JP6454573B2 - Measuring method and level difference calculating apparatus using total station - Google Patents

Measuring method and level difference calculating apparatus using total station Download PDF

Info

Publication number
JP6454573B2
JP6454573B2 JP2015053238A JP2015053238A JP6454573B2 JP 6454573 B2 JP6454573 B2 JP 6454573B2 JP 2015053238 A JP2015053238 A JP 2015053238A JP 2015053238 A JP2015053238 A JP 2015053238A JP 6454573 B2 JP6454573 B2 JP 6454573B2
Authority
JP
Japan
Prior art keywords
plane
equation
calculating
measurement
total station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053238A
Other languages
Japanese (ja)
Other versions
JP2016173296A (en
Inventor
高弘 近藤
高弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2015053238A priority Critical patent/JP6454573B2/en
Publication of JP2016173296A publication Critical patent/JP2016173296A/en
Application granted granted Critical
Publication of JP6454573B2 publication Critical patent/JP6454573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、トータルステーションを用いた測定方法および段差算出装置に関する。   The present invention relates to a measurement method using a total station and a step difference calculation apparatus.

外壁に使用する壁ボード等では、美観性や機能性の見地から表面に凹凸を形成する場合がある。製品の凹凸の品質管理は、ノギス等の測定器具を利用して計測するのが一般的である。ところが、測定対象物が大型の場合には、測定の足場を設置する必要があることや、測点の数が多いことなどにより、作業に手間がかかる等の問題があった。   In the case of a wall board or the like used for the outer wall, irregularities may be formed on the surface from the viewpoint of aesthetics or functionality. The quality control of the unevenness of the product is generally measured using a measuring instrument such as a caliper. However, when the object to be measured is large, there is a problem that work is troublesome because it is necessary to install a measurement scaffold or the number of measurement points is large.

一方、特許文献1には、測定対象物を複数台のCCDカメラにより撮影し、取得した画像データを処理することにより測定対象物の3次元形状を計測する出来形管理方法が開示されている。
また、凹凸の測定をノンプリズム式トータルステーションにより行えば、足場等を要することなく、非接触で測定をすることが可能となる。
On the other hand, Patent Document 1 discloses a result management method for measuring a three-dimensional shape of a measurement object by photographing the measurement object with a plurality of CCD cameras and processing the acquired image data.
Further, if the unevenness is measured by a non-prism type total station, it is possible to measure without contact without requiring a scaffold or the like.

特開2000−290933号公報JP 2000-290933 A

ところが、特許文献1に記載の出来形管理方法は、ドットの集合体であるカメラの撮影画像を使用しているため、凹凸が1mm程度の測定対象物の品質管理を高精度に行うことができなかった。
また、トータルステーションを利用する方法も、測距精度が±(1+2ppm×距離)mm程度である場合、凹凸が1mm程度の測定対象物の品質管理を高精度に行うことができない。
However, since the completed shape management method described in Patent Document 1 uses a photographed image of a camera that is an aggregate of dots, the quality control of a measurement object having an unevenness of about 1 mm can be performed with high accuracy. There wasn't.
Also, in the method using the total station, when the distance measurement accuracy is about ± (1 + 2 ppm × distance) mm, the quality control of the measurement object having the unevenness of about 1 mm cannot be performed with high accuracy.

このような観点から、本発明は、トータルステーションの能力(測距精度)に限定されることなく、段差測定を簡易かつ高精度に行うことを可能としたトータルステーションを用いた測定方法および段差算出装置を提案することを課題とする。   From this point of view, the present invention is not limited to the capability (ranging accuracy) of the total station, and includes a measuring method and a step calculating device using the total station that can perform the step measurement easily and with high accuracy. The challenge is to propose.

前記課題を解決するために、本発明のトータルステーションを用いた測定方法は、測定対象物の表面に形成された第一平面と第二平面との高低差を測定するトータルステーションを用いた測定方法であって、 前記第一平面上で3点以上の測点をトータルステーションにより測定する工程と、前記第二平面上で3点以上の測点をトータルステーションにより測定する工程と、前記第一平面上の3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第一平面の三次元平面方程式を算出する工程と、前記第二平面上の3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第二平面の三次元平面方程式を算出する工程と、前記第一平面上の測点と前記第二平面上の測点との中間点の座標を前記第一平面および前記第二平面の中央部になるように定める工程と、前記第一平面の三次元平面方程式および前記第二平面の三次元平面方程式を利用した式により、前記中間点から前記第一平面に至る垂線と当該第一平面との交点の座標値を算出するとともに、前記中間点から前記第二平面に至る垂線と当該第二平面との交点の座標値を算出する工程と、交点座標同士の距離を算出することで、前記第一平面および前記第二平面間の距離を算出する工程とを備えることを特徴としている。 In order to solve the above problems, the measurement method using the total station of the present invention is a measurement method using the total station that measures the height difference between the first plane and the second plane formed on the surface of the measurement object. A step of measuring three or more points on the first plane by a total station, a step of measuring three or more points on the second plane by a total station , and three points on the first plane. After associating the coordinate values of the above measuring points with the matrix of Equation 1, a step of calculating a three-dimensional plane equation of the first plane from the matrix by the least square method , and three or more points on the second plane After associating the coordinate values of the station with the matrix of Formula 1, calculating the three-dimensional plane equation of the second plane from the matrix by the least square method, the station on the first plane, and the second Inside a station on the plane The step of determining the coordinates of the interstitial point so as to be the central part of the first plane and the second plane, and the formula using the three-dimensional plane equation of the first plane and the three-dimensional plane equation of the second plane , While calculating the coordinate value of the intersection of the perpendicular from the intermediate point to the first plane and the first plane, the coordinate value of the intersection of the perpendicular from the intermediate point to the second plane and the second plane The method includes a step of calculating and a step of calculating a distance between the first plane and the second plane by calculating a distance between the intersection coordinates .

また、本発明の段差算出装置は、測定対象物の表面に形成された第一平面と第二平面との高低差を算出するものであって、前記第一平面上で測定された3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第一平面の三次元平面方程式を算出する手段と、前記第二平面上で測定された3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第二平面の三次元平面方程式を算出する手段と、前記第一平面上の測点と前記第二平面上の測点との中間点の座標を前記第一平面および前記第二平面の中央部になるように定め、前記第一平面の三次元平面方程式および前記第二平面の三次元平面方程式を利用した式により、前記中間点から前記第一平面に至る垂線と当該第一平面との交点の座標値を算出するとともに、前記中間点から前記第二平面に至る垂線と当該第二平面との交点の座標値を算出して、算出した交点座標同士の距離を算出することで前記第一平面および前記第二平面間の距離を算出する手段と、を備えることを特徴としている。 Moreover, the level | step difference calculation apparatus of this invention calculates the height difference of the 1st plane formed in the surface of the measurement object, and the 2nd plane, Comprising: Three or more points measured on said 1st plane Means for calculating the three-dimensional plane equation of the first plane from the matrix by the least-squares method, and the three points measured on the second plane After associating the coordinate values of the above station with the matrix of Formula 1, means for calculating a three-dimensional plane equation of the second plane from the matrix by the least square method , the station on the first plane, The coordinates of the intermediate point with the measuring point on the second plane are determined so as to be the center of the first plane and the second plane, the three-dimensional plane equation of the first plane and the three-dimensional plane of the second plane the equation using equations, perpendicular and said first plane extending from the intermediate point to the first plane And calculates the coordinates of the intersection of the calculated coordinate values of the intersection of the middle point between the perpendicular and the second plane extending in the second plane, said by calculating the distance of the intersection coordinates between the calculated Means for calculating a distance between the first plane and the second plane.

かかるトータルステーションを用いた測定方法および段差算出装置によれば、計測器の測定精度以上の精度による段差測定が可能となる。複数の測点を利用することで、測定誤差が修正された2つの平面を算出することが可能となり、ひいては、二つの平面の高低差を高精度に算出することができる。
また、トータルステーションを利用して非接触で計測を行うため、測点が多数であっても、効率的に作業を行うことができる。
According to the measurement method and step difference calculation apparatus using such a total station, it is possible to measure the step difference with an accuracy higher than the measurement accuracy of the measuring instrument. By using a plurality of measurement points, it is possible to calculate two planes in which the measurement error is corrected. As a result, the height difference between the two planes can be calculated with high accuracy.
In addition, since the measurement is performed in a non-contact manner using the total station, the work can be performed efficiently even if there are a large number of measurement points.

前記第一平面上および前記第二平面上の測点の数を4点以上とすれば、単純平面を想定する測点が3点の場合に比べて、誤差を最小とした仮想平面を想定することが可能となる。すなわち、段差のある上面と下面との仮想面間を測定点(計測位置)からの距離を計算することで、高精度な段差測定が可能となる。   If the number of measurement points on the first plane and the second plane is four or more, a virtual plane with a minimum error is assumed compared to the case where the number of measurement points assuming a simple plane is three. It becomes possible. That is, by calculating the distance from the measurement point (measurement position) between the virtual surfaces of the upper surface and the lower surface having a step, high-precision step measurement can be performed.

本発明のトータルステーションを用いた測定方法および段差算出装置によれば、段差測定を簡易かつ高精度に実施することを可能となる。   According to the measurement method and the step calculation device using the total station of the present invention, it is possible to carry out the step measurement simply and with high accuracy.

本発明の実施形態の壁ボードの測定状況を模式的に示す斜視図である。It is a perspective view which shows typically the measurement condition of the wall board of embodiment of this invention. 図1の壁ボードの一部を示す拡大斜視図である。It is an expansion perspective view which shows a part of wall board of FIG. 測点数と段差の計算値とを示すグラフである。It is a graph which shows the number of measurement points, and the calculated value of a level | step difference.

本実施形態では、図1および図2に示すように、表面に凹凸を有する板状の壁ボード2に対し、ノンプリズム式トータルステーション1および段差算出装置により凹凸の配置や形状の品質検査を行う場合について説明する。
本実施形態では、壁ボード2の表面に形成された凹部平面3(第一平面)と凸部平面4(第二平面)との高低差を測定する。
本実施形態のトータルステーションを用いた測定方法は、凹部平面測定工程と、凸部平面測定工程と、凹部平面算出工程と、凸部平面算出工程と、段差算出工程とを備えている。
In the present embodiment, as shown in FIG. 1 and FIG. 2, when the unevenness of the unevenness and the quality inspection of the shape are performed on the plate-like wall board 2 having unevenness on the surface by the non-prism type total station 1 and the level difference calculating device. Will be described.
In this embodiment, the height difference between the concave plane 3 (first plane) and the convex plane 4 (second plane) formed on the surface of the wall board 2 is measured.
The measurement method using the total station of the present embodiment includes a concave plane measuring step, a convex plane measuring step, a concave plane calculating step, a convex plane calculating step, and a step calculating step.

凹部平面測定工程は、凹部平面3上の測点(実測点)TGをトータルステーション1により測定する工程である。
なお、凹部平面3上の測点TGの数は3点以上であれば限定されるものではないが、本実施形態では4点以上測定する。
The concave plane measuring step is a step of measuring the measuring point (measured point) TG A on the concave plane 3 by the total station 1.
The number of the measurement points TG A on the concave plane 3 is not limited as long as it is 3 points or more, but in this embodiment, 4 points or more are measured.

測定結果は、トータルステーション1から段差算出装置へ出力され、段差算出装置の記憶部に記憶される。なお、段差算出装置は、いわゆるコンピュータからなり、記憶部、演算部および出力部を備えている。
段差算出装置の記憶部に実測点TGのデータが記憶されると、演算部の座標値演算手段が起動する。
座標値演算手段は、式1〜3を利用して、直交座標値に変換する。実測点TGの直交座標値は、記憶部に記憶される。
X=L×sin(V)×cos(H) ・・・式1
Y=L×sin(V)×sin(H) ・・・式2
Z=L×cos(V) ・・・式3
The measurement result is output from the total station 1 to the step calculation device and stored in the storage unit of the step calculation device. The level difference calculating device is a so-called computer, and includes a storage unit, a calculation unit, and an output unit.
When the data of the actual measurement point TG A is stored in the storage unit of the level difference calculating device, the coordinate value calculation means of the calculation unit is activated.
A coordinate value calculation means converts into an orthogonal coordinate value using Formulas 1-3. The orthogonal coordinate value of the actual measurement point TG A is stored in the storage unit.
X = L × sin (V) × cos (H) Equation 1
Y = L × sin (V) × sin (H) Equation 2
Z = L × cos (V) Equation 3

凸部平面測定工程は、凸部平面4上の測点(実測点)TGをトータルステーション1により測定する工程である。
なお、凸部平面4上の測点TGの数は3点以上であれば限定されるものではないが本実施形態では4点以上測定する。
測定結果は、トータルステーション1から段差算出装置へ出力され、段差算出装置の記憶部に記憶される。
段差算出装置の記憶部に実測点TGのデータが記憶されると、演算部の座標値演算手段が起動する。
座標値演算手段は、式1〜3を利用して、直交座標値に変換する。測点TGの直交座標値は、記憶部に記憶される。
The convex portion plane measuring step is a step of measuring the measuring point (measurement point) TG B on the convex portion plane 4 by the total station 1.
In addition, although it will not be limited if the number of the measurement points TG B on the convex part plane 4 is 3 points or more, in this embodiment, 4 points or more are measured.
The measurement result is output from the total station 1 to the step calculation device and stored in the storage unit of the step calculation device.
When the data of the measured point TG B in the storage unit of the step calculation unit are stored, the coordinate value calculating means calculating unit is activated.
A coordinate value calculation means converts into an orthogonal coordinate value using Formulas 1-3. The orthogonal coordinate value of the measurement point TG B is stored in the storage unit.

凹部平面算出工程は、凹部平面3上の実測点TGの計測値から凹部平面3の三次元平面方程式を算出する工程である。
凹部平面算出工程は、第一平面算出手段により実行される。
第一平面算出手段は、まず、記憶部の中から直交座標値に変換した凹部平面3上の実測点TGの座標値(xA1,yA1,zA1)、(xA2,yA2,zA2)、(xA3,yA3,zA3)、…を読み出し、式4の行列に対応させる演算を行う。
Concave plane calculation step is a step of calculating a three-dimensional plane equations of the recess plane 3 from the measured value of the measured point TG A on the recess plane 3.
The concave plane calculation step is executed by the first plane calculation means.
First, the first plane calculation means first calculates the coordinate values (x A1 , y A1 , z A1 ), (x A2 , y A2 ) of the actual measurement point TG A on the concave plane 3 converted from the storage unit into orthogonal coordinate values. z A2 ), (x A3 , y A3 , z A3 ),... are read, and an operation corresponding to the matrix of Expression 4 is performed.

Figure 0006454573
Figure 0006454573

次に、第一平面算出手段は、式4の行列から最小二乗法による三次元平面方程式を導き出す。
最小二乗法の計算(式5)で、平面方程式の上数項が決定されるため、凹部平面3の三次元平面方程式(式6)が求まる。凹部平面3の三次元平面方程式は、記憶部に記憶される。
Next, the first plane calculating means derives a three-dimensional plane equation by the least square method from the matrix of Expression 4.
Since the upper term of the plane equation is determined by the calculation of the least square method (Equation 5), the three-dimensional plane equation (Equation 6) of the recess plane 3 is obtained. The three-dimensional plane equation of the concave plane 3 is stored in the storage unit.

Figure 0006454573
Figure 0006454573

凸部平面算出工程は、凸部平面4上の実測点TGの計測値から凸部平面4の三次元平面方程式を算出する工程である。
突部平面算出工程は、第二平面算出手段により実行される。
第二平面算出手段は、まず、直交座標値に変換した凸部平面4上の実測点TGの座標値(xB1,yB1,zB1)、(xB2,yB2,zB2)、(xB3,yB3,zB3)、…を記憶部から読み出し、式4の行列に対応させた後、最小二乗法の計算(式5)で、平面方程式の定数項を決定させ、凸部平面4の三次元平面方程式(式7)を算出する。凸部平面4の三次元平面方程式は、記憶部に記憶される。
Protrusions plane calculation step is a step of calculating a three-dimensional plane equation of the protrusion plane 4 from the measurement value of the measured point TG B on protrusions plane 4.
The protrusion plane calculation step is executed by the second plane calculation means.
First, the second plane calculating means first calculates the coordinate values (x B1 , y B1 , z B1 ), (x B2 , y B2 , z B2 ) of the actual measurement point TG B on the convex plane 4 converted into the orthogonal coordinate values. (X B3 , y B3 , z B3 ),... Are read from the storage unit, corresponded to the matrix of Equation 4, and then a constant term of the plane equation is determined by calculation of the least square method (Equation 5), and the convex portion A three-dimensional plane equation (formula 7) of the plane 4 is calculated. The three-dimensional plane equation of the convex plane 4 is stored in the storage unit.

Figure 0006454573
Figure 0006454573

段差算出工程は、凹部平面3と凸部平面4との離間距離(段差)を算出する工程である。
記憶部に凹部平面3の三次元平面方程式および凸部平面4の三次元平面方程式が記憶されると段差算出手段が起動する。
段差記憶手段は、凹部平面3の三次元平面方程式および凸部平面4の三次元平面方程式を利用して、凹部平面3と凸部平面4との離間距離を算出する。
段差記憶手段は、まず、凹部平面3および凸部平面4で測定した実測点TG,TGの中間点Pの座標(x,y,z)を両平面3,4の中央部になるように任意に定める。
The step calculation step is a step of calculating a separation distance (step) between the concave plane 3 and the convex plane 4.
When the three-dimensional plane equation of the concave portion plane 3 and the three-dimensional plane equation of the convex portion plane 4 are stored in the storage unit, the level difference calculating means is activated.
The step storage means calculates the separation distance between the concave plane 3 and the convex plane 4 using the three-dimensional plane equation of the concave plane 3 and the three-dimensional plane equation of the convex plane 4.
The step storage means first calculates the coordinates (x c , y c , z c ) of the intermediate point P between the measured points TG A and TG B measured on the concave plane 3 and the convex plane 4 at the center of both planes 3 and 4. Arbitrarily determined to be.

次に、段差算出手段は、中間点Pから凹部平面3に至る垂線と凹部平面3との交点の座標値(x ,y ,z )を算出するとともに、中間点Pから凸部平面4に至る垂線と凸部平面4との交点の座標値(x ,y ,z )を算出する。 Next, the level difference calculating means calculates the coordinate values (x 1 c , y 1 c , z 1 c ) of the intersections between the perpendicular from the intermediate point P to the concave plane 3 and the concave plane 3, and from the intermediate point P The coordinate value (x 2 c , y 2 c , z 2 c ) of the intersection of the perpendicular line to the convex plane 4 and the convex plane 4 is calculated.

Figure 0006454573
Figure 0006454573

そして、段差算出手段は、式8,9から算出した交点座標値同士の距離L12を、式10を利用して算出する。これにより、2つの仮想平面間の段差(=L12≒凹部平面3と凸部平面4との離間距離(段差))が求まる。段差(L12)は、は記憶部に記憶されるとともに、出力部(例えば、モニターやプリンター)に出力される。 Then, the level difference calculating means calculates the distance L 12 between the intersection coordinate values calculated from Expressions 8 and 9 using Expression 10. As a result, a step between the two virtual planes (= L 12 ≈a separation distance (step) between the concave plane 3 and the convex plane 4) is obtained. The step (L 12 ) is stored in the storage unit and output to an output unit (for example, a monitor or a printer).

Figure 0006454573
Figure 0006454573

なお、凹部平面3と凸部平面4の段差は、中間点Pから凹部平面3と凸部平面4への垂線長により算出してもよい。
中間点から凹部平面3への垂線長h1は、式11により算出する。また、中間点Pから凸部平面4への垂線長h2は式12により算出する。
そして、段差hは、h1とh2の合計となる(式13)。段差hは記憶部に記憶されるとともに、出力部(例えば、モニターやプリンター)に出力される。
The step between the concave plane 3 and the convex plane 4 may be calculated from the perpendicular length from the intermediate point P to the concave plane 3 and the convex plane 4.
The perpendicular length h1 from the midpoint to the concave plane 3 is calculated by Equation 11. In addition, the perpendicular length h2 from the intermediate point P to the convex portion plane 4 is calculated by Expression 12.
The step h is the sum of h1 and h2 (Formula 13). The level difference h is stored in the storage unit and output to an output unit (for example, a monitor or a printer).

Figure 0006454573
Figure 0006454573

本実施形態のトータルステーションを用いた測定方法によれば、トータルステーション1の測定精度以上の精度による段差測定が可能となる。
これは、複数の測点を利用することで、測定誤差が修正された2つの平面3,4を算出することが可能となり、ひいては、二つの平面3,4の高低差を高精度に算出することができるためである。
また、トータルステーション1を利用して非接触で計測を行うため、測点TGが多数であっても、効率的に作業を行うことができる。
According to the measurement method using the total station of the present embodiment, it is possible to measure a step with an accuracy that is greater than the measurement accuracy of the total station 1.
This makes it possible to calculate two planes 3 and 4 in which the measurement error is corrected by using a plurality of measurement points, and in turn calculates the height difference between the two planes 3 and 4 with high accuracy. Because it can.
In addition, since the total station 1 is used for non-contact measurement, even if there are a large number of measurement points TG, the work can be performed efficiently.

以下、本実施形態のトータルステーションを用いた測定方法による段差測定の精度について、参考として実施した、ノギスによる実測値と比較した検証試験結果を示す。
本検証では、測点が3点、4点、5点および6点の場合について、それぞれ3回ずつ(A〜C)測定し、凹部平面3と凸部平面4との段差を算出した。
Hereinafter, the verification test result compared with the measured value by a caliper, which was performed as a reference, is shown for the accuracy of the step measurement by the measurement method using the total station of the present embodiment.
In this verification, when the measurement points were 3, 4, 5, and 6 points, the measurement was performed three times (A to C), and the step between the concave plane 3 and the convex plane 4 was calculated.

計算結果を図3に示す。なお、トータルステーション1には、測距精度が測定距離10mに対して±1mm程度のものを使用した。
図3に示すように、測点が3点の場合には、パターンA,Bでノギスの実測値と1mm程度、パターンCで0.6mm程度の差が出た。したがって、測点が3点以上であれば、トータルステーションの測定精度以上の精度による段差測定が可能である。
The calculation results are shown in FIG. The total station 1 used has a ranging accuracy of about ± 1 mm with respect to a measuring distance of 10 m.
As shown in FIG. 3, when the number of measurement points is 3, the difference between the measured values of calipers is about 1 mm for patterns A and B, and about 0.6 mm for pattern C. Therefore, if the number of measurement points is three or more, it is possible to measure the level difference with an accuracy higher than the measurement accuracy of the total station.

測点が4点の場合は、パターンA〜Cのいずれの場合であっても、ノギスの実測値との差が0.9mm以下であった。
また、測点が5点および6点の場合は、ノギスの実測値との差が0.3mm以下であった。
したがって、測点の数を4〜6点、より好ましくは5〜6点とすれば、より高精度の測定することが可能である結果となった。
When the number of measurement points was 4, the difference from the actually measured value of the caliper was 0.9 mm or less in any of the patterns A to C.
Further, when the measurement points were 5 points and 6 points, the difference from the measured value of calipers was 0.3 mm or less.
Therefore, when the number of measurement points is 4 to 6 points, more preferably 5 to 6 points, it is possible to measure with higher accuracy.

以上、本発明の実施形態について説明したが本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
前記実施形態では、段差算出装置を利用して測定対象物(壁ボード)の表面に形成された凹凸の段差を算出する場合について説明したが、段差の算出する手段は限定されるものではない。例えば、表計算ソフトを利用して算出してもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the above-described constituent elements can be appropriately changed without departing from the spirit of the present invention.
In the above-described embodiment, the case where the uneven step formed on the surface of the measurement object (wall board) is calculated using the step calculation device has been described, but the means for calculating the step is not limited. For example, it may be calculated using spreadsheet software.

前記実施形態では、壁ボードの表面に形成された凹凸の段差を測定する場合について説明したが、本発明のトータルステーションの用いた測定方法が適用可能な測定対象物は壁ボードに限定されるものではなく、あらゆる構造物に採用することができる。例えば、法面等であってもよい。
また、前記実施形態では、壁ボードの表面に矩形状の凹部が形成されている場合について説明したが、壁ボードの凹部または凸部の形状は限定されるものではない。
In the above-described embodiment, the case where the uneven step formed on the surface of the wall board is measured has been described. However, the measurement object to which the measurement method using the total station of the present invention is applicable is not limited to the wall board. It can be used for any structure. For example, it may be a slope.
Moreover, although the said embodiment demonstrated the case where the rectangular-shaped recessed part was formed in the surface of a wall board, the shape of the recessed part or convex part of a wall board is not limited.

トータルステーションの設置個所は、壁ボード(測点)に対して傾斜していてもよい。例えば、トータルステーションは、壁ボードの重心から延びる垂線の延長線上に配置されていてもよい。また、トータルステーションは、壁ボードの外形状から延びる延長線上よりも外れた位置に配置されていてもよい。   The installation location of the total station may be inclined with respect to the wall board (measuring point). For example, the total station may be arranged on an extension of a perpendicular extending from the center of gravity of the wall board. Further, the total station may be arranged at a position deviating from an extension line extending from the outer shape of the wall board.

1 基準点
2 壁ボード(測定対象物)
3 凹部平面(第一平面)
4 凸部平面(第二平面)
TG 設計測点
TS トータルステーションの設置点
1 Reference point 2 Wall board (measurement object)
3 concave plane (first plane)
4 convex plane (second plane)
TG design station TS total station installation point

Claims (3)

測定対象物の表面に形成された第一平面と第二平面との高低差を測定するトータルステーションを用いた測定方法であって、
前記第一平面上で3点以上の測点をトータルステーションにより測定する工程と、
前記第二平面上で3点以上の測点をトータルステーションにより測定する工程と、
前記第一平面上の3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第一平面の三次元平面方程式(式2)を算出する工程と、
前記第二平面上の3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第二平面の三次元平面方程式(式3)を算出する工程と、
前記第一平面上の測点と前記第二平面上の測点との中間点の座標を前記第一平面および前記第二平面の中央部になるように定める工程と、
前記第一平面の三次元平面方程式および前記第二平面の三次元平面方程式を利用した式4および式5により、前記中間点から前記第一平面に至る垂線と当該第一平面との交点の座標値を算出するとともに、前記中間点から前記第二平面に至る垂線と当該第二平面との交点の座標値を算出する工程と、
式4と式5から算出した交点座標同士の距離を式6を利用して算出することで、前記第一平面および前記第二平面間の距離を算出する工程と、を備えることを特徴とする、トータルステーションを用いた測定方法。
Figure 0006454573
A measuring method using a total station for measuring a height difference between a first plane and a second plane formed on the surface of a measurement object,
Measuring three or more points on the first plane by a total station ;
Measuring three or more measuring points on the second plane by a total station ;
The step of associating the coordinate values of three or more measuring points on the first plane with the matrix of Formula 1 and then calculating the three-dimensional plane equation (Formula 2) of the first plane from the matrix by the least square method When,
The step of associating the coordinate values of three or more measuring points on the second plane with the matrix of Equation 1 and then calculating the three-dimensional plane equation (Equation 3) of the second plane from the matrix by the least square method When,
Determining the coordinates of the intermediate point between the station on the first plane and the station on the second plane so as to be the center of the first plane and the second plane;
The coordinates of the intersection of the perpendicular line from the intermediate point to the first plane and the first plane are obtained by Equations 4 and 5 using the three-dimensional plane equation of the first plane and the three-dimensional plane equation of the second plane. Calculating a coordinate value of an intersection of a perpendicular extending from the intermediate point to the second plane and the second plane; and
Calculating the distance between the intersection coordinates calculated from Equation 4 and Equation 5 using Equation 6, and calculating the distance between the first plane and the second plane. Measurement method using total station.
Figure 0006454573
前記第一平面上および前記第二平面上の測点の数が、それぞれ4点以上であることを特徴とする、請求項1に記載のトータルステーションを用いた測定方法。   2. The measuring method using a total station according to claim 1, wherein the number of measuring points on the first plane and the second plane is 4 or more, respectively. 測定対象物の表面に形成された第一平面と第二平面との高低差を算出する段差算出装置であって、
前記第一平面上で測定された3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第一平面の三次元平面方程式(式2)を算出する手段と、
前記第二平面上で測定された3点以上の測点の座標値を式1の行列に対応させた後、当該行列から最小二乗法により当該第二平面の三次元平面方程式(式3)を算出する手段と、
前記第一平面上の測点と前記第二平面上の測点との中間点の座標を前記第一平面および前記第二平面の中央部になるように定め、前記第一平面の三次元平面方程式および前記第二平面の三次元平面方程式を利用した式4および式5により、前記中間点から前記第一平面に至る垂線と当該第一平面との交点の座標値を算出するとともに、前記中間点から前記第二平面に至る垂線と当該第二平面との交点の座標値を算出して、式4と式5から算出した交点座標同士の距離を式6を利用して算出することで前記第一平面および前記第二平面間の距離を算出する手段と、を備えることを特徴とする、段差算出装置。
A level difference calculating device for calculating a height difference between a first plane and a second plane formed on the surface of a measurement object,
After the coordinate values of three or more measuring points measured on the first plane are made to correspond to the matrix of Equation 1, the three-dimensional plane equation (Equation 2) of the first plane is obtained from the matrix by the least square method. Means for calculating;
After associating coordinate values of three or more measuring points measured on the second plane with the matrix of Equation 1, a three-dimensional plane equation (Equation 3) of the second plane is obtained from the matrix by the least square method. Means for calculating;
A coordinate of an intermediate point between the measurement point on the first plane and the measurement point on the second plane is determined to be a central portion of the first plane and the second plane, and the three-dimensional plane of the first plane The coordinate value of the intersection of the perpendicular line from the intermediate point to the first plane and the first plane is calculated by Equation 4 and Formula 5 using the equation and the three-dimensional plane equation of the second plane. By calculating the coordinate value of the intersection of the perpendicular from the point to the second plane and the second plane, and calculating the distance between the intersection coordinates calculated from Equation 4 and Equation 5 using Equation 6 Means for calculating a distance between the first plane and the second plane.
JP2015053238A 2015-03-17 2015-03-17 Measuring method and level difference calculating apparatus using total station Active JP6454573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053238A JP6454573B2 (en) 2015-03-17 2015-03-17 Measuring method and level difference calculating apparatus using total station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053238A JP6454573B2 (en) 2015-03-17 2015-03-17 Measuring method and level difference calculating apparatus using total station

Publications (2)

Publication Number Publication Date
JP2016173296A JP2016173296A (en) 2016-09-29
JP6454573B2 true JP6454573B2 (en) 2019-01-16

Family

ID=57008802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053238A Active JP6454573B2 (en) 2015-03-17 2015-03-17 Measuring method and level difference calculating apparatus using total station

Country Status (1)

Country Link
JP (1) JP6454573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164546B1 (en) * 2016-11-07 2017-07-19 クモノスコーポレーション株式会社 Surveying method and surveying device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680515B2 (en) * 1992-10-26 1997-11-19 鹿島建設株式会社 Construction automatic surveying and management method
JP2000221037A (en) * 1999-01-29 2000-08-11 Topcon Corp Automatic surveying machine and three-dimensional measuring method
JP2002090144A (en) * 2000-09-21 2002-03-27 Jekku:Kk Secular change monitoring system using automatic tracking total station and storage medium
JP2004272459A (en) * 2003-03-06 2004-09-30 Cad Center:Kk Automatic generation device and automatic generation method of three-dimensional shape, program and storage medium recording the program
JP4155890B2 (en) * 2003-07-15 2008-09-24 カシオ計算機株式会社 Projector, projector tilt angle acquisition method, and projection image correction method
JP4602844B2 (en) * 2005-06-17 2010-12-22 大成建設株式会社 Displacement information measuring system, method and program
JP4966616B2 (en) * 2006-09-19 2012-07-04 大成建設株式会社 Shape variation monitoring method and shape variation monitoring system
JP5350729B2 (en) * 2008-09-30 2013-11-27 大成建設株式会社 Work type confirmation system, work form confirmation program, and work form confirmation method
JP5593177B2 (en) * 2010-09-14 2014-09-17 株式会社トプコン Point cloud position data processing device, point cloud position data processing method, point cloud position data processing system, and point cloud position data processing program
JP5857508B2 (en) * 2011-08-02 2016-02-10 株式会社大林組 How to calculate construction error

Also Published As

Publication number Publication date
JP2016173296A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP2889575B1 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium
US8600147B2 (en) System and method for remote measurement of displacement and strain fields
KR101158323B1 (en) Method for inspecting substrate
JP2013545972A5 (en)
TWI635252B (en) Methods and system for inspecting a 3d object using 2d image processing
US9441959B2 (en) Calibration method and shape measuring apparatus
US9250071B2 (en) Measurement apparatus and correction method of the same
US10684120B2 (en) Wire rope measuring device and wire rope measuring method
TW201627633A (en) Board-warping measuring apparatus and board-warping measuring method thereof
JP6035031B2 (en) Three-dimensional shape measuring device using multiple grids
JP6730857B2 (en) Step height gauge, reference plane measuring method, and reference plane measuring device
JP6560547B2 (en) Boundary point extraction method and measurement method using total station
JP6454573B2 (en) Measuring method and level difference calculating apparatus using total station
KR101158324B1 (en) Image Sensing System
Hess et al. A contest of sensors in close range 3D imaging: performance evaluation with a new metric test object
JP5532454B2 (en) 3D displacement measurement system for structures using digital cameras
JP5294891B2 (en) Image processing method for extracting uneven characters
JP2007121124A (en) Precision assurance fixture for ccd camera-based three-dimensional shape measurement device
KR102477658B1 (en) Method for generating conpensation rule
JP6599137B2 (en) Plane shape measuring apparatus and plane shape calculating system
TW201518677A (en) System and method for processing data tested by double line laser probes
JP6835641B2 (en) As-built measurement method
JP2006038590A (en) Three-dimensional shape measuring method and its device
JP7355590B2 (en) Shape measurement method, shape measurement device, and construction method for concrete structures
CN110020648A (en) Workpiece measures and localization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6454573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150