JP6455867B2 - Water heat source outside air treatment unit with heat pump - Google Patents

Water heat source outside air treatment unit with heat pump Download PDF

Info

Publication number
JP6455867B2
JP6455867B2 JP2014073187A JP2014073187A JP6455867B2 JP 6455867 B2 JP6455867 B2 JP 6455867B2 JP 2014073187 A JP2014073187 A JP 2014073187A JP 2014073187 A JP2014073187 A JP 2014073187A JP 6455867 B2 JP6455867 B2 JP 6455867B2
Authority
JP
Japan
Prior art keywords
heat
source water
heat source
refrigerant
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073187A
Other languages
Japanese (ja)
Other versions
JP2015194319A (en
Inventor
龍三 大岡
龍三 大岡
俊之 日野
俊之 日野
敏明 斉藤
敏明 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Nippon Pmac Co Ltd
Original Assignee
University of Tokyo NUC
Nippon Pmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Nippon Pmac Co Ltd filed Critical University of Tokyo NUC
Priority to JP2014073187A priority Critical patent/JP6455867B2/en
Publication of JP2015194319A publication Critical patent/JP2015194319A/en
Application granted granted Critical
Publication of JP6455867B2 publication Critical patent/JP6455867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Description

本発明は、ヒートポンプ付水熱源外気処理ユニット、特に熱源水として地中熱を利用したヒートポンプ付水熱源外気処理ユニット関するものである。   The present invention relates to a water heat source outside air treatment unit with a heat pump, and more particularly to a water heat source outside air treatment unit with a heat pump that uses geothermal heat as heat source water.

従来、熱源水を用いた外気処理ユニットとしては、例えば特許文献1や特許文献2に開示されるように、ファンコイルと、冷凍サイクルとしてのいわゆるヒートポンプとを組み合わせたものがある。   Conventionally, as an outside air processing unit using heat source water, for example, as disclosed in Patent Document 1 and Patent Document 2, there is a combination of a fan coil and a so-called heat pump as a refrigeration cycle.

特許文献1の外気処理ユニットでは、例えば熱源水を用いてファンコイルで外気と熱交換し、ファインコイルで熱交換した熱源水は、さらにヒートポンプでの熱交換に利用される。   In the outside air processing unit of Patent Document 1, for example, heat source water that has been heat exchanged with outside air by a fan coil using heat source water and heat exchanged by a fine coil is further used for heat exchange by a heat pump.

また、特許文献2の外気処理ユニットでは、例えば熱源水を用いてファンコイルで還気と熱交換し、ファインコイルで熱交換した熱源水は、さらに他のファンコイルにより外気と熱交換した後、ヒートポンプでの熱交換に利用される。そして、ヒートポンプの冷媒により冷却除湿された外気が給気される。   Further, in the outside air processing unit of Patent Document 2, for example, heat source water is used to exchange heat with return air using a fan coil, and heat source water exchanged using a fine coil is further exchanged with outside air using another fan coil. Used for heat exchange in heat pumps. Then, the outside air cooled and dehumidified by the refrigerant of the heat pump is supplied.

特開2005−69552号公報JP 2005-69552 A 特開2008−70097号公報JP 2008-70097 A

ところで近年、年間通じて20℃±5℃前後で安定した熱源水を得られる地中熱を利用した外気処理ユニットが検討されている。   By the way, in recent years, an outside air treatment unit using geothermal heat that can obtain stable heat source water at around 20 ° C. ± 5 ° C. throughout the year has been studied.

しかしながら、特許文献1や特許文献2に開示される外気処理ユニットにおいては、熱源水として概ね10℃程度の冷水を用いている。そのため、特許文献1や特許文献2に開示される外気処理ユニットでは、20℃前後の水を熱源水として利用することができない。   However, in the outside air processing unit disclosed in Patent Literature 1 and Patent Literature 2, cold water of about 10 ° C. is used as the heat source water. Therefore, in the outside air processing unit disclosed in Patent Document 1 and Patent Document 2, water at around 20 ° C. cannot be used as heat source water.

仮に、特許文献2の外気処理ユニットの熱源水に20℃前後の水を用いた場合、例えばファンコイルでの熱交換、及び他のファンコイルでの熱交換により熱源水がそれぞれ5℃ずつ温度上昇したとすると、ヒートポンプでの熱源水の温度が30℃程度となる。この場合のヒートポンプの効率は、ヒートポンプでの熱交換に20℃の水を用いた場合と比較して低下してしまう。   If water of about 20 ° C. is used as the heat source water of the outside air processing unit of Patent Document 2, the temperature of the heat source water increases by 5 ° C., for example, due to heat exchange in the fan coil and heat exchange in other fan coils. If it does, the temperature of the heat source water in a heat pump will be about 30 degreeC. The efficiency of the heat pump in this case is reduced compared to the case where 20 ° C. water is used for heat exchange in the heat pump.

そのため、地中熱由来の熱源水の使用にあたっては、主にヒートポンプでの熱交換用として用いられ、ファンコイルを含めた外気処理ユニット全体で効率的な地中熱の利用ができていなかった。   Therefore, in the use of the heat source water derived from the geothermal heat, it is mainly used for heat exchange in the heat pump, and the entire outside air processing unit including the fan coil cannot be efficiently used.

そこで、本発明者らは、外気処理ユニットにおける地中熱の有効利用にあたり、ヒートポンプで例えば約20℃の熱源水を用い、並行してファンコイルでの熱交換にも当該熱源水を用いれば、効率的に熱源水、即ち地中熱を利用できることに着目した。   Therefore, the present inventors use, for example, about 20 ° C. heat source water in the heat pump for effective use of underground heat in the outside air treatment unit, and at the same time use the heat source water for heat exchange in the fan coil, We paid attention to the fact that heat source water, that is, underground heat, can be used efficiently.

本発明はかかる点に鑑みてなされたものであり、熱源水を用いて外気処理を行うヒートポンプ付外気処理ユニットにおいて、地中熱を利用して外気処理ユニットの高効率化を図ることを目的としている。   The present invention has been made in view of such points, and in an outside air processing unit with a heat pump that performs outside air processing using heat source water, it is an object to increase the efficiency of the outside air processing unit by using underground heat. Yes.

前記の目的を達成するための本発明は、熱源水を用いて外気処理を行うヒートポンプ付外気処理ユニットであって、地中からの熱源水を通水すると共に通水した熱源水を地中に戻す熱源水配管に設けられ、送風機に吸入される空気と熱源水配管内の熱源水との間で熱交換を行うファンコイルと、前記熱源水配管におけるファンコイルよりも上流側から分岐した他の熱源水配管に設けられ、当該他の熱源水配管内の熱源水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、前記ファンコイルよりも前記送風機の下流側に設けられ、前記送風機に吸入される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、前記冷媒対空気熱交換器よりも前記送風機の下流側に設けられ、前記送風機に吸入される空気を再熱する再熱用空気熱交換器と、を有し、前記再熱用空気熱交換器は、前記ファンコイル下流側の前記熱源水配管に直列に接続されており、前記再熱用空気熱交換器への熱源水の通水量は、前記ファンコイル上流側の前記熱源水配管に設けられた流量可変な熱源水ポンプにより制御されることを特徴としている。 The present invention for achieving the above object is an outside air treatment unit with a heat pump that performs outside air treatment using heat source water, and passes the heat source water from the ground and the passed heat source water into the ground. A fan coil provided in the heat source water pipe to be returned and for exchanging heat between the air sucked into the blower and the heat source water in the heat source water pipe, and another branch branched from the upstream side of the fan coil in the heat source water pipe A heat pump water-to-refrigerant heat exchanger that is provided in the heat source water pipe and performs heat exchange between the heat source water in the other heat source water pipe and the refrigerant in the refrigerant pipe connected to the compressor, and the fan coil And a refrigerant-to-air heat exchanger that is provided on the downstream side of the blower and exchanges heat between the air sucked into the blower and the refrigerant in the refrigerant pipe, and more than the refrigerant-to-air heat exchanger. Provided on the downstream side of the blower, A reheating air heat exchanger that reheats the air sucked into the blower, and the reheating air heat exchanger is connected in series to the heat source water pipe on the downstream side of the fan coil. Contact is, the passing water of the heat source water to the reheating air heat exchanger, said controlled by fan coil upstream of the flow rate variable heat source water pump provided in the heat source water pipe is characterized in Rukoto.

本発明によれば、熱源水との間で熱交換を行うファンコイルと、熱源水と冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器に対して、並列に熱源水を供給しているので、例えば20℃前後の地中熱を利用した熱源水を用いた場合であっても、ヒートポンプでの熱交換に用いる熱源水として20℃前後の水を供給することができる。したがって、ファンコイルで熱交換後の熱源水を用いる場合と比較して、ヒートポンプを効率の高い点で運転することができる。その結果、外気処理ユニットの高効率化を図ることができる
According to the present invention, a heat source parallel to a fan coil that performs heat exchange with the heat source water and a water-to-refrigerant heat exchanger for heat pump that performs heat exchange between the heat source water and the refrigerant in the refrigerant pipe. Since water is supplied, for example, even when heat source water using geothermal heat at around 20 ° C. is used, water at around 20 ° C. can be supplied as heat source water used for heat exchange with a heat pump. it can. Therefore, the heat pump can be operated at a high efficiency as compared with the case where the heat source water after heat exchange is used by the fan coil. As a result, the efficiency of the outside air processing unit can be increased .

本発明によれば、熱源水を用いて外気処理を行うヒートポンプ付外気処理ユニットにおいて、地中熱を利用して外気処理ユニットの高効率化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the external air processing unit with a heat pump which performs external air processing using heat source water, efficiency improvement of an external air processing unit can be achieved using underground heat.

本実施の形態に係る外気処理ユニットの構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the external air processing unit which concerns on this Embodiment. 他の実施の形態に係る外気処理ユニットの構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the external air processing unit which concerns on other embodiment. 他の実施の形態に係る外気処理ユニットの構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the external air processing unit which concerns on other embodiment. 他の実施の形態に係る外気処理ユニットの構成の概略を示す系統図である。It is a systematic diagram which shows the outline of a structure of the external air processing unit which concerns on other embodiment.

以下、本発明の実施の形態について説明する。図1は、本発明に係る外気処理ユニット1の実施の形態の一例を示すものである。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Embodiments of the present invention will be described below. FIG. 1 shows an example of an embodiment of an outside air processing unit 1 according to the present invention. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に示すように、外気処理ユニット1は、ヒートポンプ回路部A、送風機10、送風機の吸い込み側の空気と熱交換を行う熱交換部B及び制御部Cから構成されている。   As shown in FIG. 1, the outside air processing unit 1 includes a heat pump circuit unit A, a blower 10, a heat exchange unit B that performs heat exchange with the air on the suction side of the blower, and a control unit C.

ヒートポンプ回路部Aには、圧縮機20と、後述する熱源水配管40内の熱源水と圧縮機20から供給される冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器21と、膨張弁22と、冷媒と空気との間で熱交換を行う冷媒対空気熱交換器23とが設けられ、圧縮機の出口側からこの順で冷媒配管24に接続されている。   The heat pump circuit unit A includes a compressor 20, a heat pump water-to-refrigerant heat exchanger 21 that performs heat exchange between heat source water in a heat source water pipe 40 described later and refrigerant supplied from the compressor 20, and expansion A valve 22 and a refrigerant-to-air heat exchanger 23 that performs heat exchange between the refrigerant and air are provided, and are connected to the refrigerant pipe 24 in this order from the outlet side of the compressor.

また、冷媒配管24における冷媒対空気熱交換器23の下流側には、アキュームレータ25が設けられている。冷媒配管24におけるアキュームレータ25の下流側には、ヒートポンプ用水対冷媒熱交換器21通過後の冷媒配管24内の冷媒と、アキュームレータ25通過後の冷媒配管24内の冷媒との間で熱交換を行う、冷媒対冷媒熱交換器26が設けられている。冷媒対冷媒熱交換器26の下流側の冷媒配管24は、再び圧縮機20に接続されている。即ち、冷媒配管24は循環系統を構成している。冷媒配管24を流れる冷媒は、圧縮機20で高温高圧のガス状態となった後、ヒートポンプ用水対冷媒熱交換器21において、後述する分岐管50内の熱源水との間で熱交換して凝縮する。その後、冷媒対冷媒熱交換器26を通り、膨張弁22で減圧された後に、冷媒対空気熱交換器23で熱交換を行い蒸発する。その後、蒸発した冷媒は、アキュームレータ25、冷媒対冷媒熱交換器26を通り、再び圧縮機20で高温高圧状態となる。   An accumulator 25 is provided on the refrigerant pipe 24 on the downstream side of the refrigerant-to-air heat exchanger 23. On the downstream side of the accumulator 25 in the refrigerant pipe 24, heat exchange is performed between the refrigerant in the refrigerant pipe 24 after passing through the water-to-refrigerant heat exchanger 21 for the heat pump and the refrigerant in the refrigerant pipe 24 after passing through the accumulator 25. A refrigerant-to-refrigerant heat exchanger 26 is provided. The refrigerant pipe 24 on the downstream side of the refrigerant-to-refrigerant heat exchanger 26 is connected to the compressor 20 again. That is, the refrigerant pipe 24 constitutes a circulation system. The refrigerant flowing through the refrigerant pipe 24 is converted into a high-temperature and high-pressure gas state by the compressor 20 and then condensed in the heat pump water-to-refrigerant heat exchanger 21 by heat exchange with heat source water in the branch pipe 50 described later. To do. Thereafter, the refrigerant passes through the refrigerant-to-refrigerant heat exchanger 26 and is depressurized by the expansion valve 22. Then, heat is exchanged by the refrigerant-to-air heat exchanger 23 to evaporate. Thereafter, the evaporated refrigerant passes through the accumulator 25 and the refrigerant-to-refrigerant heat exchanger 26 and is again brought into a high-temperature and high-pressure state by the compressor 20.

熱交換部Bは、送風機10に吸入される空気と後述の熱源水配管40内の熱源水との間で熱交換を行うファンコイル30と、ヒートポンプ回路部Aの一部を構成する冷媒対空気熱交換器23と、送風機10に吸入される空気を再熱する再熱用空気熱交換器31を有している。ファンコイル30、冷媒対空気熱交換器23、再熱用空気熱交換器31は、送風機10の上流側から下流側に向かってこの順で設けられている。   The heat exchanging unit B includes a fan coil 30 that exchanges heat between air sucked into the blower 10 and heat source water in a heat source water pipe 40 to be described later, and refrigerant to air that constitutes a part of the heat pump circuit unit A. A heat exchanger 23 and a reheating air heat exchanger 31 that reheats the air sucked into the blower 10 are provided. The fan coil 30, the refrigerant-to-air heat exchanger 23, and the reheating air heat exchanger 31 are provided in this order from the upstream side to the downstream side of the blower 10.

ファンコイル30には、熱源水ポンプ32により供給される熱源水を通水する熱源水配管40が接続されている。本実施の形態に係る熱源水ポンプ32としては、流量可変なものが用いられる。また、本実施の形態における熱源水は、例えば地中熱により所定の温度、例えば概ね20℃前後に維持されているものとする。なお、本実施の形態におけるファンコイル30は、例えば外気が乾球温度32℃、湿球温度28℃の条件下で、例えば20℃の熱源水を通水した場合に、ファンコイル30出口側での空気が乾球温度24.5℃、湿球温度24.5℃となり、ファンコイル30出口側での熱源水の温度が23℃となるようにその伝熱面積が決定されている。また、本実施の形態における冷媒対空気熱交換器23においては、例えばファンコイル30出口側、即ち冷媒対空気熱交換器23入口における空気の条件が乾球温度24.5℃、湿球温度24.5℃である場合に、当該冷媒対空気熱交換器23出口側での空気が乾球温度12.0℃、湿球温度11.9℃となるように、ヒートポンプ回路部Aの圧縮機20の負荷が調整され、冷媒対空気熱交換器23はこのような温度条件を満たすようにその伝熱面積が決定されている。   A heat source water pipe 40 through which the heat source water supplied from the heat source water pump 32 is passed is connected to the fan coil 30. As the heat source water pump 32 according to the present embodiment, one having a variable flow rate is used. Moreover, the heat source water in this Embodiment shall be maintained by predetermined | prescribed temperature, for example, about 20 degreeC, for example by underground heat, for example. Note that the fan coil 30 in the present embodiment is provided on the outlet side of the fan coil 30 when, for example, 20 ° C. heat source water is passed under the condition that the outside air has a dry bulb temperature of 32 ° C. and a wet bulb temperature of 28 ° C. The heat transfer area is determined so that the air has a dry bulb temperature of 24.5 ° C. and a wet bulb temperature of 24.5 ° C., and the temperature of the heat source water at the outlet side of the fan coil 30 becomes 23 ° C. In the refrigerant-to-air heat exchanger 23 in the present embodiment, for example, the air conditions at the outlet side of the fan coil 30, that is, at the inlet of the refrigerant-to-air heat exchanger 23 are the dry bulb temperature 24.5 ° C. and the wet bulb temperature 24. When the temperature is .5 ° C., the compressor 20 of the heat pump circuit section A is set so that the air at the outlet side of the refrigerant to air heat exchanger 23 has a dry bulb temperature of 12.0 ° C. and a wet bulb temperature of 11.9 ° C. The heat transfer area of the refrigerant-to-air heat exchanger 23 is determined so as to satisfy such a temperature condition.

熱源水配管40のファンコイル30の出口側は、再熱用空気熱交換器31に接続されている。即ち、ファンコイル30と再熱用空気熱交換器31は、熱源水配管40に対して、この順で上流側から下流側に接続されている。なお、本実施の形態における再熱用空気熱交換器31は、例えばファンコイル30出口側、即ち再熱用空気熱交換器31入口での空気の条件が乾球温度12.0℃、湿球温度11.9℃であり、再熱用空気熱交換器31に供給される熱源水の温度が23℃である場合に、当該再熱用空気熱交換器31出口側での空気が乾球温度19.0℃、湿球温度14.5℃となり、再熱用空気熱交換器31出口側での冷媒の温度が21.1℃となるようにその伝熱面積が決定されている。なお、上述の熱源水の温度や、ファンコイル30、冷媒対空気熱交換器23、再熱用空気熱交換器31といった機器の設計条件は一例に過ぎず、本実施の形態の内容に限定されるものではない。   The outlet side of the fan coil 30 of the heat source water pipe 40 is connected to the reheating air heat exchanger 31. That is, the fan coil 30 and the reheating air heat exchanger 31 are connected to the heat source water pipe 40 in this order from the upstream side to the downstream side. In the reheat air heat exchanger 31 in the present embodiment, for example, the air condition at the outlet side of the fan coil 30, that is, at the reheat air heat exchanger 31 inlet is a dry bulb temperature of 12.0 ° C. and a wet bulb. When the temperature is 11.9 ° C. and the temperature of the heat source water supplied to the reheating air heat exchanger 31 is 23 ° C., the air at the outlet side of the reheating air heat exchanger 31 is the dry bulb temperature. The heat transfer area is determined so that the temperature of the refrigerant at the outlet side of the reheat air heat exchanger 31 is 21.1 ° C., which is 19.0 ° C. and the wet bulb temperature is 14.5 ° C. The temperature of the heat source water described above and the design conditions of the equipment such as the fan coil 30, the refrigerant-to-air heat exchanger 23, and the reheating air heat exchanger 31 are merely examples, and are limited to the contents of the present embodiment. It is not something.

熱源水配管40におけるファンコイル30と熱源水ポンプ32の間には、ファンコイル30への熱源水の通水を制御する熱源水三方弁41が設けられている。熱源水配管40からは、熱源水三方弁41を介してファンコイル30を迂回するバイパス管42が設けられ、バイパス管42と熱源水配管40とは、再熱用空気熱交換器31の出口側で接続されている。バイパス管42と合流後の熱源水配管40は、例えば地中に接続されており地中熱により熱交換を行った熱源水は、再び熱源水ポンプ32により熱源水配管40に供給される。   Between the fan coil 30 and the heat source water pump 32 in the heat source water pipe 40, a heat source water three-way valve 41 for controlling the flow of the heat source water to the fan coil 30 is provided. A bypass pipe 42 that bypasses the fan coil 30 via the heat source water three-way valve 41 is provided from the heat source water pipe 40, and the bypass pipe 42 and the heat source water pipe 40 are on the outlet side of the reheat air heat exchanger 31. Connected with. The heat source water pipe 40 that has joined the bypass pipe 42 is connected to the ground, for example, and the heat source water that has undergone heat exchange with the underground heat is supplied again to the heat source water pipe 40 by the heat source water pump 32.

熱源水配管40における熱源水ポンプ32の上流側からは、他の熱源水配管としての分岐管50が分岐して設けられている。分岐管50には冷媒熱交換器用ポンプ51が設けられている。分岐管50は、冷媒熱交換器用ポンプ51の出口側でヒートポンプ用水対冷媒熱交換器21に接続されており、圧縮機20出口側の冷媒と熱源水との熱交換が行われる。分岐管50は、例えばバイパス管42と合流後の熱源水配管40と合流して、地中に戻される。熱源水配管40における分岐管50の分岐点よりも上流側には、熱源水配管40内を流れる熱源水の温度を測定する熱源水温度センサ52が設けられている。なお、分岐管50は必ずしも熱源水配管40と合流させる必要はない。   A branch pipe 50 as another heat source water pipe is branched from the upstream side of the heat source water pump 32 in the heat source water pipe 40. The branch pipe 50 is provided with a refrigerant heat exchanger pump 51. The branch pipe 50 is connected to the heat pump water-to-refrigerant heat exchanger 21 on the outlet side of the refrigerant heat exchanger pump 51, and heat exchange between the refrigerant on the outlet side of the compressor 20 and the heat source water is performed. For example, the branch pipe 50 joins the bypass pipe 42 and the heat source water pipe 40 after joining, and is returned to the ground. A heat source water temperature sensor 52 that measures the temperature of the heat source water flowing in the heat source water pipe 40 is provided upstream of the branch point of the branch pipe 50 in the heat source water pipe 40. Note that the branch pipe 50 does not necessarily have to merge with the heat source water pipe 40.

ファンコイル30における送風機10の上流側には、例えば外気の温度を測定する外気温度センサ60が設けられている。また、送風機10の上流側であって、再熱用空気熱交換器31の下流側、即ち、送風機10と再熱用空気熱交換器31の間には、再熱用空気熱交換器31で熱交換後の空気の温度を測定する給気温度センサ61が設けられている。   On the upstream side of the fan 10 in the fan coil 30, for example, an outside air temperature sensor 60 that measures the temperature of the outside air is provided. Further, on the upstream side of the blower 10 and downstream of the reheating air heat exchanger 31, that is, between the blower 10 and the reheating air heat exchanger 31, a reheating air heat exchanger 31 is provided. A supply air temperature sensor 61 for measuring the temperature of the air after heat exchange is provided.

制御部Cには、外気温度センサ60及び給気温度センサ61の測定結果が入力される。また、制御部Cには、当該制御部Cに入力された各センサの測定結果に基づいて圧縮機20や熱源水ポンプ32の吐出流量、熱源水三方弁41といった、外気処理ユニット1の各機器の動作を制御プログラムが格納されている。また、制御部Cには、例えば給気の設定温度などを切替えるための操作部(図示せず)が設けられている。   Measurement results of the outside air temperature sensor 60 and the supply air temperature sensor 61 are input to the control unit C. Further, the control unit C includes each device of the outside air processing unit 1 such as the discharge flow rate of the compressor 20 and the heat source water pump 32 and the heat source water three-way valve 41 based on the measurement result of each sensor input to the control unit C. The control program is stored. Further, the control unit C is provided with an operation unit (not shown) for switching, for example, a set temperature of the supply air.

本実施の形態にかかる外気処理ユニット1は以上のように構成されており、次にこの外気処理ユニット1による外気処理方法について説明する。外気処理方法の一例として、20℃の熱源水を用いて冷房運転を行い、乾球温度32℃、湿球温度28℃外気を、乾球温度19℃、湿球温度14.5℃に調整して給気する場合を例にして説明する。   The outside air processing unit 1 according to the present embodiment is configured as described above. Next, an outside air processing method by the outside air processing unit 1 will be described. As an example of the outside air treatment method, cooling operation is performed using 20 ° C. heat source water, and the outside air is adjusted to a dry bulb temperature of 19 ° C. and a wet bulb temperature of 14.5 ° C. An example of supplying air will be described.

先ず、外気処理ユニット1の運転を開始するにあたり、外気処理ユニット1による給気の調整温度(乾球温度)を19℃に設定すると共に、冷媒熱交換器用ポンプ51を起動して分岐管50を介してヒートポンプ用水対冷媒熱交換器21に熱源水を供給する。それと並行して圧縮機20を起動して、ヒートポンプ回路部Aを起動する。   First, when starting the operation of the outside air processing unit 1, the adjustment temperature (dry bulb temperature) of the supply air by the outside air processing unit 1 is set to 19 ° C., and the refrigerant heat exchanger pump 51 is activated to connect the branch pipe 50. Heat source water is supplied to the water-to-refrigerant heat exchanger 21 for heat pump. At the same time, the compressor 20 is started and the heat pump circuit unit A is started.

ヒートポンプ回路部Aが所定の負荷に到達すると、次いで、送風機10を起動すると共に、熱源水三方弁41を熱源水配管40側に切り替えて、外気処理ユニット1による給気運転を開始する。送風機10が起動すると、ファンコイル30で熱源水と熱交換されて予冷された外気が熱交換される。この際、ファンコイル30出口側の熱源水配管40における熱源水の温度は、例えば23℃まで上昇した状態となる。次いで、ファンコイル30出口側の空気は、冷媒対空気熱交換器23において冷媒と熱交換を行うことで、冷却除湿される。この際、冷媒対空気熱交換器23の出口側の空気が、例えば乾球温度12.0℃、湿球温度11.9℃の状態となるように、制御部Cにより圧縮機20の負荷が制御される。   When the heat pump circuit unit A reaches a predetermined load, the blower 10 is then started, the heat source water three-way valve 41 is switched to the heat source water pipe 40 side, and the air supply operation by the outside air processing unit 1 is started. When the blower 10 is activated, the fan coil 30 exchanges heat with the heat source water and heats the outside air precooled. At this time, the temperature of the heat source water in the heat source water pipe 40 on the outlet side of the fan coil 30 is raised to, for example, 23 ° C. Next, the air on the outlet side of the fan coil 30 is cooled and dehumidified by performing heat exchange with the refrigerant in the refrigerant-to-air heat exchanger 23. At this time, the load on the compressor 20 is controlled by the control unit C so that the air on the outlet side of the refrigerant-to-air heat exchanger 23 has a dry bulb temperature of 12.0 ° C. and a wet bulb temperature of 11.9 ° C., for example. Be controlled.

その後、冷媒対空気熱交換器23の出口側の空気は、再熱用空気熱交換器31により、ファンコイル30通過後の熱源水、即ち23℃まで温度上昇した熱源水により再熱される。この際、再熱用空気熱交換器31に通水される熱源水の流量、換言すれば、熱源水ポンプ32の吐出流量は、再熱用空気熱交換器31出口側の給気温度センサ61において、例えば乾球温度19℃、湿球温度14.5℃の状態となるように制御部Cにより制御される。また、23℃で再熱用空気熱交換器31に通水された熱源水の、当該再熱用空気熱交換器31出口側の熱源水配管40における温度は、再熱用空気熱交換器31での熱交換により、例えば21.1℃まで低下する。即ち、外気処理ユニット1の熱交換部Bでの熱交換による熱源水の温度上昇は、1.1℃となる。なお、外気処理ユニット1の冷房運転中に例えば大気温度が熱源水の温度以下になった場合は、熱源水三方弁41をバイパス管42側に切り替え、ファンコイル30と再熱用空気熱交換器をバイパスさせる。そして、熱交換部Bで所定の温度に調整された空気は送風機10により給気され、外気処理ユニット1による冷房運転が行われる。   Thereafter, the air on the outlet side of the refrigerant-to-air heat exchanger 23 is reheated by the reheat air heat exchanger 31 with the heat source water that has passed through the fan coil 30, that is, the heat source water that has risen in temperature to 23 ° C. At this time, the flow rate of the heat source water passed through the reheat air heat exchanger 31, in other words, the discharge flow rate of the heat source water pump 32 is the supply air temperature sensor 61 on the outlet side of the reheat air heat exchanger 31. For example, the control unit C controls so that the dry bulb temperature is 19 ° C. and the wet bulb temperature is 14.5 ° C., for example. The temperature of the heat source water passed through the reheat air heat exchanger 31 at 23 ° C. in the heat source water pipe 40 on the outlet side of the reheat air heat exchanger 31 is the reheat air heat exchanger 31. For example, the temperature is lowered to 21.1 ° C. due to heat exchange. That is, the temperature rise of the heat source water due to heat exchange in the heat exchange part B of the outside air processing unit 1 is 1.1 ° C. Note that, for example, when the ambient temperature becomes equal to or lower than the temperature of the heat source water during the cooling operation of the outside air processing unit 1, the heat source water three-way valve 41 is switched to the bypass pipe 42 side, and the fan coil 30 and the reheating air heat exchanger are switched. To bypass. And the air adjusted to predetermined temperature in the heat exchange part B is supplied with the air blower 10, and the cooling operation by the external air processing unit 1 is performed.

以上の実施の形態によれば、熱源水との間で熱交換を行うファンコイル30と、熱源水と冷媒配管24内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器21に対して、それぞれ熱源水配管40と分岐管50により並列に熱源水を供給しているので、例えば20℃前後の地中熱を利用した熱源水を用いた場合であっても、ヒートポンプ回路部Aでの熱交換に用いる熱源水として20℃前後の水を供給することができる。したがって、ファンコイル30で熱交換後の熱源水を用いる場合と比較して、ヒートポンプ回路部Aを効率の高い点で運転することができる。その結果、外気処理ユニット1の高効率化を図ることができる。   According to the above embodiment, the fan coil 30 that exchanges heat with the heat source water and the water-to-refrigerant heat exchanger 21 for heat pump that exchanges heat between the heat source water and the refrigerant in the refrigerant pipe 24. On the other hand, since the heat source water is supplied in parallel by the heat source water pipe 40 and the branch pipe 50, for example, even when heat source water using underground heat at around 20 ° C. is used, the heat pump circuit section A Water at around 20 ° C. can be supplied as the heat source water used for heat exchange at. Therefore, compared with the case where the heat source water after heat exchange is used by the fan coil 30, the heat pump circuit unit A can be operated at a high efficiency point. As a result, high efficiency of the outside air processing unit 1 can be achieved.

また、ファンコイル30と再熱用空気熱交換器31とを熱源水配管40に対して直列に接続しているので、再熱用空気熱交換器31において、ファンコイル30との熱交換により昇温した熱源水を用いることができる。例えば、従来の外気処理ユニットでは、再熱用空気熱交換器31の再熱に圧縮機20出口の冷媒を用いるなどしていたが、本実施の形態によれば、熱源水配管40を流れる熱源水により再熱を行うことができるので、ヒートポンプ回路部Aをより高効率で運転することができる。   Further, since the fan coil 30 and the reheating air heat exchanger 31 are connected in series to the heat source water pipe 40, the reheating air heat exchanger 31 is heated by heat exchange with the fan coil 30. Warm heat source water can be used. For example, in the conventional outside air processing unit, the refrigerant at the outlet of the compressor 20 is used for reheating the reheating air heat exchanger 31, but according to the present embodiment, the heat source flowing through the heat source water pipe 40 is used. Since reheating can be performed with water, the heat pump circuit unit A can be operated with higher efficiency.

また、ファンコイル30との熱交換により昇温した熱源水を再熱用空気熱交換器31の再熱に用いることで、熱源水の温度を低下させることができる。即ち、熱源水そのものは、ファンコイル30での予冷による吸熱と、再熱用空気熱交換器31での再熱による排熱を同時に行うので、例えば本実施の形態においては、熱交換部Bにおける温度上昇を約1.1℃に抑えることができる。そのため、地中熱に負荷をかけることなく、安定した温度で地中熱による熱源水を継続使用することができる。   Moreover, the temperature of the heat source water can be lowered by using the heat source water whose temperature has been raised by heat exchange with the fan coil 30 for reheating the reheat air heat exchanger 31. That is, the heat source water itself simultaneously performs heat absorption due to pre-cooling in the fan coil 30 and exhaust heat due to re-heating in the reheating air heat exchanger 31, so in the present embodiment, for example, in the heat exchanging part B The temperature rise can be suppressed to about 1.1 ° C. Therefore, it is possible to continuously use the heat source water due to the underground heat at a stable temperature without imposing a load on the underground heat.

以上の実施の形態では、流量可変な熱源水ポンプ32によりファンコイル30への熱源水の通水量を制御したが、流量可変な熱源水ポンプ32に代えて、例えば定流量ポンプの出口側に流量調節弁を設けるような構成にしてもよく、熱源水配管40を流れる熱源水の流量を制御できる機構を有していれば、任意に設定が可能である。また、熱源水三方弁41に代えて、例えばバイパス管42を通過する熱源水の量を制御する比例三方弁と、定流量ポンプとを組み合わせてファンコイル30への熱源水の通水量を制御してもよい。なお、外気処理ユニット1全体での消費エネルギー(消費電力)を抑えるという観点からは、絞り損失が生じる流量調節弁や、ファンコイル30への通水量を減らしてよい場合でも熱源水ポンプ32を負荷一定で運転することになる比例三方弁を用いるより、流量可変な熱源水ポンプ32を用いることがより好ましい。   In the above embodiment, the flow rate of the heat source water to the fan coil 30 is controlled by the heat source water pump 32 with variable flow rate, but instead of the heat source water pump 32 with variable flow rate, for example, the flow rate is set at the outlet side of the constant flow pump. A control valve may be provided, and can be arbitrarily set as long as it has a mechanism capable of controlling the flow rate of the heat source water flowing through the heat source water pipe 40. Further, in place of the heat source water three-way valve 41, for example, a proportional three-way valve that controls the amount of heat source water passing through the bypass pipe 42 and a constant flow pump are combined to control the amount of heat source water flowing to the fan coil 30. May be. From the viewpoint of suppressing energy consumption (power consumption) in the entire outside air processing unit 1, the heat source water pump 32 is loaded even when the flow rate control valve causing the throttle loss and the amount of water flow to the fan coil 30 may be reduced. It is more preferable to use the heat source water pump 32 having a variable flow rate than to use a proportional three-way valve that operates at a constant level.

また、ヒートポンプ用水対冷媒熱交換器21に対して熱源水を供給するにあたっては、必ずしも冷媒熱交換器用ポンプ51を設ける必要はなく、例えば図2に示すように、分岐管50を熱源水ポンプ32の出口に設け、当該分岐管50に流量調節弁70を設けることで、ヒートポンプ用水対冷媒熱交換器21に供給する熱源水の流量を一定にするように調整してもよい。   Further, in supplying heat source water to the heat pump water-to-refrigerant heat exchanger 21, it is not always necessary to provide the refrigerant heat exchanger pump 51. For example, as shown in FIG. The flow rate adjustment valve 70 may be provided in the branch pipe 50 so that the flow rate of the heat source water supplied to the heat pump water-to-refrigerant heat exchanger 21 may be adjusted to be constant.

なお、以上の実施の形態では、ファンコイル30と再熱用空気熱交換器31とを熱源水配管40に対して直列に接続していたが、ファンコイル30と再熱用空気熱交換器31とは必ずしも直列に設ける必要はなく、例えば図3に示すように、ファンコイル30と再熱用空気熱交換器31を熱源水配管40に対して並列に設けるようにしてもよい。かかる場合、熱源水配管40における熱源水ポンプ32とファンコイル30の間に遮断弁80を設け、当該遮断弁80を開閉操作することで、ファンコイル30への通水の有無を制御してもよい。また、熱源水配管40における熱源水ポンプ32と再熱用空気熱交換器31との間には流量調節弁81が設けられ、当該流量調節弁81により再熱用空気熱交換器31への通水量を制御することで、再熱用空気熱交換器31出口側で、例えば乾球温度19℃、湿球温度14.5℃の状態となるように制御される。なお、図3に示すように、分岐管50を熱源水ポンプ32と遮断弁80の間から分岐して、分岐管50には特に熱源水の流量を調整する機構を設けず、熱源水ポンプ32により分岐管50への通水量が一定になるように制御してもよいし、図1に示すように、分岐管50を熱源水ポンプ32の上流側に設けて冷媒熱交換器用ポンプ51により分岐管に通水するようにしてもよい。   In the above embodiment, the fan coil 30 and the reheating air heat exchanger 31 are connected in series to the heat source water pipe 40. However, the fan coil 30 and the reheating air heat exchanger 31 are connected. However, the fan coil 30 and the reheating air heat exchanger 31 may be provided in parallel to the heat source water pipe 40 as shown in FIG. In such a case, even if the shutoff valve 80 is provided between the heat source water pump 32 and the fan coil 30 in the heat source water pipe 40 and the shutoff valve 80 is opened and closed, the presence or absence of water flow to the fan coil 30 is controlled. Good. Further, a flow rate control valve 81 is provided between the heat source water pump 32 and the reheating air heat exchanger 31 in the heat source water piping 40, and the flow rate adjusting valve 81 allows the flow to the reheating air heat exchanger 31. By controlling the amount of water, control is performed so that, for example, the dry bulb temperature is 19 ° C. and the wet bulb temperature is 14.5 ° C. on the outlet side of the reheating air heat exchanger 31. As shown in FIG. 3, the branch pipe 50 is branched from between the heat source water pump 32 and the shutoff valve 80, and the branch pipe 50 is not particularly provided with a mechanism for adjusting the flow rate of the heat source water, and the heat source water pump 32. Therefore, the flow rate of water to the branch pipe 50 may be controlled to be constant, or the branch pipe 50 is provided upstream of the heat source water pump 32 and branched by the refrigerant heat exchanger pump 51 as shown in FIG. Water may be passed through the pipe.

図3に示す外気処理ユニット1においては、例えば外気処理ユニット1の冷房運転中に大気温度が熱源水の温度以下になった場合は、遮断弁80を閉止してファンコイル30への熱源水の供給を停止する一方、再熱用空気熱交換器31出口側の給気温度センサ61において給気温度が所望の温度になるように、流量調節弁81により再熱用空気熱交換器31への通水量が制御されるという点を除いては、図1に示す外気処理ユニット1と同様の外気処理が行われる。   In the outside air processing unit 1 shown in FIG. 3, for example, when the air temperature becomes equal to or lower than the temperature of the heat source water during the cooling operation of the outside air processing unit 1, the shut-off valve 80 is closed and the heat source water to the fan coil 30 is closed. While the supply is stopped, the flow rate control valve 81 supplies the reheating air heat exchanger 31 to the reheating air heat exchanger 31 so that the supply air temperature becomes a desired temperature in the supply air temperature sensor 61 on the outlet side of the reheating air heat exchanger 31. Except that the amount of water flow is controlled, the same outside air treatment as that of the outside air treatment unit 1 shown in FIG. 1 is performed.

なお、以上の実施の形態では、冷房運転を行う場合について説明したが、外気処理ユニット1により暖房運転を行ってもよい。かかる暖房運転は、例えば図3に示した外気処理ユニット1を例にすると、図3のヒートポンプ回路部Aに対して、例えば図4に示すように、圧縮機20出口の冷媒の供給先を、ヒートポンプ用水対冷媒熱交換器21または冷媒対空気熱交換器23のいずれかに切り替える四方弁90を、冷媒配管24の圧縮機20の出口側に設け、さらに、冷媒配管24におけるヒートポンプ用水対冷媒熱交換器と冷媒対冷媒熱交換器26との間に他の膨張弁22aを設けることで実現できる。   In the above embodiment, the case where the cooling operation is performed has been described, but the heating operation may be performed by the outside air processing unit 1. For example, when the outside air processing unit 1 shown in FIG. 3 is used as the heating operation, the refrigerant supply destination at the outlet of the compressor 20 is changed to the heat pump circuit unit A shown in FIG. A four-way valve 90 that switches to either the heat-pump water-to-refrigerant heat exchanger 21 or the refrigerant-to-air heat exchanger 23 is provided on the outlet side of the compressor 20 in the refrigerant pipe 24, and the heat-pump water-to-refrigerant heat in the refrigerant pipe 24. This can be realized by providing another expansion valve 22 a between the exchanger and the refrigerant-to-refrigerant heat exchanger 26.

四方弁90を、図4に示すように実線の状態にした場合、即ち圧縮機20出口の冷媒の供給先をヒートポンプ用水対冷媒熱交換器21とした場合、図3に示す外気処理ユニット1と同様の系統構成となるため、図3の場合と同様の冷房運転が行われる。また、暖房運転を行う場合は、四方弁90を、図4に破線で示す状態に切り替え、即ち圧縮機20出口の冷媒の供給先を冷媒対空気熱交換器23にする。   When the four-way valve 90 is in the state of a solid line as shown in FIG. 4, that is, when the refrigerant supply destination at the outlet of the compressor 20 is the water-to-refrigerant heat exchanger 21 for the heat pump, the outdoor air processing unit 1 shown in FIG. Since the system configuration is the same, the same cooling operation as in FIG. 3 is performed. When heating operation is performed, the four-way valve 90 is switched to a state indicated by a broken line in FIG. 4, that is, the refrigerant supply destination at the outlet of the compressor 20 is changed to the refrigerant-to-air heat exchanger 23.

かかる暖房運転について、例えば熱源水の温度が15℃であり、外気が例えば乾球温度0℃、湿球温度−3℃である場合を例にして説明する。   This heating operation will be described by taking, for example, a case where the temperature of the heat source water is 15 ° C. and the outside air is, for example, a dry bulb temperature of 0 ° C. and a wet bulb temperature of −3 ° C.

暖房運転においては、遮断弁80を開操作してファンコイル30により熱源水で外気の余熱が行われる。ファンコイル30で予熱された空気は、次に冷媒対空気熱交換器23において冷媒配管24を流れる高温高圧状態の冷媒により加熱される。そして、流量調節弁81については閉止し、再熱用空気熱交換器31での熱交換を行わないようにする。これにより、所望の給気温度による暖房運転が行われる。なお、暖房運転時に外気が熱源水の温度以上になった場合は、遮断弁80も閉止してもよい。また、暖房運転時は、膨張弁22については開放状態とし、他の膨張弁22aにより冷媒の減圧が行われる。他の膨張弁22aで減圧された冷媒はヒートポンプ用水対冷媒熱交換器で熱源水と熱交換することで蒸発し、アキュームレータ25に送られ、冷媒対冷媒熱交換器26を通って再び圧縮機20に戻る。   In the heating operation, the shut-off valve 80 is opened and the fan coil 30 heats the outside air with the heat source water. The air preheated by the fan coil 30 is then heated by the high-temperature and high-pressure refrigerant flowing through the refrigerant pipe 24 in the refrigerant-to-air heat exchanger 23. Then, the flow rate control valve 81 is closed so that the heat exchange in the reheating air heat exchanger 31 is not performed. Thereby, the heating operation by a desired supply air temperature is performed. If the outside air becomes equal to or higher than the temperature of the heat source water during the heating operation, the shutoff valve 80 may also be closed. During the heating operation, the expansion valve 22 is opened, and the refrigerant is decompressed by the other expansion valve 22a. The refrigerant decompressed by the other expansion valve 22a evaporates by exchanging heat with the heat source water in the water-to-refrigerant heat exchanger for heat pump, is sent to the accumulator 25, passes through the refrigerant-to-refrigerant heat exchanger 26, and again passes through the compressor 20 Return to.

なお、例えば図4に示す外気処理ユニット1により暖房運転のみを行う場合は四方弁90は不要であり、例えば図4の四方弁90の破線で示す系統、即ち、圧縮機20出口の高温高圧の冷媒を冷媒対空気熱交換器23に供給する系統のみを構成すれば足りる。また、例えば図1や図2に示す外気処理ユニット1においても、図4に示す外気処理ユニット1と同様に、圧縮機20出口の冷媒の供給先を、ヒートポンプ用水対冷媒熱交換器21または冷媒対空気熱交換器23のいずれかに切り替える四方弁90をヒートポンプ回路部Aに設けることで、冷房運転と暖房運転の双方を行うことが可能となる。なお当然に、図1や図2に示す外気処理ユニット1においても、暖房運転のみを行う場合については、圧縮機20出口の高温高圧の冷媒を冷媒対冷媒熱交換器26に供給するのではなく、冷媒対空気熱交換器23に供給して空気を加熱する系統のみを構成すれば足りる。   For example, when only the heating operation is performed by the outside air processing unit 1 shown in FIG. 4, the four-way valve 90 is not necessary. For example, the system shown by the broken line of the four-way valve 90 in FIG. Only a system for supplying the refrigerant to the refrigerant-to-air heat exchanger 23 is sufficient. Also, for example, in the outside air processing unit 1 shown in FIGS. 1 and 2, similarly to the outside air processing unit 1 shown in FIG. 4, the refrigerant supply destination at the outlet of the compressor 20 is the water-to-refrigerant heat exchanger 21 for the heat pump or the refrigerant. By providing the heat pump circuit section A with the four-way valve 90 that switches to any one of the air heat exchangers 23, both the cooling operation and the heating operation can be performed. Naturally, also in the outside air processing unit 1 shown in FIGS. 1 and 2, when only the heating operation is performed, the high-temperature and high-pressure refrigerant at the outlet of the compressor 20 is not supplied to the refrigerant-to-refrigerant heat exchanger 26. It suffices to construct only a system for supplying air to the refrigerant-to-air heat exchanger 23 to heat the air.

なお、以上の実施の形態では、外気処理ユニット1の構成の一例について説明したが、当業者であれば、本実施の形態に係る外気処理ユニット1構成について様々な変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   In the above embodiment, an example of the configuration of the outside air processing unit 1 has been described. However, those skilled in the art have conceived various changes or modifications to the outside air processing unit 1 configuration according to this embodiment. Obviously, it is obvious that these are also within the technical scope of the present invention.

本発明は、外気処理ユニットで外気の冷暖房を行う際に有用である。   The present invention is useful when the outside air is cooled or heated by the outside air processing unit.

1 外気処理ユニット
10 送風機
20 圧縮機
21 ヒートポンプ用水対冷媒熱交換器
22 膨張弁
22a 他の膨張弁
23 冷媒対空気熱交換器
24 冷媒配管
25 アキュームレータ
26 冷媒対冷媒熱交換器
30 ファンコイル
31 再熱用空気熱交換器
32 熱源水ポンプ
40 熱源水配管
41 熱源水三方弁41
42 バイパス管
50 分岐管
51 冷媒熱交換器用ポンプ
52 熱源水温度センサ
60 外気温度センサ
61 給気温度センサ
80 遮断弁
81 流量調節弁
90 四方弁
A ヒートポンプ回路部
B 熱交換部
C 制御部
DESCRIPTION OF SYMBOLS 1 Outside air processing unit 10 Blower 20 Compressor 21 Water-to-refrigerant heat exchanger for heat pump 22 Expansion valve 22a Other expansion valve 23 Refrigerant-to-air heat exchanger 24 Refrigerant piping 25 Accumulator 26 Refrigerant-to-refrigerant heat exchanger 30 Fan coil 31 Reheat Air heat exchanger 32 Heat source water pump 40 Heat source water piping 41 Heat source water three-way valve 41
42 Bypass pipe 50 Branch pipe 51 Refrigerant heat exchanger pump 52 Heat source water temperature sensor 60 Outside air temperature sensor 61 Supply air temperature sensor 80 Shut-off valve 81 Flow control valve 90 Four-way valve A Heat pump circuit part B Heat exchange part C Control part

Claims (1)

熱源水を用いて外気処理を行うヒートポンプ付外気処理ユニットであって、
地中からの熱源水を通水すると共に通水した熱源水を地中に戻す熱源水配管に設けられ、送風機に吸入される空気と熱源水配管内の熱源水との間で熱交換を行うファンコイルと、
前記熱源水配管におけるファンコイルよりも上流側から分岐した他の熱源水配管に設けられ、当該他の熱源水配管内の熱源水と圧縮機に接続された冷媒配管内の冷媒との間で熱交換を行うヒートポンプ用水対冷媒熱交換器と、
前記ファンコイルよりも前記送風機の下流側に設けられ、前記送風機に吸入される空気と前記冷媒配管内の冷媒との間で熱交換を行う冷媒対空気熱交換器と、
前記冷媒対空気熱交換器よりも前記送風機の下流側に設けられ、前記送風機に吸入される空気を再熱する再熱用空気熱交換器と、を有し、
前記再熱用空気熱交換器は、前記ファンコイル下流側の前記熱源水配管に直列に接続されており、
前記再熱用空気熱交換器への熱源水の通水量は、前記ファンコイル上流側の前記熱源水配管に設けられた流量可変な熱源水ポンプにより制御されることを特徴とする、ヒートポンプ付外気処理ユニット。
An outside air processing unit with a heat pump that performs outside air processing using heat source water,
It is installed in the heat source water pipe that passes the heat source water from the ground and returns the passed heat source water to the ground, and exchanges heat between the air sucked into the blower and the heat source water in the heat source water pipe A fan coil,
Heat is provided between heat source water in the other heat source water pipe branched from the upstream side of the fan coil in the heat source water pipe and the refrigerant in the refrigerant pipe connected to the compressor. A water-to-refrigerant heat exchanger for the heat pump that performs the exchange;
A refrigerant-to-air heat exchanger that is provided on the downstream side of the fan from the fan coil and performs heat exchange between the air sucked into the fan and the refrigerant in the refrigerant pipe;
An air heat exchanger for reheating, which is provided on the downstream side of the blower from the refrigerant-to-air heat exchanger and reheats the air sucked into the blower,
The reheated air heat exchanger, Ri Contact is connected in series with the heat source water pipe of the fan coil downstream,
The passing water of the heat source water to the reheating air heat exchanger, said controlled by fan coil upstream of the flow rate variable heat source water pump provided in the heat source water pipe, characterized in Rukoto, ambient air with a heat pump Processing unit.
JP2014073187A 2014-03-31 2014-03-31 Water heat source outside air treatment unit with heat pump Active JP6455867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073187A JP6455867B2 (en) 2014-03-31 2014-03-31 Water heat source outside air treatment unit with heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073187A JP6455867B2 (en) 2014-03-31 2014-03-31 Water heat source outside air treatment unit with heat pump

Publications (2)

Publication Number Publication Date
JP2015194319A JP2015194319A (en) 2015-11-05
JP6455867B2 true JP6455867B2 (en) 2019-01-23

Family

ID=54433501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073187A Active JP6455867B2 (en) 2014-03-31 2014-03-31 Water heat source outside air treatment unit with heat pump

Country Status (1)

Country Link
JP (1) JP6455867B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855215B (en) * 2019-01-23 2020-11-10 山东一村空调有限公司 Soil source central air conditioner
JP7320966B2 (en) 2019-03-27 2023-08-04 日本ピーマック株式会社 air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181552A (en) * 1991-11-12 1993-01-26 Eiermann Kenneth L Method and apparatus for latent heat extraction
JPH07233968A (en) * 1994-02-22 1995-09-05 Sony Corp Air conditioner system
JP4293646B2 (en) * 1998-03-05 2009-07-08 高砂熱学工業株式会社 Air conditioner and air conditioning method
JP4409973B2 (en) * 2004-01-26 2010-02-03 株式会社テクノ菱和 Air conditioner
JP2011075218A (en) * 2009-09-30 2011-04-14 Takenaka Komuten Co Ltd Air conditioning heat source unit and air conditioning system

Also Published As

Publication number Publication date
JP2015194319A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP7175985B2 (en) air conditioner system
KR101623746B1 (en) Second stage heating type geothermal heat system using geothermal energy
JP4771721B2 (en) Air conditioner
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
US9175889B2 (en) Heat source system and control method thereof
KR102487265B1 (en) heat pump system
AU2015224225B2 (en) CO2 water heater
KR20120014445A (en) Heat pump system for heating/cooling and providing hot water and control method thereof
JPWO2018116410A1 (en) Air conditioner
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JP2013127332A (en) Hydronic heating device
JP6640695B2 (en) Heat pump water heater with air conditioning function
JP7444544B2 (en) Air conditioning equipment
JP6455867B2 (en) Water heat source outside air treatment unit with heat pump
WO2017185850A1 (en) Hot water supply system and air conditioner having same
JP2015218944A (en) Refrigeration system
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
JPWO2019167250A1 (en) Air conditioner
JP6982692B2 (en) Air conditioner system
JP2012013350A (en) Hot-water heater
US20160223235A1 (en) Air conditioner and method for controlling an air conditioner
JP2015124911A (en) Hot water supply air-conditioning system
US10465935B2 (en) Air-conditioning apparatus
JP2011257069A (en) Heat pump type high temperature generator
KR200412598Y1 (en) Heat pump system for having function of hot water supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6455867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350