JP2006038590A - Three-dimensional shape measuring method and its device - Google Patents

Three-dimensional shape measuring method and its device Download PDF

Info

Publication number
JP2006038590A
JP2006038590A JP2004217784A JP2004217784A JP2006038590A JP 2006038590 A JP2006038590 A JP 2006038590A JP 2004217784 A JP2004217784 A JP 2004217784A JP 2004217784 A JP2004217784 A JP 2004217784A JP 2006038590 A JP2006038590 A JP 2006038590A
Authority
JP
Japan
Prior art keywords
measured
marks
dimensional shape
imaging
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217784A
Other languages
Japanese (ja)
Inventor
Teruaki Yogo
照明 與語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004217784A priority Critical patent/JP2006038590A/en
Publication of JP2006038590A publication Critical patent/JP2006038590A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a three-dimensional shape measuring method capable of optically performing three-dimensional measurement with sufficient precision, without accumulation of errors even if an object to be measured is large. <P>SOLUTION: An image of the object to be measured 1 is photographed with a camera 4, and the three-dimensional shape of the object 1 inside an imaging region S of the camera 4 is measured. In that case, long reference bars 14, 16 arranged along the object 1 and provided with a plurality of marks M, and a moving mechanism 18 which supports the camera 4 movably are provided. The three-dimensional shape of the object 1 is measured by converting respective measured values in imaging regions S images of the object 1 in which each comprising at least two marks M are photographed at different spots by moving the camera 4 supported by the moving mechanism 18, into the same coordinate system on the basis of the marks M. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定物の外形形状を光学的に3次元で測定する3次元形状測定方法及びその装置に関する。   The present invention relates to a three-dimensional shape measuring method and apparatus for optically measuring the outer shape of an object to be measured in three dimensions.

従来より、モアレトポグラフィに代表されるような縞を利用し、被測定物上に縞状パターンを投影し、被測定物の形状により変形した縞模様と基準の縞模様を重ね合わせ、その差周波数として生じる等高線を示すモアレ縞を解析することにより、被測定物の3次元形状を測定する装置として、例えば、特許文献1や特許文献2にあるような装置が知られている。このような装置では、被測定物上にできた縞模様をCCDカメラにより撮像して、解析している。
特開昭53−68267号公報 特開昭61−260107号公報
Conventionally, using stripes such as moiré topography, projecting a striped pattern on the object to be measured, superimposing the stripe pattern deformed according to the shape of the object to be measured and the reference stripe pattern, and the difference frequency As an apparatus for measuring a three-dimensional shape of an object to be measured by analyzing moire fringes indicating contour lines generated as described above, for example, apparatuses as disclosed in Patent Document 1 and Patent Document 2 are known. In such an apparatus, a striped pattern formed on an object to be measured is imaged by a CCD camera and analyzed.
JP-A-53-68267 JP 61-260107 A

しかしながら、こうした従来のものでは、被測定物が小さい場合は、被測定物全体をCCDカメラで撮像して解析しても、十分な測定精度が得られるが、被測定物が大きい場合、一度で被測定物全体を撮像したのでは、十分な解像度が得られない場合がある。   However, with such conventional devices, when the object to be measured is small, sufficient measurement accuracy can be obtained even if the entire object to be measured is captured and analyzed with a CCD camera. If the whole object to be measured is imaged, sufficient resolution may not be obtained.

そのような場合には、被測定物の一部を撮像して3次元形状を測定し、次に、場所を変えて、被測定物の他の一部を撮像して3次元形状を測定し、これを繰り返して全体の3次元形状を測定しているが、分けて測定した測定値を一つの基準座標系の測定値に合成すると、その都度誤差が発生し、多くのパッチを合成すると誤差が累積して、大きな誤差が発生するという問題があった。   In such a case, image a part of the object to be measured to measure the three-dimensional shape, and then change the location and image another part of the object to be measured to measure the three-dimensional shape. This is repeated to measure the entire three-dimensional shape. However, if the measured values divided and combined into the measured values of one reference coordinate system, an error will occur each time, and if many patches are combined, the error will occur. There is a problem that a large error occurs due to accumulation.

本発明の課題は、大きな被測定物であっても誤差の累積がなく、精度よく光学的に3次元測定できる3次元形状測定方法及びその装置を提供することにある。   An object of the present invention is to provide a three-dimensional shape measuring method and apparatus capable of optically measuring three-dimensionally accurately without accumulating errors even for a large object to be measured.

かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
カメラにより被測定物を撮像して、前記カメラの撮像領域内の前記被測定物の3次元形状を測定する3次元形状測定方法において、
間隔が既知の複数のマークが設けられた長尺状のリファレンスバーを前記被測定物に沿って配置し、前記カメラにより前記リファレンスバーの前記マークを少なくとも2個含む撮像領域で前記被測定物を撮像し、更に、前記カメラを移動して異なる箇所で少なくとも前記マークを2個含む撮像領域で前記被測定物を撮像し、前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする3次元形状測定方法がそれである。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
In a three-dimensional shape measurement method for imaging a measurement object with a camera and measuring a three-dimensional shape of the measurement object in an imaging region of the camera,
A long reference bar provided with a plurality of marks with known intervals is arranged along the object to be measured, and the object to be measured is picked up in an imaging region including at least two of the marks on the reference bar by the camera. Further, the camera is moved, the camera is moved, the object to be measured is imaged in an imaging area including at least two marks at different locations, and the measured values of the imaging area in which the object to be measured is imaged are marked. The three-dimensional shape measuring method is characterized in that the three-dimensional shape of the object to be measured is measured by converting to the same coordinate system based on the above.

前記リファレンスバーには、同じ形状の複数の前記マークが等間隔で設けられ、また、前記カメラの移動量を検出して、該移動量に基づいて、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定するようにしてもよい。あるいは、前記リファレンスバーには、異なる形状の複数の前記マークが設けられ、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを前記形状により識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定するようにしてもよい。   The reference bar is provided with a plurality of marks having the same shape at equal intervals, and detects the movement amount of the camera, and includes at least two marks at different locations based on the movement amount. 3D of the object to be measured is identified by identifying the mark included in the imaging area where the object is imaged, and converting each measurement value of the imaging area to the same coordinate system based on the identified mark The shape may be measured. Alternatively, the reference bar is provided with a plurality of marks having different shapes, and the marks included in the imaging region obtained by imaging the object to be measured including at least two marks at different locations are identified by the shapes. Then, the three-dimensional shape of the object to be measured may be measured by converting each measurement value of the imaging region into the same coordinate system based on the identified mark.

また、カメラにより被測定物を撮像して、前記カメラの撮像領域内の前記被測定物の3次元形状を測定する3次元形状測定装置において、
前記被測定物に沿って配置され間隔が既知の複数のマークが設けられた長尺状のリファレンスバーと、
前記カメラを移動可能に支持する移動機構と、
該移動機構に支持された前記カメラの移動で、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定する広域測定手段とを備えたことを特徴とする3次元形状測定装置がそれである。
Further, in the three-dimensional shape measuring apparatus that measures the three-dimensional shape of the measurement object in the imaging region of the camera by imaging the measurement object with a camera,
A long reference bar provided with a plurality of marks arranged along the object to be measured and having a known interval;
A moving mechanism for movably supporting the camera;
Each measurement value of the imaging area obtained by imaging the object to be measured including at least two marks at different locations by the movement of the camera supported by the moving mechanism is converted into the same coordinate system based on the marks. A three-dimensional shape measuring apparatus comprising a wide-area measuring means for measuring the three-dimensional shape of the object to be measured.

前記リファレンスバーには、同じ形状の複数の前記マークが等間隔で設けられると共に、前記移動機構は、前記カメラの移動量を検出する移動量検出センサを備え、前記広域測定手段は、前記移動量検出センサにより検出された前記移動量に基づいて、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定する構成としてもよい。あるいは、前記リファレンスバーには、異なる形状の複数の前記マークが設けられ、前記広域判定手段は、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを前記形状により識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定する構成としてもよい。また、前記リファレンスバーを前記被測定物の両側に設け、前記広域測定手段は、更に、異なる前記リファレンスバーで少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定する構成としてもよい。更に、前記リファレンスバーは、平坦面に複数の前記マークを設けるのが好ましい。   The reference bar is provided with a plurality of marks having the same shape at equal intervals, the movement mechanism includes a movement amount detection sensor for detecting the movement amount of the camera, and the wide-area measurement unit includes the movement amount. Based on the amount of movement detected by the detection sensor, the marks included in the imaging area obtained by imaging the object to be measured including at least two marks at different locations are identified, and each measurement of the imaging area is performed. It is good also as a structure which converts into the same coordinate system based on the said mark which identified the value, and measures the three-dimensional shape of the said to-be-measured object. Alternatively, the reference bar is provided with a plurality of marks having different shapes, and the wide area determination unit is included in the imaging region in which the object to be measured including at least two of the marks is captured at different locations. The mark may be identified by the shape, and the measurement value of each of the imaging regions may be converted to the same coordinate system based on the identified mark to measure the three-dimensional shape of the object to be measured. In addition, the reference bar is provided on both sides of the object to be measured, and the wide area measuring unit further measures each of the imaging regions obtained by imaging the object to be measured including at least two marks with different reference bars. It is good also as a structure which converts a value into the same coordinate system based on the said mark, and measures the three-dimensional shape of the said to-be-measured object. Furthermore, the reference bar is preferably provided with a plurality of the marks on a flat surface.

前述したように本発明の3次元形状測定方法及びその装置によると、複数のマークが設けられたリファレンスバーを用いて、大きな被測定物であっても累積誤差なく、精度よく光学的に3次元測定できるという効果を奏する。   As described above, according to the three-dimensional shape measuring method and apparatus of the present invention, a reference bar provided with a plurality of marks can be used to accurately and three-dimensionally accurately measure a large object without accumulating errors. There is an effect that it can be measured.

以下本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
図1〜3に示すように、1は被測定物であり、例えば、乗用車の車体等の大型の3次元形状の外形を有するものである。この被測定物1の3次元形状を光学的に測定する形状測定器2を備え、この形状測定器2は、CCDを用いたカメラ4とフリンジプロジェクター6と制御装置8とを備えている。カメラ4とフリンジプロジェクター6とは、制御装置8に接続されている。また、カメラ4とフリンジプロジェクター6とはカメラボックス10に収納されている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
As shown in FIGS. 1-3, 1 is a to-be-measured object, for example, has a large-sized three-dimensional external shape, such as the vehicle body of a passenger car. A shape measuring device 2 that optically measures the three-dimensional shape of the object to be measured 1 is provided. The shape measuring device 2 includes a camera 4 using a CCD, a fringe projector 6, and a control device 8. The camera 4 and the fringe projector 6 are connected to the control device 8. The camera 4 and the fringe projector 6 are housed in a camera box 10.

形状測定器2は、フリンジプロジェクター6が複数の格子を被測定物1の表面に投影し、カメラ4がこの被測定物1の外形形状に応じて変形した格子を撮像する。そして、この変形格子と基準格子とに基づいて、制御装置8が被測定物1の3次元形状を測定し、3次元形状の測定値を得るものである。   In the shape measuring instrument 2, the fringe projector 6 projects a plurality of gratings on the surface of the device under test 1, and the camera 4 images the lattice deformed according to the external shape of the device under test 1. And based on this deformation | transformation grating | lattice and a reference | standard grating | lattice, the control apparatus 8 measures the three-dimensional shape of the to-be-measured object 1, and obtains the measured value of a three-dimensional shape.

形状測定器2は、カメラ4による撮像領域Sが広ければ解像度が低下して測定精度が粗くなり、撮像領域Sが狭ければ十分な解像度が得られて測定精度が精密になる。従って、必要な測定精度を得ようとすると、カメラ4により撮像する領域Sの面積が限定され、被測定物1の部分領域を測定することになる。   In the shape measuring instrument 2, if the imaging region S by the camera 4 is wide, the resolution decreases and the measurement accuracy becomes rough, and if the imaging region S is narrow, sufficient resolution is obtained and the measurement accuracy becomes precise. Therefore, if an attempt is made to obtain the required measurement accuracy, the area of the region S imaged by the camera 4 is limited, and the partial region of the DUT 1 is measured.

形状測定器2は、3次元の部分座標系に基づいた測定値を出力する。部分座標系は、形状測定器2が有する座標系であり、形状測定器2を移動して別の箇所を測定した際には、それらの測定値の部分座標系が異なり、そのままでは、それらの測定値をつなぎ合わせて、1つの測定値とすることはできない。   The shape measuring instrument 2 outputs a measurement value based on a three-dimensional partial coordinate system. The partial coordinate system is a coordinate system that the shape measuring instrument 2 has, and when the shape measuring instrument 2 is moved to measure another location, the partial coordinate systems of those measured values are different. Measurement values cannot be joined together to form one measurement value.

被測定物1は、測定台12上に載置されており、この被測定物1に沿って、長尺状のリファレンスバー14,16が被測定物1の両側に設けられている。リファレンスバー14,16には複数のマークMが設けられている。本実施形態では、リファレンスバー14,16は、断面形状が矩形の長尺状のものであり、上側の平坦面にマークMが設けられており、マークMは平面的な図形である。両リファレンスバー14,16は、それぞれの上側の平坦面が同じ高さになるように配置されている。   The DUT 1 is placed on the measurement table 12, and long reference bars 14 and 16 are provided on both sides of the DUT 1 along the DUT 1. The reference bars 14 and 16 are provided with a plurality of marks M. In the present embodiment, the reference bars 14 and 16 have an elongated shape with a rectangular cross-sectional shape, and a mark M is provided on the upper flat surface, and the mark M is a planar figure. Both reference bars 14 and 16 are arranged such that the upper flat surfaces thereof are at the same height.

この複数のマークMは、丸や四角等のそれぞれが同じ形状のものでもよく、あるいは、異なる形状のものでもよい。また、複数のマークMは等間隔で設けられていてもよく、あるいは、各マークMのそれぞれの間隔が異なっていてもよいが、各マークMの間隔は予め既知であればよい。   The plurality of marks M may have the same shape, such as circles and squares, or may have different shapes. The plurality of marks M may be provided at equal intervals, or the intervals between the marks M may be different, but the intervals between the marks M may be known in advance.

測定台12に移動機構18が併設されており、移動機構18はリファレンスバー14,16と平行に敷設された一対のレール20,22を備えている。レール20,22には移動台24がレール22,24に沿って移動可能に係合されており、移動台24には支柱26が立設されている。一対のレール22,24の間には、移動台24の平行移動量を検出する平行移動量検出器27が設けられている。   The measuring table 12 is provided with a moving mechanism 18, and the moving mechanism 18 includes a pair of rails 20 and 22 laid in parallel with the reference bars 14 and 16. A movable table 24 is engaged with the rails 20 and 22 so as to be movable along the rails 22 and 24, and a column 26 is erected on the movable table 24. Between the pair of rails 22, 24, a parallel movement amount detector 27 that detects the parallel movement amount of the moving table 24 is provided.

支柱26からは、アーム部材28がリファレンスバー14,16と直交方向に突き出されている。アーム部材28には直交移動機構30が組み込まれており、直交移動機構30はアーム部材28に移動可能に支持された直交移動台32を備えている。直交移動台32の移動方向は、リファレンスバー14,16と直交し、測定台12上の被測定物1を跨いで移動できるように構成されている。この直交移動台32には、カメラボックス10が被測定物1を撮像できるように取り付けられている。また、アーム部材28には、直交移動台32の直交移動量を検出する直交移動量検出器34が設けられている。   An arm member 28 protrudes from the column 26 in a direction orthogonal to the reference bars 14 and 16. An orthogonal movement mechanism 30 is incorporated in the arm member 28, and the orthogonal movement mechanism 30 includes an orthogonal movement table 32 that is movably supported by the arm member 28. The movement direction of the orthogonal moving table 32 is orthogonal to the reference bars 14 and 16 and is configured to be able to move across the DUT 1 on the measuring table 12. A camera box 10 is attached to the orthogonal moving table 32 so that the object to be measured 1 can be imaged. Further, the arm member 28 is provided with an orthogonal movement amount detector 34 that detects an orthogonal movement amount of the orthogonal movement table 32.

次に、本実施形態の3次元形状測定方法による測定手順について、前述した本実施形態の3次元形状測定装置の制御装置8において行われる広域測定処理と共に、図6に示すフローチャートによって説明する。   Next, a measurement procedure according to the three-dimensional shape measurement method of the present embodiment will be described with reference to the flowchart shown in FIG. 6 together with the wide area measurement process performed in the control device 8 of the three-dimensional shape measurement apparatus of the present embodiment described above.

まず、図3、図5に示すように、測定台12上に被測定物1を載置する。そして、移動台24をレール20,22に沿って移動して、カメラ4の撮像領域S1が被測定物1の最初の測定位置となるようにカメラボックス10を移動する。そして、第1の撮像領域S1で被測定物1の一部を撮像すると、制御装置8がこの撮像データから被測定物1の3次元形状の測定値を算出する(ステップ100)。撮像する際には、その第1の撮像領域S1にリファレンスバー14の少なくとも2つのマークM1が含まれるように撮像する。   First, as shown in FIGS. 3 and 5, the DUT 1 is placed on the measurement table 12. Then, the moving table 24 is moved along the rails 20 and 22, and the camera box 10 is moved so that the imaging region S <b> 1 of the camera 4 is the first measurement position of the DUT 1. When a part of the device under test 1 is imaged in the first image capturing area S1, the control device 8 calculates a measurement value of the three-dimensional shape of the device under test 1 from this image data (step 100). When imaging, the imaging is performed so that the first imaging area S1 includes at least two marks M1 of the reference bar 14.

次に、広域変換か否かを判断して(ステップ110)、最初の撮像である場合には、次の撮像が行われるまで待機し、次の撮像が行われると、その第2の撮像領域S2の撮像データから被測定物1の測定値を算出する。この第2の撮像領域S2には、第1の撮像領域S1と同様に少なくとも2つのマークM1が含まれるように撮像する。その際、第1の撮像領域S1と第2の撮像領域S2とにそれぞれ含まれている少なくとも2つのマークMが同じものである必要はなく、2つも別のマークMでもよく、あるいは、1つのみが同じマークであってもよい。   Next, it is determined whether or not it is wide area conversion (step 110), and if it is the first imaging, it waits until the next imaging is performed, and when the next imaging is performed, the second imaging area A measurement value of the DUT 1 is calculated from the imaging data of S2. The second imaging area S2 is imaged so as to include at least two marks M1 as in the first imaging area S1. At that time, it is not necessary that at least two marks M included in each of the first imaging area S1 and the second imaging area S2 are the same, and two marks M may be different, or one Only the same mark may be used.

そして、これらの二つの撮像領域S1,S2と同一座標系に変換する場合には、まず、両撮像領域S1,S2の撮像データからマークM1を認識する(ステップ120)。この両撮像領域S1,S2のマークM1に基づいて、座標を変換するための計数を算出する(ステップ130)。この計数により同じ座標系に変換する(ステップ140)。   When converting to the same coordinate system as these two imaging areas S1 and S2, first, the mark M1 is recognized from the imaging data of both imaging areas S1 and S2 (step 120). Based on the marks M1 of the imaging regions S1 and S2, a count for converting coordinates is calculated (step 130). This count is converted to the same coordinate system (step 140).

図7に示すように、リファレンスバー14の少なくとも2つのマークMから、2つのマークMを結んだX方向を認識できる。また、リファレンスバー14の平坦面に直交するZ方向も認識でき、このX方向、Z方向にそれぞれ直交するY方向を認識できる。これにより、2つのマークMの一方を中心とする3次元の座標系を認識できる。   As shown in FIG. 7, the X direction connecting two marks M can be recognized from at least two marks M on the reference bar 14. Further, the Z direction perpendicular to the flat surface of the reference bar 14 can also be recognized, and the Y direction perpendicular to the X direction and the Z direction can be recognized. As a result, a three-dimensional coordinate system centered on one of the two marks M can be recognized.

そして、図8に示すように、第1の撮像領域S1と第2の撮像領域S2とにそれぞれ含まれる少なくとも2つのマークMから、それぞれのX方向、Y方向、Z方向の3次元座標系を認識できると共に、それぞれの1つのマークMからそれらの距離を認識でき、座標を変換するための計数を算出できる。   Then, as shown in FIG. 8, a three-dimensional coordinate system in each of the X direction, the Y direction, and the Z direction is obtained from at least two marks M included in each of the first imaging region S1 and the second imaging region S2. They can be recognized, their distances can be recognized from each one mark M, and a count for converting the coordinates can be calculated.

各マークMの距離は予め測定されて既知であり、各マークMが同じ形状である場合には、平行移動量検出器27により検出される移動量に基づいて、撮像領域Sに含まれているマークMを判別する。その際、検出される移動量は、おおよその値がわかればどのマークMかを判別できる。   The distance of each mark M is known in advance, and when each mark M has the same shape, it is included in the imaging region S based on the amount of movement detected by the parallel movement amount detector 27. The mark M is determined. At this time, if the approximate amount of movement detected is known, it is possible to determine which mark M.

また、各マークMの形状が異なれば、移動量を検出することなく、撮像したマークMの形状から、マークMを識別でき、各マークMの距離が既知であるので、その距離に基づいて座標を変換するための計数を算出できる。その際、マークMは、形状が異なってもよいが、例えば、同じ形状のマークMをリファレンスバー14,16に表示すると共に数字等による番号を表示して、各マークMを識別できるようにしても同様に実施可能である。   Also, if the shape of each mark M is different, the mark M can be identified from the shape of the captured mark M without detecting the amount of movement, and the distance of each mark M is known. The count for converting can be calculated. At this time, the shape of the mark M may be different. For example, the mark M having the same shape is displayed on the reference bars 14 and 16 and a number such as a number is displayed so that each mark M can be identified. Can be similarly implemented.

撮像領域Sに含まれる少なくとも2つのマークMに基づいて、座標変換の計数を算出するので、移動機構18による移動は、リファレンスバー14,16と平行である必要はなく、図9に示すように、第1の撮像領域S1と第2の撮像領域S2とがリファレンスバー14,16に対して、X方向、Y方向に傾いていても、それぞれに少なくとも2つのマークMが含まれていれば、座標変換の計数を算出できる。しかも、Z方向に対して傾いていても、リファレンスバー14,16の平坦面を基準に3次元座標を認識するので、移動によりZ方向に傾いても、座標変換の計数を算出できる。   Since the coordinate conversion count is calculated based on at least two marks M included in the imaging region S, the movement by the movement mechanism 18 does not need to be parallel to the reference bars 14 and 16, as shown in FIG. Even if the first imaging region S1 and the second imaging region S2 are inclined in the X direction and the Y direction with respect to the reference bars 14 and 16, if at least two marks M are included in each, Coordinate conversion count can be calculated. In addition, even if it is tilted with respect to the Z direction, the three-dimensional coordinates are recognized on the basis of the flat surfaces of the reference bars 14 and 16, and therefore the coordinate conversion count can be calculated even if it is tilted in the Z direction due to movement.

第1の撮像領域S1と第2の撮像領域S2とのように、共通のマークM1がない場合でも、第1の撮像領域S1のマークM1と第2の撮像領域S2のマークMとの距離が既知であるので、これに基づいて、第1の撮像領域S1と第2の撮像領域S2との座標系を変換する計数を算出し(ステップ130)、この計数により同じ座標系に変換することができる(ステップ140)。従って、各撮像領域Sの同一座標系への変換をマークMに基づいて行なうので、複数の撮像領域を合成しても、誤差が累積することがなく、精度よく3次元形状を測定できる。   Even if there is no common mark M1 as in the first imaging area S1 and the second imaging area S2, the distance between the mark M1 in the first imaging area S1 and the mark M in the second imaging area S2 is Since it is known, based on this, a count for converting the coordinate system of the first imaging area S1 and the second imaging area S2 is calculated (step 130), and this count can be converted to the same coordinate system. Yes (step 140). Therefore, since the conversion of each imaging area S into the same coordinate system is performed based on the mark M, even if a plurality of imaging areas are combined, an error does not accumulate and the three-dimensional shape can be measured with high accuracy.

また、図5に示すように、被測定物1が大きい場合には、水平方向の移動だけでは、被測定物1の全体を測定できない場合がある。その場合には、直交移動機構30によりカメラボックス10を垂直方向に移動して、それぞれの撮像領域S1,S12で撮像して、それぞれの測定値を得る。また、その直交移動量を直交移動量検出器34により検出する。直交移動量検出器34により検出した直交移動量に基づいて、座標変換を行えば、複数の撮像領域S1,S12を同一の座標系に変換できる。   In addition, as shown in FIG. 5, when the DUT 1 is large, the whole DUT 1 may not be measured only by horizontal movement. In that case, the camera box 10 is moved in the vertical direction by the orthogonal movement mechanism 30 and images are taken in the respective imaging regions S1 and S12 to obtain respective measured values. The orthogonal movement amount is detected by the orthogonal movement amount detector 34. If coordinate conversion is performed based on the orthogonal movement amount detected by the orthogonal movement amount detector 34, the plurality of imaging regions S1 and S12 can be converted into the same coordinate system.

更に、本実施形態では、被測定物1の両側にリファレンスバー14,16を設けたが、少なくとも片側に一つのリファレンスバー14,16を設ければよい。両側に設けることにより、図10に示すように、一方のリファレンスバー14のマークMを含む撮像領域S1で撮像した後、直交方向にカメラボックス10を移動して、それぞれの撮像領域S1,S12,S13で撮像して、それぞれの測定値を得る。また、他方のリファレンスバー16のマークMを含む撮像領域S13で撮像することにより、このマークMに基づいて、直交方向の座標変換の補正を行うことができる。   Furthermore, in this embodiment, the reference bars 14 and 16 are provided on both sides of the DUT 1, but one reference bar 14 and 16 may be provided on at least one side. By providing on both sides, as shown in FIG. 10, after imaging in the imaging area S1 including the mark M of one reference bar 14, the camera box 10 is moved in the orthogonal direction, and each imaging area S1, S12, Imaging is performed in S13 to obtain respective measured values. Further, by imaging in the imaging region S13 including the mark M of the other reference bar 16, it is possible to correct the orthogonal coordinate conversion based on the mark M.

その際、直交移動機構30によりカメラボックス10の移動方向が、リファレンスバー14,16に対して傾斜していても、両リファレンスバー14,16の各マークMに基づいて、移動方向を認識できるので、直交方向の座標変換の補正を行うことができる。また、図11に示すように、移動の際に、Z方向にカメラボックス10がずれても、両リファレンスバー14,16の両平坦面からの距離が測定できるので、これに基づいて、座標変換の補正を行うことができる。   At this time, even if the moving direction of the camera box 10 is inclined with respect to the reference bars 14 and 16 by the orthogonal moving mechanism 30, the moving direction can be recognized based on the marks M of the reference bars 14 and 16. Correction of coordinate conversion in the orthogonal direction can be performed. In addition, as shown in FIG. 11, even when the camera box 10 is displaced in the Z direction during movement, the distance from both flat surfaces of both reference bars 14 and 16 can be measured. Can be corrected.

尚、本実施形態では、被測定物1を水平な測定台12上に載置して撮像する場合を例としたが、これに限らず、図12に示すように、測定台36を垂直に配置し、この測定台36に被測定物1を垂直な状態で支持するようにしても同様に実施可能である。この場合、アーム部材28は、支柱26に沿って上下方向に移動できるように支持すればよい。   In the present embodiment, the case where the device under test 1 is placed on the horizontal measurement table 12 and taken an image is taken as an example. However, the present invention is not limited to this, and as shown in FIG. The same can be implemented by arranging and supporting the DUT 1 on the measuring table 36 in a vertical state. In this case, the arm member 28 may be supported so as to be movable in the vertical direction along the column 26.

以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。   The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.

本発明の一実施形態としての3次元形状測定装置のカメラによる測定の説明図である。It is explanatory drawing of the measurement by the camera of the three-dimensional shape measuring apparatus as one Embodiment of this invention. 本実施形態の3次元形状測定装置の正面図である。It is a front view of the three-dimensional shape measuring apparatus of this embodiment. 本実施形態の3次元形状測定装置の平面図である。It is a top view of the three-dimensional shape measuring apparatus of this embodiment. 本実施形態の3次元形状測定装置の側面図である。It is a side view of the three-dimensional shape measuring apparatus of this embodiment. 本実施形態の3次元形状測定装置による撮像領域の説明図である。It is explanatory drawing of the imaging area by the three-dimensional shape measuring apparatus of this embodiment. 本実施形態の制御装置において行われる広域測定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the wide area measurement process performed in the control apparatus of this embodiment. 本実施形態のリファレンスバーのマークに基づく座標の認識を説明する斜視図である。It is a perspective view explaining the recognition of the coordinate based on the mark of the reference bar of this embodiment. 本実施形態の各撮像領域とリファレンスバーのマークとの関係を説明する説明図である。It is explanatory drawing explaining the relationship between each imaging area of this embodiment, and the mark of a reference bar. 本実施形態の各撮像領域が傾斜している場合のリファレンスバーのマークとの関係を説明する説明図である。It is explanatory drawing explaining the relationship with the mark of a reference bar when each imaging region of this embodiment inclines. 本実施形態のリファレンスバーと直交方向の撮像領域を示す説明図である。It is explanatory drawing which shows the imaging area of the orthogonal | vertical direction with the reference bar of this embodiment. 本実施形態のリファレンスバーと直交方向に撮像したときの傾斜を示す説明図である。It is explanatory drawing which shows the inclination when imaged in the orthogonal direction with the reference bar of this embodiment. 他の実施形態としての3次元形状測定装置の正面図である。It is a front view of the three-dimensional shape measuring apparatus as other embodiment.

符号の説明Explanation of symbols

1…被測定物 2…形状測定器
4…カメラ 6…フリンジプロジェクター
8…制御装置 10…カメラボックス
12…測定台 14,16…リファレンスバー
18…移動機構 20,22…レール
24…移動台 26…支柱
27…平行移動量検出器
28…アーム部材 30…直交移動機構
32…直交移動台 34…直交移動量検出器
36…測定台
DESCRIPTION OF SYMBOLS 1 ... Object to be measured 2 ... Shape measuring instrument 4 ... Camera 6 ... Fringe projector 8 ... Control device 10 ... Camera box 12 ... Measurement stand 14, 16 ... Reference bar 18 ... Moving mechanism 20, 22 ... Rail 24 ... Moving stand 26 ... Column 27 ... Parallel displacement detector 28 ... Arm member 30 ... Orthogonal displacement mechanism 32 ... Orthogonal displacement table 34 ... Orthogonal displacement detector 36 ... Measuring platform

Claims (8)

カメラにより被測定物を撮像して、前記カメラの撮像領域内の前記被測定物の3次元形状を測定する3次元形状測定方法において、
間隔が既知の複数のマークが設けられた長尺状のリファレンスバーを前記被測定物に沿って配置し、前記カメラにより前記リファレンスバーの前記マークを少なくとも2個含む撮像領域で前記被測定物を撮像し、更に、前記カメラを移動して異なる箇所で少なくとも前記マークを2個含む撮像領域で前記被測定物を撮像し、前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする3次元形状測定方法。
In a three-dimensional shape measurement method for imaging a measurement object with a camera and measuring a three-dimensional shape of the measurement object in an imaging region of the camera,
A long reference bar provided with a plurality of marks with known intervals is arranged along the object to be measured, and the object to be measured is picked up in an imaging region including at least two of the marks on the reference bar by the camera. Further, the camera is moved, the camera is moved, the object to be measured is imaged in an imaging area including at least two marks at different locations, and the measured values of the imaging area in which the object to be measured is imaged are marked. A three-dimensional shape measuring method, wherein the three-dimensional shape of the object to be measured is measured by converting to the same coordinate system based on the above.
前記リファレンスバーには、同じ形状の複数の前記マークが等間隔で設けられ、また、前記カメラの移動量を検出して、該移動量に基づいて、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする請求項1に記載の3次元形状測定方法。 The reference bar is provided with a plurality of marks having the same shape at equal intervals, and detects the movement amount of the camera, and includes at least two marks at different locations based on the movement amount. 3D of the object to be measured is identified by identifying the mark included in the imaging area where the object is imaged, and converting each measurement value of the imaging area to the same coordinate system based on the identified mark The three-dimensional shape measuring method according to claim 1, wherein the shape is measured. 前記リファレンスバーには、異なる形状の複数の前記マークが設けられ、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを前記形状により識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする請求項1に記載の3次元形状測定方法。 The reference bar is provided with a plurality of marks having different shapes, and the marks included in the imaging region obtained by imaging the object to be measured including at least two of the marks at different locations are identified by the shapes, 2. The three-dimensional shape measurement according to claim 1, wherein the three-dimensional shape of the object to be measured is measured by converting each measurement value of the imaging region into the same coordinate system based on the identified mark. Method. カメラにより被測定物を撮像して、前記カメラの撮像領域内の前記被測定物の3次元形状を測定する3次元形状測定装置において、
前記被測定物に沿って配置され間隔が既知の複数のマークが設けられた長尺状のリファレンスバーと、
前記カメラを移動可能に支持する移動機構と、
該移動機構に支持された前記カメラの移動で、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定する広域測定手段とを備えたことを特徴とする3次元形状測定装置。
In a three-dimensional shape measuring apparatus that images a measurement object with a camera and measures a three-dimensional shape of the measurement object in an imaging region of the camera,
A long reference bar provided with a plurality of marks arranged along the object to be measured and having a known interval;
A moving mechanism for movably supporting the camera;
Each measurement value of the imaging area obtained by imaging the object to be measured including at least two marks at different locations by the movement of the camera supported by the moving mechanism is converted into the same coordinate system based on the marks. And a three-dimensional shape measuring apparatus comprising a wide-area measuring means for measuring the three-dimensional shape of the object to be measured.
前記リファレンスバーには、同じ形状の複数の前記マークが等間隔で設けられると共に、前記移動機構は、前記カメラの移動量を検出する移動量検出センサを備え、前記広域測定手段は、前記移動量検出センサにより検出された前記移動量に基づいて、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする請求項4に記載の3次元形状測定装置。 The reference bar is provided with a plurality of marks having the same shape at equal intervals, the movement mechanism includes a movement amount detection sensor for detecting the movement amount of the camera, and the wide-area measurement unit includes the movement amount. Based on the amount of movement detected by the detection sensor, the marks included in the imaging area obtained by imaging the object to be measured including at least two marks at different locations are identified, and each measurement of the imaging area is performed. 5. The three-dimensional shape measuring apparatus according to claim 4, wherein the three-dimensional shape of the object to be measured is measured by converting the value into the same coordinate system based on the identified mark. 前記リファレンスバーには、異なる形状の複数の前記マークが設けられ、前記広域判定手段は、異なる箇所で少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域に含まれる前記マークを前記形状により識別し、前記撮像領域のそれぞれの測定値を識別した前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする請求項4に記載の3次元形状測定装置。 The reference bar is provided with a plurality of marks having different shapes, and the wide-area determination unit includes the marks included in the imaging region obtained by imaging the object to be measured including at least two marks at different locations. 5. The three-dimensional shape of the object to be measured is measured by identifying the shape and converting each measurement value of the imaging region to the same coordinate system based on the identified mark. The three-dimensional shape measuring apparatus described. 前記リファレンスバーを前記被測定物の両側に設け、前記広域測定手段は、更に、異なる前記リファレンスバーで少なくとも2個の前記マークを含む前記被測定物を撮像した前記撮像領域のそれぞれの測定値を前記マークに基づいて同一座標系に変換して、前記被測定物の3次元形状を測定することを特徴とする請求項4ないし請求項6に記載の3次元形状測定装置。 The reference bar is provided on both sides of the object to be measured, and the wide-area measuring unit further measures each measurement value of the imaging region obtained by imaging the object to be measured including at least two of the marks with different reference bars. 7. The three-dimensional shape measuring apparatus according to claim 4, wherein the three-dimensional shape of the object to be measured is measured by converting to the same coordinate system based on the mark. 前記リファレンスバーは、平坦面に複数の前記マークを設けたことを特徴とする請求項4ないし請求項7に記載の3次元形状測定装置。 The three-dimensional shape measuring apparatus according to claim 4, wherein the reference bar is provided with a plurality of the marks on a flat surface.
JP2004217784A 2004-07-26 2004-07-26 Three-dimensional shape measuring method and its device Pending JP2006038590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217784A JP2006038590A (en) 2004-07-26 2004-07-26 Three-dimensional shape measuring method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217784A JP2006038590A (en) 2004-07-26 2004-07-26 Three-dimensional shape measuring method and its device

Publications (1)

Publication Number Publication Date
JP2006038590A true JP2006038590A (en) 2006-02-09

Family

ID=35903742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217784A Pending JP2006038590A (en) 2004-07-26 2004-07-26 Three-dimensional shape measuring method and its device

Country Status (1)

Country Link
JP (1) JP2006038590A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303828A (en) * 2006-05-08 2007-11-22 Konica Minolta Sensing Inc Cross-sectional data acquisition method and system, and cross-sectional inspection method
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring device, method for correction therefor, program, and computer-readable recording medium
US20120158358A1 (en) * 2009-08-28 2012-06-21 Kabushiki Kaisha Opton Three-dimensional shape measurement method and three-dimensional shape measurement system
CN111971522A (en) * 2018-03-29 2020-11-20 特威纳有限公司 Vehicle detection system
KR20230162209A (en) * 2022-05-20 2023-11-28 주식회사 위드포인츠 Gantry-mounted 3D shape scanning apparatus and scanning method using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184203A (en) * 1990-11-20 1992-07-01 Komatsu Ltd Controller for position measuring apparatus
JPH0843054A (en) * 1994-07-27 1996-02-16 Ishikawajima Harima Heavy Ind Co Ltd Three dimensional measuring apparatus for structure
JP2002207998A (en) * 2001-01-10 2002-07-26 Mitsubishi Heavy Ind Ltd Image processor, and device and method for automatically testing dimension
JP2003533685A (en) * 2000-05-16 2003-11-11 シュタインビフラー オプトテヒニク ゲーエムベーハー Method and apparatus for measuring three-dimensional shape of object
JP2005221243A (en) * 2004-02-03 2005-08-18 Fuji Xerox Co Ltd Three-dimensional shape measuring device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184203A (en) * 1990-11-20 1992-07-01 Komatsu Ltd Controller for position measuring apparatus
JPH0843054A (en) * 1994-07-27 1996-02-16 Ishikawajima Harima Heavy Ind Co Ltd Three dimensional measuring apparatus for structure
JP2003533685A (en) * 2000-05-16 2003-11-11 シュタインビフラー オプトテヒニク ゲーエムベーハー Method and apparatus for measuring three-dimensional shape of object
JP2002207998A (en) * 2001-01-10 2002-07-26 Mitsubishi Heavy Ind Ltd Image processor, and device and method for automatically testing dimension
JP2005221243A (en) * 2004-02-03 2005-08-18 Fuji Xerox Co Ltd Three-dimensional shape measuring device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303828A (en) * 2006-05-08 2007-11-22 Konica Minolta Sensing Inc Cross-sectional data acquisition method and system, and cross-sectional inspection method
JP4743771B2 (en) * 2006-05-08 2011-08-10 コニカミノルタセンシング株式会社 Section data acquisition method, system, and section inspection method
JP2008170279A (en) * 2007-01-11 2008-07-24 Omron Corp Three-dimensional shape measuring device, method for correction therefor, program, and computer-readable recording medium
US20120158358A1 (en) * 2009-08-28 2012-06-21 Kabushiki Kaisha Opton Three-dimensional shape measurement method and three-dimensional shape measurement system
EP2472220A4 (en) * 2009-08-28 2016-07-20 Opton Kk Three-dimensional shape measurement method and three-dimensional shape measurement system
CN111971522A (en) * 2018-03-29 2020-11-20 特威纳有限公司 Vehicle detection system
KR20230162209A (en) * 2022-05-20 2023-11-28 주식회사 위드포인츠 Gantry-mounted 3D shape scanning apparatus and scanning method using same
KR102665372B1 (en) * 2022-05-20 2024-05-13 주식회사 위드포인츠 Gantry-mounted 3D shape scanning apparatus and scanning method using same

Similar Documents

Publication Publication Date Title
US9147247B2 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium
EP2889575B1 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium
US7869026B2 (en) Targeted artifacts and methods for evaluating 3-D coordinate system measurement accuracy of optical 3-D measuring systems using such targeted artifacts
US6674531B2 (en) Method and apparatus for testing objects
JP6296477B2 (en) Method and apparatus for determining the three-dimensional coordinates of an object
JP5515432B2 (en) 3D shape measuring device
JP2011017700A (en) Method of determining three-dimensional coordinate of object
JP2006138857A (en) Device and method for three-dimensional measurement of tooth profile
CN107957236B (en) Method for operating a coordinate measuring machine
CN109443214B (en) Calibration method and device, measurement method and device for structured light three-dimensional vision
JP7227442B2 (en) Vehicle dimension measuring device and vehicle dimension measuring method
CN105960569A (en) Methods of inspecting a 3d object using 2d image processing
US9372079B1 (en) Optical plate for calibration of coordinate measuring machines
KR101854366B1 (en) 3D-image measuring method
US20100149524A1 (en) Method and Device for Determining the Position of a Sensor
US20150138565A1 (en) Calibration method and shape measuring apparatus
JP5481862B2 (en) Pantograph height measuring device and calibration method thereof
JP6730857B2 (en) Step height gauge, reference plane measuring method, and reference plane measuring device
JP2006038590A (en) Three-dimensional shape measuring method and its device
JP4856222B2 (en) 3D shape measurement method
JP2008008651A (en) Measurement method and measurement system for profile dimension of railway vehicle, target used for the measurement method, and railway vehicle profile dimension inspection system equipped with the measurement system
JP5787258B2 (en) Method and apparatus for measuring the position of a contact element of an electronic component
JP4345235B2 (en) Measurement accuracy guarantee method for non-contact 3D shape measuring instrument
JP4778855B2 (en) Optical measuring device
JP4769914B2 (en) Flatness measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412