金属組織を示し、図2は、実施例A5中の超高強度・超高靱性油井管の析出相形態を示した。 FIG. 1 shows the metal structure of the ultra-high strength / ultra-tough oil well pipe in Example A5, and FIG. 2 shows the precipitated phase morphology of the ultra-high strength / ultra-tough oil well pipe in Example A5.
図1が示した通りに、実施例A5中の油井管の金属組織に成分偏析によって形成された帯状組織が発見されていない。図2が示した通りに、実施例A5中の油井管の析出相の炭化物は細小であり、その分布が均一である。そうすると、実施例A5中の超高強度・超高靱性油井管はその強度が150ksi鋼級以上になり、その0°横向衝撃靱性が120J以上になった。 As shown in FIG. 1, no band-like structure formed by component segregation in the metal structure of the oil well pipe in Example A5 has been found. As shown in FIG. 2, the carbide of the precipitated phase of the oil well pipe in Example A5 is fine and the distribution thereof is uniform. Then, the ultra-high strength / ultra-tough oil well pipe in Example A5 had a strength of 150 ksi steel grade or higher, and its 0 ° lateral impact toughness was 120 J or higher.
図3は、比較例B1中の油井管の金属組織を示した。
比較例B1中のCとMnとの含有量がより低いため、鋼の焼入性が低くなってしまった。図3が示した通りに、比較例B1の金属組織により多いフェライト組織が存在されているため、熱処理後の油井管の強度が不足であり、0°横向衝撃功も高くない。そうすると、超高強度・超高靱性油井管に加工することに適応できない。
FIG. 3 shows the metal structure of the oil well pipe in Comparative Example B1.
Since the contents of C and Mn in Comparative Example B1 were lower, the hardenability of the steel was lowered. As shown in FIG. 3, since more ferrite structure exists in the metal structure of Comparative Example B1, the strength of the oil well pipe after heat treatment is insufficient, and the 0 ° lateral impact effect is not high. If it does so, it cannot adapt to processing into a super high strength and super high toughness oil well pipe.
図4は、比較例B2中の油井管の析出相形態を示し、図5は、比較例B3中の油井管の析出相形態を示した。 FIG. 4 shows the precipitated phase morphology of the oil well pipe in Comparative Example B2, and FIG. 5 shows the precipitated phase morphology of the oil well pipe in Comparative Example B3.
管生地の凝結過程中で枝晶偏析によって圧延後の管体に大量な偏析帯が存在されているため、図4のように、比較例B2の偏析帯にC、Mn、CrおよびMoなどの合金元素が富集され、局部に合金成分の分布が不均一であるため、偏析帯に形成された炭化物は多く且つ粗大である。 Since a large amount of segregation zones exist in the tube after rolling due to branching segregation during the tube dough condensation process, as shown in FIG. 4, the segregation zones of Comparative Example B2, such as C, Mn, Cr, and Mo Since the alloy elements are concentrated and the distribution of the alloy components is uneven in the local area, the carbides formed in the segregation zone are many and coarse.
図5が示した通りに、比較例B3中のC、Cr、Moなどの合金元素は本発明の技術方案に限定された範囲を超えたため、熱処理後の油井管の偏析は酷くなった。偏析が酷くなった場合、油井管の靱性が不足になり、鋼の靱性指標が低下された。 As shown in FIG. 5, since the alloy elements such as C, Cr, and Mo in Comparative Example B3 exceeded the range limited to the technical solution of the present invention, segregation of the oil well pipe after the heat treatment became severe. When segregation became severe, the toughness of the oil well pipe became insufficient and the toughness index of steel was lowered.
注意すべきことは、前記挙げられたものが本発明の具体的な実施例だけである。本発明は前記の実施例に限定されなくて、多い類似な変化例がある。当分野の当業者が本発明の公開内容から直接的に得られた変化例、或いは連想できた変化例も本発明の保護範囲に属される。 It should be noted that the above are only specific embodiments of the present invention. The present invention is not limited to the embodiments described above, and there are many similar variations. Variations obtained directly or associable by those skilled in the art directly from the disclosed contents of the present invention also belong to the protection scope of the present invention.
Claims (9)
そのミクロ組織が焼戻ソルバイトであることを特徴とし、
その降伏強度が1034〜1241MPaであり、引張強度が1103MPa以上であり、伸び率が20%〜30%であり、0°横向シャルピー衝撃功が120J以上であり、靱脆遷移温度が−70℃以下であることを特徴とする超高強度・超高靱性油井管。 In terms of mass percentage of chemical elements, C: 0.12 to 0.18%, Si: 0.1 to 0.4%, Mn: 1.1 to 1.6%, Cr: 0.1 to 0.4 %, Mo: 0.2-0.5%, Nb: 0.02-0.04%, Ti: 0.02-0.05%, B: 0.0015-0.005%, Al: 0.0. 01 to 0.05%, Ca: 0.0005 to 0.005%, N ≦ 0.008%, and 0 <(Ti-3.4N) ≦ 0.02%, Ti / B ≧ 10 satisfied, Ri balance Fe and other inevitable impurities der,
Its microstructure is tempered sorbite,
Its yield strength is 1034 to 1241 MPa, tensile strength is 1103 MPa or more, elongation is 20% to 30%, 0 ° transverse Charpy impact is 120 J or more, and tough and brittle transition temperature is −70 ° C. or less. Ultra-high strength and ultra-tough oil well pipe characterized by
そのミクロ組織が焼戻ソルバイトであることを特徴とし、
その降伏強度が1069〜1276MPaであり、引張強度が1138MPa以上であり、その伸び率が20%〜25%であり、0°横向シャルピー衝撃功が120J以上であり、靱脆遷移温度が−60℃以下であることを特徴とする超高強度・超高靱性油井管。 In terms of mass percentage of chemical elements, C: 0.12 to 0.18%, Si: 0.1 to 0.4%, Mn: 1.1 to 1.6%, Cr: 0.1 to 0.4 %, Mo: 0.2-0.5%, Nb: 0.02-0.04%, Ti: 0.02-0.05%, B: 0.0015-0.005%, Al: 0.0. 01 to 0.05%, Ca: 0.0005 to 0.005%, N ≦ 0.008%, and 0 <(Ti-3.4N) ≦ 0.02%, Ti / B ≧ 10 Satisfied, the balance is Fe and other inevitable impurities,
Its microstructure is tempered sorbite,
The yield strength is 1069 to 1276 MPa, the tensile strength is 1138 MPa or more, the elongation is 20% to 25%, the 0 ° transverse Charpy impact is 120 J or more, and the tough brittle transition temperature is −60 ° C. ultra high strength and ultra high-toughness OCTG you equal to or less than.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410307023.7A CN104046910B (en) | 2014-06-30 | A kind of superhigh intensity superhigh tenacity petroleum casing pipe and manufacture method thereof | |
CN201410307023.7 | 2014-06-30 | ||
PCT/CN2015/070978 WO2016000444A1 (en) | 2014-06-30 | 2015-01-19 | Ultra-high-strength and ultra-high-toughness oil casing and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017525844A JP2017525844A (en) | 2017-09-07 |
JP6456986B2 true JP6456986B2 (en) | 2019-01-23 |
Family
ID=51500300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016575505A Active JP6456986B2 (en) | 2014-06-30 | 2015-01-19 | Ultra-high strength and ultra-tough oil well pipe and method for producing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170159157A1 (en) |
JP (1) | JP6456986B2 (en) |
DE (1) | DE112015003075T5 (en) |
WO (1) | WO2016000444A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136786B (en) * | 2018-10-31 | 2019-11-22 | 达力普石油专用管有限公司 | Non-quenched and tempered N 80 steel grade petroleum casing pipe and preparation method thereof |
CN113637892B (en) | 2020-05-11 | 2022-12-16 | 宝山钢铁股份有限公司 | High-strength anti-collapse petroleum casing pipe and manufacturing method thereof |
CN112176241B (en) * | 2020-09-23 | 2021-11-16 | 达力普石油专用管有限公司 | Low-alloy corrosion-resistant oil sleeve material and preparation method thereof |
CN115261716B (en) * | 2021-04-30 | 2023-06-16 | 宝山钢铁股份有限公司 | High-strength heat-resistant sleeve for thickened oil development and manufacturing method thereof |
CN117758157B (en) * | 2024-01-31 | 2024-07-19 | 延安嘉盛石油机械有限责任公司 | Oil casing and preparation method thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6210241A (en) * | 1985-07-08 | 1987-01-19 | Sumitomo Metal Ind Ltd | Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength |
JP3249210B2 (en) * | 1992-12-22 | 2002-01-21 | 新日本製鐵株式会社 | Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance |
JPH07331381A (en) * | 1994-06-06 | 1995-12-19 | Nippon Steel Corp | Seamless steel tube having high strength and high toughness and its production |
JPH0920961A (en) * | 1995-07-04 | 1997-01-21 | Nippon Steel Corp | Production of seamless pipe for low temperature use |
JP2000063940A (en) * | 1998-08-12 | 2000-02-29 | Sumitomo Metal Ind Ltd | Production of high strength steel excellent in sulfide stress cracking resistance |
JP3543708B2 (en) * | 1999-12-15 | 2004-07-21 | 住友金属工業株式会社 | Oil well steel with excellent resistance to sulfide stress corrosion cracking and method for producing oil well steel pipe using the same |
CN101413088B (en) * | 2008-12-02 | 2011-03-23 | 天津商业大学 | Sulfurated hydrogen stress etching-resisting petroleum casing pipe and manufacturing method thereof |
CN101845586A (en) * | 2009-03-25 | 2010-09-29 | 宝山钢铁股份有限公司 | Steel for petroleum casing pipe, resistance welding petroleum casing pipe and method for manufacturing same |
CN101864542B (en) * | 2009-04-16 | 2011-09-28 | 上海梅山钢铁股份有限公司 | Steel for high-frequency resistance straight weld oil well pipe and production method thereof |
CN101586450A (en) * | 2009-04-29 | 2009-11-25 | 天津钢管集团股份有限公司 | Have high strength and high toughness petroleum casing pipe and manufacture method thereof |
CN101629476B (en) * | 2009-08-05 | 2012-05-23 | 天津钢管集团股份有限公司 | High strength and high toughness petroleum casing pipe capable of bearing low temperature within -40 to -80 DEG C |
EP2729590B1 (en) * | 2011-07-10 | 2015-10-28 | Tata Steel IJmuiden BV | Hot-rolled high-strength steel strip with improved haz-softening resistance and method of producing said steel |
CN102747272B (en) * | 2012-08-01 | 2014-08-27 | 攀枝花贝氏体耐磨管道有限公司 | B-P-T steel tube and preparation method thereof |
US9803256B2 (en) * | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
-
2015
- 2015-01-19 WO PCT/CN2015/070978 patent/WO2016000444A1/en active Application Filing
- 2015-01-19 DE DE112015003075.1T patent/DE112015003075T5/en active Pending
- 2015-01-19 JP JP2016575505A patent/JP6456986B2/en active Active
- 2015-01-19 US US15/322,683 patent/US20170159157A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2016000444A1 (en) | 2016-01-07 |
US20170159157A1 (en) | 2017-06-08 |
DE112015003075T5 (en) | 2017-03-23 |
CN104046910A (en) | 2014-09-17 |
JP2017525844A (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6670858B2 (en) | Ultra-high-strength ultra-high toughness casing steel, oil casing, and method for producing the same | |
KR102263332B1 (en) | A high-hardness hot-rolled steel product, and a method of manufacturing the same | |
JP6456986B2 (en) | Ultra-high strength and ultra-tough oil well pipe and method for producing the same | |
WO2019128286A1 (en) | Method for fabricating low-cost, short-production-cycle wear-resistant steel | |
CN105441801B (en) | A kind of superhigh intensity superhigh tenacity petroleum casing pipe and its TMCP manufacture methods | |
CN103882330A (en) | Low-yield-ratio ultrahigh-strength non-quenched and tempered steel plate and production method thereof | |
CN102747290A (en) | Economical wear-resistant steel and manufacturing method thereof | |
JP6152375B2 (en) | Steel for pressure vessels excellent in low temperature toughness and hydrogen sulfide stress corrosion cracking resistance, manufacturing method thereof, and deep drawing product manufacturing method | |
CN108624810B (en) | Low-cost high-strength high-sulfur-resistance oil well pipe and manufacturing method thereof | |
CA3032502C (en) | Sucker rod steel and manufacturing method thereof | |
CN112708730B (en) | Ultrahigh collapse-resistant petroleum casing pipe and manufacturing method thereof | |
CN111607744B (en) | Thick-wall high-strength high-toughness petroleum casing pipe and manufacturing method thereof | |
US11519049B2 (en) | Low temperature resistant oil casing having high strength and high toughness, and manufacturing method thereof | |
CN110616365B (en) | High-strength expansion casing pipe and manufacturing method thereof | |
US11459643B2 (en) | High-strength and high-toughness perforating gun tube and manufacturing method therefor | |
CN103820717A (en) | Steel plate and preparation method thereof | |
JP7458685B2 (en) | High strength anti-collapse oil casing and its manufacturing method | |
CN114134387B (en) | 1300 MPa-tensile-strength thick-specification ultrahigh-strength steel plate and manufacturing method thereof | |
JP6303866B2 (en) | High-strength steel material and manufacturing method thereof | |
RU2617070C1 (en) | High-strength low-alloy constructional steel | |
KR101586883B1 (en) | High strength steel and method of manufacturing the same | |
CN115198186A (en) | High-strength electric resistance welding petroleum casing for deep well and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6456986 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |