JP2005266282A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2005266282A
JP2005266282A JP2004078248A JP2004078248A JP2005266282A JP 2005266282 A JP2005266282 A JP 2005266282A JP 2004078248 A JP2004078248 A JP 2004078248A JP 2004078248 A JP2004078248 A JP 2004078248A JP 2005266282 A JP2005266282 A JP 2005266282A
Authority
JP
Japan
Prior art keywords
light
optical modulator
light absorption
temperature
absorption current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004078248A
Other languages
Japanese (ja)
Inventor
Takashi Mitsuma
高志 三津間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2004078248A priority Critical patent/JP2005266282A/en
Publication of JP2005266282A publication Critical patent/JP2005266282A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulator capable of keeping light output constant with simple constitution. <P>SOLUTION: The optical modulator is equipped with an optical modulator which inputs projection light from a laser module and varies a light absorption coefficient according to a voltage applied from an optical modulator driver circuit to project modulated light, a light absorption current detecting circuit which detects a light absorption current of the optical modulator, a comparing circuit which detects the difference signal between an average value of the light absorption current detected by the light absorption current detecting circuit and a light absorption current corresponding to the voltage applied to the set optical modulator, and a temperature control circuit which controls the temperature of a temperature controller heating or cooling the optical modulator by using the difference signal from the comparing circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、入射光に対して印加電圧に応じて光吸収係数を変化させることにより変調光を出射する光変調器に関し、特に入射光の波長変化があっても光出力を一定に保つことができる光変調器に関する。   The present invention relates to an optical modulator that emits modulated light by changing a light absorption coefficient according to an applied voltage with respect to incident light, and in particular, can maintain a light output constant even when there is a change in wavelength of incident light. The present invention relates to an optical modulator that can be used.

従来例1の光変調器(特許文献1 参照)を説明する。
電界吸収型光変調器を集積した分布帰還型(EA/DFB)半導体レーザにおいては、分布帰還型半導体レーザー素子部の発振光の波長と光変調器領域の吸収端波長の差(△H)を一定に保つことが伝送特性上重要である。分布帰還型半導体レーザ素子部の発振光の波長は、単位温度あたり約0.1nmの割合で変化する。光変調器領域のバンドギャップの波長は、単位温度あたり約1nmの割合で変化する。したがって、分布帰還型半導体レーザ全体の温度を変化させて発振光の精密波長制御をするために温度を上昇させると上記△Hが0.9nm/°Cの割合で小さくなり、一定に保つことはできない。
An optical modulator of conventional example 1 (see Patent Document 1) will be described.
In a distributed feedback (EA / DFB) semiconductor laser integrated with an electroabsorption optical modulator, the difference (ΔH) between the wavelength of oscillation light of the distributed feedback semiconductor laser element and the absorption edge wavelength of the optical modulator region is calculated. Keeping constant is important in terms of transmission characteristics. The wavelength of the oscillation light of the distributed feedback semiconductor laser element portion changes at a rate of about 0.1 nm per unit temperature. The band gap wavelength of the optical modulator region changes at a rate of about 1 nm per unit temperature. Therefore, when the temperature is raised to change the temperature of the entire distributed feedback semiconductor laser to perform precise wavelength control of the oscillation light, ΔH becomes smaller at a rate of 0.9 nm / ° C. and is kept constant. Can not.

そこで、電界吸収型光変調器の吸収端波長をレーザ光の発振波長に合わせて変化させる機能が必要になる。例えば、電界吸収型光変調器近傍にヒータ等の発熱体を配置し、光変調器の温度を制御することで、吸収端波長を変化させることができる。ここでは、電界吸収型光変調器とレーザ素子部が独立に温度制御できることが前提になる。このため、電界吸収型光変調器の吸収端波長を制御するにはフィードバック機構、つまり吸収端波長を測定し温度制御系に帰還する手段が必要になる。
ヒータなどの発熱体をレーザ素子部のみに装荷する、またヒータなどの発熱体を電界吸収型光変調器のみに装荷するなどの方法で、分布帰還型半導体レーザ素子部と光変調器領域を独立に温度制御する場合、分布帰還型半導体レーザ素子部の温度は、薄膜ヒータもしくはペルチェ素子で制御することができる。
図3に電界吸収型光変調器に順バイアスを印加したときの電流−電圧特性を示す。
この電流と電圧の関係は、半導体のバンドギャップによって決まるため温度によって変化し、電流値を決めると電圧値は一意的に決まる。したがって、駆動電流Iを一定に保ったとき、電圧値Vは温度によって1つの値に定まる。また、駆動電圧を一定に保ったとき、電流値は温度によって1つの値に定まる。
Therefore, a function for changing the absorption edge wavelength of the electroabsorption optical modulator in accordance with the oscillation wavelength of the laser light is required. For example, the absorption edge wavelength can be changed by disposing a heating element such as a heater near the electroabsorption optical modulator and controlling the temperature of the optical modulator. Here, it is assumed that the temperature of the electroabsorption optical modulator and the laser element can be controlled independently. Therefore, in order to control the absorption edge wavelength of the electroabsorption optical modulator, a feedback mechanism, that is, means for measuring the absorption edge wavelength and feeding back to the temperature control system is required.
The distributed feedback semiconductor laser element and the optical modulator area are made independent by loading a heater or other heating element only on the laser element, or by loading a heater or other heating element only on the electro-absorption optical modulator. In the case of temperature control, the temperature of the distributed feedback semiconductor laser element portion can be controlled by a thin film heater or a Peltier element.
FIG. 3 shows current-voltage characteristics when a forward bias is applied to the electroabsorption optical modulator.
Since the relationship between the current and the voltage is determined by the band gap of the semiconductor, it varies depending on the temperature. When the current value is determined, the voltage value is uniquely determined. Therefore, when the drive current I is kept constant, the voltage value V is determined to be one value depending on the temperature. Further, when the driving voltage is kept constant, the current value is determined to be one value depending on the temperature.

図4、図5を参照して従来例1の電界吸収型光変調器の吸収端波長制御機構及び光送信モジュールを説明する。
電界吸収型光変調器40−1の近傍に、光変調器とは別の導波路のモニタ用ストライプパタン40−4と、これに付随した電極を設ける。このストライプパタンは電界吸収型光変調器のストライプパタンに近いほどよいが、電界吸収型光変調器の動作や、光導波路に影響を与えない程度に離れていることが必要である。このパタンに定電流源70−1から十分に小さな一定電流(例えば5mA)を通電する。この時の電圧値を電圧計70−2で測定すると、その電圧値は温度によって一意に決まり、この電圧値から電界吸収型光変調器の吸収端波長λEAが計算できる。したがって、モニタした電圧をヒータ等を制御する温度調節手段70−4に帰還して光変調器の温度を変えることにより、レーザ光の発振波長に合わせてλEAを最適値に設定することができる。
例として、電界吸収型光変調器の温度制御を薄膜抵抗ヒータ40−3によって行う場合について説明する。モニタ用のストライプパタンに一定電流Iが流れるようにしておく。この時の電圧値Vを読み取り、この値に応じて薄膜抵抗ヒータ40−3の電流を変化させる温度制御系を考える。あるとき、レーザの発振波長がλ1になったとする。このとき、光変調器40−1の吸収端波長λEAがλ1−△Hになるように光変調器の温度をT2からT1に変化させるために、吸収端波長モニタ制御回路を用いて電圧値がV1になるように薄膜抵抗ヒータの駆動電流を設定すればよい。また、光変調器の温度調節手段がペルチェ素子40−2である場合、同様にしてペルチェ素子の駆動電流を設定すればよい。
The absorption edge wavelength control mechanism and the optical transmission module of the electroabsorption optical modulator according to the conventional example 1 will be described with reference to FIGS.
In the vicinity of the electroabsorption optical modulator 40-1, a monitoring stripe pattern 40-4 of a waveguide different from the optical modulator and an electrode associated therewith are provided. The stripe pattern is preferably as close as possible to the stripe pattern of the electroabsorption optical modulator, but it is necessary that the stripe pattern be separated so as not to affect the operation of the electroabsorption optical modulator and the optical waveguide. A sufficiently small constant current (for example, 5 mA) is supplied to the pattern from the constant current source 70-1. When the voltage value at this time is measured by the voltmeter 70-2, the voltage value is uniquely determined by the temperature, and the absorption edge wavelength λEA of the electroabsorption optical modulator can be calculated from the voltage value. Therefore, by feeding back the monitored voltage to the temperature adjusting means 70-4 for controlling the heater or the like and changing the temperature of the optical modulator, λEA can be set to an optimum value in accordance with the oscillation wavelength of the laser light.
As an example, a case where the temperature control of the electroabsorption optical modulator is performed by the thin film resistance heater 40-3 will be described. A constant current I is made to flow through the monitor stripe pattern. Consider a temperature control system that reads the voltage value V at this time and changes the current of the thin film resistance heater 40-3 according to this value. Suppose that the oscillation wavelength of the laser becomes λ1. At this time, in order to change the temperature of the optical modulator from T 2 to T 1 so that the absorption edge wavelength λEA of the optical modulator 40-1 becomes λ1-ΔH, a voltage is applied using an absorption edge wavelength monitor control circuit. it may be set the drive current of the thin film resistive heater so that the value becomes V 1. When the temperature adjusting means of the optical modulator is the Peltier element 40-2, the driving current of the Peltier element may be set in the same manner.

図6を参照して従来例2の光変調器アッセンブリーを説明する(特許文献2 参照)。
電気吸収光変調器102は、半導体レーザ101とともにモノリシックに集積化されている。ヒータエレメント105は、レーザの温度と基本的に独立に変調器の温度を制御するために、変調器にきわめて接近している。
温度センサ103,104は、レーザ及び変調媒体の温度を測定するために利用される。温度センサは、それぞれの白金抵抗温度計のような薄膜センサ、または半導体センサであってもよく、半導体センサは、例えばpn接合またはサーミスタである。
多くの状況において、レーザの温度は、使用中の自己発熱や周囲温度変化の結果として変化し、その結果、これが発生する光の波長が変化する。光変調器の温度は、レーザからの光を波長の変化に関して補償するように制御することができる。
変調エレメントの吸収端は、消光比モニタ部107により光変調器によって誘起される光電流の消光比をモニタすることによって最適な特性に調整される。光電流の消光比は、光信号が変調器を通過するとき(オン状態)の光信号によって誘起される光電流と光信号が変調器によって吸収されるとき(オフ状態)の光信号によって誘起される光電流との間の比である。
ヒータエレメントのための駆動電流は、この比を最大にするレベルに設定されている。
特開2002−323685(段落0007〜0009、段落0013〜0016、図1,2) 特開2003−57613(段落0018〜0021、段落0035)
The optical modulator assembly of Conventional Example 2 will be described with reference to FIG. 6 (see Patent Document 2).
The electroabsorption modulator 102 is monolithically integrated with the semiconductor laser 101. The heater element 105 is very close to the modulator to control the modulator temperature essentially independently of the laser temperature.
The temperature sensors 103 and 104 are used to measure the temperature of the laser and the modulation medium. The temperature sensor may be a thin film sensor such as a respective platinum resistance thermometer, or a semiconductor sensor, and the semiconductor sensor is, for example, a pn junction or a thermistor.
In many situations, the temperature of the laser changes as a result of self-heating during use and changes in ambient temperature, resulting in a change in the wavelength of the light it generates. The temperature of the light modulator can be controlled to compensate the light from the laser for wavelength changes.
The absorption edge of the modulation element is adjusted to an optimum characteristic by monitoring the extinction ratio of the photocurrent induced by the optical modulator by the extinction ratio monitor unit 107. The extinction ratio of the photocurrent is induced by the photocurrent induced by the optical signal when the optical signal passes through the modulator (on state) and the optical signal when the optical signal is absorbed by the modulator (off state). The ratio between the photocurrent and the photocurrent.
The drive current for the heater element is set to a level that maximizes this ratio.
JP 2002-323865 (paragraphs 0007 to 0009, paragraphs 0013 to 0016, FIGS. 1 and 2) JP 2003-57613 (paragraphs 0018 to 0021, paragraph 0035)

従来例1の電界吸収型変調器の吸収端波長制御機構においては、光入射の無い状態で温度モニタ用ストライプパタンで測定した電流値または電圧値を薄膜ヒータの駆動系(制御回路、温度調節手段)にフィードバックして調整しなければならないため、ダイナミックな波長変化に対応できない。
従来例2の変調器アッセンブリーにおいては、変調器によって誘起される光電流の消光比をモニタするために光電流のHレベルとLレベルを検出するための光変調器駆動信号に対応した高速な信号処理回路が必要となる。
本発明は、ダイナミックな変化に対応することができ、光出力を一定に保つことができる、簡便な構成を備えた光変調器を提供することを目的とする。
In the absorption edge wavelength control mechanism of the electroabsorption modulator of Conventional Example 1, the current value or voltage value measured with the temperature monitor stripe pattern in the absence of light incidence is used as the driving system for the thin film heater (control circuit, temperature adjusting means). ) Cannot be adapted to dynamic wavelength changes.
In the modulator assembly of Conventional Example 2, a high-speed signal corresponding to the optical modulator driving signal for detecting the H level and the L level of the photocurrent in order to monitor the extinction ratio of the photocurrent induced by the modulator. A processing circuit is required.
An object of the present invention is to provide an optical modulator having a simple configuration that can cope with a dynamic change and can maintain a constant optical output.

レーザモジュールからの出射光を入力し、光変調器ドライバ回路からの印加電圧に応じて光吸収係数を変化させ変調光を出射する光変調器と、光変調器の光吸収電流を検出する光吸収電流検出回路と、光吸収電流検出回路で検出された光吸収電流の平均値と、設定された光変調器に印加する電圧に対応した光吸収電流である基準光吸収電流との差信号を出力する比較回路と、比較回路からの差信号を用いて光変調器を加熱あるいは冷却する温度調節器の温度をコントロールする温度制御回路と、を備える。   An optical modulator that inputs light emitted from the laser module and changes the light absorption coefficient according to the applied voltage from the optical modulator driver circuit to emit modulated light, and light absorption that detects the light absorption current of the light modulator Outputs a difference signal between the current detection circuit, the average value of the light absorption current detected by the light absorption current detection circuit, and the reference light absorption current corresponding to the voltage applied to the set light modulator. And a temperature control circuit for controlling the temperature of the temperature regulator that heats or cools the optical modulator using the difference signal from the comparison circuit.

本発明では、一定光量の光入射があり、かつ高速な電気信号(変調信号)が印加された状態で、光変調器が光吸収を起こして光の強度変調された信号を作り出す時に流れる光吸収電流をモニタし、光吸収電流の平均値と基準光吸収電流との差をもとに光変調器の温度をコントロールする方法であるため、高速な信号処理回路は不要であり簡便な電気回路だけで構成でき、しかもダイナミックな光波長変化に対応できる。   In the present invention, light absorption that flows when an optical modulator generates light intensity-modulated signal by light absorption with a constant amount of light incident and a high-speed electrical signal (modulation signal) applied. Since the current is monitored and the temperature of the optical modulator is controlled based on the difference between the average value of the light absorption current and the reference light absorption current, there is no need for a high-speed signal processing circuit and only a simple electric circuit. In addition, it can handle dynamic changes in light wavelength.

図1に本発明の光変調器(実施例1)の構成を示す。
光変調器は、光変調器ドライバ回路から電圧(光変調器駆動信号)を印加してフランツケルディシュ効果もしくは量子シュタルク効果により光吸収を起こすことで入射光の強度変調を行う光変調器素子を内蔵する光変調器モジュール4と、これに一定強度の光を供給するレーザ素子を内蔵するレーザモジュール1で構成される。一般的なレーザモジュール1は、レーザ素子1−1の温度を制御するための温度検出器1−3と加熱もしくは冷却を行う温度調節器、例えばペルチェ素子1−4、及びレーザ素子1−1の出射光の強度を一定に保つ制御を行うモニタ光を受けてO/E変換して出射光強度に比例した電気信号を出力するモニタ用フォトダイオード素子1−2を内蔵している。このモニタ温度信号を受けて所望の温度に制御する温度制御回路3とモニタ光量信号を受けて出射光の強度を一定に制御する機能を含むレーザドライバ回路2により駆動されて光ファイバ(光導波路)内に一定強度の光を供給する。
FIG. 1 shows the configuration of an optical modulator (Embodiment 1) according to the present invention.
An optical modulator is an optical modulator element that modulates the intensity of incident light by applying a voltage (optical modulator drive signal) from an optical modulator driver circuit to cause light absorption by the Franz Keldisch effect or the quantum Stark effect. It comprises a built-in light modulator module 4 and a laser module 1 containing a laser element that supplies light of a certain intensity to the built-in light modulator module 4. A general laser module 1 includes a temperature detector 1-3 for controlling the temperature of the laser element 1-1 and a temperature controller for heating or cooling, for example, a Peltier element 1-4 and a laser element 1-1. A monitoring photodiode element 1-2 that receives monitor light for performing control to keep the intensity of emitted light constant, performs O / E conversion, and outputs an electrical signal proportional to the intensity of the emitted light is incorporated. An optical fiber (optical waveguide) driven by a temperature control circuit 3 that receives this monitor temperature signal and controls it to a desired temperature and a laser driver circuit 2 that includes a function that receives the monitor light amount signal and controls the intensity of the emitted light to a constant level. A constant intensity of light is supplied inside.

光変調器モジュール4は、電圧が変化する電気信号(光変調器駆動信号)を光変調器素子に効果的に印加するためその振幅やバイアスレベルを調整する機能を含む光変調器ドライバ回路5とレーザモジュールと同様に光変調器素子の温度制御用に内蔵された温度調節器、例えばペルチェ素子4−2の温度可変デバイス用の温度制御回路(吸収端波長制御)8によって駆動される。
光変調器素子4−1に入射される一定強度に制御された光は、光変調器素子内で変調器ドライバ回路5からの光変調器駆動信号の電圧変化に対応した吸収を受け、強度変調された光信号が形成される。この時、光変調器素子4−1内では、吸収された光強度に対応したキャリアが生成されており、これを光吸収電流として光吸収電流検出回路6により取り出す。この光吸収電流値は、出射変調光の強度に一意に対応している。
The optical modulator module 4 includes an optical modulator driver circuit 5 including a function of adjusting an amplitude and a bias level in order to effectively apply an electric signal (optical modulator driving signal) whose voltage changes to the optical modulator element. Similarly to the laser module, it is driven by a temperature controller incorporated for temperature control of the optical modulator element, for example, a temperature control circuit (absorption edge wavelength control) 8 for a temperature variable device of the Peltier element 4-2.
The light controlled to a constant intensity that is incident on the optical modulator element 4-1 receives absorption corresponding to the voltage change of the optical modulator drive signal from the modulator driver circuit 5 in the optical modulator element, and the intensity is modulated. An optical signal is formed. At this time, carriers corresponding to the absorbed light intensity are generated in the optical modulator element 4-1, and this is taken out by the light absorption current detection circuit 6 as a light absorption current. This light absorption current value uniquely corresponds to the intensity of the outgoing modulated light.

比較回路7は、光吸収電流の平均値と基準光吸収電流との差信号を出力する。基準光吸収電流というのは、レーザ素子と光変調器素子を含んだ送信機が必要とされる出射信号光の仕様(消光比の場合、アイマスクパターンの場合、Q値のような場合、あるいはこれらの複数の場合もある)に合うように、あるレーザ素子の波長(どの波長でもよく、調整を行うときにたまたま使った波長)に対し、光変調器駆動信号を調整した結果として流れた光吸収電流の値を示す。光変調器素子は、光を吸収することで出射光の光強度(ONの場合もOFFの場合も)を変えるものであるから、入射光の波長が例えば長波長側に変わったとすると光吸収が減少し、光吸収電流も減少する。したがってこの光吸収電流の値が前出のようにして決めた基準値になるように、この場合は光変調器素子の温度を上げてやることになり、その結果、光吸収電流が基準値に合うと光吸収の状態が基準値を定めた時と同じ状態となり、すなわち出射信号光のON/OFFの各状態の光強度も基準を決めた時と同じ状態となり要求される仕様に合うこととなる。比較回路7は、比較器(コンパレータ)を用いて一方の入力端子に基準光吸収電流に対応した基準電圧、他方の端子に光吸収電流検出器からの光吸収電流に対応した電圧を印加してその差を出力する。   The comparison circuit 7 outputs a difference signal between the average value of the light absorption current and the reference light absorption current. The reference light absorption current is the specification of the output signal light required for the transmitter including the laser element and the light modulator element (in the case of the extinction ratio, in the case of the eye mask pattern, in the case of the Q value, or The light that flows as a result of adjusting the optical modulator drive signal for the wavelength of a laser element (any wavelength, which happens to be used when making adjustments) The value of absorption current is shown. Since the light modulator element changes the light intensity (both ON and OFF) of the emitted light by absorbing the light, if the wavelength of the incident light is changed to the long wavelength side, for example, the light absorption is The light absorption current also decreases. Therefore, in this case, the temperature of the light modulator element is increased so that the value of the light absorption current becomes the reference value determined as described above. As a result, the light absorption current becomes the reference value. If they match, the light absorption state is the same as when the reference value is determined, that is, the light intensity in each of the ON / OFF states of the outgoing signal light is the same as when the reference is determined and meets the required specifications. Become. The comparison circuit 7 uses a comparator (comparator) to apply a reference voltage corresponding to the reference light absorption current to one input terminal and a voltage corresponding to the light absorption current from the light absorption current detector to the other terminal. The difference is output.

温度制御回路8は、光吸収電流検出器からの光吸収電流を基準光吸収電流の値と一致するように光変調器素子の温度を制御する。
したがって、光変調器を汎用されているモジュール、素子、回路を用いることで構成でき、製造コストを低減できる。
The temperature control circuit 8 controls the temperature of the light modulator element so that the light absorption current from the light absorption current detector matches the value of the reference light absorption current.
Therefore, the optical modulator can be configured by using a widely used module, element, or circuit, and the manufacturing cost can be reduced.

図2を参照して実施例2を説明する。
例えばレーザ素子の制御温度を変えたことによって変調器素子入射光の波長が変化したような場合に、変調器素子に印加されている電気信号に変化がないとすると光変調器出射信号光の強度レベル変化となって現れてしまうと同時にそれに対応した分だけ変化する。
A second embodiment will be described with reference to FIG.
For example, if the wavelength of the light incident on the modulator element changes due to changing the control temperature of the laser element, the intensity of the light emitted from the optical modulator is assumed to be unchanged if the electrical signal applied to the modulator element is unchanged. At the same time it appears as a level change, it changes by the amount corresponding to it.

本発明を積極的に利用する例として、前記レーザモジュール1として波長可変レーザ素子1−10を内蔵したものを用い、前述のような波長自動可変機能を持たせた光変調器モジュールと組み合わせて、波長可変光変調器を構成することができる。
波長可変レーザ素子1−10から出射光をレーザ光波長モニタ部9に入力して光波長を検出し、所望の発光波長となるように演算回路10が温度制御回路3に補正信号を出力する。温度制御回路3は、レーザ素子1−10の温度を変えて所望の発光波長となるように制御する。光吸収電流検出回路6において光吸収電流を検出し、比較回路7からの光吸収電流の平均値と基準光吸収電流との差信号を温度制御回路8に入力する。
温度制御回路8は、入射光波長変化前と、光変調器素子の光吸収端波長を自動的に入射光の変化した分だけ変化させるようにペルチェ素子4−2を制御する。
ここでは、レーザモジュールと光変調器モジュールを光ファイバでシリアルに接続した場合について説明したが、前述の機能がハイブリッドもしくはモノリシックに集積されたモジュールの場合でも同様である。
As an example in which the present invention is actively used, the laser module 1 having a built-in wavelength tunable laser element 1-10 is used in combination with an optical modulator module having an automatic wavelength tuning function as described above. A tunable optical modulator can be configured.
The light emitted from the wavelength tunable laser element 1-10 is input to the laser light wavelength monitor unit 9 to detect the light wavelength, and the arithmetic circuit 10 outputs a correction signal to the temperature control circuit 3 so as to obtain a desired light emission wavelength. The temperature control circuit 3 controls the temperature of the laser element 1-10 to change to a desired emission wavelength. The light absorption current detection circuit 6 detects the light absorption current and inputs a difference signal between the average value of the light absorption current from the comparison circuit 7 and the reference light absorption current to the temperature control circuit 8.
The temperature control circuit 8 controls the Peltier element 4-2 so as to automatically change the light absorption edge wavelength of the light modulator element by the amount of change of the incident light before the change of the incident light wavelength.
Although the case where the laser module and the optical modulator module are serially connected by an optical fiber has been described here, the same applies to a module in which the above functions are integrated in a hybrid or monolithic manner.

本発明の光変調器(実施例1)を示す図。The figure which shows the optical modulator (Example 1) of this invention. 本発明の光変調器(実施例2)を示す図。The figure which shows the optical modulator (Example 2) of this invention. 電界吸収型光変調器に順バイアスを印加したときの電流−電圧特性を示す図。The figure which shows the current-voltage characteristic when a forward bias is applied to an electroabsorption optical modulator. 電界吸収型光変調器の吸収端波長制御機構(従来例1)を示す図。The figure which shows the absorption edge wavelength control mechanism (conventional example 1) of an electroabsorption type optical modulator. 光送信モジュール(従来例1)を示す図。The figure which shows an optical transmission module (conventional example 1). 光変調器アッセンブリー(従来例2)を示す図。The figure which shows an optical modulator assembly (conventional example 2).

符号の説明Explanation of symbols

1・・・レーザモジュール、2・・・レーザドライバ回路、3・・・温度制御回路、4・・・光変調器モジュール、5・・・光変調器ドライバ回路、6・・・光吸収電流検出回路、7・・・比較回路、8・・・温度制御回路(吸収端波長制御)
DESCRIPTION OF SYMBOLS 1 ... Laser module, 2 ... Laser driver circuit, 3 ... Temperature control circuit, 4 ... Optical modulator module, 5 ... Optical modulator driver circuit, 6 ... Optical absorption current detection Circuit, 7 ... Comparison circuit, 8 ... Temperature control circuit (absorption edge wavelength control)

Claims (1)

一定強度の光を供給するレーザモジュールと、
光変調器ドライバ回路と、
レーザモジュールからの出射光を入力し、光変調器ドライバ回路からの印加電圧に応じて光吸収係数を変化させ変調光を出射する光変調器と、
光変調器を加熱あるいは冷却する温度調節器と、
光変調器の光吸収電流を検出する光吸収電流検出回路と、
光吸収電流検出回路で検出された光吸収電流の平均値と、設定された光変調器に印加する電圧に対応した光吸収電流である基準光吸収電流との差信号を検出する比較回路と、
比較回路からの差信号を用いて温度調節器の温度をコントロールする温度制御回路と、を備えたことを特徴とする光変調器。
A laser module that supplies light of constant intensity;
An optical modulator driver circuit;
An optical modulator that inputs the emitted light from the laser module, changes the light absorption coefficient according to the applied voltage from the optical modulator driver circuit, and emits the modulated light;
A temperature controller for heating or cooling the light modulator;
A light absorption current detection circuit for detecting the light absorption current of the light modulator;
A comparison circuit that detects a difference signal between an average value of the light absorption current detected by the light absorption current detection circuit and a reference light absorption current that is a light absorption current corresponding to a voltage applied to the set light modulator;
An optical modulator comprising: a temperature control circuit that controls the temperature of the temperature controller using a difference signal from the comparison circuit.
JP2004078248A 2004-03-18 2004-03-18 Optical modulator Withdrawn JP2005266282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078248A JP2005266282A (en) 2004-03-18 2004-03-18 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078248A JP2005266282A (en) 2004-03-18 2004-03-18 Optical modulator

Publications (1)

Publication Number Publication Date
JP2005266282A true JP2005266282A (en) 2005-09-29

Family

ID=35090899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078248A Withdrawn JP2005266282A (en) 2004-03-18 2004-03-18 Optical modulator

Country Status (1)

Country Link
JP (1) JP2005266282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002474A (en) * 2009-06-16 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Optical transmission module and control method
JP2016061579A (en) * 2014-09-16 2016-04-25 Nttエレクトロニクス株式会社 Microwave sensor and microwave measurement method
JP7151934B1 (en) * 2021-12-07 2022-10-12 三菱電機株式会社 Optical semiconductor device, optical modulator and optical transmitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002474A (en) * 2009-06-16 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Optical transmission module and control method
JP2016061579A (en) * 2014-09-16 2016-04-25 Nttエレクトロニクス株式会社 Microwave sensor and microwave measurement method
JP7151934B1 (en) * 2021-12-07 2022-10-12 三菱電機株式会社 Optical semiconductor device, optical modulator and optical transmitter

Similar Documents

Publication Publication Date Title
US4884279A (en) Optical transmission apparatus
JPH11238946A (en) Laser module and method for stabilizing wave length and optical power thereof simultaneously
JP2007059537A (en) Optical transmitter
US6590693B2 (en) Light modulation
JP4491184B2 (en) Temperature control circuit for light emitting module
JP2008078353A (en) Optical transmitting device
JP2005266282A (en) Optical modulator
JP2012141335A (en) Non-cooled optical semiconductor device
JP2014143347A (en) Driving method for semiconductor laser and semiconductor laser device
KR100725687B1 (en) Method and apparatus for compensation temperature characteristics of laser diode in an optical communication system
JP2002246687A (en) Modulator and optical transmitter
JPH088388B2 (en) Method and apparatus for stabilizing temperature of optical component
JPH06283797A (en) Method for stabilizing semiconductor laser wavelength and wavelength-stabilized beam source
JP3196300B2 (en) Semiconductor laser device
JP3408426B2 (en) Light source
US9325153B2 (en) Method to control transmitter optical module
JP2820442B2 (en) Output Waveform Stabilization Method for Electroabsorption Optical Modulator
JP2005032968A (en) Optical transmitting module
JPH0346288A (en) Stabilized light source
JP2830794B2 (en) Optical transmission circuit
JP2009188758A (en) Optical transmitter
JP3006822B2 (en) Laser wavelength controller
JP2005019546A (en) Transmission control circuit of semiconductor laser
JPS5934684A (en) Stabilization circuit for characteristic of semiconductor laser diode
JPH11251674A (en) Optical transmitter and control method for optical output and wavelength in the optical transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605