JP6453593B2 - Microwave sensor and microwave measurement method - Google Patents

Microwave sensor and microwave measurement method Download PDF

Info

Publication number
JP6453593B2
JP6453593B2 JP2014187391A JP2014187391A JP6453593B2 JP 6453593 B2 JP6453593 B2 JP 6453593B2 JP 2014187391 A JP2014187391 A JP 2014187391A JP 2014187391 A JP2014187391 A JP 2014187391A JP 6453593 B2 JP6453593 B2 JP 6453593B2
Authority
JP
Japan
Prior art keywords
light
optical
microwave
waveguide
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187391A
Other languages
Japanese (ja)
Other versions
JP2016061579A (en
Inventor
石橋 忠夫
忠夫 石橋
伊藤 弘樹
弘樹 伊藤
清水 誠
誠 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP2014187391A priority Critical patent/JP6453593B2/en
Priority to PCT/JP2015/069395 priority patent/WO2016042886A1/en
Publication of JP2016061579A publication Critical patent/JP2016061579A/en
Application granted granted Critical
Publication of JP6453593B2 publication Critical patent/JP6453593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction in an optical waveguide structure

Description

本発明は、光をマイクロ波で変調した光信号を利用する無給電型のマイクロ波センサ、及びそのマイクロ波測定方法に関するものである。   The present invention relates to a parasitic microwave sensor using an optical signal obtained by modulating light with a microwave, and a method for measuring the microwave.

マイクロ波とは周波数が300MHzから300GHzの電波であり、ミリ波、センチ波、及び極超短波を含む呼称である。
様々なマイクロ波/ミリ波機器及びシステムのEMC(Electro−Magnetic Compatibility)計測や電波伝搬計測分野では、光ファイバと光電子デバイスを組み合わせ、光をマイクロ波/ミリ波で変調して送受信する計測手法が新技術として注目されている。同軸ケーブルや金属導波管を光ファイバで置き換えることにより、電波環境への擾乱を減らしてより高精度な計測ができることに加え、光ファイバの信号減衰ロスが小さいという特性を生かして、遠隔的な計測が可能となるからである。ここで、光ファイバを伝送ラインとするマイクロ波/ミリ波の送信と受信には、それぞれ、光電気(OE)変換デバイス(典型的にはフォトダイオード)と電気光(EO)変換デバイスが必要となるが、これらのデバイスは、電波環境への擾乱を避けるため、電気的な給電が不要な“無給電動作=ゼロバイアス動作”であることが望ましい(例えば、非特許文献1及び2を参照。)。
The microwave is a radio wave having a frequency of 300 MHz to 300 GHz, and is a name including a millimeter wave, a centimeter wave, and an ultrashort wave.
In the field of EMC (Electro-Magnetic Compatibility) measurement and radio wave propagation measurement of various microwave / millimeter-wave devices and systems, there is a measurement technique that combines optical fiber and optoelectronic devices, and modulates and transmits light with microwave / millimeter waves. It is attracting attention as a new technology. By replacing coaxial cables and metal waveguides with optical fibers, the disturbance to the radio wave environment can be reduced and more accurate measurements can be made. This is because measurement is possible. Here, transmission / reception of microwave / millimeter wave using an optical fiber as a transmission line requires an opto-electric (OE) conversion device (typically a photodiode) and an electro-optical (EO) conversion device, respectively. However, in order to avoid disturbance to the radio wave environment, it is desirable that these devices have “no power supply operation = zero bias operation” that does not require electric power supply (see, for example, Non-Patent Documents 1 and 2). ).

参考文献2には、半導体で製作される電界吸収光変調器(EAM:Electro−Absorption Modulator)をEO変換デバイスとしてゼロバイアス動作させることにより、良好なマイクロ波受信を実現できることが報告されている。ここで使われたEAMは反射形の構成を取っており、連続光信号をEAMモジュールに送り、マイクロ波で変調された光信号を反射光として戻し、それをフォトダイオードによりマイクロ波に再OE変換する。   Reference 2 reports that good microwave reception can be realized by operating a zero-bias operation of an electro-absorption modulator (EAM) manufactured by a semiconductor as an EO conversion device. The EAM used here has a reflective configuration, and sends a continuous optical signal to the EAM module, returns the optical signal modulated by the microwave as reflected light, and re-converts it into microwave by the photodiode. To do.

マイクロ波ミリ波を受信する際、通常、観測する電力レベルは比較的低いので、通常は、EAMの光変調度が小さい状態で動作する。その状態では、戻り光信号はほとんど直流成分からなる。光信号からフォトダイオードを用いてマイクロ波に再OE変換すると、光電力の直流成分に依存する電流ショット雑音のためにSN比が劣化してしまう、という問題が生じる。 When receiving a microwave or a millimeter wave, the power level to be observed is usually relatively low, so that the device normally operates with a low degree of EAM optical modulation. In this state, the return optical signal is almost composed of a direct current component. When the OE conversion from an optical signal to a microwave is performed using a photodiode, there is a problem that the SN ratio is degraded due to current shot noise that depends on the direct current component of the optical power.

この問題を解決する手法として、特許文献1には、「マイクロ波変調光信号と、位相を制御した逆位相の連続光との干渉信号を用いる手法」が提案されている。図7に示した様に、レーザ光源(41)から出射された連続光を3dB光カプラ(43)で分割、一方の連続光を光サーキュレータ(45)を通して電界吸収形光変調器(EAM)(44A−44G)に送り、マイクロ波でEO変調された光信号を反射光として光送信側に戻す。光サーキュレータを通過した光信号は、元のレーザ光と3dB光カプラ(48)で干渉させ、フォトダイオード(49)でマイクロ波信号に再OE変換、その後電気アンプ(50)で増幅される。ここで、反射光信号の中心周波数(搬送光)成分を抑圧すべく、逆位相の連続光の光位相と強度を、光位相調整器(46)及び光アテネータ(47)を用いて調整する。結局、上記の信号干渉の結果、DC成分である光変調信号の光中心周波数のスペクトル強度(搬送光成分)が抑制されて変調成分がフォトダイオード(49)の主たる受光信号となるので、フォトダイオード(49)の受信電流レベルは大きく低減する。 As a technique for solving this problem, Patent Document 1 proposes “a technique using an interference signal between a microwave-modulated optical signal and a continuous light having an opposite phase with controlled phase”. As shown in FIG. 7, continuous light emitted from the laser light source (41) is divided by a 3 dB optical coupler (43), and one continuous light is passed through an optical circulator (45) to an electroabsorption optical modulator (EAM) ( 44A-44G), and the optical signal modulated by EO with the microwave is returned to the optical transmission side as reflected light. The optical signal that has passed through the optical circulator is caused to interfere with the original laser beam by the 3 dB optical coupler (48), re-OE converted to a microwave signal by the photodiode (49), and then amplified by the electric amplifier (50). Here, in order to suppress the center frequency (carrier light) component of the reflected light signal, the optical phase and intensity of the continuous light having the opposite phase are adjusted by using the optical phase adjuster ( 46 ) and the optical attenuator (47). Eventually, as a result of the signal interference, the spectral intensity (carrier light component) of the optical center frequency of the optical modulation signal, which is a DC component, is suppressed, and the modulation component becomes the main light reception signal of the photodiode (49). The reception current level of (49) is greatly reduced.

一方、変調成分の信号強度は、干渉の影響を受けず、光カプラ(48)での3dBの低下のみであるから搬送光成分に対して相対的に光強度が大きくなる。このため、変調成分をフォトダイオード(49)で電気信号に変換した際のSN比が改善され、より精度が高くダイナミックレンジが広いマイクロ波の観測が可能となる。   On the other hand, the signal intensity of the modulation component is not affected by interference and is only a 3 dB decrease at the optical coupler (48), so that the light intensity is relatively higher than the carrier light component. For this reason, the S / N ratio when the modulation component is converted into an electric signal by the photodiode (49) is improved, and microwaves with higher accuracy and a wider dynamic range can be observed.

特願2013−199009Japanese Patent Application No. 2013-199090

鳥畑 成典 「導波路型電界センサの実用化と将来展望」,レーザー研究,2005年6月,pp. 384−388.Toribata N. “Practical application and future prospect of waveguide type electric field sensor”, Laser Research, June 2005, pp. 384-388. S. Kurokawa et al., “A Novel Evaluation Method for Semi−anechoic Chamber Using Zero Biased Optical Devices and Time−domain Analysis”, 2010 IEEE Int. Conf. Wireless Information Tech. and Systems (ICWIS) pp.1−4, 2010.S. Kurokawa et al. , “A Novel Evaluation Method for Semi-anechoic Chamber Using Zero-Biased Optical Devices and Time-domain Analysis”, 2010 IEEE Int. Conf. Wireless Information Tech. and Systems (ICWIS) pp. 1-4, 2010.

しかしながら、特許文献1に開示されている技術は、マイクロ波観測(EO変換)サイト(52)と、信号処理(OE変換)サイト(53)との間は光ファイバ伝送ライン(51)で接続されている。その結果、光ファイバ伝送ラインが長くなるに従って、振動や温度揺らぎなどの影響で、マイクロ波変調光信号が波長分散や偏波モード分散に由来する擾乱を受けてしまい、必ずしも安定な干渉操作ができない、という課題がある。マイクロ波変調光を常時モニタすることにより、逆位相の連続光の位相と強度にフィードバックすることは原理的に可能であるが、測定システムは複雑にならざるを得ない。   However, in the technique disclosed in Patent Document 1, the microwave observation (EO conversion) site (52) and the signal processing (OE conversion) site (53) are connected by an optical fiber transmission line (51). ing. As a result, as the optical fiber transmission line becomes longer, the microwave-modulated optical signal is subject to disturbances due to chromatic dispersion and polarization mode dispersion due to the effects of vibration and temperature fluctuation, and stable interference operation cannot always be performed. There is a problem. Although it is possible in principle to feed back the phase and intensity of continuous light having opposite phases by constantly monitoring the microwave-modulated light, the measurement system must be complicated.

すなわち、「背景技術」において説明した様に、光ファイバと電気光/光電気変換デバイスを組み合わせることにより、無給電状態で動作するマイクロ波/ミリ波センサを構成することができ、より精度が高くダイナミックレンジが広い計測のためには、「マイクロ波変調光信号の中心周波数のスペクトル強度を抑制した光電気再変換」がSN比の改善に大きな効果がある。その様な「光電気再変換」は、同一の半導体レーザから分割された連続光信号とマイクロ波変調光信号との干渉操作を行うことにより実現できる。しかしながら、従来の計測系構成によれば、振動や温度揺らぎなどの影響で、必ずしも安定な干渉操作ができないという課題がある。特に、マイクロ波観測サイトと光電気変換サイトとの間が長い光ファイバ伝送ラインで接続されている場合に、大きな問題となる。   That is, as described in “Background Art”, by combining an optical fiber and an electro-optical / photoelectric conversion device, a microwave / millimeter-wave sensor that operates in a non-powered state can be configured with higher accuracy. For measurement with a wide dynamic range, “photoelectric reconversion with the spectral intensity of the center frequency of the microwave modulated optical signal suppressed” has a great effect on the improvement of the SN ratio. Such “photoelectric reconversion” can be realized by performing an interference operation between a continuous optical signal and a microwave modulated optical signal divided from the same semiconductor laser. However, according to the conventional measurement system configuration, there is a problem that a stable interference operation cannot always be performed due to the influence of vibration and temperature fluctuation. This is a serious problem particularly when the microwave observation site and the photoelectric conversion site are connected by a long optical fiber transmission line.

そこで、本発明は、上記課題を解決するために、精度が高くダイナミックレンジが広い計測ができ、振動や温度揺らぎなどの影響を受けにくいマイクロ波センサ及びマイクロ波測定方法を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention has an object to provide a microwave sensor and a microwave measurement method that can perform measurement with high accuracy and a wide dynamic range and are not easily affected by vibration, temperature fluctuation, and the like. To do.

上記目的を達成するために、本発明は、マイクロ波変調光信号のDC成分(光中心周波数)の除去を行う際、図7のようにOE変換サイトではなく、モノリシックEOチップを用いてアンテナサイトで行うことで安定性を改善することとした。さらに、本発明は、EAMに直列接続した可変抵抗を調節することで、DC成分除去の最適化を可能としている。   In order to achieve the above object, according to the present invention, when removing a DC component (optical center frequency) of a microwave modulated optical signal, an antenna site is used by using a monolithic EO chip instead of an OE conversion site as shown in FIG. It was decided to improve stability. Furthermore, the present invention enables optimization of DC component removal by adjusting a variable resistor connected in series with the EAM.

具体的には、本発明に係るマイクロ波センサは、
1つの光源からの搬送光を2分岐する分岐手段と、
前記分岐手段で分岐された搬送光の少なくとも一方を電気信号で変調するとともに、互いの平均光強度を違えた出力光を出力する2つの光変調手段と、
前記光変調手段が出力する前記2つの光変調手段からの出力光を合波して干渉させ、搬送光成分を低減させた干渉光を出力する干渉手段と、
を同一基板上に備える。
Specifically, the microwave sensor according to the present invention is:
Branching means for branching the carrier light from one light source into two parts;
Two light modulating means for modulating at least one of the carrier light branched by the branching means with an electrical signal and outputting output light having different average light intensities;
Interference means for combining and interfering with the output light from the two light modulation means output by the light modulation means, and outputting interference light with reduced carrier light components;
Are provided on the same substrate.

本マイクロ波センサは、被観測マイクロ波で変調された光信号をそのまま光ファイバで伝送するのではなく、1つの基板上で干渉させてマイクロ波変調光信号のDC成分の除去を行う。DC成分を除去するため、精度が高くダイナミックレンジが広い計測ができ、マイクロ波変調光信号を光ファイバで伝送しないため、振動や温度揺らぎの影響を受けにくい。   This microwave sensor does not transmit an optical signal modulated by an observed microwave as it is through an optical fiber, but causes interference on one substrate to remove the DC component of the microwave modulated optical signal. Since the DC component is removed, measurement with high accuracy and a wide dynamic range can be performed, and the microwave-modulated optical signal is not transmitted through the optical fiber, so that it is not easily affected by vibration and temperature fluctuation.

従って、本発明は、精度が高くダイナミックレンジが広い計測ができ、振動や温度揺らぎなどの影響を受けにくいマイクロ波センサを提供することができる。   Therefore, the present invention can provide a microwave sensor that can perform measurement with high accuracy and a wide dynamic range and is not easily affected by vibration, temperature fluctuation, and the like.

本発明に係るマイクロ波センサの前記光変調手段は、カソードを接地した導波路形電界吸収光変調器であり、
それぞれの前記導波路形電界吸収光変調器のアノードは、抵抗器を介して接地され、
少なくとも1つの前記抵抗器は、前記変調手段が出力する出力光の平均光強度を調整する可変抵抗器であり、
少なくとも1つの前記導波路形電界吸収光変調器のアノードと前記抵抗器との間に前記電気信号が入力される電気信号入力ポートが接続される
ことを特徴とする。
可変抵抗器でEAMから出力される光の平均光強度を調節することで、DC成分除去の最適化が可能となる。
The light modulation means of the microwave sensor according to the present invention is a waveguide type electroabsorption optical modulator having a cathode grounded,
The anode of each of the waveguide type electroabsorption optical modulators is grounded through a resistor,
At least one of the resistors is a variable resistor that adjusts an average light intensity of output light output from the modulation unit,
An electrical signal input port to which the electrical signal is input is connected between an anode of at least one waveguide-type electroabsorption optical modulator and the resistor.
By adjusting the average light intensity of the light output from the EAM with the variable resistor, the DC component removal can be optimized.

本発明に係るマイクロ波センサの前記光変調手段は、前記導波路形電界吸収光変調器からの光を反射して前記導波路形電界吸収光変調器に再度入力する反射器を有しており、
前記分岐手段と前記干渉手段は、同一の光カプラであることを特徴とする。
マイクロ波センサの小型化及び省部品化が可能である。
The light modulation means of the microwave sensor according to the present invention includes a reflector that reflects light from the waveguide-type electroabsorption optical modulator and inputs the light again to the waveguide-type electroabsorption optical modulator. ,
The branching unit and the interference unit are the same optical coupler.
Microwave sensors can be reduced in size and parts can be saved.

本発明に係るマイクロ波測定方法は、前記マイクロ波センサでのマイクロ波測定方法であって、
前記光源から搬送光を前記分岐手段へ入力する搬送光入力ステップと、
前記電気信号を前記電気信号入力ポートに入力する電気信号入力ステップと、
前記干渉手段から出力される干渉光を受光器で受光して電気信号に変換する光電変換ステップと、
前記光電変換ステップで変換された電気信号の周波数が前記電気信号入力ステップで入力した電気信号の周波数と等しくなるように前記可変抵抗器を調整する調整ステップと、
を備える。
DC成分除去の最適化は、干渉手段で干渉させた光をOE変換した電気信号に主信号の二次高調波が含まれない範囲で主信号強度を最大とし、平均電流を最小とすべく可変抵抗器を調節することで実現できる。
A microwave measurement method according to the present invention is a microwave measurement method in the microwave sensor,
A carrier light input step for inputting carrier light from the light source to the branching means;
An electric signal input step of inputting the electric signal to the electric signal input port;
A photoelectric conversion step of receiving the interference light output from the interference means with a light receiver and converting it into an electrical signal;
An adjustment step of adjusting the variable resistor so that the frequency of the electrical signal converted in the photoelectric conversion step is equal to the frequency of the electrical signal input in the electrical signal input step;
Is provided.
The optimization of DC component removal is variable to maximize the main signal intensity and minimize the average current in the range where the second harmonic of the main signal is not included in the electrical signal obtained by OE conversion of the light interfered by the interference means. This can be achieved by adjusting the resistor.

本発明は、精度が高くダイナミックレンジが広い計測ができ、振動や温度揺らぎなどの影響を受けにくいマイクロ波センサ及びマイクロ波測定方法を提供することができる。   The present invention can provide a microwave sensor and a microwave measurement method that can perform measurement with high accuracy and a wide dynamic range and are not easily affected by vibration or temperature fluctuation.

本発明に係るマイクロ波センサを説明する図である。It is a figure explaining the microwave sensor which concerns on this invention. 本発明に係るマイクロ波センサを説明する図である。It is a figure explaining the microwave sensor which concerns on this invention. 本発明に係るマイクロ波センサの動作を説明する図である。It is a figure explaining operation | movement of the microwave sensor which concerns on this invention. 本発明に係るマイクロ波センサの動作を説明する図である。It is a figure explaining operation | movement of the microwave sensor which concerns on this invention. 本発明に係るマイクロ波センサの動作を説明する図である。It is a figure explaining operation | movement of the microwave sensor which concerns on this invention. 本発明に係るマイクロ波センサを説明する図である。It is a figure explaining the microwave sensor which concerns on this invention. 本発明に関連するマイクロ波センサを説明する図である。It is a figure explaining the microwave sensor relevant to this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、本実施形態のマイクロ波センサ301を説明する模式図である。
マイクロ波センサ301は、
1つの光源からの搬送光を2分岐する分岐手段と、
前記分岐手段で分岐された搬送光の少なくとも一方を電気信号で変調するとともに、互いの平均光強度を違えた出力光を出力する2つの光変調手段と、
前記光変調手段が出力する前記2つの光変調手段からの出力光を合波して干渉させ、搬送光成分を低減させた干渉光を出力する干渉手段と、
を同一基板上に備える。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a microwave sensor 301 according to the present embodiment.
The microwave sensor 301
Branching means for branching the carrier light from one light source into two parts;
Two light modulating means for modulating at least one of the carrier light branched by the branching means with an electrical signal and outputting output light having different average light intensities;
Interference means for combining and interfering with the output light from the two light modulation means output by the light modulation means, and outputting interference light with reduced carrier light components;
Are provided on the same substrate.

そして、前記光変調手段は、カソードを接地した導波路形電界吸収光変調器であり、
それぞれの前記導波路形電界吸収光変調器のアノードは、抵抗器とインダクタを介して接地され、
少なくとも1つの前記抵抗器は、前記変調手段が出力する出力光の平均光強度を調整する可変抵抗器であり、
少なくとも1つの前記導波路形電界吸収光変調器のアノードと前記抵抗器/インダクタ回路との間に前記電気信号が入力される電気信号入力ポートが接続される。
The light modulation means is a waveguide type electroabsorption optical modulator with a cathode grounded,
The anode of each waveguide-type electroabsorption optical modulator is grounded through a resistor and an inductor,
At least one of the resistors is a variable resistor that adjusts an average light intensity of output light output from the modulation unit,
An electrical signal input port to which the electrical signal is input is connected between the anode of at least one waveguide-type electroabsorption optical modulator and the resistor / inductor circuit.

図1を用いてより詳細に説明する。マイクロ波センサ301は、電気光変換チップ基板と外部回路を含む。電気光変換チップ基板12は、光入力ポート1、入力光導波路2、2×2MMI(Multi−Mode Interferometer)光カプラ3、分岐光導波路(4A〜4F)、導波路形電界吸収変調器(EAM)(5A、5B)、電気信号入力ポート(6A、6B)、2×2MMI光カプラ7、出力光導波路8、及び光信号出力ポート9が形成される。そして、電気信号入力ポート(6A、6B)には、それぞれ、可変抵抗器(10A、10B)とインダクタ(11A、11B)が外部回路として直列接続される。 This will be described in more detail with reference to FIG. The microwave sensor 301 includes an electro-optical conversion chip substrate and an external circuit. The electro-optic conversion chip substrate 12 includes an optical input port 1, an input optical waveguide 2, a 2 × 2 MMI (Multi-Mode Interferometer) optical coupler 3, a branched optical waveguide (4A to 4F), and a waveguide-type electroabsorption modulator (EAM). (5A, 5B), electrical signal input ports (6A, 6B), 2 × 2 MMI optical coupler 7, output optical waveguide 8, and optical signal output port 9 are formed. Then, variable resistors (10A, 10B) and inductors (11A, 11B) are connected in series as external circuits to the electric signal input ports (6A, 6B), respectively.

2×2MMI光カプラ3が前記分岐手段に相当し、電気信号入力ポート(6A、6B)、可変抵抗器(10A、10B)、インダクタ(11A、11B)及び導波路形EAM(5A、5B)が前記光変調手段に相当し、2×2MMI光カプラ7が前記干渉手段に相当する。 The 2 × 2 MMI optical coupler 3 corresponds to the branching means, and includes an electric signal input port (6A, 6B), a variable resistor (10A, 10B), an inductor (11A, 11B), and a waveguide type EAM (5A, 5B). The 2 × 2 MMI optical coupler 7 corresponds to the light modulating means and the interference means.

入力光導波路2、2×2MMI光カプラ(3、7)、分岐光導波路(4A〜4F)、導波路形EAM(5A、5B)、電気信号入力ポート(6A、6B)、出力光導波路8は、電気光変換チップ基板12上にモノリシック集積されており、可変抵抗器(10A、10B)とインダクタ(11A、11B)は、チップの外に電気的な実装により接続する。 Input optical waveguide 2, 2 × 2 MMI optical coupler (3, 7), branch optical waveguide (4A-4F), waveguide type EAM (5A, 5B), electric signal input port (6A, 6B), output optical waveguide 8 These are monolithically integrated on the electro-optic conversion chip substrate 12, and the variable resistors (10A, 10B) and the inductors (11A, 11B) are connected to the outside of the chip by electrical mounting.

このマイクロ波センサの製作手法は、1.5μm帯の光通信用送信デバイスの製作手法と変わらず、例えば、10Gb/s用のDFBレーザ/電界吸収変調器集積デバイスの技術を用いれば容易に製作可能である。   The manufacturing method of this microwave sensor is not different from the manufacturing method of a 1.5 μm band optical communication transmission device. For example, it can be easily manufactured by using the DFB laser / electroabsorption modulator integrated device technology for 10 Gb / s. Is possible.

導波路形EAM(5A、5B)は、典型的にはダブルヘテロpin形ダイオード構造を持ち、逆バイアス電圧を大きくするに従い、光吸収が増大する。使用する光波長に応じて、導波路のコア層の構造を調整することにより、ゼロバイアスでも動作させることができることがわかっている。   The waveguide type EAM (5A, 5B) typically has a double hetero pin type diode structure, and light absorption increases as the reverse bias voltage is increased. It has been found that it is possible to operate with zero bias by adjusting the structure of the core layer of the waveguide according to the wavelength of light used.

各々の導波路形EAMは、カソードが接地され、それぞれ、インダクタ(11A、11B)と可変抵抗(10A、10B)が直列接続され、“バイアス回路”として機能する。光が導入されない状態では、各導波路形EAMはゼロバイアス(電圧が印加されない状態)である。一方、光が導入されると、各導波路形EAMは光吸収に伴う光電流を発生し、この光電流が流れることで可変抵抗に電圧降下が発生する。このため、その電圧降下分だけ、各導波路形EAMのバイアス電圧は順バイアス側にシフトする。この順方向のバイアスシフトは、導波路形EAMの光吸収率を下げる(透過光強度を上げる)ので、抵抗値を変えることにより、一定の光入力に対する透過光強度を調整することができる。 Each waveguide type EAM has a cathode grounded, and inductors (11A, 11B) and variable resistors (10A, 10B) connected in series to function as a “bias circuit”. In a state where no light is introduced, each waveguide type EAM is zero bias (a state where no voltage is applied). On the other hand, when light is introduced, each waveguide type EAM generates a photocurrent associated with light absorption, and this photocurrent flows to cause a voltage drop in the variable resistor. For this reason, the bias voltage of each waveguide type EAM is shifted to the forward bias side by the voltage drop. This forward bias shift lowers the optical absorptance of the waveguide type EAM (increases the transmitted light intensity), so that the transmitted light intensity with respect to a certain light input can be adjusted by changing the resistance value.

なお、インダクタと可変抵抗からなるバイアス回路は、DC的には可変抵抗(10A、10B)の値、RF的には高インピーダンスとなる。従って、電気信号入力ポート(6A、6B)から見た高周波インピーダンスは、導波路形EAMのインピーダンスと等しくなる。 Note that a bias circuit including an inductor and a variable resistor has a variable resistance (10A, 10B) value in terms of DC and a high impedance in terms of RF. Therefore, the high frequency impedance viewed from the electric signal input ports (6A, 6B) is equal to the impedance of the waveguide type EAM.

マイクロ波センサ301を用いたマイクロ波測定方法を以下に説明する。
本マイクロ波測定方法は、
光源から搬送光を前記分岐手段へ入力する搬送光入力ステップと、
電気信号を前記電気信号入力ポートに入力する電気信号入力ステップと、
前記干渉手段から出力される干渉光を受光器で受光して電気信号に変換する光電変換ステップと、
前記光電変換ステップで変換された電気信号の周波数が前記電気信号入力ステップで入力した電気信号の周波数と等しくなるように前記可変抵抗器を調整する調整ステップと、
を備える。
A microwave measurement method using the microwave sensor 301 will be described below.
This microwave measurement method
A carrier light input step for inputting carrier light from a light source to the branching means;
An electric signal input step for inputting an electric signal to the electric signal input port;
A photoelectric conversion step of receiving the interference light output from the interference means with a light receiver and converting it into an electrical signal;
An adjustment step of adjusting the variable resistor so that the frequency of the electrical signal converted in the photoelectric conversion step is equal to the frequency of the electrical signal input in the electrical signal input step;
Is provided.

[搬送光入力ステップ]
光入力ポート1には、外部のレーザ等(不図示)から搬送光が導入される。光入力ポート1から導入される搬送光は、入力光導波路2を通過し、その電力が2×2MMI光カプラ3で2分割され、分岐光導波路(4A、4B)を通過し導波路形EAM(5A、5B)に到達する。
[Carrier light input step]
Carrier light is introduced into the optical input port 1 from an external laser or the like (not shown). The carrier light introduced from the optical input port 1 passes through the input optical waveguide 2, and its power is divided into two by the 2 × 2 MMI optical coupler 3, passes through the branched optical waveguides (4 </ b> A, 4 </ b> B) and passes through the waveguide type EAM 5A, 5B).

[電気信号入力ステップ]
電気信号入力ポート(6A、6B)には、受信したマイクロ波の電気信号が入力される。電気信号入力ポート(6A、6B)に入力された電気信号により、搬送光が導波路形EAM(5A、5B)で強度変調され、それらが分岐光導波路(4C、4F)出力され、さらに、2×2MMI光カプラ7で両光信号が干渉する。ここで、分岐光導波路4Eには、光位相が同相の重ね合わせ、分岐光導波路4Fには光位相が逆相の重ね合わせで出力される。この干渉状態は、2×2タイプ、ないしは方向性結合器タイプの光カプラに一般的な特性であり、カプラ出力の2つの光信号の位相が90°の差があることに由来する。
[Electric signal input step]
The received microwave electrical signal is input to the electrical signal input ports (6A, 6B). By the electric signal input to the electric signal input ports (6A, 6B), the carrier light is intensity-modulated by the waveguide type EAM (5A, 5B), and is output to the branched optical waveguides (4C, 4F). Both optical signals interfere with each other at the × 2 MMI optical coupler 7. Here, the optical phase is output in the same phase to the branch optical waveguide 4E, and the optical phase is output in the opposite phase to the branch optical waveguide 4F. This interference state is a characteristic common to 2 × 2 type or directional coupler type optical couplers, and is derived from the fact that the phase of the two optical signals at the coupler output is 90 °.

[光電変換ステップ]
光位相が逆相の状態で変調信号が重ね合わせられると、DC光部分(搬送光成分)の少ないマイクロ波変調光信号を取り出すことができる。フォトダイオードで再OE変換した際にフォトダイオード電流レベルがはるかに低くなるので、ショット雑音が低下しSN比が高くなる。
[Photoelectric conversion step]
When the modulation signals are superimposed in a state where the optical phases are opposite to each other, it is possible to extract a microwave modulation optical signal with a small DC light portion (carrier light component). When the OE conversion is performed again by the photodiode, the photodiode current level becomes much lower, so that the shot noise is reduced and the SN ratio is increased.

[調整ステップ]
この様な干渉によりマイクロ波変調光信号を得る場合、マイクロ波の位相に加え、相互の光強度の調整が必要である。図1の導波路型EAM(ダイオード)の配置の場合、変調光信号の振幅を最大にするためには、マイクロ波の電気信号は逆相で入力する必要がある。そして、相互の光強度については、干渉後の光信号の光位相の反転が起こらない範囲で重ね合わせを行うべきである。そのために、2×2MMI光カプラ7に入力される各々の光電界振幅の平均値に一定以上の差があることが不可欠である。本発明によれば、可変抵抗(10A、10B)の値を調整することで、EAMのバイアス電圧変化で光吸収状態を変え、2×2MMI光カプラ(7)に入力される各々の光電界振幅を変えることができる。光電界振幅の調整は、可変抵抗(10A、10B)の値の設定は、いずれか片方を調整すればよい。
[Adjustment step]
When obtaining a microwave modulated optical signal by such interference, it is necessary to adjust the mutual light intensity in addition to the phase of the microwave. In the case of the waveguide type EAM (diode) arrangement of FIG. 1, in order to maximize the amplitude of the modulated optical signal, the microwave electrical signal needs to be input in reverse phase. The mutual light intensity should be superposed within a range in which the optical phase of the optical signal after interference does not invert. Therefore, it is indispensable that the average value of each optical electric field amplitude input to the 2 × 2 MMI optical coupler 7 has a certain difference or more. According to the present invention, by adjusting the value of the variable resistor (10A, 10B), the optical absorption state is changed by changing the bias voltage of the EAM, and each optical electric field amplitude input to the 2 × 2 MMI optical coupler (7). Can be changed. For adjustment of the optical electric field amplitude, one of the values of the variable resistors (10A, 10B) may be adjusted.

より具体的に調整方法を説明する。一例として2×2MMI光カプラ7に入力される各々の光電界振幅の平均値がほぼ等しい場合を考える。この状態では、2×2MMI光カプラ7から出力される逆位相干渉光(分岐光導波路4F)は、光強度変調の位相と光位相がともに逆位相となるので、半周期毎に位相反転した光信号となる。この光信号がOE変換されると、(詳細には後述の様に)その周波数は電気信号の周波数の2倍の周波数となる。一方、2×2MMI光カプラ7に入力される各々の光電界振幅の平均値を干渉後に光位相の位相反転が起こらない様に調整した場合、2×2MMI光カプラ7から出力される干渉光の光電界振幅は電気信号入力ポート(6A、6B)に入力した電気信号の周波数となる。このため、2×2MMI光カプラ7から出力される干渉光の光電界振幅が電気信号入力ポート(6A、6B)に入力した電気信号の周波数となるように可変抵抗器10A又は可変抵抗器10Bを変化させ、光吸収状態を調整する。   The adjustment method will be described more specifically. As an example, consider a case where the average values of the optical field amplitudes input to the 2 × 2 MMI optical coupler 7 are substantially equal. In this state, the antiphase interference light (branch optical waveguide 4F) output from the 2 × 2 MMI optical coupler 7 is light whose phase is inverted every half cycle because the optical intensity modulation phase and the optical phase are both in reverse phase. Signal. When this optical signal is subjected to OE conversion, its frequency becomes twice that of the electrical signal (as will be described in detail later). On the other hand, when the average value of each optical electric field amplitude input to the 2 × 2 MMI optical coupler 7 is adjusted so that phase inversion of the optical phase does not occur after interference, the interference light output from the 2 × 2 MMI optical coupler 7 The optical electric field amplitude is the frequency of the electric signal input to the electric signal input port (6A, 6B). Therefore, the variable resistor 10A or the variable resistor 10B is set so that the optical electric field amplitude of the interference light output from the 2 × 2 MMI optical coupler 7 becomes the frequency of the electric signal input to the electric signal input ports (6A, 6B). Change the light absorption state.

(実施形態2)
図2は、本実施形態のマイクロ波センサ302を説明する図である。図1のマイクロ波センサ301に対し、マイクロ波センサ302は、前記光変調手段が、前記導波路形電界吸収光変調器からの光を反射して前記導波路形電界吸収光変調器に再度入力する反射器を有しており、前記分岐手段と前記干渉手段が、同一の光カプラであることを特徴とする。
(Embodiment 2)
FIG. 2 is a diagram illustrating the microwave sensor 302 of the present embodiment. In contrast to the microwave sensor 301 of FIG. 1, in the microwave sensor 302, the light modulation means reflects light from the waveguide-type electroabsorption optical modulator and inputs it again to the waveguide-type electroabsorption optical modulator. The branching unit and the interference unit are the same optical coupler.

マイクロ波センサ302は、もっとも簡便な形態の例である。マイクロ波センサ302は、図1のマイクロ波センサ301の2×2MMI光カプラ7を排し、連続レーザ光(搬送波)の電力分岐とマイクロ波変調光信号の干渉操作を一つの2×2MMI光カプラ23で行う。一方の導波路形EAMに電気信号入力ポート26を配置し、他方は無入力(DC固定)とする。もちろん、第1の実施形態の様に、電気信号を両方のEAMに入力する形態も可能であることは言うまでもない。   The microwave sensor 302 is an example of the simplest form. The microwave sensor 302 eliminates the 2 × 2 MMI optical coupler 7 of the microwave sensor 301 of FIG. 1, and performs a power splitting of continuous laser light (carrier wave) and interference operation of the microwave modulated optical signal as one 2 × 2 MMI optical coupler. 23. The electric signal input port 26 is disposed in one waveguide EAM, and the other is not input (DC fixed). Of course, it is needless to say that an electric signal may be input to both EAMs as in the first embodiment.

図2を用いてより詳細に説明する。マイクロ波センサ302は、電気光変換チップ基板と外部回路を含む。電気光変換チップ基板29は、光入出力ポート21、入出力光導波路22、2×2MMI光カプラ23、分岐光導波路(24A〜24D)、導波路形EAM(25A、25B)、電気信号入力ポート26が形成される。そして、電気信号入力ポート26Aには、可変抵抗27Aとインダクタ28が外部回路として直列に接続される。一方、電気信号入力ポート26Bには、可変抵抗27Bが外部回路として接続される。本実施形態では、前記反射器として端面(40A、40B)を利用する場合を説明するが、端面(40A、40B)にミラーを配置してもよい。
これらの各機能は、実施形態1での説明と同じである。
This will be described in more detail with reference to FIG. The microwave sensor 302 includes an electro-optical conversion chip substrate and an external circuit. The electro-optic conversion chip substrate 29 includes an optical input / output port 21, an input / output optical waveguide 22, a 2 × 2 MMI optical coupler 23, a branched optical waveguide (24A to 24D), a waveguide type EAM (25A, 25B), and an electric signal input port. 26 is formed. A variable resistor 27A and an inductor 28 are connected in series as an external circuit to the electric signal input port 26A. On the other hand, a variable resistor 27B is connected to the electric signal input port 26B as an external circuit. In the present embodiment, a case where end faces (40A, 40B) are used as the reflector will be described, but a mirror may be disposed on the end faces (40A, 40B).
Each of these functions is the same as that described in the first embodiment.

図3は、マイクロ波センサ302の各部分における光の状態を説明する図である。
マイクロ波(周波数f)を電気に変換した電気信号が電気信号入力ポート26から入力される。搬送光(CW光)が光入出力ポート21から入力される。2×2MMI光カプラ23で分岐された一方の搬送光(π/2位相遅れ)は、導波路形EAM25Aでこの電気信号(周波数f)で変調される。そして、変調された光信号は、電気光変換チップ基板29の光入出力ポート21と反対側の端面40Aで、例えば、同光位相状態で反射し、再度、導波路形EAM25Aを通過する。一方、2×2MMI光カプラ23で分岐された他方の搬送光(位相遅れ無)は、導波路形EAM25Bを通過する。そして、この搬送光は、電気光変換チップ基板29の光入出力ポート21と反対側の端面40Bで、例えば、同光位相状態で反射し、再度、導波路形EAM25Bを通過する。
FIG. 3 is a diagram for explaining the state of light in each part of the microwave sensor 302.
An electric signal obtained by converting the microwave (frequency f m ) into electricity is input from the electric signal input port 26. Carrier light (CW light) is input from the optical input / output port 21. One carrier light (π / 2 phase delay) branched by the 2 × 2 MMI optical coupler 23 is modulated by this electric signal (frequency f m ) by the waveguide type EAM 25A. The modulated optical signal is reflected, for example, in the same optical phase state at the end surface 40A opposite to the optical input / output port 21 of the electro-optic conversion chip substrate 29, and again passes through the waveguide EAM 25A. On the other hand, the other carrier light (no phase delay) branched by the 2 × 2 MMI optical coupler 23 passes through the waveguide EAM 25B. Then, the carrier light is reflected, for example, in the same optical phase state at the end face 40B opposite to the light input / output port 21 of the electro-optic conversion chip substrate 29, and again passes through the waveguide type EAM 25B.

これらの光は、2×2MMI光カプラ23で干渉する。2×2MMI光カプラ23において、導波路形EAM25Aからのπ/2位相遅れの光信号はさらにπ/2位相遅れ、導波路形EAM25Bからの位相遅れ無の搬送光と合波して光入出力ポート21へ出力される。すなわち、光入出力ポート21からは、光が逆相で重ね合わされ、DC光部分の少ない光信号が出力される。一方、2×2MMI光カプラ23において、導波路形EAM25Bからの位相遅れ無の搬送光はπ/2位相遅れ、導波路形EAM25Aからのπ/2位相遅れの光信号と合波して光ポート41へ出力される。すなわち、光ポート41からは、光が同相で重ね合わされた光信号が出力される。   These lights interfere with each other by the 2 × 2 MMI optical coupler 23. In the 2 × 2 MMI optical coupler 23, the optical signal of π / 2 phase lag from the waveguide type EAM 25A is further combined with the carrier light having no phase lag from the π / 2 phase delay and from the waveguide type EAM 25B. Output to port 21. That is, from the optical input / output port 21, the light is superimposed in reverse phase, and an optical signal with less DC light portion is output. On the other hand, in the 2 × 2 MMI optical coupler 23, the carrier light having no phase delay from the waveguide type EAM 25B is combined with the optical signal having the phase delay of π / 2 and π / 2 phase from the waveguide type EAM 25A. 41 is output. In other words, the optical port 41 outputs an optical signal in which light is superimposed in the same phase.

図4及び図5は、2×2MMI光カプラ23において導波路形EAM(25A)からの光と導波路形EAM(25B)からの光を重ね合わせる際に両者の平均光振幅が同じである場合と異なる場合とを説明する図である。導波路形EAM(25A)からの光はマイクロ波変調光信号なので図5(A)のように光スペクトルには両サイドバンド信号がある。導波路形EAM(25B)からの光(連続光)と導波路形EAM(25A)からの光(マイクロ波変調光信号)とが逆位相で、且つ平均光振幅が等しいと、2×2MMI光カプラ23で干渉した後の信号には、中心光波長成分はなく、光スペクトルの周波数差は2fであり、再OE変換後の電気信号の周波数はマイクロ波の周波数の2倍になる(図4(A)、図5(A))。 4 and 5 show the case where the average optical amplitude of the 2 × 2 MMI optical coupler 23 is the same when the light from the waveguide EAM (25A) and the light from the waveguide EAM (25B) are superimposed. It is a figure explaining the case where is different. Since the light from the waveguide type EAM (25A) is a microwave-modulated optical signal, there are both sideband signals in the optical spectrum as shown in FIG. If the light from the waveguide type EAM (25B) (continuous light) and the light from the waveguide type EAM (25A) (microwave modulated optical signal) are in opposite phase and the average optical amplitude is equal, 2 × 2 MMI light the signal after interference coupler 23, rather than the central light wavelength component, the frequency difference of the optical spectrum is 2f m, the frequency of the electrical signal after re-OE conversion is twice the frequency of the microwave (Figure 4 (A), FIG. 5 (A)).

そこで、可変抵抗器(27A又は27B)を調整し、図4(B)及び図5(B)の様に両者の平均光振幅が異なるようにすると、2×2MMI光カプラ23で干渉した後の信号には、中心光波長成分が残り、再OE変換後の電気信号の周波数はマイクロ波の周波数に等しくなる(図4(B)、図5(B))。   Therefore, if the variable resistor (27A or 27B) is adjusted so that the average optical amplitudes of the two are different as shown in FIGS. 4B and 5B, the interference after the 2 × 2 MMI optical coupler 23 is obtained. The center wavelength component remains in the signal, and the frequency of the electric signal after the re-OE conversion becomes equal to the frequency of the microwave (FIGS. 4B and 5B).

この例の場合、可変抵抗器27Aの抵抗値を、可変抵抗器27Bのそれよりも大きく設定することで、導波路形EAM25Bの動作点が相対的に順バイアス側にシフトし、光出力が大きくなる状態とすることができる。反対に、可変抵抗器27Aの抵抗値を、可変抵抗器27Bのそれよりも小さく設定し、位相反転連続光の光振幅が相対的に大きくなる様にして光位相の反転が起こらない様にすることも可能である。   In this example, by setting the resistance value of the variable resistor 27A to be larger than that of the variable resistor 27B, the operating point of the waveguide type EAM 25B is relatively shifted to the forward bias side, and the optical output is increased. It can be set as a state. On the contrary, the resistance value of the variable resistor 27A is set smaller than that of the variable resistor 27B so that the optical amplitude of the phase-inverted continuous light becomes relatively large so that the optical phase is not inverted. It is also possible.

なお、マイクロ波センサ302は、導波路形EAM(25A、25B)を光が往復する。このため、図1のマイクロ波センサ301の導波路形EAM(5A、5B)と同じ光吸収状態を得るための導波路形EAM(25A、25B)の長さは、同じEAMデバイス構造を取る場合、導波路形EAM(5A、5B)の長さの1/2で良い。   In the microwave sensor 302, light reciprocates in the waveguide type EAM (25A, 25B). For this reason, the length of the waveguide type EAM (25A, 25B) for obtaining the same light absorption state as that of the waveguide type EAM (5A, 5B) of the microwave sensor 301 of FIG. The length of the waveguide type EAM (5A, 5B) may be ½.

(実施形態3)
図6は、本実施形態のマイクロ波センサ303を説明する図である。マイクロ波センサ303は、図2のマイクロ波センサ302の導波路形EAMをプッシュ・プル動作としたものである。
(Embodiment 3)
FIG. 6 is a diagram illustrating the microwave sensor 303 of the present embodiment. The microwave sensor 303 is obtained by performing a push-pull operation on the waveguide type EAM of the microwave sensor 302 of FIG.

マイクロ波センサ303は、電気光変換チップ基板と外部回路を含む。電気光変換チップ基板39は、光入出力ポート31、入出力光導波路32、2×2MMI光カプラ33、分岐光導波路(34A〜34D)、導波路形EAM(35A、35B)、電気信号入力ポート(36A、36B)が形成される。そして、電気信号入力ポート(36A、36B)には、それぞれ可変抵抗(37A、37B)とインダクタ(38A、38B)が外部回路として直列に接続される。本実施形態では、前記反射器として端面(40A、40B)を利用する場合を説明するが、端面(40A、40B)にミラーを配置してもよい。
これらの各機能は、実施形態1での説明と同じである。
The microwave sensor 303 includes an electro-optical conversion chip substrate and an external circuit. The electro-optical conversion chip substrate 39 includes an optical input / output port 31, an input / output optical waveguide 32, a 2 × 2 MMI optical coupler 33, a branched optical waveguide (34A to 34D), a waveguide type EAM (35A, 35B), and an electrical signal input port. (36A, 36B) are formed. Then, variable resistors (37A, 37B) and inductors (38A, 38B) are connected in series as external circuits to the electric signal input ports (36A, 36B), respectively. In the present embodiment, a case where end faces (40A, 40B) are used as the reflector will be described, but a mirror may be disposed on the end faces (40A, 40B).
Each of these functions is the same as that described in the first embodiment.

マイクロ波入力は、直列接続された導波路形EAM(35A、35B)の両アノード端子間に、平衡線路(Balanced Transmission Line)を介して導入される。導波路形EAM(35A、35B)のpn接合が対向しているので、一方のEAMが+極性の電圧が印可されている状態でもう一方のEAMは−極性の電圧が印可される。また、2つの導波路形EAM(35A、35B)の間のノードは接地されているので、可変抵抗器(37A、37B)を調整することにより、各々独立に動作点を設定することが可能である。   The microwave input is introduced between both anode terminals of the waveguide-type EAMs (35A, 35B) connected in series via a balanced transmission line (Balanced Transmission Line). Since the pn junctions of the waveguide-type EAM (35A, 35B) are opposed to each other, a negative polarity voltage is applied to the other EAM while a positive polarity voltage is applied to the other EAM. Further, since the node between the two waveguide type EAMs (35A, 35B) is grounded, it is possible to set the operating point independently by adjusting the variable resistors (37A, 37B). is there.

実施形態2で説明した様に、2×2MMI光カプラ33での干渉を同じ光信号振幅で行うと、中心光周波数のスペクトルが低減し、再OE変換後の周波数はマイクロ波信号周波数の2倍となる。干渉後のマイクロ波変調成分を最大にするためには、一方のマイクロ波変調光信号の振幅の谷の部分の強度と、他方のマイクロ波変調光信号の振幅の山の部分の強度と、が同じになるように、導波路形EAM(35A、35B)の動作点を可変抵抗器(37A、37B)で調整する。   As described in the second embodiment, when the interference in the 2 × 2 MMI optical coupler 33 is performed with the same optical signal amplitude, the spectrum of the center optical frequency is reduced, and the frequency after the re-OE conversion is twice the microwave signal frequency. It becomes. In order to maximize the microwave modulation component after interference, the intensity of the valley portion of the amplitude of one microwave modulated optical signal and the intensity of the peak portion of the amplitude of the other microwave modulated optical signal are: The operating point of the waveguide type EAM (35A, 35B) is adjusted by the variable resistors (37A, 37B) so as to be the same.

マイクロ波センサ303の利点は、干渉後のマイクロ波変調成分の振幅が、マイクロ波センサ302に比べ改善されることである。すなわち、同じマイクロ波入力に対して、導波路形EAM(35A、35B)各々の駆動電圧は1/√2倍となるが、2×2MMI光カプラ33においてマイクロ波変調光信号の電界強度は2倍の重ね合わせとなるから、干渉後のマイクロ波変調成分の光電界振幅は√2倍、光信号電力は2倍、フォトダイオードでOE変換後の信号電流レベルは2倍となる。一方、ショット雑音電流は平均光信号電力は、√2倍になるので、結局SN比は3dB高くなる。なお、各倍率はマイクロ波センサ302を基準としている。   The advantage of the microwave sensor 303 is that the amplitude of the microwave modulation component after interference is improved compared to the microwave sensor 302. That is, the drive voltage of each of the waveguide type EAM (35A, 35B) is 1 / √2 times the same microwave input, but the electric field intensity of the microwave modulated optical signal is 2 in the 2 × 2 MMI optical coupler 33. Since the superposition is doubled, the optical electric field amplitude of the microwave modulated component after interference is doubled, the optical signal power is doubled, and the signal current level after OE conversion by the photodiode is doubled. On the other hand, since the average optical signal power of the shot noise current is √2 times, the SN ratio is eventually increased by 3 dB. Each magnification is based on the microwave sensor 302.

[付記]
以下は、本発明のマイクロ波センサを説明したものである。
本発明は、マイクロ波で変調される光信号を利用する“無給電マイクロ波センサ”に関するものであり、振動や温度揺らぎなどの影響を受けることなく、より安定でかつSN比が改善されたマイクロ波観測手法を提供する。
[Appendix]
The following describes the microwave sensor of the present invention.
The present invention relates to a “feedless microwave sensor” that uses an optical signal modulated by a microwave, and is a more stable and improved SN ratio without being affected by vibration, temperature fluctuation, or the like. Provide a wave observation technique.

(1):第1の2入力2出力形3dB光カプラ、その入力ポート、出力ポート それぞれに接続された2対の光導波路、前記光導波路の1対に接続された1対の導波路形電界吸収光変調器、前記導波路形電界吸収光変調器の各々に直列接続された可変抵抗を構成要素として含み、
前記導波路形電界吸収光変調器と前記可変抵抗の直列接続部の両端が各々直流的にゼロバイアス状態であり、
3dB光カプラで分割された連続光入力が前記導波路形電界吸収光変調器で変調され、それらの変調光信号が、再度、第一の2入力2出力形の3dB光カプラ、もしくは第2の2入力2出力形3dB光カプラで干渉し、無変調光信号成分のスペクトル強度が抑制された信号を出力ポートに取り出すことを特徴とするマイクロ波センサ。
(1): first two-input two-output type 3 dB optical coupler, two pairs of optical waveguides connected to the input port and the output port thereof, and a pair of waveguide-type electric fields connected to one pair of the optical waveguides An absorption light modulator, including a variable resistor connected in series to each of the waveguide-type electroabsorption light modulators as a component;
Both ends of the series connection portion of the waveguide-type electroabsorption optical modulator and the variable resistor are each in a zero-bias state with respect to DC.
The continuous optical input divided by the 3 dB optical coupler is modulated by the waveguide type electroabsorption optical modulator, and the modulated optical signal is again converted into the first 2-input 2-output type 3 dB optical coupler, or the second A microwave sensor that extracts a signal, which is interfered by a 2-input 2-output 3 dB optical coupler, and whose spectrum intensity of an unmodulated optical signal component is suppressed, to an output port.

(2):上記(1)の範囲において、1対の導波路形電界吸収光変調器の一方にマイクロ波信号を入力することを特徴とするマイクロ波センサ。 (2): A microwave sensor in which a microwave signal is input to one of a pair of waveguide-type electroabsorption optical modulators within the range of (1) above.

(3):上記(1)の範囲において、1対の導波路形電界吸収光変調器のアノード同志、もしくはカソード同志が電気的に接続され、1対の導波路形電界吸収光変調器のカソード間、もしくはアノード間にマイクロ波信号を入力することを特徴とするマイクロ波センサ。 (3): In the range of (1) above, the anodes or cathodes of a pair of waveguide type electroabsorption optical modulators are electrically connected, and the cathodes of the pair of waveguide type electroabsorption optical modulators A microwave sensor, wherein a microwave signal is input between the electrodes or between the anodes.

本発明は、電界吸収変調器(EAM)を用いた「マイクロ波センサ」のダイナミックレンジをより安定に拡大することができる。   The present invention can expand the dynamic range of a “microwave sensor” using an electroabsorption modulator (EAM) more stably.

1:光入力ポート
2:入力光導波路
3、23、33:2×2MMI光カプラ
4A〜4F、24A〜24D、34A〜34D:分岐光導波路
5A、5B、25A、25B、35A、35B:導波路形電界吸収変調器(EAM)
6A、6B、26、36A、36B:電気信号入力ポート
7:2×2MMI光カプラ
8:出力光導波路
9:光信号出力ポート
10A、10B、27A、27B、37A、37B:可変抵抗器
11A、11B、28、38A、38B:インダクタ
12、29、39:電気光変換チップ基板
21、31:光入出力ポート
22、32:入出力光導波路
40A、40B:端面
41:光ポート
301、302、303:マイクロ波センサ
1: Optical input port 2: Input optical waveguides 3, 23, 33: 2 × 2 MMI optical couplers 4A-4F, 24A-24D, 34A-34D: Branch optical waveguides 5A, 5B, 25A, 25B, 35A, 35B: Waveguides Electroabsorption modulator (EAM)
6A, 6B, 26, 36A, 36B: Electrical signal input port 7: 2 × 2 MMI optical coupler 8: Output optical waveguide 9: Optical signal output port 10A, 10B, 27A, 27B, 37A, 37B: Variable resistors 11A, 11B 28, 38A, 38B: Inductors 12, 29, 39: Electro-optical conversion chip substrates 21, 31: Optical input / output ports 22, 32: Input / output optical waveguides 40A, 40B: End face 41: Optical ports 301, 302, 303: Microwave sensor

Claims (4)

1つの光源からの搬送光を2分岐する分岐手段と、
前記分岐手段で分岐された搬送光の少なくとも一方を電気信号で変調するとともに、互いの平均光強度を違えた出力光を出力する2つの導波路形電界吸収光変調器の光変調手段と、
前記光変調手段が出力する2つの前記出力光を合波して干渉させ、搬送光成分を低減させた干渉光を出力するMMI(Multi−Mode Interferometer)の干渉手段と、
を同一基板上に備え
前記導波路形電界吸収光変調器は、前記分岐手段で分岐された搬送光で発生する光電流による順バイアスが調整されることで透過光強度が調整され、前記出力光の平均光強度を違える
ことを特徴とするマイクロ波センサ。
Branching means for branching the carrier light from one light source into two parts;
Light modulating means of two waveguide-type electroabsorption optical modulators for modulating at least one of the carrier light branched by the branching means with an electrical signal and outputting output light having different average light intensities;
MMI (Multi-Mode Interferometer) interfering means for combining and interfering the two output lights output from the light modulating means to output interference light with reduced carrier light components;
On the same substrate ,
In the waveguide type electroabsorption optical modulator, the transmitted light intensity is adjusted by adjusting the forward bias due to the photocurrent generated by the carrier light branched by the branching means, and the average light intensity of the output light is changed.
Microwave sensor you wherein a.
前記光変調手段の前記導波路形電界吸収光変調器は、カソードを接地しており
それぞれの前記導波路形電界吸収光変調器のアノードは、抵抗器を介して接地され、
少なくとも1つの前記抵抗器は、前記導波路形電界吸収光変調器が前記分岐手段で分岐された搬送光で発生する光電流による順バイアスを調整する可変抵抗器であり、
少なくとも1つの前記導波路形電界吸収光変調器のアノードと前記抵抗器との間に前記電気信号が入力される電気信号入力ポートが接続されることを特徴とする請求項1に記載のマイクロ波センサ。
It said waveguide-type field absorption optical modulator of the light modulating means is grounded cathode,
The anode of each of the waveguide type electroabsorption optical modulators is grounded through a resistor,
At least one of the resistors is a variable resistor that adjusts a forward bias due to a photocurrent generated by the carrier light branched by the branching unit by the waveguide-type electroabsorption optical modulator ,
2. The microwave according to claim 1, wherein an electrical signal input port to which the electrical signal is input is connected between an anode of at least one waveguide-type electroabsorption optical modulator and the resistor. Sensor.
前記光変調手段は、前記導波路形電界吸収光変調器からの光を反射して前記導波路形電界吸収光変調器に再度入力する反射器を有しており、
前記分岐手段と前記干渉手段は、同一の光カプラである
ことを特徴とする請求項2に記載のマイクロ波センサ。
The light modulation means includes a reflector that reflects light from the waveguide-type electroabsorption optical modulator and re-inputs the light to the waveguide-type electroabsorption optical modulator,
The microwave sensor according to claim 2, wherein the branching unit and the interference unit are the same optical coupler.
請求項2又は3に記載のマイクロ波センサでのマイクロ波測定方法であって、
前記光源から搬送光を前記分岐手段へ入力する搬送光入力ステップと、
前記電気信号を前記電気信号入力ポートに入力する電気信号入力ステップと、
前記干渉手段から出力される干渉光を受光器で受光して電気信号に変換する光電変換ステップと、
前記光電変換ステップで変換された電気信号の周波数が前記電気信号入力ステップで入力した電気信号の周波数と等しくなるように前記可変抵抗器を調整する調整ステップと、
を備えるマイクロ波測定方法。
A microwave measurement method using the microwave sensor according to claim 2 or 3,
A carrier light input step for inputting carrier light from the light source to the branching means;
An electric signal input step of inputting the electric signal to the electric signal input port;
A photoelectric conversion step of receiving the interference light output from the interference means with a light receiver and converting it into an electrical signal;
An adjustment step of adjusting the variable resistor so that the frequency of the electrical signal converted in the photoelectric conversion step is equal to the frequency of the electrical signal input in the electrical signal input step;
A microwave measurement method comprising:
JP2014187391A 2014-09-16 2014-09-16 Microwave sensor and microwave measurement method Active JP6453593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014187391A JP6453593B2 (en) 2014-09-16 2014-09-16 Microwave sensor and microwave measurement method
PCT/JP2015/069395 WO2016042886A1 (en) 2014-09-16 2015-07-06 Microwave sensor and microwave measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187391A JP6453593B2 (en) 2014-09-16 2014-09-16 Microwave sensor and microwave measurement method

Publications (2)

Publication Number Publication Date
JP2016061579A JP2016061579A (en) 2016-04-25
JP6453593B2 true JP6453593B2 (en) 2019-01-16

Family

ID=55532931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187391A Active JP6453593B2 (en) 2014-09-16 2014-09-16 Microwave sensor and microwave measurement method

Country Status (2)

Country Link
JP (1) JP6453593B2 (en)
WO (1) WO2016042886A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907047B (en) * 2021-12-13 2022-03-11 天津医科大学总医院空港医院 Method for establishing EAM mouse model induced by autoantigen epitope

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113557A (en) * 1995-10-24 1997-05-02 Tokin Corp Operating point adjusting method for electric field sensor and electric field sensor
JPH11194146A (en) * 1997-10-28 1999-07-21 Showa Electric Wire & Cable Co Ltd Electric field sensor
JP2005266282A (en) * 2004-03-18 2005-09-29 Japan Aviation Electronics Industry Ltd Optical modulator
US20060140233A1 (en) * 2004-12-28 2006-06-29 Jesse Chin Laser driver with integrated bond options for selectable currents
JP2008107272A (en) * 2006-10-27 2008-05-08 Nec Corp Electric field sensor device, automatic bias setter, bias setting method, and program for bias setting
JP2012112886A (en) * 2010-11-26 2012-06-14 Ntt Electornics Corp Electric field sensor and method for measuring rf signal
JP5724546B2 (en) * 2011-03-31 2015-05-27 富士通オプティカルコンポーネンツ株式会社 Optical transmitter and optical waveform compensation method

Also Published As

Publication number Publication date
JP2016061579A (en) 2016-04-25
WO2016042886A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
CN107846254B (en) Photonic method and system for realizing microwave down-conversion and phase shift by utilizing integrated device
US10659162B2 (en) Photonic microwave down-conversion system and method
US6175672B1 (en) RF wide bandwidth lossless high performance low noise transmissive link
Chan et al. Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control
CN101833221B (en) All-optical single side band (SSB) up conversion generator based on silicon-based micro ring resonator
Chan et al. Microwave photonic downconversion using phase modulators in a Sagnac loop interferometer
CN106027153B (en) Increase the method that Dare modulator generates 60GHz millimeter wave based on novel double-side band Mach
US8526817B2 (en) Communications device with discriminator for generating intermediate frequency signal and related methods
US8620158B2 (en) Communications device with discriminator and wavelength division multiplexing for generating intermediate frequency signal and related methods
US20100129088A1 (en) Optical transmission apparatus
JP2012112886A (en) Electric field sensor and method for measuring rf signal
CN110336611B (en) Image interference rejection mixer based on optical fiber dispersion effect
JPWO2005091532A1 (en) Method and apparatus for generating carrier residual signal
US20220113606A1 (en) Terahertz signal generation apparatus and terahertz signal generation method using the same
Belkin et al. A simulation technique for designing next-generation information and communication systems based on off-the-shelf microwave electronics computer tool
US8879919B2 (en) Photonic communications device with an FM/PM discriminator and related methods
CN109861645A (en) A kind of frequency multiplier for microwave broadband communication
JP6453593B2 (en) Microwave sensor and microwave measurement method
Zhao et al. Optimisation of carrier-to-sideband ratio by triple-arm Mach–Zehnder modulators in radio-over-fibre links
CN115037379B (en) Photon RF frequency doubling chip based on silicon-based micro-ring modulator and control method thereof
CN115865211A (en) Microwave frequency shift method and device based on light injection locking
CN115801129A (en) Channelized system based on high repetition frequency coherent optical frequency comb
CN104821850A (en) Device for actively calibrating optical fiber transmission of microwave signals by means of photoelectric oscillator
CN214538272U (en) Dual-channel microwave source phase noise testing device based on polarization multiplexing
Liu et al. Ring resonator based integrated optical beam forming network with true time delay for mmW communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6453593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250