JP6456812B2 - Submersible motor driven pump - Google Patents

Submersible motor driven pump Download PDF

Info

Publication number
JP6456812B2
JP6456812B2 JP2015248643A JP2015248643A JP6456812B2 JP 6456812 B2 JP6456812 B2 JP 6456812B2 JP 2015248643 A JP2015248643 A JP 2015248643A JP 2015248643 A JP2015248643 A JP 2015248643A JP 6456812 B2 JP6456812 B2 JP 6456812B2
Authority
JP
Japan
Prior art keywords
impeller
heat exchange
exchange chamber
peripheral side
submersible motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248643A
Other languages
Japanese (ja)
Other versions
JP2017115593A (en
Inventor
嘉規 小山田
嘉規 小山田
亮 海野
亮 海野
辰美 木村
辰美 木村
武志 石倉
武志 石倉
日左男 森下
日左男 森下
Original Assignee
株式会社電業社機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電業社機械製作所 filed Critical 株式会社電業社機械製作所
Priority to JP2015248643A priority Critical patent/JP6456812B2/en
Publication of JP2017115593A publication Critical patent/JP2017115593A/en
Application granted granted Critical
Publication of JP6456812B2 publication Critical patent/JP6456812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、夾雑物などが含まれる汚水に好適な水中モータ駆動式ポンプに関するものである。   The present invention relates to a submersible motor-driven pump suitable for sewage containing contaminants.

水中モータで駆動され、大気中での連続運転が可能なポンプが、例えば特許文献1に開示されている。このポンプは、乾式水中モータのモータフレームにウォータージャケットを設け、オイルボックスとポンプケーシングとの間に1次冷媒として水を封入した熱交換器を配設し、この熱交換器をウォータージャケットに連通し、冷却水を循環させる冷却用羽根車を熱交換器内に設けて構成されている。   For example, Patent Document 1 discloses a pump that is driven by a submersible motor and can be continuously operated in the atmosphere. This pump is provided with a water jacket on the motor frame of the dry submersible motor, a heat exchanger filled with water as a primary refrigerant is disposed between the oil box and the pump casing, and this heat exchanger communicates with the water jacket. And the cooling impeller which circulates cooling water is provided in the heat exchanger, and is comprised.

2次冷媒となる汚水等の揚液は、ポンプケーシングの吐出流路から羽根車の裏面とポンプケーシングの内壁とによって形成される隙間の外周側から内周側に入り、冷却エレメントの揚液側に設けられた冷却フィン側に導かれて熱交換が行われる。熱交換された揚液は熱交換器の側方から外部に排出される。
この技術によれば、土砂やヘドロ等が含まれる揚液を2次冷媒として使用でき、ウォータージャケット内に土砂やヘドロ等が堆積することがない。
The pumped liquid such as sewage that becomes the secondary refrigerant enters the inner peripheral side from the outer peripheral side of the gap formed by the back surface of the impeller and the inner wall of the pump casing from the discharge flow path of the pump casing, and the pumped side of the cooling element The heat is exchanged by being led to the cooling fin side provided in. The pumped liquid subjected to heat exchange is discharged to the outside from the side of the heat exchanger.
According to this technique, the pumped liquid containing earth and sand and sludge can be used as the secondary refrigerant, and earth and sand and sludge do not accumulate in the water jacket.

特開2002−310088号公報JP 2002-310088 A

上記従来の技術において、以下の課題が残されている。
すなわち、従来の水中モータ駆動式ポンプを大小様々な夾雑物が含まれる汚水に適用すると、冷却水として用いる汚水が羽根車の裏面とポンプケーシング内壁との隙間を通過する際に、この隙間に汚水に含まれる夾雑物が噛み込んだり、熱交換器の冷却フィンが夾雑物で閉塞したりすることがあり、水中モータの冷却やポンプの運転に支障が生じるおそれがあるという不都合があった。
In the above conventional technique, the following problems remain.
That is, when a conventional submersible motor-driven pump is applied to sewage containing various kinds of contaminants, when sewage used as cooling water passes through the gap between the rear surface of the impeller and the inner wall of the pump casing, Contaminants contained in the heat exchanger may be bitten or the cooling fins of the heat exchanger may be clogged with contaminants, which may cause problems in cooling the submersible motor and in operating the pump.

本発明は、上記従来の問題に鑑みてなされたもので、汚水に含まれる夾雑物によって運転に支障が生じることを抑制可能な水中モータ駆動式ポンプを提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an underwater motor-driven pump capable of suppressing troubles in operation due to foreign substances contained in sewage.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る水中モータ駆動式ポンプは、回転可能に羽根車が収納されたポンプケーシングと、前記ポンプケーシングの上方に設けられた熱交換器と、前記熱交換器上に設置され回転軸に固定された前記羽根車を回転駆動する水中モータとを備え、前記ポンプケーシングが、前記羽根車の表面側に設けられた流体の吸込流路と、前記羽根車の裏面側に設けられ前記吸込流路と連通する流入室とを有し、前記ポンプケーシングと前記熱交換器との間に熱交換室を設けていると共に、前記流入室と前記熱交換室とを連通する部分に前記流体中に含まれる夾雑物を破砕する破砕機構を設けていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the submersible motor-driven pump according to the first invention is installed on a pump casing in which an impeller is rotatably housed, a heat exchanger provided above the pump casing, and the heat exchanger. A submersible motor that rotationally drives the impeller fixed to a rotating shaft, and the pump casing is provided on a front surface side of the impeller and on a rear surface side of the impeller. An inflow chamber that communicates with the suction flow path, a heat exchange chamber is provided between the pump casing and the heat exchanger, and a portion that communicates the inflow chamber and the heat exchange chamber A crushing mechanism is provided for crushing impurities contained in the fluid.

本発明の水中モータ駆動式ポンプでは、流入室と熱交換室とを連通する部分に流体中に含まれる夾雑物を破砕する破砕機構を設けているので、流入室から熱交換室へ流体が流通する際に流体に含まれる夾雑物が破砕機構によって破砕され、微細化された夾雑物が熱交換室に吐出される。したがって、羽根車の裏面とポンプケーシングの内壁との隙間に夾雑物が噛み込んだり、熱交換室に露出している熱交換器の冷却フィン等が夾雑物で閉塞したり、夾雑物が回転軸に絡みついたりすることを防止でき、水中モータの冷却やポンプの運転を正常に継続することが可能になる。   In the submersible motor-driven pump according to the present invention, a crushing mechanism for crushing impurities contained in the fluid is provided at a portion where the inflow chamber communicates with the heat exchange chamber, so that the fluid flows from the inflow chamber to the heat exchange chamber. In doing so, the impurities contained in the fluid are crushed by the crushing mechanism, and the refined impurities are discharged into the heat exchange chamber. Therefore, foreign matter is caught in the gap between the back surface of the impeller and the inner wall of the pump casing, the cooling fins of the heat exchanger exposed in the heat exchange chamber are closed with foreign matter, or the foreign matter is Can be prevented from being entangled, and cooling of the submersible motor and operation of the pump can be continued normally.

第2の発明に係る水中モータ駆動式ポンプは、第1の発明において、前記破砕機構が、前記羽根車の裏面に内周側から外周側に向けて延在し配設された複数の裏羽根と、前記羽根車の外径と略同径で前記羽根車の裏面と間隙を設けて前記ポンプケーシングに固定された環状部材と、前記環状部材に設けられ内周側から外周側に向けて延在して前記裏羽根と対向配置された複数の溝部とを備え、前記環状部材が、前記流入室と前記熱交換室とを上下に仕切ると共に、前記環状部材の半径方向外側で、前記流入室と前記熱交換室とが連通していることを特徴とする。
すなわち、この水中モータ駆動式ポンプでは、破砕機構が、複数の裏羽根と、環状部材に設けられ裏羽根と対向配置された複数の溝部とを備えているので、水平投影面上で裏羽根が溝部を通過する際に裏羽根と溝部との協働によって夾雑物の破砕作用を生じさせることができる。
また、環状部材が、流入室と熱交換室とを上下に仕切ると共に、環状部材の半径方向外側で、流入室と熱交換室とが連通しているので、裏羽根の遠心ポンプ作用によって流体が環状部材と羽根車の裏面との間隙を内側から外側に向けて流れ、確実に破砕機構を通過して夾雑物が破砕され、さらに、流体は環状部材の半径方向外側から熱交換室へ旋回流となって吐出される。
The submersible motor-driven pump according to a second aspect of the present invention is the submersible motor-driven pump according to the first aspect, wherein the crushing mechanism is disposed on the back surface of the impeller so as to extend from the inner peripheral side toward the outer peripheral side. An annular member that is substantially the same diameter as the outer diameter of the impeller and has a gap between the rear surface of the impeller and fixed to the pump casing; and an annular member that is provided on the annular member and extends from the inner peripheral side toward the outer peripheral side. A plurality of grooves disposed opposite to the back blades, and the annular member vertically divides the inflow chamber and the heat exchange chamber, and the inflow chamber is disposed radially outside the annular member. And the heat exchange chamber communicate with each other.
In other words, in this submersible motor-driven pump, the crushing mechanism includes a plurality of back blades and a plurality of grooves provided on the annular member and arranged to face the back blades. When passing through the groove, the crushing action of the foreign matters can be caused by the cooperation of the back blade and the groove.
In addition, the annular member partitions the inflow chamber and the heat exchange chamber up and down, and the inflow chamber and the heat exchange chamber communicate with each other on the radially outer side of the annular member. The gap between the annular member and the rear surface of the impeller flows from the inside to the outside, reliably passes through the crushing mechanism, and impurities are crushed. Further, the fluid swirls from the radially outer side of the annular member to the heat exchange chamber. And discharged.

第3の発明に係る水中モータ駆動式ポンプは、第2の発明において、前記裏羽根が、前記羽根車の回転方向に対して外周側が内周側より後退して配設され、前記裏羽根と前記溝部とが、回転時に前記裏羽根と前記溝部とが水平投影面上において斜めに交差する配列とされていることを特徴とする。
すなわち、この水中モータ駆動式ポンプでは、裏羽根が、羽根車の回転方向に対して外周側が内周側より後退して配設され、裏羽根と溝部とが、回転時に裏羽根と溝部とが水平投影面上において斜めに交差する配列とされているので、裏羽根と溝部とが交差している時間(交差開始から交差終了までの時間)が長くなり、夾雑物を効率的に粉砕することができる。
The submersible motor-driven pump according to a third aspect of the present invention is the submersible motor-driven pump according to the second aspect, wherein the back blade is disposed with the outer peripheral side set back from the inner peripheral side with respect to the rotational direction of the impeller. The groove portion is arranged so that the back blade and the groove portion obliquely intersect on a horizontal projection plane during rotation.
That is, in this submersible motor-driven pump, the back blade is disposed with the outer peripheral side retracted from the inner peripheral side with respect to the rotation direction of the impeller, and the back blade and the groove portion are connected to each other during rotation. Since it is arranged to cross diagonally on the horizontal projection plane, the time for the back blade and the groove to intersect (the time from the start of the intersection to the end of the intersection) becomes longer, and the impurities can be crushed efficiently. Can do.

第4の発明に係る水中モータ駆動式ポンプは、第3の発明において、前記裏羽根の全てが、前記溝部のいずれかと水平投影面上において常に交差する配列とされていることを特徴とする。
すなわち、この水中モータ駆動式ポンプでは、裏羽根の全てが、溝部のいずれかと水平投影面上において常に交差する配列とされているので、回転時に常に裏羽根が溝部と交差して夾雑物が素通りする頻度を少なくすることができ、夾雑物の破砕効率を向上させることができる。
The submersible motor-driven pump according to a fourth invention is characterized in that, in the third invention, all of the back blades are arranged so as to always intersect with any of the groove portions on a horizontal projection plane.
That is, in this submersible motor-driven pump, since all of the back blades always intersect with one of the grooves on the horizontal projection plane, the back blades always intersect with the grooves during rotation, so that impurities can pass through. It is possible to reduce the frequency of the crushing and improve the crushing efficiency of the contaminants.

第5の発明に係る水中モータ駆動式ポンプは、第1から第4の発明のいずれかにおいて、前記環状部材の半径方向外側から前記熱交換室に流入した前記流体の流れ方向を、前記熱交換室の中央側に変換する案内部材が、前記熱交換室に設けられていることを特徴とする。
すなわち、この水中モータ駆動式ポンプでは、環状部材の半径方向外側から熱交換室に流入した流体の流れ方向を、熱交換室の中央側に変換する案内部材が、熱交換室に設けられているので、案内部材により旋回流の速度エネルギーが圧力エネルギーに変換されて流体が昇圧されることで、案内部材の下流側において圧力損失による流体の流量の減少が抑制され、熱交換器との熱交換効率が低下することを抑制できる。
A submersible motor-driven pump according to a fifth invention is the submersible motor-driven pump according to any one of the first to fourth inventions, wherein the flow direction of the fluid flowing into the heat exchange chamber from the radially outer side of the annular member is changed to the heat exchange. A guide member for conversion to the center side of the chamber is provided in the heat exchange chamber.
That is, in this submersible motor-driven pump, a guide member that converts the flow direction of the fluid that has flowed into the heat exchange chamber from the radially outer side of the annular member to the center side of the heat exchange chamber is provided in the heat exchange chamber. Therefore, the velocity energy of the swirling flow is converted into pressure energy by the guide member and the fluid is pressurized, so that a decrease in the flow rate of the fluid due to pressure loss is suppressed on the downstream side of the guide member, and heat exchange with the heat exchanger is performed. It can suppress that efficiency falls.

第6の発明に係る水中モータ駆動式ポンプは、第5の発明において、前記案内部材の下流側の前記熱交換室に上面側を前記熱交換器に対向させて配置され、前記案内部材を通過した前記流体の流れを前記熱交換室の外周側に向かう流れに変換する流速調整部材を備え、前記流速調整部材が、前記案内部材を通過した前記流体が流通する中心孔を有し、前記中心孔の内径が上方に向けて漸次拡大した略逆円錐状とされ、前記流速調整部材と前記熱交換器との間に形成された流路の半径方向における流路断面積が略等しく設定されていることを特徴とする。
すなわち、この水中モータ駆動式ポンプでは、流速調整部材の中心孔の内径が上方に向けて漸次拡大した略逆円錐状とされ、流速調整部材と熱交換器との間に形成された流路の半径方向における流路断面積が略等しく設定されているので、前記流路内の流速が均等化されると共に短絡流の発生を防止することができ、熱交換器との熱交換を効率的に行うことができる。
A submersible motor driven pump according to a sixth invention is the submersible motor driven pump according to the fifth invention, wherein the submersible motor driven pump is disposed in the heat exchange chamber on the downstream side of the guide member with the upper surface facing the heat exchanger and passes through the guide member. A flow rate adjusting member that converts the flow of the fluid into a flow toward the outer peripheral side of the heat exchange chamber, the flow rate adjusting member having a center hole through which the fluid that has passed through the guide member flows, The inner diameter of the hole is a substantially inverted conical shape that gradually expands upward, and the cross-sectional area in the radial direction of the flow path formed between the flow rate adjusting member and the heat exchanger is set to be approximately equal. It is characterized by being.
That is, in this submersible motor-driven pump, the inner diameter of the center hole of the flow rate adjusting member has a substantially inverted conical shape that gradually expands upward, and the flow path formed between the flow rate adjusting member and the heat exchanger Since the flow path cross-sectional areas in the radial direction are set to be approximately equal, the flow velocity in the flow path can be equalized and the occurrence of short-circuit flow can be prevented, and heat exchange with the heat exchanger can be efficiently performed. It can be carried out.

本発明によれば、以下の効果を奏する。
すなわち、本発明の水中モータ駆動式ポンプによれば、流入室と熱交換室とを連通する部分に流体中に含まれる夾雑物を破砕する破砕機構を設けているので、流入室から熱交換室へ流体が流通する際に流体に含まれる夾雑物を破砕機構によって破砕し、微細化することができる。
したがって、本発明の水中モータ駆動式ポンプでは、夾雑物に起因する運転の支障を防止でき、水中モータの冷却やポンプの運転を正常に継続することが可能になる。
The present invention has the following effects.
That is, according to the submersible motor-driven pump of the present invention, the crushing mechanism for crushing impurities contained in the fluid is provided in the portion that communicates the inflow chamber and the heat exchange chamber. When the fluid circulates, the impurities contained in the fluid can be crushed by a crushing mechanism and refined.
Therefore, in the submersible motor driven pump of the present invention, it is possible to prevent troubles in operation due to foreign matters, and it is possible to normally continue cooling of the submersible motor and operation of the pump.

本発明に係る水中モータ駆動式ポンプの第1実施形態において、熱交換器から下部を破断した正面図である。In 1st Embodiment of the submersible motor drive type pump which concerns on this invention, it is the front view which fractured | ruptured the lower part from the heat exchanger. 第1実施形態において、要部の拡大断面図である。In 1st Embodiment, it is an expanded sectional view of the principal part. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 図1のB−B線矢視断面図である。It is a BB arrow directional cross-sectional view of FIG. 本発明に係る水中モータ駆動式ポンプの第2実施形態において、第1実施形態の図3と同様の位置における断面図である。In 2nd Embodiment of the submersible motor drive pump which concerns on this invention, it is sectional drawing in the same position as FIG. 3 of 1st Embodiment. 本発明に係る水中モータ駆動式ポンプの第3実施形態において、熱交換器から下部を破断した正面図である。In 3rd Embodiment of the submersible motor drive type pump which concerns on this invention, it is the front view which fractured | ruptured the lower part from the heat exchanger. 第3実施形態において、要部の拡大断面図である。In 3rd Embodiment, it is an expanded sectional view of the principal part. 図6のC−C線矢視断面図である。It is CC sectional view taken on the line of FIG.

以下、本発明における水中モータ駆動式ポンプの第1実施形態を、図1から図4を参照しながら説明する。   Hereinafter, a first embodiment of a submersible motor-driven pump according to the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の水中モータ駆動式ポンプ1は、図1及び図2に示すように、回転可能に羽根車8が収納されたポンプケーシング2と、ポンプケーシング2の上方に設けられた熱交換器3と、熱交換器3上に設置され回転軸7に固定された羽根車8を回転駆動する水中モータ4とを備えている。
なお、羽根車8には複数の羽根車羽根21、21が配設されている。
As shown in FIGS. 1 and 2, the submersible motor-driven pump 1 of the present embodiment includes a pump casing 2 in which an impeller 8 is rotatably housed, and a heat exchanger 3 provided above the pump casing 2. And an underwater motor 4 that rotationally drives an impeller 8 that is installed on the heat exchanger 3 and fixed to the rotary shaft 7.
The impeller 8 is provided with a plurality of impeller blades 21, 21.

上記ポンプケーシング2は、羽根車8の表面側に設けられた流体の吸込流路9と、羽根車8の裏面側に設けられ吸込流路9と連通する流入室10とを有している。なお、吸込流路9は、羽根車羽根21、21の入口側先端より上流側の流体流路をいう。
また、ポンプケーシング2と熱交換器3との間に熱交換室6を設けていると共に、流入室10と熱交換室6とを連通する部分に流体中に含まれる夾雑物を破砕する破砕機構17を設けている。
The pump casing 2 has a fluid suction passage 9 provided on the front surface side of the impeller 8 and an inflow chamber 10 provided on the back surface side of the impeller 8 and communicating with the suction passage 9. The suction flow path 9 is a fluid flow path upstream from the inlet-side tips of the impeller blades 21 and 21.
In addition, a heat exchange chamber 6 is provided between the pump casing 2 and the heat exchanger 3, and a crushing mechanism that crushes impurities contained in the fluid in a portion where the inflow chamber 10 and the heat exchange chamber 6 communicate with each other. 17 is provided.

上記破砕機構17は、羽根車8の裏面に内周側から外周側に向けて延在し配設された複数の裏羽根12と、羽根車8の外径と略同径で羽根車8の裏面と間隙を設けてポンプケーシング2に固定された環状部材14と、環状部材14に設けられ内周側から外周側に向けて延在して裏羽根12と対向配置された複数の溝部13とを備えている。
上記環状部材14は、流入室10と熱交換室6とを上下に仕切ると共に、環状部材14の半径方向外側で、流入室10と熱交換室6とが連通している。
The crushing mechanism 17 includes a plurality of back blades 12 extending and arranged on the back surface of the impeller 8 from the inner peripheral side toward the outer peripheral side, and the impeller 8 having the same diameter as the outer diameter of the impeller 8. An annular member 14 that is fixed to the pump casing 2 with a back surface and a gap, and a plurality of grooves 13 that are provided on the annular member 14 and extend from the inner peripheral side toward the outer peripheral side and are arranged to face the back blade 12. It has.
The annular member 14 partitions the inflow chamber 10 and the heat exchange chamber 6 up and down, and the inflow chamber 10 and the heat exchange chamber 6 communicate with each other on the radially outer side of the annular member 14.

裏羽根12は、図3に示すように、羽根車8の回転方向に対して外周側が内周側より後退して配設され、裏羽根12と溝部13とが、回転時に裏羽根12と溝部13とが水平投影面上において斜めに交差する配列とされている。
また、図4に示すように、環状部材14の半径方向外側から熱交換室6に流入した流体の流れ方向を、熱交換室6の中央側に変換する複数の案内部材15が、熱交換室6に設けられている。案内部材15は、内周側から外周側へ延在し、水平断面が略直線状とされた板状部材である。これらの案内部材15の外周側端部は、旋回流の進行方向の逆方向に向けて突出した形状とされている。
As shown in FIG. 3, the back blade 12 is arranged with the outer peripheral side set back from the inner peripheral side with respect to the rotation direction of the impeller 8, and the back blade 12 and the groove portion 13 are rotated when the rear blade 12 and the groove portion 13 are rotated. 13 are arranged so as to cross obliquely on the horizontal projection plane.
Further, as shown in FIG. 4, a plurality of guide members 15 that convert the flow direction of the fluid flowing into the heat exchange chamber 6 from the radially outer side of the annular member 14 to the center side of the heat exchange chamber 6 include the heat exchange chamber. 6 is provided. The guide member 15 is a plate-like member that extends from the inner peripheral side to the outer peripheral side and has a horizontal cross section that is substantially linear. The outer peripheral side ends of these guide members 15 have a shape projecting in the direction opposite to the direction of travel of the swirl flow.

この水中モータ駆動式ポンプ1では、ポンプケーシング2の上方に熱交換器3を備えた水中モータ4が一体的に付設されている。水中モータ4の外周部には冷却ジャケット5が設けられ、熱交換器3との間で1次冷媒の循環が行われて水中モータ4が冷却される。
ポンプケーシング2と熱交換器3との間に熱交換室6が形成され、水中モータ4から熱交換室6を貫通してポンプケーシング2内まで延長された回転軸7の下端に、羽根車8が固定されている。
In the submersible motor-driven pump 1, a submersible motor 4 including a heat exchanger 3 is integrally provided above the pump casing 2. A cooling jacket 5 is provided on the outer periphery of the submersible motor 4, and the primary refrigerant is circulated with the heat exchanger 3 to cool the submersible motor 4.
A heat exchange chamber 6 is formed between the pump casing 2 and the heat exchanger 3, and the impeller 8 is disposed at the lower end of the rotary shaft 7 that extends from the submersible motor 4 through the heat exchange chamber 6 into the pump casing 2. Is fixed.

羽根車8の表面はポンプケーシング2の吸込流路9に臨み、羽根車8の裏面には流入室10が形成され、羽根車羽根21の入口側先端より上流側の羽根車8に穿設された連通孔11、11によって流入室10と吸込流路9とが連通されている。
羽根車8の裏面外周側には、板状で水平断面が略直線状の裏羽根12が羽根車8の回転方向に対して外周側が内周側より後退して配設されている。具体的には裏羽根12は、回転方向に対して外周側が内周側より角度αだけ後退して配設されている。裏羽根12の外周側が内周側より後退して配設されているので、裏羽根12による強力な遠心ポンプ作用が生じる。
The surface of the impeller 8 faces the suction flow path 9 of the pump casing 2, and an inflow chamber 10 is formed on the back surface of the impeller 8, and is drilled in the impeller 8 upstream from the inlet end of the impeller blade 21. The inflow chamber 10 and the suction passage 9 are communicated with each other through the communication holes 11 and 11.
On the outer peripheral side of the back surface of the impeller 8, a back blade 12 having a plate shape and a substantially straight horizontal cross section is disposed with the outer peripheral side set back from the inner peripheral side with respect to the rotational direction of the impeller 8. Specifically, the back blade 12 is disposed such that the outer peripheral side is set back by an angle α from the inner peripheral side with respect to the rotational direction. Since the outer peripheral side of the back blade 12 is disposed so as to recede from the inner peripheral side, a strong centrifugal pump action is generated by the back blade 12.

羽根車8の外径とほぼ同径で外周側に複数の長穴状の溝部13が形成された環状部材14が、羽根車8の裏面と平行に配設されている。
環状部材14と羽根車8の裏面との間には適宜な間隙dが設けられ、環状部材14によって流入室10と熱交換室6が上下に仕切られている。
環状部材14は、複数の案内部材15と支持部材16とを介してポンプケーシング2に固定される。
An annular member 14 having a diameter substantially the same as the outer diameter of the impeller 8 and having a plurality of slot-like grooves 13 formed on the outer peripheral side is disposed in parallel with the rear surface of the impeller 8.
An appropriate gap d is provided between the annular member 14 and the rear surface of the impeller 8, and the inflow chamber 10 and the heat exchange chamber 6 are vertically partitioned by the annular member 14.
The annular member 14 is fixed to the pump casing 2 via a plurality of guide members 15 and a support member 16.

環状部材14の溝部13は、長さ方向が羽根車8の回転方向に対して外周側が内周側より角度βだけ後退して形成されている。このため、回転する裏羽根12は、静止している溝部13と斜めに交差し、裏羽根12が溝部13を通過するときに、裏羽根12と溝部13との協働による破砕作用が生じる。したがって、環状部材14と回転する裏羽根12と静止している溝部13とによって破砕機構17が構成され、破砕機構17を介して流入室10と熱交換室6とが連通されている。   The groove portion 13 of the annular member 14 is formed such that the length direction of the outer circumferential side is set back from the inner circumferential side by an angle β with respect to the rotational direction of the impeller 8. For this reason, the rotating back blade 12 obliquely intersects the stationary groove portion 13, and when the back blade 12 passes through the groove portion 13, a crushing action due to the cooperation of the back blade 12 and the groove portion 13 occurs. Therefore, the crushing mechanism 17 is configured by the annular member 14, the rotating back blade 12, and the stationary groove portion 13, and the inflow chamber 10 and the heat exchange chamber 6 are communicated with each other via the crushing mechanism 17.

次に、本実施形態の水中モータ駆動式ポンプ1の運転について説明する。
まず、水中モータ駆動式ポンプ1の運転が開始され水中モータ4の回転軸7に固定された羽根車8が回転すると、ポンプケーシング2の吸込口18から汚水(流体)が吸い込まれ、吸込流路9から吐出流路19を経て外部に排水される。
このとき、汚水の一部は吸込流路9から連通孔11、11を通って流入室10に流入する。同時に、回転する裏羽根12の遠心ポンプ作用によって、流入室10の汚水は環状部材14と羽根車8の裏面との間隙dを、矢印Yで示すように内側から外側に向けて流れ、破砕機構17を通って熱交換室6に旋回流となって吐出される。
Next, the operation of the submersible motor-driven pump 1 of the present embodiment will be described.
First, when the operation of the submersible motor-driven pump 1 is started and the impeller 8 fixed to the rotating shaft 7 of the submersible motor 4 rotates, dirty water (fluid) is sucked from the suction port 18 of the pump casing 2, and the suction flow path 9 is discharged to the outside through the discharge channel 19.
At this time, part of the sewage flows into the inflow chamber 10 from the suction passage 9 through the communication holes 11 and 11. At the same time, due to the centrifugal pump action of the rotating back blade 12, the sewage in the inflow chamber 10 flows through the gap d between the annular member 14 and the rear surface of the impeller 8 from the inside to the outside as indicated by the arrow Y, and the crushing mechanism 17 is discharged into the heat exchange chamber 6 as a swirling flow.

汚水が破砕機構17を通過する際に、大きな夾雑物は回転する裏羽根12と溝部13とによって破砕され、微細化される。図4に示すように、旋回流となって熱交換室6に吐出された汚水は、案内部材15によって熱交換室6の外周側から中央側に向けた流れに変換されると共に、旋回流の速度エネルギーが圧力エネルギーに変換されて昇圧された流れとなり、支持部材16の中央開口部を通って熱交換室の上部を外周側に向けて流れ、熱交換器3との熱交換が行われる。熱交換された汚水は、流出口20、20から外部に排出される。   When the sewage passes through the crushing mechanism 17, large impurities are crushed and refined by the rotating back blade 12 and the groove 13. As shown in FIG. 4, the sewage discharged into the heat exchange chamber 6 as a swirl flow is converted into a flow from the outer peripheral side of the heat exchange chamber 6 toward the center side by the guide member 15, and the swirl flow The velocity energy is converted into pressure energy to increase the pressure, flow through the central opening of the support member 16 toward the outer peripheral side of the heat exchange chamber, and heat exchange with the heat exchanger 3 is performed. The heat-exchanged sewage is discharged from the outlets 20 and 20 to the outside.

このように水中モータ駆動式ポンプ1では、流入室10と熱交換室6とを連通する部分に流体中に含まれる夾雑物を破砕する破砕機構17を設けているので、流入室10から熱交換室6へ流体が流通する際に流体に含まれる夾雑物が破砕機構17によって破砕され、微細化された夾雑物が熱交換室6に吐出される。したがって、羽根車8の裏面とポンプケーシング2の内壁との隙間に夾雑物が噛み込んだり、熱交換室6に露出している熱交換器3の冷却フィン等が夾雑物で閉塞したり、夾雑物が回転軸7に絡みついたりすることを防止でき、水中モータ4の冷却やポンプの運転を正常に継続することが可能になる。   As described above, in the submersible motor-driven pump 1, the crushing mechanism 17 that crushes impurities contained in the fluid is provided at the portion where the inflow chamber 10 and the heat exchange chamber 6 communicate with each other. When the fluid flows into the chamber 6, the impurities contained in the fluid are crushed by the crushing mechanism 17, and the refined impurities are discharged into the heat exchange chamber 6. Accordingly, foreign substances are caught in the gap between the back surface of the impeller 8 and the inner wall of the pump casing 2, the cooling fins of the heat exchanger 3 exposed in the heat exchange chamber 6 are clogged with foreign substances, An object can be prevented from being entangled with the rotating shaft 7, and the cooling of the submersible motor 4 and the operation of the pump can be normally continued.

また、破砕機構17が、複数の裏羽根12と、環状部材14に設けられ裏羽根12と対向配置された複数の溝部13とを備えているので、水平投影面上で裏羽根12が溝部13を通過する際に裏羽根12と溝部13との協働によって夾雑物の破砕作用を生じさせることができる。
また、環状部材14が、流入室10と熱交換室6とを上下に仕切ると共に、環状部材14の半径方向外側で、流入室10と熱交換室6とが連通しているので、裏羽根12の遠心ポンプ作用によって流体が環状部材14と羽根車8の裏面との間隙dを内側から外側に向けて流れ、確実に破砕機構17を通過して夾雑物が破砕され、さらに、流体は環状部材14の半径方向外側から熱交換室6へ旋回流となって吐出される。
Moreover, since the crushing mechanism 17 includes a plurality of back blades 12 and a plurality of groove portions 13 provided on the annular member 14 and arranged to face the back blades 12, the back blades 12 are formed on the horizontal projection plane. When passing through, the colliding action of the foreign matters can be caused by the cooperation of the back blade 12 and the groove 13.
In addition, the annular member 14 divides the inflow chamber 10 and the heat exchange chamber 6 in the vertical direction, and the inflow chamber 10 and the heat exchange chamber 6 communicate with each other outside the annular member 14 in the radial direction. The centrifugal pump action causes the fluid to flow from the inside toward the outside through the gap d between the annular member 14 and the rear surface of the impeller 8, and reliably passes through the crushing mechanism 17 to crush the contaminants. 14 is discharged from the outside in the radial direction into the heat exchange chamber 6 as a swirling flow.

また、裏羽根12が、羽根車8の回転方向に対して外周側が内周側より後退して配設され、裏羽根12と溝部13とが、回転時に裏羽根12と溝部13とが水平投影面上において斜めに交差する配列とされているので、裏羽根12と溝部13とが交差している時間(交差開始から交差終了までの時間)が長くなり、夾雑物を効率的に粉砕することができる。   Further, the rear blade 12 is disposed with the outer peripheral side set back from the inner peripheral side with respect to the rotation direction of the impeller 8, and the rear blade 12 and the groove portion 13 are horizontally projected when rotating. Since it is arranged in an obliquely intersecting manner on the surface, the time during which the back blade 12 and the groove 13 intersect (the time from the start of the intersection to the end of the intersection) becomes longer, and the impurities can be crushed efficiently. Can do.

さらに、環状部材14の半径方向外側から熱交換室6に流入した流体の流れ方向を、熱交換室6の中央側に変換する案内部材15が、熱交換室6に設けられているので、案内部材15により旋回流の速度エネルギーが圧力エネルギーに変換されて流体が昇圧されることで、案内部材15の下流側において圧力損失による流体の流量の減少が抑制され、熱交換器3との熱交換効率が低下することを抑制できる。   Further, since the guide member 15 that converts the flow direction of the fluid flowing into the heat exchange chamber 6 from the radially outer side of the annular member 14 to the center side of the heat exchange chamber 6 is provided in the heat exchange chamber 6, the guide The member 15 converts the velocity energy of the swirling flow into pressure energy and pressurizes the fluid, thereby suppressing a decrease in the flow rate of the fluid due to pressure loss on the downstream side of the guide member 15 and exchanging heat with the heat exchanger 3. It can suppress that efficiency falls.

次に、本発明に係る水中モータ駆動式ポンプの第2及び第3実施形態について、図5から図8を参照して以下に説明する。なお、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, second and third embodiments of the submersible motor-driven pump according to the present invention will be described below with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same component demonstrated in the said embodiment, and the description is abbreviate | omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、回転時の位置によって裏羽根12と溝部13とが水平投影面上において交差しない位置があるのに対し、第2実施形態の水中モータ駆動式ポンプでは、図5に示すように、環状部材14の溝部25が、羽根車8の回転方向に対して外周側が内周側より前進して形成され、しかも複数の裏羽根26のいずれもが溝部25のいずれかと水平投影面上において常に交差しているように配列されている点である。   The difference between the second embodiment and the first embodiment is that in the first embodiment, there is a position where the back blade 12 and the groove 13 do not intersect on the horizontal projection plane depending on the position at the time of rotation. In the submersible motor-driven pump of the embodiment, as shown in FIG. 5, the groove portion 25 of the annular member 14 is formed such that the outer peripheral side advances from the inner peripheral side with respect to the rotation direction of the impeller 8, and a plurality of back surfaces are formed. All of the blades 26 are arranged so as to always intersect with any of the groove portions 25 on the horizontal projection plane.

このように第2実施形態の水中モータ駆動式ポンプでは、破砕機構27において裏羽根12の全てが、溝部13のいずれかと水平投影面上において常に交差する配列とされているので、回転時に常に裏羽根12が溝部13と交差して夾雑物が素通りする頻度を少なくすることができ、夾雑物の破砕効率を向上させることができる。   As described above, in the submersible motor-driven pump according to the second embodiment, all the back blades 12 are always arranged so as to intersect with any one of the groove portions 13 on the horizontal projection plane in the crushing mechanism 27. The frequency with which the blade 12 crosses the groove 13 and the contaminants pass through can be reduced, and the crushing efficiency of the contaminants can be improved.

次に、第3実施形態と第1実施形態との異なる点は、第1実施形態では、熱交換室6に複数の案内部材15が設けられているのに対し、第3実施形態の水中モータ駆動式ポンプ41では、図6から図8に示すように、熱交換室6に、案内部材30に加えて流速調整部材31が設けられている点である。   Next, the difference between the third embodiment and the first embodiment is that, in the first embodiment, a plurality of guide members 15 are provided in the heat exchange chamber 6, whereas the submersible motor of the third embodiment. As shown in FIGS. 6 to 8, the drive pump 41 is provided with a flow rate adjusting member 31 in addition to the guide member 30 in the heat exchange chamber 6.

すなわち、第3実施形態の水中モータ駆動式ポンプ41では、案内部材30の下流側の熱交換室6に上面側を熱交換器3に対向させて配置され、案内部材30を通過した流体の流れを熱交換室6の外周側に向かう流れに変換する流速調整部材31を備えている。
この流速調整部材31は、案内部材30を通過した流体が流通する中心孔31aを有し、中心孔31aの内径が上方に向けて漸次拡大した略逆円錐状とされ、流速調整部材31と熱交換器3との間に形成された流路の半径方向における流路断面積が略等しく設定されている。
That is, in the submersible motor-driven pump 41 of the third embodiment, the flow of fluid that has been disposed in the heat exchange chamber 6 on the downstream side of the guide member 30 with the upper surface facing the heat exchanger 3 and has passed through the guide member 30. Is converted to a flow toward the outer peripheral side of the heat exchange chamber 6.
The flow rate adjusting member 31 has a center hole 31a through which the fluid that has passed through the guide member 30 flows, and has a substantially inverted conical shape in which the inner diameter of the center hole 31a gradually expands upward. The channel cross-sectional areas in the radial direction of the channels formed between the exchanger 3 are set to be approximately equal.

環状部材14の天面には、複数の案内部材30が配設され、さらに案内部材30の上端面に開口部32が設けられた環状の上板33が配設されている。すなわち、環状部材14と上板33とによって、案内部材30の上下端部が閉塞されている。
案内部材30は、水平断面円弧状に形成された板状部材である。これらの案内部材30は、旋回流の進行方向に向けて凸状の円弧形状とされている。
上板33の開口部32を囲んで筒状部材34の下端が上板33に、筒状部材34の上端が支持部材16にそれぞれ接合され、さらに支持部材16に筒状部材34と連通して流速調整部材31が接合されている。
A plurality of guide members 30 are disposed on the top surface of the annular member 14, and an annular upper plate 33 having an opening 32 provided on the upper end surface of the guide member 30 is disposed. That is, the upper and lower ends of the guide member 30 are closed by the annular member 14 and the upper plate 33.
The guide member 30 is a plate-like member formed in a horizontal cross-section arc shape. These guide members 30 are formed in a convex arc shape toward the traveling direction of the swirl flow.
Surrounding the opening 32 of the upper plate 33, the lower end of the tubular member 34 is joined to the upper plate 33, the upper end of the tubular member 34 is joined to the support member 16, and the support member 16 communicates with the tubular member 34. A flow rate adjusting member 31 is joined.

流速調整部材31は、上方に向けて径が拡大する略円錐状で、その拡大面が熱交換器3に対向して配設されている。この流速調整部材31は、上方ほど径が急拡大しており、上述したように、流速調整部材31と熱交換器3との間隙を中央側から外周側に向けて流れる汚水(流体)の半径方向の流路断面積がほぼ等しくなるように形成されている。   The flow rate adjusting member 31 has a substantially conical shape whose diameter increases upward, and an enlarged surface thereof is disposed to face the heat exchanger 3. The diameter of the flow rate adjusting member 31 is rapidly increased toward the upper side, and as described above, the radius of the sewage (fluid) flowing through the gap between the flow rate adjusting member 31 and the heat exchanger 3 from the central side toward the outer peripheral side. The cross-sectional areas in the direction are formed to be substantially equal.

第3実施形態では、図8に示すように、破砕機構37から旋回流となって熱交換室6に吐出された汚水(流体)は、環状部材14と上板33との間に配設された案内部材30によって旋回流が熱交換室6の外周側から中央側に向けた流れに変換される。この際、旋回流の速度エネルギーが圧力エネルギーに変換されて昇圧された流れとなり、汚水は開口部32から筒状部材34を通って流速調整部材31と熱交換器3との間を熱交換室6の外周側に向けて流れ、汚水と熱交換器3との熱交換が行われる。熱交換された汚水は流出口20、20から外部に排出される。   In the third embodiment, as shown in FIG. 8, the sewage (fluid) discharged from the crushing mechanism 37 as a swirling flow into the heat exchange chamber 6 is disposed between the annular member 14 and the upper plate 33. The swirling flow is converted into a flow from the outer peripheral side of the heat exchange chamber 6 toward the central side by the guide member 30. At this time, the velocity energy of the swirl flow is converted into pressure energy to increase the pressure, and the sewage passes through the cylindrical member 34 from the opening 32 and between the flow rate adjusting member 31 and the heat exchanger 3 in the heat exchange chamber. 6 flows toward the outer peripheral side, and heat exchange between the sewage and the heat exchanger 3 is performed. The heat-exchanged sewage is discharged from the outlets 20 and 20 to the outside.

このように第3実施形態の水中モータ駆動式ポンプ41では、流速調整部材31の中心孔31aの内径が上方に向けて漸次拡大した略逆円錐状とされ、流速調整部材31と熱交換器3との間に形成された流路の半径方向における流路断面積が略等しく設定されているので、前記流路内の流速が均等化されると共に短絡流の発生を防止することができ、熱交換器3との熱交換を効率的に行うことができる。
なお、流速調整部材31の拡大面に案内板を設けて、さらに流速を均等化してもよい。
As described above, in the submersible motor-driven pump 41 according to the third embodiment, the inner diameter of the center hole 31a of the flow rate adjusting member 31 is formed in a substantially inverted conical shape that gradually increases upward, and the flow rate adjusting member 31 and the heat exchanger 3 The cross-sectional area in the radial direction of the flow path formed between the two is set to be substantially equal, so that the flow velocity in the flow path can be equalized and the occurrence of short-circuit flow can be prevented, Heat exchange with the exchanger 3 can be performed efficiently.
Note that a guide plate may be provided on the enlarged surface of the flow velocity adjusting member 31 to further equalize the flow velocity.

なお、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記各実施形態では、裏羽根と溝部とをいずれも直線状に形成したが、直線状に限られるものではなく、裏羽根や溝部を適宜に湾曲した曲線状で形成しても良い。
In addition, this invention is not limited to said each embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in each of the above embodiments, the back blade and the groove are both formed in a straight line shape, but are not limited to a straight line shape, and the back blade and the groove portion may be formed in a curved shape appropriately curved.

1,41…水中モータ駆動式ポンプ、2…ポンプケーシング、3…熱交換器、4…水中モータ、6…熱交換室、7…回転軸、8…羽根車、9…吸込流路、10…流入室、12…裏羽根、13…溝部、15,30…案内部材、14…環状部材、17,27,37…破砕機構、31…流速調整部材   DESCRIPTION OF SYMBOLS 1,41 ... Submersible motor drive type pump, 2 ... Pump casing, 3 ... Heat exchanger, 4 ... Submersible motor, 6 ... Heat exchange chamber, 7 ... Rotating shaft, 8 ... Impeller, 9 ... Suction flow path, 10 ... Inflow chamber, 12 ... back blade, 13 ... groove, 15, 30 ... guide member, 14 ... annular member, 17, 27, 37 ... crushing mechanism, 31 ... flow rate adjusting member

Claims (3)

回転可能に羽根車が収納されたポンプケーシングと、
前記ポンプケーシングの上方に設けられた熱交換器と、
前記熱交換器上に設置され回転軸に固定された前記羽根車を回転駆動する水中モータとを備え、
前記ポンプケーシングが、前記羽根車の表面側に設けられた流体の吸込流路と、
前記羽根車の裏面側に設けられ前記吸込流路と連通する流入室とを有し、
前記ポンプケーシングと前記熱交換器との間に熱交換室を設けていると共に、前記流入室と前記熱交換室とを連通する部分に前記流体中に含まれる夾雑物を破砕する破砕機構を設け
前記破砕機構が、前記羽根車の裏面に内周側から外周側に向けて延在し配設された複数の裏羽根と、前記羽根車の外径と略同径で前記羽根車の裏面と間隙を設けて前記ポンプケーシングに固定された環状部材と、前記環状部材に設けられ内周側から外周側に向けて延在して前記裏羽根と対向配置された複数の溝部とを備え、
前記環状部材が、前記流入室と前記熱交換室とを上下に仕切ると共に、前記環状部材の半径方向外側で、前記流入室と前記熱交換室とが連通し、
前記裏羽根が、前記羽根車の回転方向に対して外周側が内周側より後退して配設され、
前記溝部が、前記羽根車の回転方向に対して外周側が内周側より前進して形成され、
前記裏羽根と前記溝部とが、回転時に水平投影面上において斜めに交差する配列とされていることを特徴とする水中モータ駆動式ポンプ。
A pump casing in which an impeller is rotatably housed;
A heat exchanger provided above the pump casing;
A submersible motor that rotationally drives the impeller installed on the heat exchanger and fixed to a rotating shaft;
The pump casing is a fluid suction passage provided on the surface side of the impeller, and
An inflow chamber provided on the back side of the impeller and in communication with the suction flow path;
A heat exchange chamber is provided between the pump casing and the heat exchanger, and a crushing mechanism for crushing impurities contained in the fluid is provided at a portion communicating the inflow chamber and the heat exchange chamber. ,
The crushing mechanism has a plurality of back blades extending and arranged on the back surface of the impeller from the inner peripheral side toward the outer peripheral side, and the back surface of the impeller having the same diameter as the outer diameter of the impeller. An annular member that is fixed to the pump casing with a gap, and a plurality of groove portions that are provided on the annular member and extend from the inner peripheral side toward the outer peripheral side and are arranged to face the back blades,
The annular member divides the inflow chamber and the heat exchange chamber vertically, and the inflow chamber and the heat exchange chamber communicate with each other on the radially outer side of the annular member,
The back blade is disposed with the outer peripheral side set back from the inner peripheral side with respect to the rotational direction of the impeller,
The groove is formed such that the outer peripheral side advances from the inner peripheral side with respect to the rotational direction of the impeller,
The submersible motor-driven pump, wherein the back blade and the groove portion are arranged so as to obliquely intersect on a horizontal projection surface during rotation .
請求項記載の水中モータ駆動式ポンプにおいて、
前記裏羽根の全てが、前記溝部のいずれかと水平投影面上において常に交差する配列とされていることを特徴とする水中モータ駆動式ポンプ。
The submersible motor-driven pump according to claim 1 ,
The submersible motor-driven pump, wherein all the back blades are arranged so as to always intersect with any one of the groove portions on a horizontal projection plane.
回転可能に羽根車が収納されたポンプケーシングと、
前記ポンプケーシングの上方に設けられた熱交換器と、
前記熱交換器上に設置され回転軸に固定された前記羽根車を回転駆動する水中モータとを備え、
前記ポンプケーシングが、前記羽根車の表面側に設けられた流体の吸込流路と、
前記羽根車の裏面側に設けられ前記吸込流路と連通する流入室とを有し、
前記ポンプケーシングと前記熱交換器との間に熱交換室を設けていると共に、前記流入室と前記熱交換室とを連通する部分に前記流体中に含まれる夾雑物を破砕する破砕機構を設け、
前記環状部材の半径方向外側から前記熱交換室に流入した前記流体の流れ方向を、前記熱交換室の中央側に変換する案内部材が、前記熱交換室に設けられ、
前記案内部材の下流側の前記熱交換室に上面側を前記熱交換器に対向させて配置され、前記案内部材を通過した前記流体の流れを前記熱交換室の外周側に向かう流れに変換する流速調整部材を備え、
前記流速調整部材が、前記案内部材を通過した前記流体が流通する中心孔を有し、前記中心孔の内径が上方に向けて漸次拡大した略逆円錐状とされ、
前記流速調整部材と前記熱交換器との間に形成された流路の半径方向における流路断面積が略等しく設定されていることを特徴とする水中モータ駆動式ポンプ。
A pump casing in which an impeller is rotatably housed;
A heat exchanger provided above the pump casing;
A submersible motor that rotationally drives the impeller installed on the heat exchanger and fixed to a rotating shaft;
The pump casing is a fluid suction passage provided on the surface side of the impeller, and
An inflow chamber provided on the back side of the impeller and in communication with the suction flow path;
A heat exchange chamber is provided between the pump casing and the heat exchanger, and a crushing mechanism for crushing impurities contained in the fluid is provided at a portion communicating the inflow chamber and the heat exchange chamber. ,
A guide member that converts the flow direction of the fluid that has flowed into the heat exchange chamber from the radially outer side of the annular member to the center side of the heat exchange chamber is provided in the heat exchange chamber,
The upper surface side of the heat exchange chamber on the downstream side of the guide member is disposed to face the heat exchanger, and the flow of the fluid that has passed through the guide member is converted into a flow toward the outer peripheral side of the heat exchange chamber. Equipped with a flow rate adjusting member,
The flow rate adjusting member has a central hole through which the fluid that has passed through the guide member flows, and the inner diameter of the central hole gradually increases upward, and has a substantially inverted conical shape.
A submersible motor-driven pump, characterized in that a flow path cross-sectional area in a radial direction of a flow path formed between the flow rate adjusting member and the heat exchanger is set to be substantially equal.
JP2015248643A 2015-12-21 2015-12-21 Submersible motor driven pump Active JP6456812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248643A JP6456812B2 (en) 2015-12-21 2015-12-21 Submersible motor driven pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248643A JP6456812B2 (en) 2015-12-21 2015-12-21 Submersible motor driven pump

Publications (2)

Publication Number Publication Date
JP2017115593A JP2017115593A (en) 2017-06-29
JP6456812B2 true JP6456812B2 (en) 2019-01-23

Family

ID=59233512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248643A Active JP6456812B2 (en) 2015-12-21 2015-12-21 Submersible motor driven pump

Country Status (1)

Country Link
JP (1) JP6456812B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760380A4 (en) * 2018-02-28 2021-06-02 Koki Holdings Co., Ltd. Driving machine
JP7021688B2 (en) 2020-07-09 2022-02-17 株式会社鶴見製作所 underwater pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428641Y2 (en) * 1975-03-27 1979-09-13
JPS61101689U (en) * 1984-12-08 1986-06-28
JP5155113B2 (en) * 2008-11-19 2013-02-27 古河産機システムズ株式会社 underwater pump
JP5496699B2 (en) * 2010-02-12 2014-05-21 株式会社荏原製作所 Submersible motor pump

Also Published As

Publication number Publication date
JP2017115593A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP3199013U (en) Impeller low turbulent impeller
JP6800018B2 (en) Gas-liquid separator
KR20130136584A (en) A device comprising a centrifugal separator
WO2016121659A1 (en) Gas-liquid separation device
JP6456812B2 (en) Submersible motor driven pump
CN103352873A (en) Improved spiral flow constant pressure pump
KR101521904B1 (en) Axial flow pump
CN108138801B (en) Boiler pump
KR20150120168A (en) Centrifugal type mixed flow blower
CN101925748B (en) Fluid machine
US9534601B2 (en) Pump
KR101687165B1 (en) submerged pump
JP5300508B2 (en) Pump impeller and pump
JP6402849B2 (en) Rotating machine assembly and rotating machine
RU2610802C1 (en) Centrifugal pump runner
JP2006170112A (en) Unstable flow suppression device for fluid machine
US20140134021A1 (en) Pump for a Domestic Appliance
WO2003027444A1 (en) Duplex shear force rotor
KR20160106409A (en) Impeller and water pump with the same
JP4562088B2 (en) Self-priming pump
JP7403792B2 (en) drain pump
CN219795670U (en) Sealing member cooling structure for pump
WO2020213443A1 (en) Fluid resistance reduction device
JP5436381B2 (en) Liquid pump
WO2019220579A1 (en) Multi-stage pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181219

R150 Certificate of patent or registration of utility model

Ref document number: 6456812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250