JP6454166B2 - Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member - Google Patents

Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member Download PDF

Info

Publication number
JP6454166B2
JP6454166B2 JP2015018681A JP2015018681A JP6454166B2 JP 6454166 B2 JP6454166 B2 JP 6454166B2 JP 2015018681 A JP2015018681 A JP 2015018681A JP 2015018681 A JP2015018681 A JP 2015018681A JP 6454166 B2 JP6454166 B2 JP 6454166B2
Authority
JP
Japan
Prior art keywords
cutting blade
molten glass
flow
cutting
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015018681A
Other languages
Japanese (ja)
Other versions
JP2015163578A (en
Inventor
勝彦 花田
勝彦 花田
久良 虎溪
久良 虎溪
橋本 和明
和明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2015018681A priority Critical patent/JP6454166B2/en
Publication of JP2015163578A publication Critical patent/JP2015163578A/en
Application granted granted Critical
Publication of JP6454166B2 publication Critical patent/JP6454166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、一対の主表面を有する磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材に関する。   The present invention relates to a method for manufacturing a magnetic disk glass blank having a pair of main surfaces, a method for manufacturing a magnetic disk glass substrate, and a cutting blade member.

今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられている。   Today, a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device, or the like has a built-in hard disk device for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk having a magnetic layer provided on a substrate is used, and a magnetic head slightly lifted above the surface of the magnetic disk ( Magnetic recording information is recorded on or read from the magnetic layer by a DFH (Dynamic Flying Height) head. As the substrate of this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like.

磁気ディスク用ガラス基板を作製するには、例えば、溶融ガラス流を所定の長さに切断して得られたガラスゴブを一対のプレス面で挟んでガラスブランクを作製し、このガラスブランクを所定の円盤形状に形状加工するとともに、必要に応じて研削及び研磨加工を行う。ところで、磁気ディスク用ガラス基板の主表面の表面凹凸が極めて小さいことが、主表面に磁性層を形成した磁気ディスクにおいて、磁気ヘッドの浮上距離を小さくする上で好ましい。このため、磁気ディスク用ガラス基板の主表面は、表面凹凸が小さいことが望ましい。上述の磁気ディスク用ガラス基板の作製方法では、溶融ガラス流を切断刃によって切断する際に切断刃の部材と溶融ガラス流の先端部が接触して溶融ガラス流の先端部が局部的に冷えることに起因して、ガラスブランクの表面近傍にシアマークといった欠陥が発生する。このシアマークを研削や研磨で除去することができるが、表面凹凸を目標とする範囲にするための研削、研磨の取り代量より大きい取り代で研削、研磨をすることが必要になり、磁気ディスク用ガラス基板の生産効率を低下させる要因となっていた。   In order to manufacture a glass substrate for a magnetic disk, for example, a glass blank is prepared by sandwiching a glass gob obtained by cutting a molten glass stream into a predetermined length between a pair of press surfaces. The shape is processed into a shape, and grinding and polishing are performed as necessary. By the way, it is preferable that the surface roughness of the main surface of the magnetic disk glass substrate is extremely small in order to reduce the flying distance of the magnetic head in a magnetic disk having a magnetic layer formed on the main surface. For this reason, it is desirable that the main surface of the glass substrate for magnetic disks has small surface irregularities. In the method for producing a glass substrate for a magnetic disk described above, when the molten glass flow is cut by the cutting blade, the cutting blade member and the tip of the molten glass flow come into contact with each other and the tip of the molten glass flow is locally cooled. As a result, defects such as shear marks occur near the surface of the glass blank. This shear mark can be removed by grinding or polishing, but it is necessary to grind and polish with a machining allowance larger than the machining allowance of grinding and polishing to make the surface unevenness the target range. This has been a factor in reducing the production efficiency of glass substrates.

ところで、上記シアマークについては、切断刃であるブレードが溶融ガラスと接触する時間が長くなることによって、シアマークの発生位置が深くなり、その大きさが大きくなることが知られている。このため、切断刃であるブレードが溶融ガラスと接触する時間を短くするための溶融ガラス切断装置が知られている(特許文献1)。当該装置では、切断刃であるブレードが溶融ガラスと接触する時間を50〜70m秒にすることができるとされている。   By the way, it is known that the shear mark generation position is deepened and the size of the shear mark is increased by increasing the time during which the blade as a cutting blade contacts the molten glass. For this reason, the molten glass cutting device for shortening the time which the blade | blade which is a cutting blade contacts with molten glass is known (patent document 1). In the said apparatus, it is supposed that the time which the blade which is a cutting blade contacts with molten glass can be made into 50-70 milliseconds.

特開平09−227130号公報JP 09-227130 A

シアマークは、例えば円弧形状を成してガラス基板の内部に形成されるが、この形状は、ガラス主表面から一定の深さ方向の位置にあるのではなく、深さ方向の位置は変化している。このため、以降では、シアマークの深さとは、ガラス主表面からシアマークの最も深い位置までの距離をいう。上述した溶融ガラス切断装置では、シアマークの深さが常に一定の範囲に存在せず、ばらついていることがわかった。このため、量産する場合には、必ずしも研削、研磨の取り代量を一定にすることはできず、磁気ディスク用ガラス基板の生産効率を依然として低下させていた。   The shear mark is formed inside the glass substrate in an arc shape, for example, but this shape is not located at a certain depth direction from the glass main surface, but the depth direction position changes. Yes. For this reason, hereinafter, the depth of the shear mark refers to the distance from the main glass surface to the deepest position of the shear mark. In the molten glass cutting apparatus described above, it has been found that the depth of the shear mark does not always exist within a certain range and varies. For this reason, in mass production, the machining allowance for grinding and polishing cannot always be made constant, and the production efficiency of the glass substrate for magnetic disks is still lowered.

そこで、本発明は、シアマークの深さを浅くし、しかもシアマークの深さのばらつきを抑えることができる磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材を提供することを目的とする。   Accordingly, the present invention provides a method for manufacturing a glass blank for a magnetic disk, a method for manufacturing a glass substrate for a magnetic disk, and a cutting blade member capable of reducing the depth of the shea mark and suppressing variations in the depth of the shea mark. The purpose is to do.

本発明の一態様は、磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法である。当該製造方法は、
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記一対の切断刃は、溶融ガラス流の上流側及び下流側に、溶融ガラス流を切断するように設けられており、
前記切断刃部材のそれぞれは、前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、前記溶融ガラス流を切断するとき、前記溶融ガラス流の先端部が、前記一対の切断刃部材のうち前記溶融ガラス流の上流側に位置する上流側切断刃と接触する時間は、40m秒以下である。
また、本発明の他の一態様も、磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法である。当該製造方法は、
溶融ガラス流を一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の前記流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、前記溶融ガラス流を切断するとき、前記溶融ガラス流の先端部が、前記一対の切断刃部材のうち前記溶融ガラス流の上流側に位置する上流側切断刃部材と接触する時間は、40m秒以下である
One aspect of the present invention is a method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk. The manufacturing method is
A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
The pair of cutting blades are provided on the upstream side and the downstream side of the molten glass flow so as to cut the molten glass flow,
Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction, and when cutting the molten glass flow, the tip of the molten glass flow is Of the pair of cutting blade members, the time of contact with the upstream cutting blade located on the upstream side of the molten glass flow is 40 milliseconds or less.
Moreover, the other one aspect | mode of this invention is also a manufacturing method of the glass blank for magnetic discs which has a pair of main surface used for the glass substrate for magnetic discs. The manufacturing method is
Cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting;
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction when the pair of cutting blades intersect to form the glass gob, and the molten glass When cutting the glass flow, the time during which the tip of the molten glass flow contacts the upstream cutting blade member located upstream of the molten glass flow among the pair of cutting blade members is 40 milliseconds or less. .

本発明の一態様も、磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法である。当該製造方法は、
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、
前記一対の切断刃を前記一対の前端切断刃というとき、前記一対の切断刃部材のそれぞれの後端には、後端切断刃が設けられ、前記前端切断刃を交差させることにより前記溶融ガラス流を切断する他に、前記後端切断刃を移動させて前記溶融ガラス流の流路領域で互いに交差させることにより前記溶融ガラス流の切断も行なう。
また、本発明の他の一態様も、磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法である。当該製造方法は、
溶融ガラス流を一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の上流側から見て前記溶融ガラス流の流路領域を通る直線状の移動経路の一方向に沿って動いて前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断する。
One embodiment of the present invention is also a method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk. The manufacturing method is
A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction when the pair of cutting blades intersect to create the glass gob,
When the pair of cutting blades are referred to as the pair of front end cutting blades, a rear end cutting blade is provided at each rear end of the pair of cutting blade members, and the molten glass flow is obtained by intersecting the front end cutting blades. In addition to cutting the molten glass flow, the molten glass flow is also cut by moving the trailing edge cutting blade to intersect each other in the flow channel region of the molten glass flow.
Moreover, the other one aspect | mode of this invention is also a manufacturing method of the glass blank for magnetic discs which has a pair of main surface used for the glass substrate for magnetic discs. The manufacturing method is
Cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting;
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
Each of the cutting blade members is one of linear movement paths passing through the flow channel region of the molten glass flow when viewed from the upstream side of the molten glass flow when the pair of cutting blades intersect to form the glass gob. The molten glass stream is cut by moving along the direction and passing through the flow channel region of the molten glass stream in one direction.

前記溶融ガラス流を切断するとき、前記溶融ガラス流の先端部が、前記一対の切断刃部材のうち前記溶融ガラス流の上流側に位置する上流側切断刃部材と接触する時間は、40m秒以下である、ことが好ましい。
また、前記切断刃部材のそれぞれは、前記溶融ガラス流の上流側から見て前記流路領域を通る円弧状の移動経路の一方向に沿って動いて前記溶融ガラス流を切断することが好ましい。
前記切断刃部材のそれぞれは、前記溶融ガラス流の上流側から見て前記流路領域を通る直線状の移動経路の一方向に沿って動いて溶融ガラス流を切断する、ことも好ましい。
また、前記切断刃部材のそれぞれは、前記溶融ガラス流の上流側から見て前記流路領域を通る環状移動経路に沿って一方向に回転し、前記切断刃部材は、前記環状移動経路上の前記流路領域で互いに交差するように回転する、ことも好ましい。
このとき、前記切断刃部材それぞれにおける前記環状移動経路は、互いに同じ経路であり、前記切断刃部材の前記環状移動経路における回転方向は前記溶融ガラス流の上流側から見て互いに逆方向である、ことが好ましい。あるいは、前記切断刃部材それぞれにおける前記環状移動経路は、互いに異なる経路であり、前記切断刃部材の前記環状移動経路における回転方向は前記溶融ガラス流の上流側から見て互いに逆方向である、ことも好ましい。あるいは、前記切断刃部材それぞれにおける前記環状移動経路は、互いに異なる経路であり、前記切断刃部材の前記環状移動経路における回転方向は前記溶融ガラス流の上流側から見て互いに同じ方向である、ことも好ましい。
When cutting the molten glass flow, the time during which the tip of the molten glass flow is in contact with the upstream cutting blade member located on the upstream side of the molten glass flow among the pair of cutting blade members is 40 milliseconds or less. It is preferable that
Further, each of the cutting blade members preferably moves along one direction of an arcuate movement path passing through the flow path region as viewed from the upstream side of the molten glass flow to cut the molten glass flow.
It is also preferable that each of the cutting blade members moves along one direction of a linear movement path passing through the flow channel region when viewed from the upstream side of the molten glass flow to cut the molten glass flow.
Each of the cutting blade members rotates in one direction along an annular movement path passing through the flow channel region when viewed from the upstream side of the molten glass flow, and the cutting blade member is on the annular movement path. It is also preferable to rotate so as to cross each other in the flow path region.
At this time, the annular movement paths in each of the cutting blade members are the same path, and the rotation directions of the cutting blade member in the annular movement path are opposite to each other when viewed from the upstream side of the molten glass flow. It is preferable. Alternatively, the annular movement paths in each of the cutting blade members are different from each other, and the rotation directions of the cutting blade member in the annular movement path are opposite to each other when viewed from the upstream side of the molten glass flow. Is also preferable. Alternatively, the annular movement paths in each of the cutting blade members are different from each other, and the rotation directions of the cutting blade member in the annular movement path are the same directions as viewed from the upstream side of the molten glass flow. Is also preferable.

前記一対の切断刃を前記一対の前端切断刃というとき、前記一対の切断刃部材のそれぞれの後端には、後端切断刃が設けられ、前記前端切断刃を交差させることにより前記溶融ガラス流を切断する切断の他に、前記後端切断刃を移動させて前記溶融ガラス流の流路領域で互いに交差させることにより前記溶融ガラス流を切断する切断も行なう、ことが好ましい。   When the pair of cutting blades are referred to as the pair of front end cutting blades, a rear end cutting blade is provided at each rear end of the pair of cutting blade members, and the molten glass flow is obtained by intersecting the front end cutting blades. In addition to cutting for cutting, it is preferable to perform cutting for cutting the molten glass flow by moving the trailing edge cutting blade so as to intersect each other in the flow channel region of the molten glass flow.

前記一対の前端切断刃と前記一対の後端切断波を交互に用いて、前記溶融ガラス流を切断する、ことが好ましい。   It is preferable that the molten glass flow is cut using the pair of front end cutting blades and the pair of rear end cutting waves alternately.

あるいは、前記切断刃部材の後端が前記溶融ガラス流の流れる流路領域を通り抜けた後、前記切断刃部材は、前記溶融ガラス流の流路領域を避けて前記切断刃の交差前の位置に移動する、ことも好ましい。   Alternatively, after the rear end of the cutting blade member passes through the flow channel region through which the molten glass flow flows, the cutting blade member is positioned at a position before the cutting blade intersects, avoiding the flow channel region of the molten glass flow. It is also preferable to move.

前記ガラスブランクを成形する処理では、前記ガラスゴブを、前記ガラスゴブの両側から前記一対のプレス面で挟むことにより前記ガラスブランクを成形する、ことが好ましい。   In the process which shape | molds the said glass blank, it is preferable to shape | mold the said glass blank by pinching the said glass gob with a pair of said press surface from the both sides of the said glass gob.

本発明のさらに他の一態様は、磁気ディスク用ガラス基板の製造方法である。当該製造方法は、前記磁気ディスク用ガラスブランクの製造方法で作製された前記ガラスブランクを機械加工する処理を含む。前記機械加工をする処理は、前記ガラスブランクの主表面の研削処理と、研削後の前記ガラスブランクの主表面を研磨する研磨処理を含む。   Yet another embodiment of the present invention is a method for producing a glass substrate for a magnetic disk. The said manufacturing method includes the process which processes the said glass blank produced with the manufacturing method of the said glass blank for magnetic discs. The processing for machining includes a grinding process for the main surface of the glass blank and a polishing process for polishing the main surface of the glass blank after grinding.

本発明のさらに他の一態様は、切断刃部材である。前記切断刃部材は、溶融ガラス流の流路領域で互いに交差することにより前記溶融ガラス流を切断してガラスゴブをつくるための切断刃を備える。前記切断刃部材は、前記切断刃部材の交差のために前記切断刃部材が移動する移動方向の前端及び後端にそれぞれに前記切断刃を有する。
前記切断刃は、例えば、溶融ガラス流の上流側及び下流側に配置される。前記切断刃は、例えば、前記溶融ガラス流を挟んで配置される。
Yet another embodiment of the present invention is a cutting blade member. The cutting blade member includes a cutting blade for cutting the molten glass flow to form a glass gob by crossing each other in a flow path region of the molten glass flow. The cutting blade member has the cutting blade at each of a front end and a rear end in a moving direction in which the cutting blade member moves due to the intersection of the cutting blade members.
The said cutting blade is arrange | positioned at the upstream and downstream of a molten glass flow, for example. The said cutting blade is arrange | positioned on both sides of the said molten glass flow, for example.

上述の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材によれば、シアマークの深さを浅くし、しかもシアマークの深さのばらつきを抑えることができる。   According to the above-described method for manufacturing a magnetic disk glass blank, a method for manufacturing a magnetic disk glass substrate, and a cutting blade member, it is possible to reduce the depth of the shear mark and suppress variations in the depth of the shear mark.

本実施形態の溶融ガラス流の切断の一例を示す図である。It is a figure which shows an example of the cutting | disconnection of the molten glass flow of this embodiment. 図1に示す溶融ガラス流の切断を上方から見た図である。It is the figure which looked at the cutting | disconnection of the molten glass flow shown in FIG. 1 from upper direction. (a)及び(b)は、本実施形態で用いる切断刃部材の移動を説明する図である。(A) And (b) is a figure explaining the movement of the cutting blade member used by this embodiment. 本実施形態に用いる上流側切断刃部材と溶融ガラス流の先端部の接触時間(m秒)とシアマークの深さの平均値とばらつきの範囲を示す図である。It is a figure which shows the contact time (m second) of the upstream cutting blade member used for this embodiment, and the front-end | tip part of a molten glass flow, the average value of the depth of a shea mark, and the range of dispersion | variation. (a)〜(d)は、下流側切断刃部材及び上流側切断刃部材の移動の例を説明する図である。(A)-(d) is a figure explaining the example of a movement of a downstream cutting blade member and an upstream cutting blade member. (a)〜(c)は、切断刃部材の移動経路の例を説明する図である。(A)-(c) is a figure explaining the example of the movement path | route of a cutting blade member. 本実施形態で用いる切断刃の形状の一例を説明する図である。It is a figure explaining an example of the shape of the cutting blade used by this embodiment.

以下、本発明の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材について詳細に説明する。   Hereinafter, the manufacturing method of the glass blank for magnetic disks of this invention, the manufacturing method of the glass substrate for magnetic disks, and a cutting blade member are demonstrated in detail.

(磁気ディスク用ガラス基板)
まず、磁気ディスク用ガラス基板について説明する。磁気ディスク用ガラス基板は、円板形状のガラス板から、外周と同心の円形の中心孔がくり抜かれた円環形状のガラス基板である。磁気ディスク用ガラス基板の両面に円環状の磁性層(記録領域)が形成されることで、磁気ディスクが形成される。
(Magnetic disk glass substrate)
First, the glass substrate for magnetic disks will be described. The glass substrate for a magnetic disk is an annular glass substrate in which a circular center hole concentric with the outer periphery is cut out from a disk-shaped glass plate. A magnetic disk is formed by forming an annular magnetic layer (recording area) on both surfaces of a magnetic disk glass substrate.

磁気ディスク用ガラス基板の素板である磁気ディスク用ガラスブランク(以降、単にガラスブランクという)は、後述するプレス成形により作製される円板形状のガラス板であって、中心孔がくり抜かれる前の形態である。   A magnetic disk glass blank (hereinafter simply referred to as a glass blank), which is a base plate of a magnetic disk glass substrate, is a disk-shaped glass plate produced by press molding, which will be described later, before the center hole is cut out. It is a form.

ガラスブランクの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。   As a material for the glass blank, aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.

(磁気ディスク用ガラス基板の製造方法)
次に、磁気ディスク用ガラス基板の製造方法のフローを説明する。本実施形態の磁気ディスク用ガラスブランクの製造方法では、まず、溶融ガラス流を一対の切断刃で切断し、該切断によってガラスゴブをつくり、このガラスゴブを落下させる。一対の切断刃は、例えば、溶融ガラス流の上流側及び下流側に、溶融ガラス流を切断するように設けられている。この後、ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する。次に、ガラスブランクを機械加工する。機械加工する処理は、円環形状(リング形状)にする加工処理、端面研磨処理、主表面の研削処理、及び主表面の研磨処理を含む。具体的には、作製されたガラスブランクを加工して円環形状(リング形状)にする。これによりガラス基板が得られる。さらに、ガラス基板に形状加工を行う。次に、形状加工された円環形状のガラス基板に対して端面研磨を行う。端面研磨の行われたガラス基板に研削を行う。次に、ガラス基板の主表面に研磨を行う。以上の処理を経て、磁気ディスク用ガラス基板が得られる。以下、各処理について、詳細に説明する。なお、研削は行わなくてもよい。また、上述した処理の順番は適宜変更してもよい。
(Method for producing glass substrate for magnetic disk)
Next, a flow of a method for manufacturing a magnetic disk glass substrate will be described. In the method for producing a glass blank for a magnetic disk according to this embodiment, first, a molten glass stream is cut with a pair of cutting blades, a glass gob is formed by the cutting, and the glass gob is dropped. The pair of cutting blades are provided, for example, on the upstream side and the downstream side of the molten glass flow so as to cut the molten glass flow. Then, a glass blank is shape | molded by carrying out press molding by pinching | interposing a glass gob with a pair of press surface. Next, the glass blank is machined. The machining process includes an annular shape (ring shape) machining process, an end face polishing process, a main surface grinding process, and a main surface polishing process. Specifically, the produced glass blank is processed into an annular shape (ring shape). Thereby, a glass substrate is obtained. Further, shape processing is performed on the glass substrate. Next, end-face polishing is performed on the circular glass substrate that has been processed into a shape. Grinding is performed on the glass substrate that has been subjected to end face polishing. Next, the main surface of the glass substrate is polished. The glass substrate for magnetic disks is obtained through the above processing. Hereinafter, each process will be described in detail. Note that grinding may not be performed. Further, the order of the processes described above may be changed as appropriate.

(a)プレス成形処理
まず、プレス成形処理について説明する。プレス成形処理は、切断処理とプレス処理を含む。図1は、溶融ガラス流の切断の一例を示す図である。図2は、図1に示す溶融ガラス流の切断を上方から見た図であり、図3(a),(b)は、切断刃部材の移動を説明する図である。
(A) Press molding process First, a press molding process is demonstrated. The press molding process includes a cutting process and a press process. FIG. 1 is a diagram showing an example of cutting a molten glass flow. FIG. 2 is a view of the cutting of the molten glass flow shown in FIG. 1 as viewed from above, and FIGS. 3A and 3B are views for explaining the movement of the cutting blade member.

(a−1)切断処理
図1に示すように、溶融ガラス流出管10の下部の流出口12から溶融ガラス流20となって溶融ガラスが所定の量流出したとき、溶融ガラス流20の先端部を切断器30により切断することによって、溶融ガラス塊21(図3(a)参照)をつくり、この溶融ガラス塊21を落下させる。
(A-1) Cutting process As shown in FIG. 1, when a predetermined amount of molten glass flows out from the outlet 12 at the lower part of the molten glass outflow pipe 10 and the molten glass flows out, the tip of the molten glass flow 20 Is cut by a cutter 30 to create a molten glass lump 21 (see FIG. 3A), and the molten glass lump 21 is dropped.

(a−2)プレス処理
図3(a)に示す溶融ガラス塊21の落下方向と交差する方向(例えば水平方向)の両側に、移動する一対の金型90A、90B(図1参照)を互いに近接させることで、落下中の溶融ガラスの塊を一対の金型のプレス成形面91A、91Bの間に挟むことにより、プレスしてガラスブランクを成形する(以下、水平プレス方式という)。所定時間プレスを行った後、金型90A、90Bを開いてガラスブランクが取り出される。プレスの際、一対の金型90A、90Bのプレス成形の温度を揃える。なお、図1に示す例では、水平プレス方式で溶融ガラス塊21をプレスするが、水平プレス方式以外に、垂直プレス方式でプレスをしてもよい。垂直プレス方式は、落下する溶融ガラス塊21を一対の金型のうちの一方の金型のプレス成形面で受けた後、この溶融ガラスの塊の上方から他方の金型のプレス成形面を一方の金型のプレス成形面に向けて移動することにより、2つの成形面間に溶融ガラス塊21を挟み、これにより溶融ガラス塊21のプレスを行う方式である。
なお、水平プレス方式及び垂直プレス方式のいずれにおいても、用いる金型のプレス成形面は、楔状や凹凸状の突起のない平坦な面とすることが好ましい。例えば、平坦な面である金型のプレス成形面の面積は、切断によってつくられる熔解ガラス塊21の体積(cm)を、プレス成形で作製されるガラスブランクの板厚(cm)で割った面積換算値(cm)よりも大きいことが好ましく、プレス成形面の面積(cm)は、上記面積換算値(cm)の1.2〜5倍であることが好ましい。このようにすることで、溶融ガラス塊21が一対の金型のプレス成形面に挟まれてつぶされることによって押し広げられる際に、溶融ガラスが突起に引っ掛かっていびつな形に成形されることを防止することができる。また、金型には、プレス成形面の外周を囲むようにプレス成形面に対して段差を形成する壁が設けられる場合もあるが、押し広げられる溶融ガラスの先端は上記段差を形成する壁にも接しないように壁は設けられる。なお、このような段差はガラスブランクの板厚を決定する役割で設けられる場合があるが、段差以外の方法や部材で板厚が決定される場合も、それらに溶融ガラスが接触しないようにすることが重要である。このような引っ掛かりがなく溶融ガラスの先端が壁に接することなく、全方位に均一に溶融ガラス塊が押し広げられれば、円板状に成形される。なおこのような場合、広がった後の溶融ガラス塊の端部(端面)は、金型等の他の固体に触れずに冷えて固まった面(自由曲面)となる。なお、ここでいう突起とは、表面粗さよりもずっと大きなスケールであり、目視で容易に認識できる程度のものである。プレス成形面の表面粗さは、触針式粗さ計で測定して得られる算術平均粗さRaで0.1〜2.0μmであることが好ましく、0.5〜1.5μmであることがより好ましい。
(A-2) Press treatment A pair of moving molds 90A and 90B (see FIG. 1) are moved to both sides in a direction (for example, horizontal direction) intersecting the falling direction of the molten glass block 21 shown in FIG. By bringing them close to each other, a lump of molten glass that is falling is sandwiched between press molding surfaces 91A and 91B of a pair of molds, and pressed to form a glass blank (hereinafter referred to as a horizontal press system). After pressing for a predetermined time, the molds 90A and 90B are opened and the glass blank is taken out. At the time of pressing, the temperature of press molding of the pair of molds 90A and 90B is made uniform. In addition, in the example shown in FIG. 1, although the molten glass lump 21 is pressed by a horizontal press system, you may press by a vertical press system other than a horizontal press system. In the vertical press method, the falling molten glass lump 21 is received by the press molding surface of one of the pair of molds, and then the other mold is pressed from above the molten glass lump. This is a system in which the molten glass lump 21 is sandwiched between two molding surfaces by moving toward the press molding surface of the metal mold, thereby pressing the molten glass lump 21.
In both the horizontal press method and the vertical press method, it is preferable that the press forming surface of the mold to be used is a flat surface without wedge-shaped or uneven projections. For example, the area of the press molding surface of the mold, which is a flat surface, is obtained by dividing the volume (cm 3 ) of the molten glass lump 21 made by cutting by the plate thickness (cm) of a glass blank produced by press molding. It is preferably larger than the area conversion value (cm 2 ), and the area (cm 2 ) of the press-molded surface is preferably 1.2 to 5 times the area conversion value (cm 2 ). By doing in this way, when the molten glass lump 21 is sandwiched between the press forming surfaces of a pair of molds and crushed, the molten glass is caught in the protrusions and molded into a rugged shape. Can be prevented. Also, the mold may be provided with a wall that forms a step with respect to the press molding surface so as to surround the outer periphery of the press molding surface, but the tip of the molten glass that is spread out is on the wall that forms the step. Walls are provided so that they do not touch. In addition, although such a level | step difference may be provided by the role which determines the plate | board thickness of a glass blank, even when plate | board thickness is determined by methods and members other than a level | step difference, it is made not to contact molten glass to them. This is very important. If the molten glass lump is uniformly spread in all directions without causing such a catch and the tip of the molten glass does not contact the wall, it is formed into a disk shape. In such a case, the end portion (end surface) of the molten glass lump after spreading becomes a surface (free curved surface) that is cooled and solidified without touching another solid such as a mold. Here, the protrusion is a scale much larger than the surface roughness, and is a level that can be easily recognized visually. The surface roughness of the press-molded surface is preferably an arithmetic average roughness Ra obtained by measuring with a stylus type roughness meter, and is preferably 0.1 to 2.0 μm, and more preferably 0.5 to 1.5 μm. Is more preferable.

(b)円環形状加工処理
プレス成形処理の後、公知のコアドリルやスクライブ等の方法により、成形されたガラスブランクを所定のサイズの円環形状(リング形状)のガラス基板とする。
(B) Annular shape processing After the press forming process, the formed glass blank is made into an annular (ring shape) glass substrate of a predetermined size by a method such as a known core drill or scribe.

(c)形状加工処理
次に、形状加工処理について説明する。形状加工処理は、円環形状加工処理後のガラス基板の端部に対する面取り加工(外周側端面および内側端面の面取り加工)を含む。面取り加工は、円環形状加工処理後のガラス基板の外周側端面および内側端面において、ダイヤモンド砥石等により行われる。この形状加工により所定の形状をしたガラス基板が生成される。面取りの傾斜角度は、主表面に対して例えば40〜50度であり、略45度であることが好ましい。
(C) Shape processing processing Next, the shape processing processing will be described. The shape processing treatment includes chamfering processing (chamfering processing of the outer peripheral side end surface and the inner end surface) to the end portion of the glass substrate after the annular shape processing processing. The chamfering is performed with a diamond grindstone or the like on the outer peripheral side end face and the inner end face of the glass substrate after the circular shape processing. A glass substrate having a predetermined shape is generated by this shape processing. The chamfering inclination angle is, for example, 40 to 50 degrees with respect to the main surface, and is preferably about 45 degrees.

(d)端面研磨処理
次に、端面研磨処理を説明する。端面研磨では、ガラス基板の内側端面及び外周側端面に対して、ブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含む砥粒スラリが用いられる。端面研磨を行うことにより、ガラス基板の端面での塵等が付着した汚染、傷等の損傷の除去を行うことにより、サーマルアスペリティ障害の発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
(D) End Surface Polishing Process Next, the end surface polishing process will be described. In the end surface polishing, mirror finishing is performed by brush polishing on the inner end surface and the outer peripheral side end surface of the glass substrate. At this time, an abrasive slurry containing fine particles such as cerium oxide as free abrasive grains is used. By polishing the end surface, removing contamination such as contamination and scratches on the end surface of the glass substrate will prevent the occurrence of thermal asperity failure and cause corrosion such as sodium and potassium. The occurrence of ion precipitation can be prevented.

(e)研削処理
研削処理では、遊星歯車機構を備えた両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラス基板の外周側端面を、両面研削装置の保持部材に設けられた保持孔内にガラス基板を保持しながらガラス基板の両側の主表面の研削を行う。研削は、遊離砥粒を用いて行ってもよく、固定砥粒を用いて行ってもよい。
(E) Grinding process In the grinding process, grinding is performed on the main surface of the glass substrate using a double-sided grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the glass substrate in the holding hole provided in the holding member of the double-side grinding apparatus on the outer peripheral side end surface of the glass substrate. Grinding may be performed using loose abrasive grains or may be performed using fixed abrasive grains.

(f)研磨処理
次に、研削後のガラス基板の主表面に研磨が施される。研磨は、ガラス主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整をして、主表面の鏡面研磨をする。研磨処理では、両面研磨装置を用いて、遊離砥粒を含む研磨スラリを与えながらガラス基板が研磨される。研磨処理を実施することで、主表面の粗さ(Ra)を小さくし、かつ主表面のマイクロウェービネスを小さくする。このようにし
て、研磨処理の施されたガラス基板は、洗浄されて磁気ディスク用ガラス基板となる。研磨処理は、研磨をより精密に行うために、第1の研磨と、第1の研磨後に行う第2の研磨の2つの研磨処理を含んでもよい。研磨処理は3つ以上あってもよい。この場合、第1の研磨は、ガラス主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸の調整をする。第2以降の研磨は、ガラス主表面を鏡面研磨してさらに表面凹凸を小さくする。第1の研磨は場合によっては行わなくてもよい。
なお、研削処理と研磨処理の間に、あるいは上記複数の研磨処理の間に、化学強化処理を行ってもよい。
(F) Polishing treatment Next, the main surface of the ground glass substrate is polished. For polishing, the main surface is mirror-polished by removing scratches and distortions remaining on the main surface of the glass, or adjusting fine surface irregularities (micro-waveness, roughness). In the polishing process, the glass substrate is polished using a double-side polishing apparatus while applying a polishing slurry containing loose abrasive grains. By carrying out the polishing treatment, the roughness (Ra) of the main surface is reduced and the micro-waveness of the main surface is reduced. In this way, the polished glass substrate is cleaned to become a magnetic disk glass substrate. The polishing process may include two polishing processes, a first polishing and a second polishing performed after the first polishing, in order to perform the polishing more precisely. There may be three or more polishing treatments. In this case, the first polishing removes scratches and distortions remaining on the glass main surface or adjusts minute surface irregularities. In the second and subsequent polishing, the glass main surface is mirror-polished to further reduce the surface unevenness. The first polishing may not be performed depending on circumstances.
Note that a chemical strengthening process may be performed between the grinding process and the polishing process or between the plurality of polishing processes.

(溶融ガラス流の切断)
図1は、本実施形態の磁気ディスク用ガラスブランクの製造方法における溶融ガラス流の切断の一例を示す図である。本実施形態の磁気ディスク用ガラスブランクの製造方法では、上述したように、一対の切断刃で溶融ガラス流を切断し、該切断によってガラスゴブをつくり、このガラスゴブを落下させる。この後、落下中のガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する。このとき、一対の切断刃は、例えば、溶融ガラス流の上流側及び下流側の位置に配置される。また、一対の切断刃は、例えば、溶融ガラス流を挟むように配置される。また、一対の切断刃は、例えば互いに対向配置される。この一対の切断刃を備える一対の切断刃部材を溶融ガラス流の流路領域で互いに交差させることにより切断を行なう。
この溶融ガラス流を切断するとき、溶融ガラス流の先端部が、一対の切断刃部材のうち溶融ガラス流の上流側に位置する上流側切断刃部材と接触する時間は、40m秒以下である。また、溶融ガラス流の切断に用いる一対の切断刃部材は、一対の切断刃部材の移動方向に幅を持った一対の切断刃部材の前端に設けられる。さらに、切断刃部材のそれぞれは、一対の切断刃が交差してガラスゴブを得るとき、溶融ガラス流の流路領域を通り抜ける後端を有する。すなわち、切断刃部材のそれぞれは、溶融ガラス流の流路領域を一方向に通り抜けることにより、溶融ガラス流を切断する。一方向とは、直線に沿った方向でもよいし、円弧状あるいは楕円弧状等の曲線に沿った方向でもよい。一方向が曲線に沿った方向である場合、例えば、切断刃部材のそれぞれは、溶融ガラス流の上流側から見て流路領域を通る円弧状あるいは楕円弧状等の移動経路の一方向に沿って動いて溶融ガラス流を切断する。なお、移動経路は、環状経路であってもよい。以下この点を詳細に説明する。
(Cutting of molten glass flow)
FIG. 1 is a diagram showing an example of cutting a molten glass flow in the method for producing a magnetic disk glass blank of the present embodiment. In the method for manufacturing a magnetic disk glass blank according to this embodiment, as described above, a molten glass flow is cut with a pair of cutting blades, a glass gob is formed by the cutting, and the glass gob is dropped. Thereafter, the falling glass gob is sandwiched between a pair of press surfaces to perform press molding, thereby forming a glass blank. At this time, a pair of cutting blades are arrange | positioned in the position of the upstream and downstream of a molten glass flow, for example. Moreover, a pair of cutting blade is arrange | positioned so that a molten glass flow may be pinched | interposed, for example. Further, the pair of cutting blades are disposed to face each other, for example. The pair of cutting blade members including the pair of cutting blades are cut by crossing each other in the flow path region of the molten glass flow.
When cutting this molten glass flow, the time during which the tip of the molten glass flow contacts the upstream cutting blade member located on the upstream side of the molten glass flow among the pair of cutting blade members is 40 milliseconds or less. Moreover, a pair of cutting blade member used for the cutting | disconnection of a molten glass flow is provided in the front end of a pair of cutting blade member with a width | variety in the moving direction of a pair of cutting blade member. Further, each of the cutting blade members has a rear end that passes through the flow channel region of the molten glass flow when the pair of cutting blades intersect to obtain a glass gob. That is, each of the cutting blade members cuts the molten glass flow by passing through the flow path region of the molten glass flow in one direction. The one direction may be a direction along a straight line or a direction along a curved line such as an arc shape or an elliptical arc shape. When one direction is a direction along a curve, for example, each of the cutting blade members is along one direction of a moving path such as an arc shape or an elliptic arc shape passing through the flow path region when viewed from the upstream side of the molten glass flow. Move to cut the molten glass stream. The movement route may be a circular route. This point will be described in detail below.

溶融ガラス流の切断では、プレス成形の対象物である溶融ガラス塊を作製する。具体的には、溶融ガラスを溶融ガラス流出管10の下部の流出口12から垂下させて溶融ガラス流20をつくり、鉛直方向の下方側へと連続的に流出する溶融ガラス流20の先端部を切断することで、溶融ガラス塊21を形成する。なお、溶融ガラス流20の先端部を溶融ガラス塊21として切断するために、一対の切断刃部材が用いられる。また、溶融ガラスの粘度としては先端部の切断や、プレス成形に適した粘度であれば特に限定されないが、通常は、500dPa・秒〜1050dPa・秒の範囲内で、一定の値に制御されることが好ましい。   In cutting the molten glass flow, a molten glass lump that is an object of press molding is produced. Specifically, the molten glass is suspended from the outlet 12 at the lower part of the molten glass outflow pipe 10 to create a molten glass flow 20, and the tip of the molten glass flow 20 that continuously flows out downward in the vertical direction is provided. The molten glass lump 21 is formed by cutting. In addition, in order to cut | disconnect the front-end | tip part of the molten glass flow 20 as the molten glass lump 21, a pair of cutting blade member is used. Further, the viscosity of the molten glass is not particularly limited as long as it is suitable for cutting of the tip portion or press molding, but is usually controlled to a constant value within a range of 500 dPa · sec to 1050 dPa · sec. It is preferable.

図1に示すように、溶融ガラス流出管10の流出口12の下方には、切断器30が配置されている。切断器(切断装置)30は、下流側切断刃部材40と、上流側切断刃部材50と、駆動部44と、を備える。下流側切断刃部材40は、溶融ガラス流20の流れの方向において、上流側切断刃部材50に比べて下流側に位置する。上流側切断刃部材50は、下流側切断刃部材40に比べて溶融ガラス流20の流れの方向の上流側に位置する。   As shown in FIG. 1, a cutter 30 is disposed below the outlet 12 of the molten glass outlet pipe 10. The cutting device (cutting device) 30 includes a downstream cutting blade member 40, an upstream cutting blade member 50, and a drive unit 44. The downstream cutting blade member 40 is located on the downstream side of the upstream cutting blade member 50 in the direction of the flow of the molten glass flow 20. The upstream cutting blade member 50 is located on the upstream side in the flow direction of the molten glass flow 20 compared to the downstream cutting blade member 40.

下流側切断刃部材40と上流側切断刃部材50とは、例えば、図1に示すように、溶融ガラス流20を挟んで、水平方向の両側に対向配置される。この配置位置を基準位置という。
下流側切断刃部材40は、溶融ガラス流20の中心側に先端を向け、溶融ガラス流20の流れの方向と逆方向に向く上面41Tと、一方の側の先端(溶融ガラス流20に近い側の先端)から下方向(溶融ガラス流20の下流側方向)かつ溶融ガラス流20の中心から遠ざかる方向へ傾斜した前端切断刃41Aと、他方の側の先端(溶融ガラス流20から遠い側の先端)から下方向かつ溶融ガラス流20の中心に近づく方向へ傾斜した後端切断刃41Bと、を有する。
上流側切断刃部材50は、溶融ガラス流20の中心側に先端を向け、溶融ガラス流20の流れの方向に向く下面51Uと、一方の側の先端(溶融ガラス流20に近い側の先端)から上方向(溶融ガラス流20の上流側方向)かつ溶融ガラス流20の中心から遠ざかる方向へ傾斜した前端切断刃51Aと、他方の側の先端(溶融ガラス流20から遠い側の先端)から上方向かつ溶融ガラス流20の中心に近づく方向へ傾斜した後端切断刃51Bと、を有する。
下流側切断刃部材40および上流側切断刃部材50は、下流側切断刃部材40の上面41Tと、上流側切断刃部材50の下面51Uとが略同程度の高さ位置となるように配置される。
For example, as shown in FIG. 1, the downstream cutting blade member 40 and the upstream cutting blade member 50 are opposed to each other on both sides in the horizontal direction with the molten glass flow 20 interposed therebetween. This arrangement position is referred to as a reference position.
The downstream-side cutting blade member 40 has a top surface 41T directed toward the center side of the molten glass flow 20 and directed in a direction opposite to the flow direction of the molten glass flow 20, and a tip on one side (a side close to the molten glass flow 20). Front end cutting blade 41A inclined downward from the tip of the molten glass flow 20 and away from the center of the molten glass flow 20, and the tip of the other side (the tip far from the molten glass flow 20) ) And a rear end cutting blade 41B inclined downward in the direction approaching the center of the molten glass flow 20.
The upstream-side cutting blade member 50 has a lower end 51U that faces the center of the molten glass flow 20, faces the flow direction of the molten glass flow 20, and a tip on one side (a tip closer to the molten glass flow 20). From the front end cutting blade 51A inclined in the upward direction (upstream direction of the molten glass flow 20) and away from the center of the molten glass flow 20, and from the tip on the other side (tip on the side far from the molten glass flow 20) And a rear end cutting blade 51B that is inclined in a direction approaching the center of the molten glass flow 20.
The downstream cutting blade member 40 and the upstream cutting blade member 50 are arranged such that the upper surface 41T of the downstream cutting blade member 40 and the lower surface 51U of the upstream cutting blade member 50 are at substantially the same height. The

下流側切断刃部材40は、溶融ガラス流20の中心軸Dを横切る方向に移動する。上流側切断刃部材50は、溶融ガラス流20の中心軸Dを横切る方向に移動する。下流側切断刃部材40と上流側切断刃部材50は互いに近づく方向に移動する。下流側切断刃部材40及び上流側切断刃部材50は、棒状の支持部材42,52の一方の端で接続されており、支持部材42,52の他方の端は、駆動部44と接続されている。駆動部44は、支持部材42,52を、中心軸Dを横切る方向に移動する。これによって、下流側切断刃部材40及び上流側切断刃部材50は互いに近づくように移動する。具体的には、駆動部44は、上流側切断刃50を、水平方向であって溶融ガラス流20の中心軸Dを横切る方向に移動させ、下流側切断刃50を、溶融ガラス流20の中心軸Dを横切る方向に移動させる。ここで、溶融ガラス流20の上流側に位置する上流側切断刃部材50と接触する時間は、40m秒以下となるように、下流側切断刃40および上流側切断刃50の溶融ガラス流20の、中心軸Dを横切る方向への移動速度および移動タイミングが制御されている。すなわち、駆動部44は、溶融ガラス流20の上流側に位置する上流側切断刃部材50と接触する時間が40m秒以下となるように、下流側切断刃部材40及び上流側切断刃部材50を駆動する。本実施形態では、下流側切断刃部材40及び上流側切断刃部材50を、直線状の移動経路の一方向に沿って、すなわち直線に沿った一方向に移動させるが、円や楕円等の曲線に沿った方向に移動させでもよい。   The downstream cutting blade member 40 moves in a direction crossing the central axis D of the molten glass flow 20. The upstream cutting blade member 50 moves in a direction crossing the central axis D of the molten glass flow 20. The downstream-side cutting blade member 40 and the upstream-side cutting blade member 50 move in a direction approaching each other. The downstream cutting blade member 40 and the upstream cutting blade member 50 are connected at one end of rod-shaped support members 42 and 52, and the other ends of the support members 42 and 52 are connected to the drive unit 44. Yes. The drive unit 44 moves the support members 42 and 52 in a direction crossing the central axis D. Accordingly, the downstream cutting blade member 40 and the upstream cutting blade member 50 move so as to approach each other. Specifically, the drive unit 44 moves the upstream cutting blade 50 in the horizontal direction and across the central axis D of the molten glass flow 20, and moves the downstream cutting blade 50 to the center of the molten glass flow 20. Move in a direction across axis D. Here, the time of contact with the upstream cutting blade member 50 positioned on the upstream side of the molten glass flow 20 is 40 msec or less so that the molten glass flow 20 of the downstream cutting blade 40 and the upstream cutting blade 50 is in contact with the upstream cutting blade member 50. The moving speed and the moving timing in the direction crossing the central axis D are controlled. That is, the drive unit 44 moves the downstream cutting blade member 40 and the upstream cutting blade member 50 so that the time for contacting the upstream cutting blade member 50 located on the upstream side of the molten glass flow 20 is 40 milliseconds or less. To drive. In the present embodiment, the downstream cutting blade member 40 and the upstream cutting blade member 50 are moved along one direction of the linear movement path, that is, one direction along the straight line, but a curve such as a circle or an ellipse is used. You may move in the direction along.

ここで、下流側切断刃部材40と上流側切断刃部材50は、駆動部44による下流側切断刃部材40及び上流側切断刃部材50の駆動により、これらの部材の後端を含め、図3(b)に示すように、溶融ガラス流20の流路領域を通過して通り抜ける。ここで、切断刃が通り抜けるとは、下流側切断刃部材40と上流側切断刃部材50の移動方向の後端が流路領域を通り抜けることをいう。図3(b)に示す状態は、図3(a)に示す状態から所定の時間経過後の状態である。すなわち、下流側切断刃部材40と上流側切断刃部材50は、一対の切断刃部材の移動方向に幅を持っており、下流側切断刃部材40と上流側切断刃部材50の移動方向の前端には、前端切断刃41A,51Aが設けられ、移動方向の後端には、後端切断刃41B,51Bが設けられている。そして、下流側切断刃部材40と上流側切断刃部材50が交差してガラスゴブ21を得るとき、下流側切断刃部材40と上流側切断刃部材50のそれぞれの前端の他に、後端、すなわち、後端切断刃41B,51Bも、溶融ガラス流20の流路領域を通過して通り抜ける。本実施形態でいう後端は、下流側切断刃部材40と上流側切断刃部材50が交差するとき、溶融ガラス流20の流路領域を通過する部分をいう。   Here, the downstream-side cutting blade member 40 and the upstream-side cutting blade member 50 include the rear ends of these members by driving the downstream-side cutting blade member 40 and the upstream-side cutting blade member 50 by the drive unit 44, as shown in FIG. As shown in (b), it passes through the flow channel region of the molten glass flow 20. Here, the passage of the cutting blade means that the rear ends of the downstream cutting blade member 40 and the upstream cutting blade member 50 in the moving direction pass through the flow path region. The state shown in FIG. 3B is a state after a predetermined time has elapsed from the state shown in FIG. That is, the downstream cutting blade member 40 and the upstream cutting blade member 50 have a width in the moving direction of the pair of cutting blade members, and the front ends of the downstream cutting blade member 40 and the upstream cutting blade member 50 in the moving direction. Are provided with front end cutting blades 41A and 51A, and rear end cutting blades 41B and 51B are provided at the rear end in the moving direction. When the downstream cutting blade member 40 and the upstream cutting blade member 50 intersect to obtain the glass gob 21, in addition to the respective front ends of the downstream cutting blade member 40 and the upstream cutting blade member 50, the rear end, that is, The rear end cutting blades 41 </ b> B and 51 </ b> B also pass through the flow channel region of the molten glass flow 20. The rear end in the present embodiment refers to a portion that passes through the flow channel region of the molten glass flow 20 when the downstream cutting blade member 40 and the upstream cutting blade member 50 intersect.

このように、本実施形態では、下流側切断刃部材40及び上流側切断刃部材50のそれぞれの後端は、溶融ガラス流20の流路領域を通過して通り抜けるので、溶融ガラス流20の切断後、移動速度を一定に維持したまま、または加速しながら、溶融ガラス流20の流路領域を通り抜けることができる。このように移動する下流側切断刃部材40及び上流側切断刃部材50と接触する溶融ガラスの部分が冷却固化することにより、下流側切断刃部材40及び上流側切断刃部材50は、ガラスを割るように溶融ガラス流20を切断する。従来の切断でも、切断しようとする溶融ガラスの部分が冷却固化することにより、切断が行なわれる。このとき、従来の切断では、溶融ガラス流に切断刃部材が接触するときの切断刃部材の移動速度が速くても、溶融ガラス流の切断後、上流側切断刃部材と溶融ガラス流の先端部が接触したまま、下流側切断刃部材及び上流側切断刃部材は移動を停止し、移動を逆方向に開始して、元の基準位置に戻るので、溶融ガラス流の先端部が、上流側切断刃部材の上面と接触する時間は長い。このため、切断刃が溶融ガラス流と接触を開始するときの溶融ガラス流の切断面と、接触を終了直前の溶融ガラス流の切断面との間で、溶融ガラス流の冷却固化の具合が異なり、シアマークの深さにばらつきが生じ易い。この点、本実施形態では、上流側切断刃部材50及び下流側切断刃部材40は、移動速度を一定に維持したまま溶融ガラス流20の流路領域を一方向に通り抜けるので、溶融ガラス流20の先端部が上流側切断刃部材50の上面と接触する時間は短い。このため、シアマークの深さにばらつきが生じ難い。また、本実施形態では、上流側切断刃部材50の溶融ガラス流20との接触時間が短くなるので、上流側切断刃部材50の熱劣化が抑えられほか、上流側切断刃部材50と下流側切断刃部材40とが交叉するときに擦れる時間が短くなるので、上流側切断刃部材50及び下流側切断刃部材40の寿命は向上する。
このように、シアマークの深さのばらつきは、溶融ガラス流20の切断方法に影響を受けることを発明者は知見し、溶融ガラス流20の先端が上流側切断刃部材50と接触する時間を短くすることが重要であることを見出した。
Thus, in this embodiment, each rear end of the downstream cutting blade member 40 and the upstream cutting blade member 50 passes through the flow path region of the molten glass flow 20, so that the molten glass flow 20 is cut. Thereafter, it is possible to pass through the flow channel region of the molten glass flow 20 while maintaining or accelerating the moving speed. The downstream cutting blade member 40 and the upstream cutting blade member 50 break the glass by cooling and solidifying the portion of the molten glass that contacts the downstream cutting blade member 40 and the upstream cutting blade member 50 moving in this way. The molten glass stream 20 is cut as follows. Even in conventional cutting, cutting is performed by cooling and solidifying a portion of the molten glass to be cut. At this time, in the conventional cutting, even if the moving speed of the cutting blade member when the cutting blade member is in contact with the molten glass flow is high, after the cutting of the molten glass flow, the upstream cutting blade member and the tip of the molten glass flow Since the downstream cutting blade member and the upstream cutting blade member stop moving and start moving in the reverse direction and return to the original reference position, the tip of the molten glass flow is cut upstream. The time for contacting the upper surface of the blade member is long. For this reason, the degree of cooling and solidification of the molten glass flow differs between the cut surface of the molten glass flow when the cutting blade starts contact with the molten glass flow and the cut surface of the molten glass flow immediately before the contact is finished. The depth of the shear mark is likely to vary. In this regard, in the present embodiment, the upstream cutting blade member 50 and the downstream cutting blade member 40 pass through the flow channel region of the molten glass flow 20 in one direction while maintaining the moving speed constant, and thus the molten glass flow 20 The time during which the front end of the contact portion contacts the upper surface of the upstream cutting blade member 50 is short. For this reason, variations in the depth of the shear mark are unlikely to occur. Moreover, in this embodiment, since the contact time with the molten glass flow 20 of the upstream cutting blade member 50 becomes short, the thermal degradation of the upstream cutting blade member 50 is suppressed, and the upstream cutting blade member 50 and the downstream side are suppressed. Since the time for rubbing when the cutting blade member 40 intersects is shortened, the lifetimes of the upstream cutting blade member 50 and the downstream cutting blade member 40 are improved.
Thus, the inventors have found that the variation in the depth of the shear mark is affected by the cutting method of the molten glass flow 20, and shortens the time during which the tip of the molten glass flow 20 contacts the upstream cutting blade member 50. I found it important to do.

図4は、上流側切断刃部材50と溶融ガラス流20の先端部の接触時間(m秒)とシアマークの深さの平均値とばらつきの範囲(ガラス基板100枚のシアマークの深さのうち、最も深い位置と最も浅い位置で定まる範囲)を示す図である。シアマークの深さは、上述した研削、研磨によってシアマークが目視において消えるまでに行った研削及び研磨の取代量から求めた。図4からわかるように、シアマークの深さのばらつきは、接触時間を40m秒を境として急激に小さくなる。シアマークの深さのばらつきを小さくするためには、接触時間を40m秒以下にすることが必要である。好ましくは、接触時間は15m秒以下とする。また、接触時間を短くすることにより、シアマークの深さは浅くなることがわかる。   FIG. 4 shows the contact time (msec) between the upstream cutting blade member 50 and the tip of the molten glass flow 20, the average value of the depth of the shear mark, and the range of variation (of the depth of the shear mark of 100 glass substrates, It is a figure which shows the range defined by the deepest position and the shallowest position. The depth of the shear mark was determined from the machining allowance of grinding and polishing performed until the shear mark disappeared visually by the above-described grinding and polishing. As can be seen from FIG. 4, the variation in the depth of the shear mark decreases rapidly with a contact time of 40 milliseconds. In order to reduce the variation in the depth of the shear mark, the contact time needs to be 40 milliseconds or less. Preferably, the contact time is 15 msec or less. It can also be seen that the depth of the shear mark is reduced by shortening the contact time.

本実施形態では、下流側切断刃部材40及び上流側切断刃部材50のそれぞれの後端には、図2に示すように、後端切断刃41B,51Bが設けられている。すなわち、下流側切断刃部材40及び上流側切断刃部材50のそれぞれは、下流側切断刃部材40及び上流側切断刃部材50の交差のために下流側切断刃部材40及び上流側切断刃部材50が移動する移動方向の前端及び後端にそれぞれに切断刃を有する。このため、図3(b)に示すように、上流側切断刃部材50と下流側切断刃部材40が交差して溶融ガラス流20の流路領域を通り抜けた後、後端切断刃41B,51Bが互いに対向して近づくように移動させて溶融ガラス流20の流路領域で互いに交差させることにより溶融ガラス流20を切断し、この切断によって得られるガラスゴブを落下させることも好ましい。特に、前端切断刃41A,51Aと後端切断刃41B,51Bを交互に用いて、溶融ガラス流20を切断することが、溶融ガラス流20を効率よく切断する上で好ましい。   In the present embodiment, rear end cutting blades 41B and 51B are provided at the rear ends of the downstream cutting blade member 40 and the upstream cutting blade member 50, as shown in FIG. That is, the downstream cutting blade member 40 and the upstream cutting blade member 50 are respectively connected to the downstream cutting blade member 40 and the upstream cutting blade member 50 due to the intersection of the downstream cutting blade member 40 and the upstream cutting blade member 50. Has a cutting blade at each of the front end and the rear end in the moving direction. Therefore, as shown in FIG. 3B, after the upstream cutting blade member 50 and the downstream cutting blade member 40 intersect and pass through the flow channel region of the molten glass flow 20, the rear end cutting blades 41B and 51B It is also preferred that the molten glass stream 20 is cut by moving the two so as to face each other and cross each other in the flow channel region of the molten glass stream 20 and the glass gob obtained by this cutting is dropped. In particular, it is preferable to cut the molten glass flow 20 by using the front end cutting blades 41A and 51A and the rear end cutting blades 41B and 51B alternately in order to cut the molten glass flow 20 efficiently.

また、図3(b)に示すように、下流側切断刃部材40の後端及び上流側切断刃部材50の後端が溶融ガラス流20の流れる流路領域を通り抜けた後、下流側切断刃部材40及び上流側切断刃部材50は、図5(a)〜(d)に示すように、溶融ガラス流20の流路領域を避けて前端切断刃41A,51Aの交差前の位置に移動する移動形態も好ましい。図5(a)〜(d)は、下流側切断刃部材40及び上流側切断刃部材50の移動の例を説明する図である。図5(a)に示す矢印の交差の移動によって図5(b)に示す状態になり、図5(b)に示す矢印の移動(交差の移動方向と直交する方向への移動)によって、図5(c)に示す状態になり、図5(c)に示す矢印の交差の移動によって、図5(d)に示す状態となり、図5(d)に示す矢印の移動(交差の移動方向と直交する方向への移動)によって、図5(a)に示す状態に戻る。このように、溶融ガラス流20の流路領域を避けて前端切断刃41A,51Aの交差前の位置に移動することにより、前端切断刃41A,51Aを用いて効率よく、溶融ガラス流20を切断することができる。この場合においても、溶融ガラス流20の上流側に位置する上流側切断刃部材50と接触する時間は、40m秒以下となるように、下流側切断刃40および上流側切断刃50の溶融ガラス流20の中心軸Dを横切る方向への移動速度および移動タイミングが制御される。また、溶融ガラス流20の切断に用いる下流側切断刃部材40及び上流側切断刃部材50のそれぞれの後端は、溶融ガラス流20の流路領域を通り抜ける。このため、溶融ガラス流20の先端部が上流側切断刃部材40と接触する時間は短くすることができる。このため、シアマークの深さは浅くなり、しかもシアマークの深さのばらつきは小さくなる。図5(a)〜(d)に示す例では、下流側切断刃部材40及び上流側切断刃部材50は直線に沿って一方向に移動するが、円や楕円等の曲線に沿って一方向に移動することもできる。   Further, as shown in FIG. 3B, after the downstream end of the downstream cutting blade member 40 and the rear end of the upstream cutting blade member 50 pass through the flow channel region through which the molten glass flow 20 flows, the downstream cutting blade As shown in FIGS. 5A to 5D, the member 40 and the upstream-side cutting blade member 50 are moved to a position before the front-end cutting blades 41A and 51A intersect, avoiding the flow channel region of the molten glass flow 20. A moving form is also preferable. FIGS. 5A to 5D are diagrams illustrating an example of movement of the downstream cutting blade member 40 and the upstream cutting blade member 50. FIG. The state shown in FIG. 5B is obtained by the movement of the crossing of the arrow shown in FIG. 5A, and the movement of the arrow shown in FIG. 5B (the movement in the direction orthogonal to the moving direction of the crossing) 5 (c), the movement of the crossing of the arrows shown in FIG. 5 (c) results in the state shown in FIG. 5 (d), and the movement of the arrows shown in FIG. The state shown in FIG. 5A is restored by the movement in the orthogonal direction. Thus, the molten glass flow 20 is efficiently cut using the front end cutting blades 41A and 51A by moving to the position before the front end cutting blades 41A and 51A crossing the flow path region of the molten glass flow 20. can do. Also in this case, the molten glass flow of the downstream cutting blade 40 and the upstream cutting blade 50 is such that the time of contact with the upstream cutting blade member 50 located on the upstream side of the molten glass flow 20 is 40 milliseconds or less. The moving speed and the moving timing in the direction crossing the 20 central axis D are controlled. The rear ends of the downstream cutting blade member 40 and the upstream cutting blade member 50 used for cutting the molten glass flow 20 pass through the flow path region of the molten glass flow 20. For this reason, time for the front-end | tip part of the molten glass flow 20 to contact the upstream cutting blade member 40 can be shortened. For this reason, the depth of the shear mark becomes shallow, and the variation in the depth of the shear mark becomes small. In the example shown in FIGS. 5A to 5D, the downstream cutting blade member 40 and the upstream cutting blade member 50 move in one direction along a straight line, but in one direction along a curve such as a circle or an ellipse. You can also move to.

図5(a)〜(d)では、下流側切断刃部材40及び上流側切断刃部材50が繰り返し行う切断のための下流側切断刃部材40及び上流側切断刃部材50の移動経路を説明しているが、このような移動経路に限定されず、図6(a)〜(c)に示すような移動経路であってもよい。図6(a)〜(c)は、下流側切断刃部材40及び上流側切断刃部材50の移動経路の例を説明する図である。
図6(a)に示す例は、下流側切断刃部材40及び上流側切断刃部材50のそれぞれを、溶融ガラス流20の流路領域を通る、円弧状経路あるいは楕円弧状経路の例である環状移動経路に沿って一方向に回転させ、下流側切断刃部材40及び上流側切断刃部材50は、環状移動経路100上の流路領域で互いに交差するように回転する例である。この例では、下流側切断刃部材40及び上流側切断刃部材50それぞれにおける環状移動経路100は、溶融ガラス流の上流側(あるいは下流側)から見て互いに同じ経路であり、下流側切断刃部材40及び上流側切断刃部材50の環状移動経路100における回転方向は互いに逆方向である。この経路上を下流側切断刃部材40及び上流側切断刃部材50の環状移動経路100は繰り返し周回することにより、溶融ガラス流20を繰り返し切断する。
図6(b)に示す例は、下流側切断刃部材40及び上流側切断刃部材50を、溶融ガラス流20の流路領域を通る、円弧状経路あるいは楕円弧状経路の例である環状移動経路102,104に沿って一方向に回転させ、下流側切断刃部材40及び上流側切断刃部材50は、環状移動経路102,104上の流路領域で交差するように回転する例である。この例では、下流側切断刃部材40及び上流側切断刃部材50それぞれにおける環状移動経路102,104は、溶融ガラス流の上流側(あるいは下流側)から見て互いに異なる経路であり、下流側切断刃部材40及び上流側切断刃部材50の環状移動経路102,104における回転方向は互いに逆方向である。この経路上を下流側切断刃部材40及び上流側切断刃部材50の環状移動経路100は繰り返し周回することにより、溶融ガラス流20を繰り返し切断する。
図6(c)に示す例は、下流側切断刃部材40及び上流側切断刃部材50を、溶融ガラス流20の流路領域を通る、円弧状経路あるいは楕円弧状経路の例である環状移動経路106,108に沿って一方向に回転させ、下流側切断刃部材40及び上流側切断刃部材50は、環状移動経路102,104上の流路領域で交差するように回転する例である。この例では、下流側切断刃部材40及び上流側切断刃部材50それぞれにおける環状移動経路は、溶融ガラス流の上流側(あるいは下流側)から見て互いに異なる経路であり、下流側切断刃部材40及び上流側切断刃部材50の環状移動経路106,108における回転方向は互いに同じ方向である。この経路上を下流側切断刃部材40及び上流側切断刃部材50の環状移動経路100は繰り返し周回することにより、溶融ガラス流20を繰り返し切断する。
この場合、下流側切断刃部材40及び上流側切断刃部材50の切断刃は、図7に示すような形状の刃であることが好ましい。図7は、切断刃の形状の一例を説明する図である。図7は、下流側切断刃部材40及び上流側切断刃部材50を熔融ガラス流20の上流側から見た図である。下流側切断刃部材40及び上流側切断刃部材50のそれぞれの切断刃の刃先は、移動方向に対して傾斜している。このため、下流側切断刃部材40の切断刃と上流側切断刃部材50の切断刃は溶融ガラス流20と角度θでV字状に接する。図6(c)に示すように、下流側切断刃部材40と上流側切断刃部材50が溶融ガラス流20の流路領域に近づくとき、下流側切断刃部材40の切断刃と上流側切断刃部材50の切断刃は溶融ガラス流20の流路領域に近づき、図7に示すような切断を開始する。さらに、下流側切断刃部材40と上流側切断刃部材50は、環状移動経路に沿った回転により、溶融ガラス流20の流路領域から図7中の下方向に進み、かつ、溶融ガラス流20の流路領域から遠ざかる方向に進み、これにより、流路領域を一方向に通り抜ける。
このような種々の移動経路に沿って回転する下流側切断刃部材40及び上流側切断刃部材50においても溶融ガラス流20の流路領域に対して一方向に通り抜けるので、溶融ガラス流20の先端部が上流側切断刃部材40と接触する時間は短くすることができる。このため、シアマークの深さは浅くなり、しかもシアマークの深さのばらつきは小さくなる。
5A to 5D, the movement paths of the downstream cutting blade member 40 and the upstream cutting blade member 50 for cutting repeatedly performed by the downstream cutting blade member 40 and the upstream cutting blade member 50 will be described. However, it is not limited to such a movement route, and may be a movement route as shown in FIGS. 6A to 6C are diagrams illustrating examples of movement paths of the downstream cutting blade member 40 and the upstream cutting blade member 50. FIG.
In the example shown in FIG. 6A, each of the downstream cutting blade member 40 and the upstream cutting blade member 50 is an annular arc path or an elliptic arc path that passes through the flow channel region of the molten glass flow 20. In this example, the downstream cutting blade member 40 and the upstream cutting blade member 50 are rotated in one direction along the moving path, and rotate so as to intersect each other in the flow path region on the annular moving path 100. In this example, the annular movement paths 100 in each of the downstream cutting blade member 40 and the upstream cutting blade member 50 are the same paths as viewed from the upstream side (or downstream side) of the molten glass flow, and the downstream cutting blade member 40 and the upstream cutting blade member 50 are rotated in opposite directions in the annular movement path 100. The annular moving path 100 of the downstream cutting blade member 40 and the upstream cutting blade member 50 repeatedly circulates on this path, thereby repeatedly cutting the molten glass flow 20.
In the example shown in FIG. 6B, an annular moving path that is an example of an arcuate path or an elliptical arcuate path that passes the downstream cutting blade member 40 and the upstream cutting blade member 50 through the flow channel region of the molten glass flow 20. This is an example in which the downstream cutting blade member 40 and the upstream cutting blade member 50 are rotated so as to intersect with each other in the flow path regions on the annular movement paths 102 and 104. In this example, the annular movement paths 102 and 104 in the downstream cutting blade member 40 and the upstream cutting blade member 50 are paths different from each other when viewed from the upstream side (or downstream side) of the molten glass flow. The rotation directions of the blade member 40 and the upstream cutting blade member 50 in the annular movement paths 102 and 104 are opposite to each other. The annular moving path 100 of the downstream cutting blade member 40 and the upstream cutting blade member 50 repeatedly circulates on this path, thereby repeatedly cutting the molten glass flow 20.
In the example shown in FIG. 6C, an annular moving path that is an example of an arcuate path or an elliptical arcuate path that passes the downstream cutting blade member 40 and the upstream cutting blade member 50 through the flow channel region of the molten glass flow 20. This is an example in which the downstream cutting blade member 40 and the upstream cutting blade member 50 are rotated in one direction along the lines 106 and 108 so as to intersect with each other in the flow path regions on the annular movement paths 102 and 104. In this example, the annular moving paths in each of the downstream cutting blade member 40 and the upstream cutting blade member 50 are paths that are different from each other when viewed from the upstream side (or downstream side) of the molten glass flow. In addition, the rotation directions of the upstream-side cutting blade member 50 in the annular movement paths 106 and 108 are the same as each other. The annular moving path 100 of the downstream cutting blade member 40 and the upstream cutting blade member 50 repeatedly circulates on this path, thereby repeatedly cutting the molten glass flow 20.
In this case, the cutting blades of the downstream cutting blade member 40 and the upstream cutting blade member 50 are preferably blades having a shape as shown in FIG. FIG. 7 is a diagram illustrating an example of the shape of the cutting blade. FIG. 7 is a view of the downstream cutting blade member 40 and the upstream cutting blade member 50 as viewed from the upstream side of the molten glass flow 20. The cutting edges of the cutting blades of the downstream cutting blade member 40 and the upstream cutting blade member 50 are inclined with respect to the moving direction. For this reason, the cutting blade of the downstream cutting blade member 40 and the cutting blade of the upstream cutting blade member 50 are in contact with the molten glass flow 20 in an V shape at an angle θ. As shown in FIG. 6C, when the downstream cutting blade member 40 and the upstream cutting blade member 50 approach the flow path region of the molten glass flow 20, the cutting blade and the upstream cutting blade of the downstream cutting blade member 40. The cutting blade of the member 50 approaches the flow path region of the molten glass flow 20 and starts cutting as shown in FIG. Furthermore, the downstream-side cutting blade member 40 and the upstream-side cutting blade member 50 advance from the flow path region of the molten glass flow 20 downward in FIG. 7 by rotation along the annular movement path, and the molten glass flow 20 The process proceeds in a direction away from the flow path area, and thus passes through the flow path area in one direction.
The downstream cutting blade member 40 and the upstream cutting blade member 50 that rotate along such various movement paths also pass in one direction with respect to the flow channel region of the molten glass flow 20, so that the tip of the molten glass flow 20 The time for which the part contacts the upstream cutting blade member 40 can be shortened. For this reason, the depth of the shear mark becomes shallow, and the variation in the depth of the shear mark becomes small.

以上、本発明の磁気ディスク用ガラスブランクの製造方法、磁気ディスク用ガラス基板の製造方法、及び切断刃部材について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the manufacturing method of the glass blank for magnetic discs of this invention, the manufacturing method of the glass substrate for magnetic discs, and the cutting blade member were demonstrated in detail, this invention is not limited to the said embodiment and Example, this invention. Of course, various improvements and changes may be made without departing from the spirit of the present invention.

10 溶融ガラス流出管
12 流出口
20 溶融ガラス流
21 溶融ガラス塊
30 切断器
40 下流側切断刃部材
41A,51A 前端切断刃
41B,51B 後端切断刃
41T 上面
42,52 支持部材
44 駆動部
50 上流側切断刃部材
51U 下面
90A、90B 金型
91A、91B プレス成形面
100,102,104,106,108 環状移動経路
DESCRIPTION OF SYMBOLS 10 Molten glass outflow pipe 12 Outlet 20 Molten glass flow 21 Molten glass lump 30 Cutting device 40 Downstream side cutting blade member 41A, 51A Front end cutting blade 41B, 51B Rear end cutting blade 41T Upper surface 42, 52 Support member 44 Drive part 50 Upstream Side cutting blade member 51U Lower surface 90A, 90B Mold 91A, 91B Press molding surface 100, 102, 104, 106, 108 Annular movement path

Claims (9)

磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法であって、
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記一対の切断刃は、溶融ガラス流の上流側及び下流側に、溶融ガラス流を切断するように設けられており、
前記切断刃部材のそれぞれは、前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、前記溶融ガラス流を切断するとき、前記溶融ガラス流の先端部が、前記一対の切断刃部材のうち前記溶融ガラス流の上流側に位置する上流側切断刃と接触する時間は、40m秒以下である、ことを特徴とする磁気ディスク用ガラスブランクの製造方法。
A method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk,
A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
The pair of cutting blades are provided on the upstream side and the downstream side of the molten glass flow so as to cut the molten glass flow,
Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction, and when cutting the molten glass flow, the tip of the molten glass flow is The method of manufacturing a glass blank for a magnetic disk, wherein a time of contact with an upstream cutting blade located upstream of the molten glass flow among the pair of cutting blade members is 40 milliseconds or less.
磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法であって、
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、前記溶融ガラス流を切断するとき、前記溶融ガラス流の先端部が、前記一対の切断刃部材のうち前記溶融ガラス流の上流側に位置する上流側切断刃部材と接触する時間は、40m秒以下である、ことを特徴とする磁気ディスク用ガラスブランクの製造方法。
A method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk,
A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction when the pair of cutting blades intersect to form the glass gob, and the molten glass When cutting the flow, the time for the tip of the molten glass flow to contact the upstream cutting blade member located on the upstream side of the molten glass flow among the pair of cutting blade members is 40 milliseconds or less . A method for producing a glass blank for a magnetic disk.
磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法であって、  A method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk,
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、  A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、  Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断し、  Each of the cutting blade members cuts the molten glass flow by passing through the flow channel region of the molten glass flow in one direction when the pair of cutting blades intersect to create the glass gob,
前記一対の切断刃を前記一対の前端切断刃というとき、前記一対の切断刃部材のそれぞれの後端には、後端切断刃が設けられ、前記前端切断刃を交差させることにより前記溶融ガラス流を切断する他に、前記後端切断刃を移動させて前記溶融ガラス流の前記流路領域で互いに交差させることにより前記溶融ガラス流の切断も行なう、ことを特徴とする磁気ディスク用ガラスブランクの製造方法。  When the pair of cutting blades are referred to as the pair of front end cutting blades, a rear end cutting blade is provided at each rear end of the pair of cutting blade members, and the molten glass flow is obtained by intersecting the front end cutting blades. A glass blank for a magnetic disk, wherein the molten glass stream is also cut by moving the trailing edge cutting blade to cross each other in the flow path region of the molten glass stream. Production method.
磁気ディスク用ガラス基板に用いられる一対の主表面を有する磁気ディスク用ガラスブランクの製造方法であって、  A method for producing a glass blank for a magnetic disk having a pair of main surfaces used for a glass substrate for a magnetic disk,
溶融ガラス流を、一対の切断刃部材が備える一対の切断刃で切断し、該切断によってガラスゴブをつくる処理と、  A process of cutting the molten glass flow with a pair of cutting blades provided in a pair of cutting blade members, and forming a glass gob by the cutting,
前記ガラスゴブを一対のプレス面で挟んでプレス成形をすることによりガラスブランクを成形する処理と、を含み、  Processing to form a glass blank by press molding sandwiching the glass gob between a pair of press surfaces,
前記切断刃部材のそれぞれは、前記一対の切断刃が交差して前記ガラスゴブをつくるとき、前記溶融ガラス流の上流側から見て前記溶融ガラス流の流路領域を通る直線状の移動経路の一方向に沿って動いて前記溶融ガラス流の流路領域を一方向に通り抜けることにより、前記溶融ガラス流を切断する、ことを特徴とする磁気ディスク用ガラスブランクの製造方法。  Each of the cutting blade members is one of linear movement paths passing through the flow channel region of the molten glass flow when viewed from the upstream side of the molten glass flow when the pair of cutting blades intersect to form the glass gob. A method for producing a glass blank for a magnetic disk, wherein the molten glass flow is cut by moving along a direction and passing through a flow path region of the molten glass flow in one direction.
前記切断刃部材のそれぞれは、前記溶融ガラス流の上流側から見て前記流路領域を通る環状移動経路の一方向に沿って動いて前記溶融ガラス流を切断する、請求項1〜3のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法。 Each of the said cutting blade member moves along one direction of the cyclic | annular movement path | route which passes along the said flow-path area | region seeing from the upstream of the said molten glass flow, and cut | disconnects the said molten glass flow. A method for producing a glass blank for magnetic disk according to claim 1 . 前記切断刃部材のそれぞれは、前記溶融ガラス流の上流側から見て前記流路領域を通る直線状の移動経路の一方向に沿って動いて溶融ガラス流を切断する、請求項1〜3のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法。 Each of the said cutting blade member moves along one direction of the linear movement path | route which passes along the said flow-path area | region seeing from the upstream of the said molten glass flow, and cut | disconnects a molten glass flow . The manufacturing method of the glass blank for magnetic discs of any one of Claims 1 . 前記一対の切断刃を前記一対の前端切断刃というとき、前記一対の切断刃部材のそれぞれの後端には、後端切断刃が設けられ、前記前端切断刃を交差させることにより前記溶融ガラス流を切断する他に、前記後端切断刃を移動させて前記溶融ガラス流の流路領域で互いに交差させることにより前記溶融ガラス流の切断も行なう、請求項1、請求項2、請求項5、及び請求項6のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法。 When the pair of cutting blades are referred to as the pair of front end cutting blades, a rear end cutting blade is provided at each rear end of the pair of cutting blade members, and the molten glass flow is obtained by intersecting the front end cutting blades. in addition to cutting the also performs the cutting of the molten glass flow by intersecting each other at the passage region of the molten glass flow by moving the rear end cutting blade, according to claim 1, claim 2, claim 5, And the manufacturing method of the glass blank for magnetic discs of any one of Claim 6 . 請求項1〜のいずれか1項に記載の磁気ディスク用ガラスブランクの製造方法で作製された前記ガラスブランクを機械加工する処理を含み、
前記機械加工をする処理は、前記ガラスブランクの主表面の研削処理と、研削後の前記ガラスブランクの主表面を研磨する研磨処理を含む、磁気ディスク用ガラス基板の製造方法。
The glass blank produced by the production method of a glass blank for a magnetic disk according to any one of claims 1-7 wherein the process of machining,
The process for machining includes a grinding process for the main surface of the glass blank and a polishing process for polishing the main surface of the glass blank after grinding.
溶融ガラス流の流路領域で互いに交差することにより前記溶融ガラス流を切断してガラスゴブをつくるための切断刃を備える切断刃部材であって、
前記切断刃部材は、前記切断刃部材の交差のために前記切断刃部材が移動する移動方向の前端及び後端にそれぞれに前記切断刃を有する、ことを特徴とする切断刃部材。
A cutting blade member comprising a cutting blade for cutting the molten glass flow to make a glass gob by crossing each other in the flow channel region of the molten glass flow,
The cutting blade member has the cutting blade at each of a front end and a rear end in a moving direction in which the cutting blade member moves to intersect the cutting blade member.
JP2015018681A 2014-01-31 2015-02-02 Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member Active JP6454166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018681A JP6454166B2 (en) 2014-01-31 2015-02-02 Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014016704 2014-01-31
JP2014016704 2014-01-31
JP2015018681A JP6454166B2 (en) 2014-01-31 2015-02-02 Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member

Publications (2)

Publication Number Publication Date
JP2015163578A JP2015163578A (en) 2015-09-10
JP6454166B2 true JP6454166B2 (en) 2019-01-16

Family

ID=54186692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018681A Active JP6454166B2 (en) 2014-01-31 2015-02-02 Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member

Country Status (1)

Country Link
JP (1) JP6454166B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147149A1 (en) * 2012-03-30 2013-10-03 Hoya株式会社 Method for manufacturing magnetic-disk glass blank and method for manufacturing magnetic-disk glass substrate

Also Published As

Publication number Publication date
JP2015163578A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP4380379B2 (en) Manufacturing method of glass substrate for information recording medium
JP7458335B2 (en) Glass substrate manufacturing method and magnetic disk manufacturing method
WO2016076404A1 (en) Method for manufacturing magnetic disk substrate and method for manufacturing magnetic disk
JP6327823B2 (en) Manufacturing method of glass substrate for magnetic disk and disk-shaped glass substrate
JP2023052035A (en) Polishing liquid, manufacturing method of glass substrate, and, manufacturing method of magnetic disc
JP6454166B2 (en) Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and cutting blade member
JP6148345B2 (en) Manufacturing method of non-magnetic substrate
JP2012216279A (en) Method for manufacturing glass material for magnetic disk and method for manufacturing glass substrate for magnetic disk
JP2012214375A (en) Method for producing plate glass material for magnetic disk and method for producing glass substrate for magnetic disk
JP6637944B2 (en) Polishing pad material, polishing pad manufacturing method, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
JP2015067484A (en) Method for manufacturing glass blank for magnetic disk, and method for manufacturing glass substrate for magnetic disk
WO2019189480A1 (en) Glass substrate manufacturing method
JP6868364B2 (en) Manufacturing method for glass blanks and glass substrates for magnetic disks
CN108779013B (en) Glass material, method for producing glass material, and method for producing glass substrate for magnetic disk
JP7467759B2 (en) Magnetic disk substrate, magnetic disk, annular substrate, and method for manufacturing magnetic disk substrate
JP6676510B2 (en) Glass blank, method for manufacturing glass blank, and method for manufacturing glass substrate for magnetic disk
JP5476276B2 (en) Glass blank manufacturing method for magnetic recording medium glass substrate, magnetic recording medium glass substrate manufacturing method, magnetic recording medium manufacturing method, glass blank manufacturing apparatus for magnetic recording medium glass substrate
JP2011138589A (en) Method for manufacturing glass substrate for magnetic disk and magnetic recording medium
WO2013147149A1 (en) Method for manufacturing magnetic-disk glass blank and method for manufacturing magnetic-disk glass substrate
JP6353524B2 (en) Substrate manufacturing method
JP2014065650A (en) Method of producing glass substrate for magnetic disk and method of producing glass blank for magnetic disk
JP2011138590A (en) Method for manufacturing glass substrate for magnetic disk and magnetic recording medium
CN102473421B (en) The manufacture method of glass substrate for disc and disk
JP2016011216A (en) Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, and glass blank for magnetic disk
WO2014046240A1 (en) Magnetic disc glass blank fabrication method, magnetic disc glass substrate fabrication method, and magnetic disc glass blank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6454166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250