JP6452022B2 - 制御装置および燃料電池システム - Google Patents

制御装置および燃料電池システム Download PDF

Info

Publication number
JP6452022B2
JP6452022B2 JP2014043202A JP2014043202A JP6452022B2 JP 6452022 B2 JP6452022 B2 JP 6452022B2 JP 2014043202 A JP2014043202 A JP 2014043202A JP 2014043202 A JP2014043202 A JP 2014043202A JP 6452022 B2 JP6452022 B2 JP 6452022B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
switch
power supply
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014043202A
Other languages
English (en)
Other versions
JP2015170420A (ja
Inventor
康宏 八木
康宏 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014043202A priority Critical patent/JP6452022B2/ja
Publication of JP2015170420A publication Critical patent/JP2015170420A/ja
Application granted granted Critical
Publication of JP6452022B2 publication Critical patent/JP6452022B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は制御装置およびその制御装置を備える燃料電池システムに関し、特に家庭用の小型電源として好適な燃料電池システムに関する。
太陽電池や蓄電池と双方向インバータとを備え、電力会社が供給する交流電源である系統電源の停電時のバックアップやピークシフトに利用される電力供給システムが普及してきている。このような電力供給システムの一部として、燃料電池が組み込まれることもある(特許文献1参照)。
特開2011−188607号公報
燃料電池のひとつとして、固体高分子形燃料電池がある。固体高分子形燃料電池は100℃以下の低温で作動し、家庭用をはじめとする定置型のシステムとして用いられる。このような燃料電池と蓄電池とを含む電力供給システムを家庭で用いる場合、設置スペースの制限やコストの観点から、蓄電池の容量を十分に確保できないこともある。このため、燃料電池と蓄電池とを含む電力供給システムにおいて、蓄電池の限られた蓄電量を有効に活用する技術が求められている。
本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電池の蓄電量を有効に活用するための技術を提供することにある。
上記課題を解決するために、本発明のある態様の制御装置は、燃料電池に電力を供給する電力供給部と、系統電源からの電力供給の有無を検出する系統電源検出部とを備える。電力供給部は、系統電源検出部が系統電源から負荷への電力供給が停止したことを検出することを契機として、蓄電池の電力を燃料電池の起動のために供給する。
燃料電池の起動のために供給する電力は、発電に用いる燃料を加熱する燃焼部を駆動するための電力を含んでもよい。本制御装置は燃料電池が発電可能であるか否かを検出する発電検出部をさらに備えてもよい。電力供給部は、燃料電池が発電可能であることを発電検出部が検出した場合、燃焼部に供給する蓄電池の電力を停止してもよい。
電力供給部はさらに、燃料電池が発電可能であることを発電検出部が検出することを契機として、燃料電池が発電する電力を負荷に供給させてもよい。
電力供給部は、燃料電池の発電電力が負荷に供給すべき電力を下回る場合、燃料電池が供給する電力に加えて、蓄電池の電力も負荷に供給してもよい。
燃料電池と、燃料電池の動作を補助する蓄電池と、上述した制御装置を備えてもよい。
本発明によれば、蓄電池の蓄電量を有効に活用するための技術を提供することができる。
本発明の実施の形態に係る燃料電池システムの構成を模式的に示す図である。 系統電源が停電した直後における、燃料電池システムの通電状態を模式的に示す図である。 系統電源の停電を検知し、自立モードに移行途中の燃料電池システムの通電状態を模式的に示す図である。 系統電源の停電を検知し、自立モードに移行した燃料電池システムの通電状態を模式的に示す図である。 自立モードにおける燃料電池システムにおいて、燃料電池が発電を開始したときの通電状態を模式的に示す図である。 自立モードにおける燃料電池システムにおいて、燃料電池の発電量に余力がある場合における通電状態を模式的に示す図である。 自立モードにおける燃料電池システムにおいて、燃料電池の発電電力が負荷に供給すべき電力を下回る場合における通電状態を模式的に示す図である。 実施の形態に係る燃料電池システムの機能構成を模式的に示す図である。 実施の形態に係る制御装置が実行する燃料電池の起動処理の流れを示すフローチャートである。
図1は、本発明の実施の形態に係る燃料電池システム100の回路構成を模式的に示す図である。実施の形態に係る燃料電池システム100は、系統電源200、主分電盤300、燃料電池400、蓄電池ユニット500、切替ユニット600、通常負荷700、自立負荷750、貯湯ユニット800、給湯器850、非常灯900、およびアース線950を含む。
図1は、系統電源200が通電している場合における燃料電池システム100の通電状態を示している。図1において、破線と、破線よりも太い実線で示す線は電力線を示す。ここで破線は電流の流れていない電力線であり、太い実線は電流が流れている電力線であることを示す。
実施の形態に係る燃料電池システム100は、燃料電池400を電力会社が供給する交流電源である系統電源200と並列に接続し、系統電源200および燃料電池400の両方から通常負荷700へ電力を供給する。燃料電池システム100はまた、燃料電池400の動作を補助するための蓄電池ユニット500も備える。蓄電池ユニット500は、例えば、系統電源200の停電時に燃料電池400を起動するための電力源となる。蓄電池ユニット500は、系統電源200が通電中は、系統電源200の電力を蓄電する。
主分電盤300は、主幹ブレーカ310、自立用ブレーカ320、燃料電池用ブレーカ330、および通常負荷用ブレーカ340を含む。主幹ブレーカ310は、系統電源200から供給される最大の電気容量に応じた定格電流のブレーカである。自立用ブレーカ320は、系統電源200の電力を後述する自立負荷750に供給する経路に設けられたブレーカである。また燃料電池用ブレーカ330は、系統電源200の電力を燃料電池400に供給する経路に設けられたブレーカである。
通常負荷用ブレーカ340は、系統電源200の電力を通常負荷700に供給する経路に設けられたブレーカである。通常負荷700は、系統電源200が通電中に電力が供給される負荷であり、空調、冷蔵庫、エレベータ、照明等の他に、テレビ等のAV機器、娯楽機器等の緊急性の低い機器を含む。一方、自立負荷750は、系統電源200が停電したときに、燃料電池400が自立的に動作して発電する電力を供給すべき負荷である。
蓄電池ユニット500は、蓄電池制御部510、充電器520、蓄電池530、DC/ACインバータ540、第1スイッチ550、第2スイッチ560、第3スイッチ570、第4スイッチ580、および端子590を含む。
蓄電池530は、充放電自在で繰り返し使用できる二次電池である。蓄電池530は、例えば多数のリチウムイオン電池セルを内蔵する電池パックが複数組み合わされて形成される。蓄電池530は系統電源200が供給する電力によって充電される。具体的には、系統電源200が供給する交流電力は、第1スイッチ550および第3スイッチ570を介して充電器520に供給される。充電器520は系統電源200が供給する交流電力を直流電力に変換する。充電器520は蓄電池530と接続しており、蓄電池530は、充電器520が変換した直流電力によって充電される。
図1に示すように、燃料電池400は燃料電池用ブレーカ330および自立用ブレーカ320を介して第1スイッチ550と電気的に接続している。このため、燃料電池400が発電しているとき、その発電電力の一部は系統電源200の電力と加わり、蓄電池530の充電に用いられる。
第1スイッチ550は、系統電源200からの電力を蓄電池530に供給するか、蓄電池530が放電する電力を切替ユニット600に供給するかを選択的に切り換えるスイッチである。図1は系統電源200が通電中における燃料電池システム100を図示しているため、第1スイッチ550は、系統電源200からの電力を蓄電池530に供給することを選択している。また第3スイッチ570は、系統電源200の電力で蓄電池530を充電するか否かを切り換えるスイッチである。蓄電池530が満充電、または所定の蓄電量以上の場合、第3スイッチ570はオフとなり、系統電源200による蓄電池530の充電が停止する。
DC/ACインバータ540は、蓄電池530の直流電力を交流電力に変換する。第2スイッチ560は、蓄電池530の電力を出力するか否かを切り換える。
第4スイッチ580は、燃料電池400が発電する電力を充電器520に直接供給するか否かを切り換えるスイッチである。後述するように、系統電源200が停電中に燃料電池400の発電に余力があれば、余剰電力で蓄電池530を充電する。燃料電池400の発電に余力がない場合、第4スイッチ580はオフとなり、燃料電池400と充電器520との電気的な接続を遮断する。
端子590は、蓄電池ユニット500の外部出力端子である。蓄電池ユニット500は、端子590を介して切替ユニット600と接続する。蓄電池制御部510は、蓄電池ユニット500の動作を統括的に制御する。具体的には、蓄電池制御部510は、第1スイッチ550、第2スイッチ560、第3スイッチ570、および第4スイッチ580の開閉を制御したり、充電器520、DC/ACインバータ540の動作を制御したりする。蓄電池制御部510は、例えば既知のマイコン等によって実現される。
切替ユニット600は、切替制御部610、トランス620、第1電力検出部630、第2電力検出部635、第5スイッチ640、第6スイッチ641、第7スイッチ642、第8スイッチ643、第9スイッチ644、第10スイッチ645、第11スイッチ646、第12スイッチ647、第13スイッチ648、および第14スイッチ649を含む。
系統電源200の電力は、燃料電池用ブレーカ330、第5スイッチ640、および第7スイッチ642を通って燃料電池400に供給される。第5スイッチ640は、燃料電池用ブレーカ330と第7スイッチ642とを結ぶ経路を電気的に切断するか否かを切り換えるスイッチである。また第7スイッチ642は、系統電源200の電力を燃料電池400に供給するか、または蓄電池530の電力を燃料電池400に供給するかを選択的に切り換えるスイッチである。図1は系統電源200が通電中における燃料電池システム100を図示しているため、第7スイッチ642は、系統電源200からの電力を燃料電池400に供給することを選択している。
系統電源200の電力はまた、自立用ブレーカ320、第9スイッチ644、および第8スイッチ643に至る。第8スイッチ643を通過した電力は、第11スイッチ646を経由して自立負荷750に供給される。第8スイッチ643を通過した電力はまた、第12スイッチ647を経由して貯湯ユニット800に供給される。第8スイッチ643を通過した電力はさらに、第13スイッチ648を経由して給湯器850にも供給される。
第9スイッチ644は、自立用ブレーカ320と第8スイッチ643とを結ぶ経路を電気的に切断するか否かを切り換えるスイッチである。第8スイッチ643は、系統電源200の電力と蓄電池530の電力とのいずれの電力を、自立負荷750、貯湯ユニット800、または給湯器850に供給するかを選択的に切り換えるスイッチである。図1は系統電源200が通電中における燃料電池システム100を図示しているため、第8スイッチ643は、系統電源200からの電力を選択している。
実施の形態に係る燃料電池400は、動作時に200Vの交流電力を要する。一方、蓄電池ユニット500のDC/ACインバータ540が変換する電力は100Vである。このため、トランス620は、100Vの交流電力を200Vの交流電力に変換する。詳細は後述するが、蓄電池ユニット500の端子590を介して供給された電力は、第8スイッチ643、第6スイッチ641を介してトランス620に至る。またトランス620が変換した200Vの交流電源は第7スイッチ642を経由して燃料電池400に供給される。
第6スイッチ641は、蓄電池530の電力をトランス620に供給するか否かを切り換えるスイッチである。図1は系統電源200が通電中における燃料電池システム100を図示しているため、第6スイッチ641はオフとなっている。そもそも、系統電源200が通電中は第8スイッチ643が系統電源200側を選択しており、切替ユニット600は蓄電池ユニット500と電気的に切断されている。
第1電力検出部630は、燃料電池400に供給される電力を検出する。より具体的に、第1電力検出部630は、燃料電池用ブレーカ330を介して系統電源200から燃料電池400に供給される電力の電圧や、トランス620が出力する電力の電圧を検出する。第2電力検出部635は、端子590および第9スイッチ644を介して切替ユニット600に供給される蓄電池ユニット500の電力の電圧を検出する。
第14スイッチ649は、系統電源200が停電中に、燃料電池400が発電した電力を蓄電池ユニット500に直接的に供給するか否かを切り換えるスイッチである。図1は系統電源200が通電中における燃料電池システム100を図示しているため、第14スイッチ649はオフとなっている。第10スイッチ645は、蓄電池ユニットが供給する蓄電池530の電力を、非常灯900に供給するか否かを切り換えるスイッチである。
切替制御部610は、切替ユニット600の動作を統括的に制御する。具体的には、切替制御部610は、第1電力検出部630や第2電力検出部635が検出した電圧をもとに、第5スイッチ640、第6スイッチ641、第7スイッチ642、第8スイッチ643、第9スイッチ644、第10スイッチ645、第11スイッチ646、第12スイッチ647、第13スイッチ648、および第14スイッチ649の開閉を制御する。切替制御部610はまた、燃料電池400の動作を停止することを指示する停止信号を燃料電池400に送信することもある。切替制御部610は、例えば既知のマイコン等によって実現される。
燃料電池400は、天然ガスやメタノールなどと水蒸気を反応させて作った水素と、大気中の酸素を化学反応させて電気と熱とを同時に生成するものでる。このため、燃料電池400は発電による副産物が水だけであり、低出力域でも高効率で、しかも発電が天候に影響されず安定的であるという特徴を持つ。
燃料電池400は、電解質膜である固体高分子膜を燃料極と空気極との間に配した基本構造を有する。燃料電池400は、LPG(Liquefied Petroleum Gas)や都市ガスなどの原燃料(炭化水素系燃料)を改質し、水素(燃料)を約80%含有する改質ガスを生成する。燃料電池400は、この改質ガスと空気中の酸素(酸化剤)とを用いて以下の電気化学反応により発電する。
燃料極:H2→2H+2e ・・・(1)
空気極:1/2O+2H+2e→HO ・・・(2)
改質ガスの生成や、上記化学反応を安定的に起こさせるために、燃料電池400は発電に用いる燃料を加熱する図示しない燃焼部(ヒータまたはバーナ)を備える。この燃焼部の駆動にも電力を要する。燃料電池400は、発電時に燃焼部から発生する熱を、お湯(40℃以上の水)というかたちで熱回収して貯湯ユニット800に貯湯する。したがって実施の形態に係る燃料電池システム100は、発電システムのみならず、家庭の給湯システムとしても機能する。このため燃料電池400は給湯器850と併存するのが一般的であり、燃料電池400のコントローラは給湯器850のコントローラ(不図示)と一体か、近傍に設置される。ユーザがお湯を利用するとき、貯湯ユニット800にお湯が貯まっている場合、お湯は貯湯ユニット800から供給される。貯湯ユニット800にお湯が貯まっていない場合、給湯器850が動作してお湯を提供する。したがって、給湯器850は一般的なガス湯沸かし器である。
以上のように、燃料電池400は、貯湯ユニット800や給湯器850のように、燃料電池400の動作を補助する補助ユニットと協働する。特に、貯湯ユニット800は燃料電池400の排熱機構を担い、燃料電池400の動作の安全性を担保する。また、給湯器850はそのコントローラが燃料電池400のコントローラを兼ねることが多く、燃料電池400のユーザインタフェースとして重要である。なお、主分電盤300、蓄電池ユニット500、および切替ユニット600は、アース線950によって接地されている。
次に、実施の形態に係る燃料電池システム100の動作に関し、特に系統電源200が通電状態から停電状態となるとき、すなわち系統電源200からの電力供給が停止したときの動作について説明する。
上述したとおり、図1は系統電源200が通電中における燃料電池システム100を図示している。系統電源200が通電中は、系統電源200と燃料電池400とは第5スイッチ640および第7スイッチ642を通る経路で電気的に接続されている。このため、燃料電池400の起動に要する電力は、系統電源200から供給される。また、燃料電池400が起動して発電を開始すると、その電力は第7スイッチ642および第5スイッチ640を通る経路を通って主分電盤300に戻る。その後、燃料電池400が発電した電力は、主分電盤300から通常負荷700や自立負荷750、貯湯ユニット等に供給される。
図2は、系統電源200が停電した直後における、燃料電池システム100の通電状態を模式的に示す図である。図2は特に、系統電源200が停電する前に燃料電池400が発電を開始していない場合における燃料電池システム100の通電状態を示している。
燃料電池システム100は、夜間等の電力消費やお湯の消費が少ない時間帯においては、燃料電池400を停止することがある。これは、夜間等は電気代が低額であることがひとつの理由である。また別の理由として、燃料電池400は動作中に副産物としてお湯ができることもあげられる。ユーザによるお湯の消費量が少ないと貯湯ユニット800が満杯となり、燃料電池400を動作させることができなくなるからである。
系統電源200が停電した直後は、系統電源200から電力供給があることを前提とした回路構成が維持されている。このため図2に示すように、系統電源200が停電した直後において、燃料電池400の発電がない場合には、燃料電池システム100のいずれの回路にも電流は流れていない。
図3は、系統電源200の停電を検知し、自立モードに移行途中の燃料電池システム100の通電状態を模式的に示す図である。蓄電池ユニット500は図示しない電力検出部(例えば保護リレー等)を備えており、その電力検出部は系統電源200の停電を検知する。系統電源200の停電を検知すると、所定の時間(例えば5秒間)後、蓄電池制御部510は自立モードに移行する。自立モードに移行すると、蓄電池制御部510は各スイッチを制御して、蓄電池ユニット500を自立モードの回路構成に変更する。
ここで「自立モード」とは、系統電源200が停電したときに、系統電源200が供給する交流電力の振幅や周波数に依存せず、燃料電池400や蓄電池ユニット500が自立的に交流電力を出力する動作モードをいう。図3に示すように、蓄電池ユニット500が自立モードに移行すると、蓄電池制御部510は第1スイッチ550を自立用ブレーカ320を結ぶ経路から切り離すとともに、第2スイッチ560をオンにする。同時に蓄電池制御部510は、第3スイッチ570をオフにする。これにより、蓄電池530の直流電力がDC/ACインバータ540で交流電力に変換され、端子590と切替ユニット600の第8スイッチ643とを結ぶ経路に出力される。
第1電力検出部630および第2電力検出部635が系統電源200の停電を検知すると、切替ユニット600の切替制御部610は自立モードに移行する。自立モードに移行すると、切替制御部610は、第5スイッチ640と第9スイッチ644とをオフにして、切替ユニット600を主分電盤300から電気的に切断する。同時に切替制御部610は第8スイッチ643を切り換える。これにより、蓄電池ユニット500の交流電力は貯湯ユニット800および給湯器850に供給される。
上述したように、貯湯ユニット800や給湯器850は、燃料電池400の動作を補助する補助ユニットである。このため、実施の形態に係る燃料電池400には、その起動シーケンスにおいて、燃料電池400に備えられた通信ユニット(不図示)が、貯湯ユニット800および給湯器850に備えられた通信ユニット(不図示)に対して、通信可能か否かを確認する。もし、燃料電池400の起動時に補助ユニットとの通信が可能でない場合、燃料電池400は、起動シーケンスにおいて停止し、起動することができない
そこで切替制御部610は、貯湯ユニット800や給湯器850等の補助ユニットに電力を供給した後に、燃料電池400に電力を供給する。これを実現するために、切替制御部610は、図3に示すように、第6スイッチ641をオンにする前に、まず第12スイッチ647および第13スイッチ648をオンにする。
ここで貯湯ユニット800や給湯器850は、内部にコンデンサ等を備えている。このため、貯湯ユニット800や給湯器850に電力を供給するとき、大きな突入電力が生じる場合がある。もし、貯湯ユニット800と給湯器850とに同時に電力供給を開始すると、これらの突入電力の合計がDC/ACインバータ540の最大出力を越える恐れがある。
そこで切替制御部610は、貯湯ユニット800と給湯器850とを順番に電力を供給する。例えば切替制御部610は、貯湯ユニット800にまず電力を供給し、続いて給湯器850に電力を供給する。これを実現するために、切替制御部610は、系統電源200の停電を検知すると、まず第11スイッチ646、第12スイッチ647、および第13スイッチ648をオフにする。続いて切替制御部610は、まず第12スイッチ647をオンにし、しかる後に第13スイッチをオンにする。これにより、貯湯ユニット800や給湯器850の突入電力の合計が、DC/ACインバータ540の最大出力を越えてしまうことを防止できる。
なお、図3においては、第10スイッチ645がオフであり、非常灯900に蓄電池530の電力が供給されていない。これは蓄電池530の蓄電量に限りがあるので、限られた蓄電量を最大限活用するためである。
図4は、系統電源200の停電を検知し、自立モードに移行した燃料電池システム100の通電状態を模式的に示す図である。切替制御部610は、第12スイッチ647および第13スイッチ648をオンにした後に、第6スイッチ641をオンにする。これにより、蓄電池ユニット500の交流電力がトランス620に供給される。トランス620は入力された交流電力の電圧を変換し、変換した電力を燃料電池400の起動のために供給する。このとき、貯湯ユニット800および給湯器850には電力が供給されているので、燃料電池400はこれらの補助ユニットと通信可能である。このため、燃料電池400は起動することができる。具体的には、燃料電池400は図示しない燃焼部を燃焼させ、改質ガスの生成や化学反応を安定的に起こるように燃料電池400の温度を上昇させる。
図5は、自立モードにおける燃料電池システム100において、燃料電池400が発電を開始したときの通電状態を模式的に示す図である。切替制御部610は、図示しない通信線によって燃料電池400を制御するマイコン(不図示)や、蓄電池制御部510と通信することができる。切替制御部610は燃料電池400から発電可能である旨の通信を受信すると、蓄電池制御部510にその旨を通知する。蓄電池制御部510は第2スイッチ560をオフにすることにより、蓄電池530の電力を切替ユニット600に供給することを停止する。これにより、燃料電池400は、動作に必要な電力を、自身が発電する電力で賄うようになる。また貯湯ユニット800および給湯器850の動作に必要な電力も、燃料電池400が発電する電力によって賄われる。
切替制御部610はまた、燃料電池400から発電可能である旨の通信を受信すると、第11スイッチ646をオンにする。これにより、電力供給の優先順位が高い負荷である自立負荷750に燃料電池400が発電する電力が供給される。
このように、実施の形態に係る燃料電池システム100においては、系統電源200が停電し、系統電源200から通常負荷700への電力供給が停止したことを契機として、蓄電池530の電力が燃料電池400を起動するために供給される。その後、燃料電池400が起動して発電可能となった後に、燃料電池400が発電する電力を自立負荷750に供給する。蓄電池530の電力は燃料電池400を起動するために使用され、蓄電池530が単独で自立負荷750に電力供給することはない。これにより、蓄電池530の蓄電量が少なくても、燃料電池システム100を稼働することが可能となる。蓄電池530の限られた蓄電量を最大限活用することができる。
なお、燃料電池400の種類によっては、交流電源を出力するために基準となる基準電力を必要とするものも存在する。ここで「基準電力」とは、燃料電池400が出力すべき交流電力の振幅および周波数を定める電力である。基準電力の入力が必要とする燃料電池400は、基準電力を元に発電する電力を増減させ、所定の出力で運用する。燃料電池400が基準電力の入力が必要とする場合、蓄電池530の電力で賄われる。このような場合、燃料電池400から発電可能となった後も、第2スイッチ560はオフとならず蓄電池530から燃料電池400に基準電力が供給される。
図6は、自立モードにおける燃料電池システム100において、燃料電池400の発電量に余力がある場合における通電状態を模式的に示す図である。燃料電池400の発電量が、自立負荷750、貯湯ユニット800、給湯器850、および非常灯900等の各負荷の消費電力を上回る場合、切替制御部610は、第14スイッチ649をオンにする。切替制御部610はまた、燃料電池400の発電量に余力がある旨を蓄電池制御部510に通知し、蓄電池ユニット500内の第4スイッチ580をオンにさせる。これにより、燃料電池400が発電する電力の余剰電力で、蓄電池ユニット500の蓄電池530を充電することができる。
上述したように、燃料電池400は反応式(1)および反応式(2)に基づく化学反応を利用して発電する。一般に、反応式(1)および反応式(2)に基づく化学反応の応答速度は、例えばリチウムイオン電池等の放電の応答速度と比較して、非常に遅い速度である。このため、負荷の消費電力が急激に増加した場合、燃料電池400の発電量が負荷の消費電力に追いつかなくなる恐れもある。
図7は、自立モードにおける燃料電池システム100において、燃料電池400の発電電力が負荷に供給すべき電力を下回る場合における通電状態を模式的に示す図である。切替制御部610は、燃料電池400の発電電力が負荷に供給すべき電力を下回る場合、その旨を蓄電池制御部510に通知する。蓄電池制御部510は、図7に示すように、切替制御部610から通知を受信すると、第2スイッチ560をオンにする。これにより、蓄電池530の電力を負荷に供給する電流経路が導通し、燃料電池400が供給する電力に加えて、蓄電池530の電力も負荷に供給することができる。蓄電池530の蓄電量は、燃料電池400が発電する電力のいわば「バッファ」として機能する。系統電源200の停電時における電力供給を安定化することができる。
以上、実施の形態に係る燃料電池システム100の動作に関し、特に系統電源200が通電中に停電となったとき、すなわち系統電源200からの電力供給が停止したときの動作について説明した。系統電源200が復電した場合、蓄電池制御部510および切替制御部610は各スイッチを切り換えて、図1に示す回路構成に復旧する。
次に、実施の形態に係る燃料電池システム100の機能構成について説明する。
図8は、実施の形態に係る燃料電池システム100の機能構成を模式的に示す図である。実施の形態に係る燃料電池システム100は、系統電源200、燃料電池400、蓄電池530、制御装置60、および負荷70を含む。
図8は、実施の形態に係る燃料電池システム100を実現するための機能構成を示しており、その他の構成は省略している。図8において、さまざまな処理を行う機能ブロックとして記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メインメモリ、その他のLSI(Large Scale Integration)で構成することができる。またソフトウェア的には、メインメモリにロードされたプログラム等によって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組み合わせによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
制御装置60は、系統電源検出部63、発電検出部64、および電力供給部65を備える。
電力供給部65は、燃料電池400に電力を供給する。電力供給部65は、上述した切替制御部610、各種スイッチ、トランス620、蓄電池制御部510、およびDC/ACインバータ540によって実現される。
系統電源検出部63は、系統電源200からの電力供給の有無を検出する。したがって、系統電源検出部63は上述した第1電力検出部630によって実現される。
発電検出部64は、燃料電池400が発電可能であるか否かを検出する。上述したように、切替制御部610は、図示しない通信線によって燃料電池400を制御するマイコンと通信することができ、燃料電池400が発電可能となった場合はその旨を受信する。したがって、発電検出部64は上述した切替制御部610によって実現される。
ここで電力供給部65は、系統電源検出部63が系統電源200から負荷70への電力供給が停止したことを検出したことを契機として、蓄電池530の電力を燃料電池400の起動のために供給する。ここで燃料電池400の起動のために供給する電力は、上述した発電に用いる燃料を加熱する燃焼部を駆動する電力を含む。これにより、燃料電池400が起動し、系統電源200に代わって負荷70に電力を供給できるようになる。なお、負荷70は上述した通常負荷700および自立負荷750である。
電力供給部65はまた、燃料電池400が発電可能であることを発電検出部64が検出した場合、燃焼部に供給する蓄電池530の電力を停止する。その後、燃焼部を駆動するための電力は、燃料電池400が発電する電力によって賄われる。これにより、蓄電池530の電力消費を抑制することができる。
電力供給部65はさらに、燃料電池400が発電可能であることを発電検出部64が検出することを契機として、燃料電池400が発電する電力を負荷70に供給させる。これにより、系統電源200が停電となっても、蓄電池530の電力を用いずに、電力供給の優先順位が高い自立負荷750に電力を供給することができる。
一方で、上述したように、燃料電池400の発電の応答速度は、蓄電池530の放電の応答速度よりも遅い。そこで、電力供給部65は、燃料電池400の発電電力が負荷70に供給すべき電力を下回る場合、燃料電池400が供給する電力に加えて、蓄電池530の電力も負荷70に供給してもよい。これにより、系統電源200の停電時における電力供給を安定化することができる。
図9は、実施の形態に係る制御装置60が実行する燃料電池400の起動処理の流れを示すフローチャートである。本フローチャートにおける処理は、例えば制御装置60が起動したときに開始する。
系統電源検出部63は、系統電源200が供給する電力の電圧を検出する(S2)。系統電源200が供給する電力の電圧が低くなることにより、系統電源検出部63が系統電源200からの電力供給がないことを検出した場合、すなわち系統電源200が通電中でない場合(S4のN)、電力供給部65は蓄電池530の電力を用いて燃料電池400を起動する(S6)。
発電検出部64は、燃料電池400が発電可能か否かを確認する。発電検出部64が、燃料電池400が発電可能であることが確認できない間(S8のN)、発電検出部64は、燃料電池400が発電可能か否かの確認を継続する。
発電検出部64が、燃料電池400が発電可能であることを確認すると(S8のY)、電力供給部65は、蓄電池530から燃料電池400への電力供給を停止する(S10)。続いて電力供給部65は、燃料電池400が発電した電力を負荷70に供給させる(S12)。ここで、燃料電池400の発電量が負荷70の消費電力量を下回り、燃料電池400の発電量が十分でない場合(S14のN)、電力供給部65は、蓄電池530の電力も負荷70に供給させる(S16)。
電力供給部65が蓄電池530の電力も負荷70に供給させるか、燃料電池400の発電量が十分な場合(S14のY)、系統電源200が通電中の場合(S4のY)、本フローチャートにおける処理は終了する。
以上説明したように、実施の形態に係る燃料電池システム100によれば、蓄電池530の蓄電量を有効に活用するための技術を提供することができる。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
60 制御装置、 63 系統電源検出部、 64 発電検出部、 65 電力供給部、 70 負荷、 80 補助ユニット、 100 燃料電池システム、 200 系統電源、 300 主分電盤、 310 主幹ブレーカ、 320 自立用ブレーカ、 330 燃料電池用ブレーカ、 340 通常負荷用ブレーカ、 400 燃料電池、 500 蓄電池ユニット、 510 蓄電池制御部、 520 充電器、 530 蓄電池、 540 DC/ACインバータ、 550 第1スイッチ、 560 第2スイッチ、 570 第3スイッチ、 580 第4スイッチ、 590 端子、 600 切替ユニット、 610 切替制御部、 620 トランス、 630 第1電力検出部、 635 第2電力検出部、 640 第5スイッチ、 641 第6スイッチ、 642 第7スイッチ、 643 第8スイッチ、 644 第9スイッチ、 645 第10スイッチ、 646 第11スイッチ、 647 第12スイッチ、 648 第13スイッチ、 649 第14スイッチ、 700 通常負荷、 750 自立負荷、 800 貯湯ユニット、 850 給湯器、 900 非常灯、 950 アース線。

Claims (4)

  1. 燃料電池に電力を供給する電力供給部と、
    系統電源からの電力供給の有無を検出する系統電源検出部と、
    燃料電池が発電可能であるか否かを検出する発電検出部を備え、
    前記電力供給部は、前記系統電源検出部が系統電源から負荷への電力供給が停止したことを検出することを契機として、蓄電池の電力を燃料電池の起動のために供給し、
    燃料電池の起動のために供給する電力は、発電に用いる燃料を加熱する燃焼部を駆動するための電力を含み、
    前記電力供給部はさらに、燃料電池が発電可能であることを前記発電検出部が検出することを契機として、燃料電池が発電する電力を負荷に供給し、
    前記系統電源からの電力を前記蓄電池に供給するか、前記蓄電池が放電する電力を第2のスイッチに供給するかを選択的に切り替える第1のスイッチをさらに備え
    前記第2のスイッチは、前記系統電源の電力と前記蓄電池の電力とのいずれの電力を、前記燃料電池の動作を補助する補助ユニット、前記燃料電池、自立負荷の少なくとも1つに供給するかを選択的に切り換えるスイッチであることを特徴とする制御装置。
  2. 前記電力供給部は、燃料電池が発電可能であることを前記発電検出部が検出した場合、前記燃焼部に供給する蓄電池の電力を停止することを特徴とする請求項1に記載の制御装置。
  3. 前記電力供給部は、燃料電池の発電電力が負荷に供給すべき電力を下回る場合、燃料電池が供給する電力に加えて、蓄電池の電力も前記負荷に供給することを特徴とする請求項1または2に記載の制御装置。
  4. 燃料電池と、
    前記燃料電池の動作を補助する蓄電池と、
    請求項1から3のいずれか一項に記載の制御装置を備えることを特徴とする燃料電池システム。
JP2014043202A 2014-03-05 2014-03-05 制御装置および燃料電池システム Expired - Fee Related JP6452022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043202A JP6452022B2 (ja) 2014-03-05 2014-03-05 制御装置および燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043202A JP6452022B2 (ja) 2014-03-05 2014-03-05 制御装置および燃料電池システム

Publications (2)

Publication Number Publication Date
JP2015170420A JP2015170420A (ja) 2015-09-28
JP6452022B2 true JP6452022B2 (ja) 2019-01-16

Family

ID=54203007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043202A Expired - Fee Related JP6452022B2 (ja) 2014-03-05 2014-03-05 制御装置および燃料電池システム

Country Status (1)

Country Link
JP (1) JP6452022B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391473B2 (ja) * 2015-01-08 2018-09-19 三菱電機株式会社 蓄電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868883B2 (ja) * 2006-02-23 2012-02-01 Jx日鉱日石エネルギー株式会社 燃料電池を用いた非常電源システム、及び分電盤
JP4854549B2 (ja) * 2007-03-12 2012-01-18 大阪瓦斯株式会社 熱電併給システム
JP5721825B2 (ja) * 2011-05-30 2015-05-20 京セラ株式会社 燃料電池装置
JP2013009548A (ja) * 2011-06-27 2013-01-10 Nippon Acp Kk 無停電電力供給システム
US9520603B2 (en) * 2012-03-29 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
JP5993629B2 (ja) * 2012-06-22 2016-09-14 大和ハウス工業株式会社 電力供給システム及び電力供給方法

Also Published As

Publication number Publication date
JP2015170420A (ja) 2015-09-28

Similar Documents

Publication Publication Date Title
JP4868884B2 (ja) 燃料電池を用いた非常電源システム
JP4868883B2 (ja) 燃料電池を用いた非常電源システム、及び分電盤
JP5774765B2 (ja) 充放電装置及び電源切替システム
US7839020B2 (en) Electric power supply system
JP5372313B2 (ja) 燃料電池装置を有する電源システム
WO2015015798A1 (ja) 電力制御装置、電力制御方法、および電力制御システム
JP2003243011A (ja) 燃料電池発電システム
JP2002063927A (ja) 燃料電池システムの制御方法及びその装置
JP2017117673A (ja) 電力制御装置、電力制御方法及び燃料電池システム
JP2022051909A (ja) 充放電装置及び電源切替システム
JP2018061432A (ja) 充放電装置
KR101435388B1 (ko) 연료전지 평활 커패시터 초기 충전 시스템
JP6452022B2 (ja) 制御装置および燃料電池システム
JP6440056B2 (ja) 制御装置および燃料電池システム
WO2014119291A1 (ja) 燃料電池の起動装置、燃料電池の起動方法、及び、燃料電池の起動システム
JP5305578B2 (ja) 燃料電池システム
JP2013143212A (ja) 燃料電池発電システム及びその運転方法
JP2012134060A (ja) 燃料電池システム
JP5655549B2 (ja) 燃料電池システム
JP2013258804A (ja) 電源システムおよび電源システムの運転方法
KR20160044323A (ko) 연료전지 시스템
JP2016226293A (ja) 電源切替装置及び住宅
JP2020170595A (ja) 熱電併給システム
JP2014192006A (ja) 燃料電池発電システムおよび燃料電池発電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181129

R150 Certificate of patent or registration of utility model

Ref document number: 6452022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees