JP6450894B1 - Biocompatible long-fiber nonwoven fabric, production method thereof, solid scaffold for cell culture, and cell culture method using the same - Google Patents

Biocompatible long-fiber nonwoven fabric, production method thereof, solid scaffold for cell culture, and cell culture method using the same Download PDF

Info

Publication number
JP6450894B1
JP6450894B1 JP2018555291A JP2018555291A JP6450894B1 JP 6450894 B1 JP6450894 B1 JP 6450894B1 JP 2018555291 A JP2018555291 A JP 2018555291A JP 2018555291 A JP2018555291 A JP 2018555291A JP 6450894 B1 JP6450894 B1 JP 6450894B1
Authority
JP
Japan
Prior art keywords
nonwoven fabric
biocompatible
scaffold
long
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018555291A
Other languages
Japanese (ja)
Other versions
JPWO2018235745A1 (en
Inventor
田畑 泰彦
泰彦 田畑
昭二 上杉
昭二 上杉
政夫 尾井
政夫 尾井
俊樹 早乙女
俊樹 早乙女
耕一郎 中村
耕一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Wool Textile Co Ltd
Original Assignee
Japan Wool Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Wool Textile Co Ltd filed Critical Japan Wool Textile Co Ltd
Application granted granted Critical
Publication of JP6450894B1 publication Critical patent/JP6450894B1/en
Publication of JPWO2018235745A1 publication Critical patent/JPWO2018235745A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/015Natural yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Abstract

本発明は、生体適合ポリマーを主成分とする生体適合長繊維不織布であって、生体適合長繊維不織布を構成する生体適合長繊維は、長さ方向で繊維直径が変化しており、かつ繊維交点が少なくとも部分的に溶着しており、水に濡れてもへたらず、水に濡れると透明になる生体適合長繊維不織布に関する。前記生体適合長繊維不織布は、生体適合ポリマーを含む紡糸液をノズル吐出口3から空気中に押し出し、ノズル吐出口3の後方に位置し、ノズル吐出口3とは非接触状態の流体噴射口5から前方に向けて圧力流体7を噴射し、押し出された紡糸液を圧力流体7に随伴させて繊維形成させ、前記繊維形成した長繊維8を集積させて長繊維不織布9とすることで作製することができる。これにより、医療用及び細胞培養の足場等に有用な成形性と成形安定性の高い生体適合長繊維不織布、その製造方法、細胞培養用立体足場及びこれを用いた細胞培養方法を提供する。The present invention is a biocompatible long-fiber non-woven fabric mainly composed of a bio-compatible polymer, and the bio-compatible long fiber constituting the bio-compatible long-fiber non-woven fabric has a fiber diameter that changes in the length direction and a fiber intersection point. Relates to a biocompatible long-fiber non-woven fabric that is at least partially welded and does not sag when wet, but becomes transparent when wet. The biocompatible continuous fiber non-woven fabric pushes a spinning solution containing a biocompatible polymer into the air from the nozzle discharge port 3, is located behind the nozzle discharge port 3, and is in a non-contact state with the nozzle discharge port 3. The pressure fluid 7 is ejected from the front to the front, the extruded spinning solution is accompanied by the pressure fluid 7 to form fibers, and the long fibers 8 formed by the fibers are accumulated to form a long fiber nonwoven fabric 9. be able to. Thus, a biocompatible long-fiber nonwoven fabric having high moldability and molding stability useful for medical and cell culture scaffolds, a production method thereof, a solid scaffold for cell culture, and a cell culture method using the same.

Description

本発明は医療用及び細胞培養の足場用として好適な生体適合長繊維不織布、その製造方法、細胞培養用立体足場及びこれを用いた細胞培養方法に関する。   The present invention relates to a biocompatible non-woven fabric suitable for medical use and a cell culture scaffold, a method for producing the same, a three-dimensional scaffold for cell culture, and a cell culture method using the same.

繊維シートは、有孔度や比表面積の高さから、医療用及び細胞培養の足場等に有用である。特にゼラチンはこれまでにも医療に広く用いられてきた材料であり、医療機器、医薬品添加剤としての前例があり、生体適合性、細胞親和性、生体吸収性は実証済みである。ゼラチンからなる繊維は、安全性が高く、ゼラチンの化学架橋の程度によって、数日から数か月にわたる生体吸収期間のコントロールや、硬さのコントロールが可能である。例えばゼラチンの綿状成形物は、実際に医療用途において局所止血材として実用化されている。ゼラチン繊維からなる3次元成形体が多く報告されている。例えば、ゼラチンをエレクトロスピニング法で繊維化し、不織布とすることが特許文献1に提案されている。特許文献2には、ゼラチンとポリエチレングリコール等の水溶性直鎖状高分子を含む水溶液を、空気中に押し出して紡糸することが提案されている。特許文献3には、ゼラチン溶液を凝固浴に吐出させてゲル状繊維とし、取り出して延伸し、残存する溶液を除去することが提案されている。   The fiber sheet is useful for medical use and scaffolds for cell culture because of its high porosity and high specific surface area. In particular, gelatin is a material that has been widely used in medicine so far, and has precedents as a medical device and a pharmaceutical additive. Biocompatibility, cell affinity, and bioabsorbability have been demonstrated. Fibers made of gelatin are highly safe, and the bioabsorption period of several days to several months and the hardness can be controlled depending on the degree of chemical crosslinking of gelatin. For example, gelatin-like molded products of gelatin are actually put into practical use as a local hemostatic material in medical applications. Many three-dimensional molded bodies made of gelatin fibers have been reported. For example, Patent Document 1 proposes that gelatin is fiberized by an electrospinning method to form a nonwoven fabric. Patent Document 2 proposes that an aqueous solution containing a water-soluble linear polymer such as gelatin and polyethylene glycol is extruded into the air and spun. Patent Document 3 proposes that a gelatin solution is discharged into a coagulation bath to form a gel fiber, which is taken out and stretched to remove the remaining solution.

特開2014−05519号公報JP 2014-05519 A 特開2012−167397号公報Japanese Patent Application Laid-Open No. 2012-167397 特開2005−120527号公報JP 2005-120527 A

しかし、前記のような従来技術で得られたゼラチン繊維からなる3次元構造体(綿あるいは不織布に代表される)は、力学特性が劣り、水膨潤時の強度が小さく、細胞培養に用いた時に細胞の増殖とともに成形体が変形し、成形体内部の細胞増殖に必要な孔構造がなくなることが問題となっている。このように、医療用及び細胞培養の足場等に有用な成形性と成形安定性の高い不織布としては、細胞培養時に、その内部構造を維持できることが必要不可欠な材料特性であり、そのための力学特性を持つことが必須となっている。   However, the three-dimensional structure (typified by cotton or non-woven fabric) made of gelatin fibers obtained by the prior art as described above has inferior mechanical properties, low strength when swollen in water, and when used for cell culture. As the cell grows, the molded body deforms, and there is a problem that the pore structure necessary for cell growth inside the molded body is lost. As described above, as a nonwoven fabric having high moldability and molding stability useful for medical and cell culture scaffolding, it is an indispensable material property that can maintain its internal structure during cell culture, and mechanical properties for that purpose. It is mandatory to have

本発明は、前記従来の問題を解決するため、医療用及び細胞培養の足場等に有用な成形性と成形安定性の高い生体適合長繊維不織布、その製造方法、細胞培養用立体足場及びこれを用いた細胞培養方法を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a biocompatible long-fiber nonwoven fabric having high moldability and high molding stability useful for medical and cell culture scaffolds, a production method thereof, a three-dimensional scaffold for cell culture, and The cell culture method used is provided.

本発明の生体適合長繊維不織布は、生体適合ポリマーを主成分とする生体適合長繊維不織布であって、前記生体適合長繊維不織布を構成する生体適合長繊維は、長さ方向で繊維直径が変化しており、前記生体適合長繊維不織布を構成する生体適合長繊維は、繊維交点が少なくとも部分的に溶着しており、水に濡れてもへたらず、水に濡れると透明になることを特徴とする。   The biocompatible long fiber nonwoven fabric of the present invention is a biocompatible long fiber nonwoven fabric mainly composed of a biocompatible polymer, and the biocompatible long fiber constituting the biocompatible long fiber nonwoven fabric has a fiber diameter that varies in the length direction. The biocompatible long fibers constituting the biocompatible long-fiber nonwoven fabric are characterized in that the fiber intersections are at least partially welded and do not become dull even when wet, and become transparent when wet. And

本発明の生体適合長繊維不織布の製造方法は、前記の生体適合長繊維不織布の製造方法であって、生体適合ポリマーを含む紡糸液をノズル吐出口から空気中に押し出し、前記ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射し、前記押し出された紡糸液を前記圧力流体に随伴させて繊維形成させ、得られた生体適合長繊維を集積させて不織布とすることを特徴とする。   The method for producing a biocompatible long-fiber nonwoven fabric according to the present invention is a method for producing the biocompatible long-fiber nonwoven fabric described above, in which a spinning solution containing a biocompatible polymer is extruded from the nozzle outlet into the air, and the rear of the nozzle outlet. The body is obtained by ejecting a pressure fluid forward from a fluid ejection port that is not in contact with the nozzle ejection port and forming the fibers by causing the extruded spinning solution to accompany the pressure fluid. It is characterized by accumulating compatible long fibers into a non-woven fabric.

本発明の細胞培養用立体足場は、前記の生体適合長繊維不織布を細胞培養用立体足場とすることを特徴とする。   The three-dimensional scaffold for cell culture of the present invention is characterized in that the biocompatible long fiber nonwoven fabric is a three-dimensional scaffold for cell culture.

本発明の細胞培養方法は、前記の細胞培養用立体足場を使用した細胞培養方法であって、前記足場に細胞を播種した後、細胞播種した足場を液体培地中に入れて、細胞培養することを特徴とする。   The cell culture method of the present invention is a cell culture method using the above-mentioned three-dimensional scaffold for cell culture, wherein cells are seeded on the scaffold, and then the seeded scaffold is placed in a liquid medium and cultured. It is characterized by.

本発明の細胞培養用立体足場は、生体適合ポリマーを主成分とする生体適合長繊維不織布で構成され、前記不織布を構成する生体適合長繊維は、連続する1本の繊維から構成され、一例として長さが数十メートルから数百メートルであり、長さ方向で繊維直径が変化しており、前記不織布を構成する生体適合長繊維は、繊維交点が部分的に溶着していることにより、医療用及び細胞培養の立体足場等に有用な成形性と成形安定性を提供できる。すなわち、生体適合長繊維不織布を構成する生体適合長繊維は太さ斑があり、部分的に溶着していることにより、生体適合長繊維不織布はブリッジ構造となり、嵩高く低密度であり、所望の形状に成形しやすく、かつ成形安定性も高いものとなり、水に濡れてもへたらない。このことが、細胞培養時の不織布の3次元構造の変化や内部構造(空隙)の変化を抑制する。このため、細胞が生体適合長繊維不織布全体に均一に分布して増殖し、細胞の3次元組織化が達成される。通常、細胞が三次元化することにより内部に存在する細胞は、栄養酸素不足で死滅することが問題となっている。しかしながら、本発明のゼラチン長繊維等の生体適合長繊維で構成された不織布で培養された細胞3次元組織体内部の細胞は、死滅せず、細胞からのタンパク質などの正常な生理学的産生による細胞外マトリクス形成が認められた。この理由として、不織布材料がゼラチンハイドロゲル等の生体適合ハイドロゲルであることから、ハイドロゲル層を通しての外部からの栄養酸素の供給が得られたことが考えられる。以前から報告されているハイドロゲル以外の繊維からなる不織布は、このような効果は認められていない。本発明の生体適合長繊維不織布が、ハイドロゲル繊維による不織布であること、不織布作製方法の改良により、水を含んだ場合でもその力学強度が高まり、細胞培養時における不織布の変形の抑制、内部構造(空隙)の維持、細胞親和性の高い生体適合長繊維を用いていることなどの特徴が重なり、細胞の生理学的環境が整えられたことで、細胞培養時に不織布内側及び外側で細胞が増殖でき、細胞の3次元組織化が可能となったと考えられる。細胞の3次元組織化は、細胞研究及び創薬研究に必要な技術である。細胞一つ一つに比べて、細胞が3次元的に相互作用することによって、細胞の機能が増強され、体内での細胞機能に近づくことが分かっているからである。また、本発明の生体適合長繊維不織布は、ハイドロゲルからなる嵩高な三次元材料であり、水や液体培地を含ませて膨潤して足場として使用すると、培養液と酸素が、不織布内のハイドロゲル繊維材料を通して足場全体に回りやすく、栄養と酸素が足場全体に細胞へ効率よく供給され、立体的な細胞培養が可能となる。本発明の生体適合長繊維不織布は、水に濡れても腰が強くしっかりしているため、前記液体培地を攪拌、循環及び振とうから選ばれる少なくとも一つの手段で流動させながら細胞培養することもできる。また、水に濡れると透明であり、顕微鏡観察しやすい。この透明性は、培養液中で倒立顕微鏡により足場の内部まで観察できる程度の透明性である。倒立顕微鏡で観察できる程度の透明性があれば、培養状態を確認でき、好都合である。さらに、不織布は長繊維で構成されているため、繊維が脱落する等の異物混入やごみの発生リスクも低い。加えて、生体適合性もある。また、本発明の生体適合性長繊維不織布の一例では、架橋したハイドロゲルから構成されるため、ハイドロゲルをリン酸緩衝液などで膨潤させる際に、bFGF等の薬剤を加えることで、ハイドロゲル内部に薬剤を取り込ませ、薬剤を徐放する担体としても使用することが可能である。従って本発明の生体適合長繊維不織布は、医療用や細胞培養の足場として好適である。本発明の製造方法は、前記生体適合長繊維不織布をコンタミ等がなく、衛生的にかつ効率よく合理的に製造できる。   The three-dimensional scaffold for cell culture of the present invention is composed of a biocompatible long-fiber nonwoven fabric mainly composed of a biocompatible polymer, and the biocompatible long fiber constituting the non-woven fabric is composed of a single continuous fiber. The length is several tens of meters to several hundred meters, and the fiber diameter is changed in the length direction. The biocompatible long fibers constituting the non-woven fabric are medically bonded because the fiber intersections are partially welded. It is possible to provide moldability and molding stability useful for, for example, a three-dimensional scaffold for cell culture. That is, the biocompatible long fiber that constitutes the biocompatible long fiber non-woven fabric has uneven thickness and is partially welded, so that the biocompatible long fiber non-woven fabric has a bridge structure, is bulky and has a low density, and has a desired density. It is easy to mold into a shape and has high molding stability, and will not drip even when wet. This suppresses a change in the three-dimensional structure of the nonwoven fabric during cell culture and a change in the internal structure (void). For this reason, the cells are uniformly distributed and proliferated throughout the biocompatible long fiber nonwoven fabric, and the three-dimensional organization of the cells is achieved. Usually, when cells become three-dimensional, cells existing inside die due to lack of nutrient oxygen. However, the cells inside the three-dimensional tissue body cultured with a non-woven fabric composed of biocompatible long fibers such as the gelatin long fibers of the present invention do not die, and cells are produced by normal physiological production of proteins from the cells. Outer matrix formation was observed. This is probably because the nonwoven fabric material is a biocompatible hydrogel such as gelatin hydrogel, so that supply of nutrient oxygen from the outside through the hydrogel layer was obtained. Such an effect is not recognized in the nonwoven fabric which consists of fibers other than hydrogel reported previously. The biocompatible long-fiber non-woven fabric of the present invention is a non-woven fabric made of hydrogel fibers, and by improving the non-woven fabric preparation method, the mechanical strength is increased even when water is contained, and the deformation of the non-woven fabric during cell culture is suppressed. (Void) maintenance, biocompatible long fibers with high cell affinity, etc. are overlapped and the physiological environment of the cells is adjusted, so that cells can grow inside and outside the nonwoven fabric during cell culture It is considered that the three-dimensional organization of cells has become possible. The three-dimensional organization of cells is a technique necessary for cell research and drug discovery research. This is because it is known that the cell functions are enhanced by the three-dimensional interaction of the cells compared to the cells one by one and approach the cell functions in the body. The biocompatible long-fiber nonwoven fabric of the present invention is a bulky three-dimensional material made of hydrogel. When used as a scaffold by adding water or a liquid medium, the culture solution and oxygen are transferred to the hydrogel in the nonwoven fabric. It is easy to go around the entire scaffold through the gel fiber material, and nutrients and oxygen are efficiently supplied to the cells throughout the scaffold, enabling three-dimensional cell culture. Since the biocompatible long-fiber nonwoven fabric of the present invention is firm and firm even when wet with water, cell culture can be performed while flowing the liquid medium by at least one means selected from stirring, circulation and shaking. it can. In addition, it is transparent when wet and easy to observe with a microscope. This transparency is such that the inside of the scaffold can be observed with an inverted microscope in the culture solution. If it is transparent enough to be observed with an inverted microscope, the culture state can be confirmed, which is convenient. Furthermore, since the nonwoven fabric is composed of long fibers, there is a low risk of foreign matter contamination such as fiber dropping and the occurrence of dust. In addition, it is biocompatible. In addition, since an example of the biocompatible long fiber nonwoven fabric of the present invention is composed of a crosslinked hydrogel, when the hydrogel is swollen with a phosphate buffer or the like, by adding a drug such as bFGF, the hydrogel It can also be used as a carrier for taking a drug inside and releasing the drug slowly. Therefore, the biocompatible long fiber nonwoven fabric of the present invention is suitable as a scaffold for medical use or cell culture. In the production method of the present invention, the biocompatible long-fiber nonwoven fabric can be reasonably produced hygienically and efficiently without contamination.

図1は本発明の一実施例で得られたゼラチン長繊維不織布の走査型電子顕微鏡(SEM、日立走査型顕微鏡S−2600N、100倍)の写真である。FIG. 1 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, 100 times) of a gelatin long fiber nonwoven fabric obtained in one example of the present invention. 図2は同、ゼラチン長繊維不織布の走査型電子顕微鏡(SEM、日立走査型顕微鏡S−2600N、500倍)の写真である。FIG. 2 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, 500 times) of the gelatin long-fiber nonwoven fabric. 図3は本発明の一実施例で得られたゼラチン長繊維不織布(縦35mm、横25mm、厚さ0.95mm)の写真である。FIG. 3 is a photograph of a gelatin long fiber nonwoven fabric (length 35 mm, width 25 mm, thickness 0.95 mm) obtained in one example of the present invention. 図4は本発明の一実施例で使用する不織布製造装置の模式的説明図である。FIG. 4 is a schematic explanatory view of a nonwoven fabric manufacturing apparatus used in one embodiment of the present invention. 図5は本発明の実施例1のゼラチン長繊維不織布を精製水中で膨潤させ、ピンセットで持った際の形状維持性を示す写真である。FIG. 5 is a photograph showing the shape maintainability when the gelatin long fiber nonwoven fabric of Example 1 of the present invention is swollen in purified water and held with tweezers. 図6は同、実施例2のゼラチン長繊維不織布の形状維持性を示す写真である。FIG. 6 is a photograph showing the shape maintenance of the gelatin long-fiber nonwoven fabric of Example 2. 図7は同、実施例3のゼラチン長繊維不織布の形状維持性を示す写真である。FIG. 7 is a photograph showing the shape maintenance of the gelatin long-fiber nonwoven fabric of Example 3. 図8は同、実施例4のゼラチン長繊維不織布の形状維持性を示す写真である。FIG. 8 is a photograph showing the shape maintaining property of the gelatin long fiber nonwoven fabric of Example 4. 図9は比較例1の精製水中で膨潤させたゼラチンスポンジの形状維持性を示す写真である。FIG. 9 is a photograph showing the shape maintainability of the gelatin sponge swollen in the purified water of Comparative Example 1. 図10は実施例4のゼラチン長繊維不織布製の足場を用いて細胞培養した時の細胞播種直後の倒立顕微鏡観察写真(20倍)である。FIG. 10 is an inverted microscopic photograph (20 ×) immediately after cell seeding when the cells were cultured using the scaffold made of the gelatin long-fiber nonwoven fabric of Example 4. 図11は同、培養7日目の倒立顕微鏡観察写真(20倍)である。FIG. 11 is an inverted microscope observation photograph (20 times) on the seventh day of culture. 図12は比較例1のゼラチンスポンジを足場として用いて細胞培養した時の細胞播種直後の倒立顕微鏡観察写真(10倍)である。FIG. 12 is an inverted microscope observation photograph (10 times) immediately after cell seeding when the cells were cultured using the gelatin sponge of Comparative Example 1 as a scaffold. 図13は比較例2のポリプロピレン不織布を足場として用いて細胞培養した時の細胞播種直後の倒立顕微鏡観察写真(10倍)である。FIG. 13 is an inverted microscope observation photograph (10 times) immediately after cell seeding when the cells were cultured using the polypropylene nonwoven fabric of Comparative Example 2 as a scaffold. 図14は比較例3のポリ乳酸不織布を足場として用いて細胞培養した時の細胞播種直後の倒立顕微鏡観察写真(10倍)である。FIG. 14 is an inverted microscope observation photograph (10 times) immediately after cell seeding when cell culture is performed using the polylactic acid nonwoven fabric of Comparative Example 3 as a scaffold. 図15は実施例4のゼラチン長繊維不織布製の足場を用いて細胞培養を8日間行った時、足場の内部まで、細胞が侵入していることを示すヘマトキシリンエオジン染色した足場切片の光学顕微鏡写真である。光学顕微鏡観察した写真(10倍)を蛍光顕微鏡のソフトウェア上で連結し、全体像とした。FIG. 15 is an optical micrograph of a scaffold section stained with hematoxylin and eosin showing that cells have invaded the inside of the scaffold when cell culture was performed for 8 days using the scaffold made of the gelatin long-fiber nonwoven fabric of Example 4. It is. The photograph (10 times) observed with the optical microscope was connected on the software of the fluorescence microscope to obtain a whole image. 図16は同、光学顕微鏡で観察した部分写真(10倍)である。FIG. 16 is a partial photograph (10 ×) observed with an optical microscope. 図17は比較例2のポリプロピレン不織布を足場として用いて細胞培養を4日間行った時、細胞が足場の外側までしか侵入していないことを示すヘマトキシリンエオジン染色した足場切片の光学顕微鏡写真(4倍)である。FIG. 17 is an optical micrograph (4 ×) of a scaffold section stained with hematoxylin and eosin showing that the cells have penetrated only to the outside of the scaffold when cell culture was performed for 4 days using the polypropylene nonwoven fabric of Comparative Example 2 as a scaffold. ). 図18は実施例4のゼラチン長繊維不織布を足場として用いて細胞培養を12日間行った時の足場の光学顕微鏡観察写真(20倍)である。FIG. 18 is an optical microscope observation photograph (20 ×) of the scaffold when cell culture was performed for 12 days using the gelatin long-fiber nonwoven fabric of Example 4 as the scaffold. 図19は同、実施例4のゼラチン長繊維不織布を足場として用いて細胞培養を12日間行った時の足場内の酸素状態を低酸素マーカーによって観察した蛍光観察顕微鏡写真(明度の高い部分(白色に近い部分):低酸素部位)(20倍)である。FIG. 19 shows a fluorescence observation micrograph (high lightness portion (white portion) when the oxygen state in the scaffold was observed with a hypoxia marker when cell culture was performed for 12 days using the gelatin long-fiber nonwoven fabric of Example 4 as a scaffold. (Part close to): hypoxic site) (20 times). 図20は同、細胞増殖を示すグラフである。FIG. 20 is a graph showing cell proliferation. 図21は、一実施例の生体適合長繊維不織布製の足場を用いて撹拌培養を行う際の細胞培養装置の模式的説明図である。FIG. 21 is a schematic explanatory diagram of a cell culture device when performing agitation culture using a scaffold made of biocompatible long-fiber nonwoven fabric according to one embodiment. 図22は同、撹拌培養中の足場の形態変化(横方向から観察)を示す写真である。FIG. 22 is a photograph showing the change in the shape of the scaffold (observed from the lateral direction) during stirring culture. 図23は同、撹拌培養後、足場の形状が変化していることを示す外観(上方向から観察)を示す写真である。FIG. 23 is a photograph showing an appearance (observed from above) showing that the shape of the scaffold has changed after stirring culture. 図24は同、撹拌培養後、脱細胞処理した足場の外観(上方向から観察)を示す写真である。FIG. 24 is a photograph showing the appearance (observed from above) of the scaffold subjected to decellularization after stirring culture. 図25は同、撹拌培養14日後における足場断面のヘマトキシリンエオジン染色結果(全体像)を示す写真である。FIG. 25 is a photograph showing the result (overall image) of hematoxylin and eosin staining of the cross section of the scaffold 14 days after stirring culture. 図26は同、撹拌培養14日後における足場断面のヘマトキシリンエオジン染色結果(20倍)を示す写真である。FIG. 26 is a photograph showing the result of hematoxylin eosin staining (20 times) of the cross section of the scaffold 14 days after stirring culture. 図27は同、撹拌培養14日後、脱細胞処理した足場断面のヘマトキシリンエオジン染色結果(20倍)を示す写真である。FIG. 27 is a photograph showing the result of hematoxylin and eosin staining (20 times) of a cross-section of a scaffold decellularized after 14 days of stirring culture. 図28は同、撹拌培養25日後における、足場断面のヘマトキシリンエオジン染色結果(全体像)を示す写真である。FIG. 28 is a photograph showing the result of hematoxylin and eosin staining of the scaffold cross section (overall image) after 25 days of stirring culture. 図29は同、撹拌培養25日後における、足場断面のヘマトキシリンエオジン染色結果(20倍)を示す写真である。FIG. 29 is a photograph showing the result of hematoxylin and eosin staining (20 times) of the cross section of the scaffold after 25 days of stirring culture. 図30は同、撹拌培養25日後における、脱細胞処理した足場断面のヘマトキシリンエオジン染色結果(全体像)を示す写真である。FIG. 30 is a photograph showing the result of hematoxylin and eosin staining (overall image) of the cross section of the scaffold subjected to decellularization after 25 days of stirring culture. 図31は同、撹拌培養25日後における、脱細胞処理した足場断面のヘマトキシリンエオジン染色結果(20倍)を示す写真である。FIG. 31 is a photograph showing the result of hematoxylin and eosin staining (20 ×) of the cross section of the scaffold subjected to decellularization after 25 days of stirring culture. 図32は同、撹拌培養14日後における、足場断面の生細胞の蛍光顕微鏡観察像(全体像)を示す写真である。FIG. 32 is a photograph showing a fluorescence microscope observation image (overall image) of a living cell having a cross section of the scaffold 14 days after stirring culture. 図33は同、撹拌培養25日後における、足場断面の死細胞の蛍光顕微鏡観察像(全体像)を示す写真である。FIG. 33 is a photograph showing a fluorescence microscope observation image (overall image) of dead cells on the cross section of the scaffold after 25 days of stirring culture. 図34は同、撹拌培養25日後における、足場断面の生細胞の蛍光顕微鏡観察像(全体像)を示す写真である。FIG. 34 is a photograph showing a fluorescence microscope observation image (overall image) of the living cells of the cross section of the scaffold after 25 days of stirring culture. 図35は同、撹拌培養25日後における、足場断面の死細胞の蛍光顕微鏡観察像(全体像)を示す写真である。FIG. 35 is a photograph showing a fluorescence microscope observation image (overall image) of dead cells on the cross section of the scaffold after 25 days of stirring culture. 図36は、本発明の一実施例のゼラチン長繊維不織布製の足場を複数枚積層して細胞培養する工程説明図である。FIG. 36 is an explanatory diagram of a process for culturing cells by laminating a plurality of scaffolds made of gelatin long-fiber nonwoven fabric according to one embodiment of the present invention. 図37は、実施例6のゼラチン長繊維不織布を精製水中で膨潤させ、ピンセットで持った際の形状維持性を示す写真である。FIG. 37 is a photograph showing the shape maintainability when the gelatin long-fiber nonwoven fabric of Example 6 was swollen in purified water and held with tweezers. 図38は、足場をピンセットで把持した際に形状維持性が良好であるが、屈曲している例を示す写真である。FIG. 38 is a photograph showing an example in which the shape maintaining property is good when the scaffold is grasped with tweezers but is bent. 図39は、実施例6のゼラチン長繊維不織布製の足場を用いた積層培養時の足場と細胞シートの積層体の外観(上方向から観察)を示す光学顕微鏡(4倍)写真を蛍光顕微鏡のソフトウェア上で連結し、全体像としたものである。FIG. 39 is an optical microscope (4 ×) photograph showing the appearance (observed from above) of the laminate of the scaffold and the cell sheet during the lamination culture using the gelatin long-fiber nonwoven fabric scaffold of Example 6; It is connected on the software to make a whole picture. 図40は同、積層体断面のヘマトキシリンエオジン染色結果断面を示す写真(4倍)である。FIG. 40 is a photograph (4 times) showing a cross section of the laminate cross section as a result of staining with hematoxylin and eosin. 図41は、片持ち梁によるハンドリング性の評価におけるハンドリング性良好の例を示す写真である。FIG. 41 is a photograph showing an example of good handling properties in the evaluation of handling properties by cantilever beams. 図42は同、ハンドリング性不良の例を示す写真である。FIG. 42 is a photograph showing an example of poor handling properties. 図43は、ゼラチン長繊維不織布製の足場をピンセットで把持する際のハンドリング性と厚さ及び密度との関係を示すグラフである。FIG. 43 is a graph showing the relationship between handling property, thickness, and density when a scaffold made of gelatin long fiber nonwoven fabric is held with tweezers.

本発明の生体適合長繊維不織布は、長繊維で構成される不織布である。繊維の長さは数メートル〜数千メートルが好ましい。長繊維はメルトブロー法で製造できる。本発明で用いるメルトブロー法は、生体適合ポリマーを含む紡糸液をノズル吐出口から押し出し、ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射し、前記押し出された紡糸液を前記圧力流体に随伴させて乾式でダイレクトに繊維化し、得られた生体適合長繊維を集積させて不織布にすることから、コンタミ(夾雑物)の発生は防止され、衛生的に製造できる。この長繊維は非分割繊維であり、紡糸後に分割などの処理はされていない。この不織布は紡糸後に繊維を集積(堆積)させる時に繊維同士が、水分を含んだ状態で積層されるため、溶着したり互いに絡んで一体化されている。繊維を堆積させる際の捕集距離を変えることで、容易に不織布密度を変えることができる。   The biocompatible long fiber nonwoven fabric of the present invention is a nonwoven fabric composed of long fibers. The length of the fiber is preferably several meters to several thousand meters. Long fibers can be produced by the melt blow method. In the melt blow method used in the present invention, a spinning solution containing a biocompatible polymer is extruded from a nozzle discharge port, is located behind the nozzle discharge port, and is pressured forward from a fluid discharge port in a non-contact state with the nozzle discharge port. Contamination (contamination) is generated by injecting the fluid, making the extruded spinning solution accompanying the pressure fluid directly into a dry fiber, and accumulating the resulting biocompatible long fibers into a non-woven fabric. Is prevented and can be manufactured hygienically. This long fiber is a non-divided fiber and is not subjected to a treatment such as division after spinning. In this nonwoven fabric, when fibers are accumulated (deposited) after spinning, the fibers are laminated in a state containing moisture, so that they are welded or entangled with each other. The nonwoven fabric density can be easily changed by changing the collection distance when the fibers are deposited.

これに対して従来のメルトブロー法は、紡糸液のノズル吐出口の周囲から圧力空気を噴射するため、紡糸液が圧力空気噴射口に漏れ出すことがあり、長期間溜まった紡糸液が製品中にコンタミ(夾雑物)となって入り込み、製品汚染になってしまう現象がみられた。   In contrast, the conventional melt-blowing method injects pressurized air from around the nozzle outlet of the spinning solution, so the spinning solution may leak into the pressure-air injection port, and the spinning solution that has accumulated for a long period of time is contained in the product. There was a phenomenon of contamination as a contaminant and product contamination.

本発明において、生体適合長繊維不織布は生体適合ポリマーを主成分とする。ここで主成分とは、生体適合ポリマーを90質量%以上含むことを言う。10質量%以下の成分は、架橋剤、薬剤、他の添加剤等であってもよい。実質的に100質量%の生体適合ポリマーであってもよい。生体適合ポリマーは市販品を使用できる。   In the present invention, the biocompatible long fiber nonwoven fabric has a biocompatible polymer as a main component. Here, the main component means that 90% by mass or more of the biocompatible polymer is contained. The component of 10% by mass or less may be a crosslinking agent, a drug, another additive, and the like. The biocompatible polymer may be substantially 100% by mass. A commercially available biocompatible polymer can be used.

前記生体適合長繊維不織布を構成する生体適合長繊維は、長さ方向で繊維直径が変化している。長さ方向で繊維直径が変化することは、ノズルから吐出した紡糸液を圧力流体(例えば、圧空)に随伴させて紡糸するため、圧力流体の乱れ(乱流)により生ずる。また、長さ方向で繊維直径が変化することは、複数のノズルを使用した時に各ノズルの吐出速度及び/又は圧力流体の流速が異なる際にも生ずる。   The biocompatible long fibers constituting the biocompatible long fiber nonwoven fabric have a fiber diameter that changes in the length direction. The change in the fiber diameter in the length direction is caused by the turbulence (turbulent flow) of the pressure fluid because the spinning solution discharged from the nozzle is spun along with the pressure fluid (for example, pressurized air). Further, the change in the fiber diameter in the length direction also occurs when the discharge speed of each nozzle and / or the flow rate of the pressure fluid are different when a plurality of nozzles are used.

前記生体適合長繊維不織布を構成する生体適合長繊維は、繊維交点が部分的に溶着している。この部分的溶着は、圧力流体によって吹き飛ばされたゼラチン長繊維等の生体適合長繊維が堆積する際に、完全に固化していない状態の時に発現する。この部分的溶着により、生体適合長繊維不織布はブリッジ構造となり、嵩高く低密度であり、所望の形に成形しやすく、かつ成形安定性も高いものとなる。本発明において、「繊維交点が少なくとも部分的に溶着している」とは、生体適合長繊維不織布が水に濡れてもへたらない程度に溶着していることを意味し、生体適合長繊維不織布が水に濡れてもへたらない程度に繊維交点の一部が溶着してもよく、繊維交点の全部が溶着してもよい。   In the biocompatible long fibers constituting the biocompatible long fiber nonwoven fabric, the fiber intersections are partially welded. This partial welding occurs when biocompatible long fibers such as gelatin long fibers blown away by the pressure fluid are deposited and are not completely solidified. By this partial welding, the biocompatible long-fiber non-woven fabric has a bridge structure, is bulky and has a low density, is easily molded into a desired shape, and has high molding stability. In the present invention, “the fiber intersection is at least partially welded” means that the biocompatible long fiber nonwoven fabric is welded to the extent that it does not sag even when wet. Some of the fiber intersections may be welded to such an extent that they do not sag even when wet with water, or all of the fiber intersections may be welded.

前記生体適合長繊維は、平均繊維直径(D)が1〜70μmの範囲にあり、D±0.5Dの範囲で繊維直径が変化していることが好ましい。平均繊維直径(D)のさらに好ましい範囲は5〜60μmである。前記生体適合長繊維の直径とその変化の度合いが前記のとおりであると、医療用及び細胞培養の足場等にさらに有用である。本発明において、「平均繊維直径」及び「その変化の度合い」は、それぞれ、生体適合長繊維不織布の走査型電子顕微鏡写真(500倍)から任意に選択した50本の繊維の直径の平均値及びその変化の度合いを意味する。   The biocompatible continuous fiber preferably has an average fiber diameter (D) in the range of 1 to 70 μm, and the fiber diameter is changed in the range of D ± 0.5D. A more preferable range of the average fiber diameter (D) is 5 to 60 μm. When the diameter of the biocompatible long fiber and the degree of change thereof are as described above, it is further useful for medical use and cell culture scaffolds. In the present invention, “average fiber diameter” and “degree of change” are respectively the average value of the diameters of 50 fibers arbitrarily selected from scanning electron micrographs (500 times) of biocompatible long-fiber nonwoven fabrics, and It means the degree of change.

前記生体適合長繊維は、実質的に未延伸状態であることが好ましい。前記において、実質的に未延伸状態とは、機械的延伸を受けていない状態をいう。ノズルから吐出した紡糸液を圧空に随伴させて吹き飛ばすと繊維は細くなるが、実質的に未延伸状態である。   The biocompatible continuous fiber is preferably substantially unstretched. In the above, the substantially unstretched state refers to a state in which mechanical stretch has not been applied. When the spinning solution discharged from the nozzle is blown off by accompanying the compressed air, the fibers become thin but are substantially unstretched.

前記生体適合長繊維不織布は、水に濡れてもへたらない。本発明において、「水に濡れてもへたらない」とは、生体適合長繊維不織布の水で飽和状態まで膨潤した後における1.0kPaの圧縮応力時の圧縮変形率(以下において、単に「圧縮変形率」とも記す。)が40%以下であることを意味する。前記飽和状態とは、水が最大限に含まれた状態であり、水の含有量が一定限度にとどまりそれ以上増えない状態を意味する。前記生体適合長繊維不織布の圧縮変形率は、40%以下であることが好ましく、35%以下であることがより好ましく、30%以下がさらに好ましい。なお、前記生体適合長繊維不織布の圧縮変形率の下限は特に限定されないが、例えば、1%以上であることが好ましく、5%以上であることがより好ましい。また、前記生体適合長繊維不織布は、水に濡れてもへたらない観点から、水で飽和状態まで膨潤した後における初期弾性率(以下において、単に「初期弾性率」とも記す))が0.30kPa以上であることが好ましく、より好ましくは0.35kPa以上であることが好ましい。なお、前記生体適合長繊維不織布の初期弾性率の上限は特に限定されないが、例えば、20kPa以下であることが好ましく、10kPa以下であることがより好ましい。本発明において、圧縮変形率は、水で飽和状態まで膨潤した後の生体適合長繊維不織布において、無荷重の時の厚さを(H1)とし、1.0kPaの圧縮応力時の厚さを(H2)とした場合、下記式で算出したものである。水で膨潤した後の圧縮変形率が上述した範囲であると、水に濡れてもへたらない。本発明において、初期弾性率は、ひずみ1〜5%の圧縮弾性率を意味する。圧縮試験は、後述のとおりに行う。
圧縮変形率(%)=100−{(H2/H1)×100}
The biocompatible long-fiber nonwoven fabric does not drip even when wet. In the present invention, “does not drip even when wet with water” means a compressive deformation rate at a compressive stress of 1.0 kPa after swelling to a saturated state of a biocompatible non-woven fabric with water (hereinafter simply referred to as “compression”). It is also referred to as “deformation rate”.) Means 40% or less. The saturated state is a state in which water is contained to the maximum extent, and means a state in which the water content remains at a certain limit and does not increase further. The compressive deformation rate of the biocompatible long fiber nonwoven fabric is preferably 40% or less, more preferably 35% or less, and further preferably 30% or less. In addition, the lower limit of the compressive deformation rate of the biocompatible continuous fiber nonwoven fabric is not particularly limited, but is preferably 1% or more, and more preferably 5% or more, for example. In addition, the biocompatible long-fiber nonwoven fabric has an initial elastic modulus after swelling to a saturated state with water (hereinafter, also simply referred to as “initial elastic modulus”) from the viewpoint of not sagging even when wet. The pressure is preferably 30 kPa or more, more preferably 0.35 kPa or more. The upper limit of the initial elastic modulus of the biocompatible long fiber nonwoven fabric is not particularly limited, but is preferably 20 kPa or less, and more preferably 10 kPa or less, for example. In the present invention, the compressive deformation rate is defined as the thickness when no load is applied to the biocompatible long-fiber nonwoven fabric after swelling to a saturated state with water (H1), and the thickness at a compressive stress of 1.0 kPa ( In the case of H2), it is calculated by the following formula. When the compressive deformation rate after swelling with water is in the above-described range, it does not drip even when wet. In the present invention, the initial elastic modulus means a compressive elastic modulus with a strain of 1 to 5%. The compression test is performed as described below.
Compression deformation rate (%) = 100 − {(H2 / H1) × 100}

前記生体適合長繊維不織布は、水に濡れると透明になる。この透明性は、培養液中で倒立顕微鏡により足場の内部まで観察できる程度の透明性である。倒立顕微鏡で観察できる程度の透明性があれば、培養状態を確認でき、好都合である。具体的には、本発明において、「水に濡れると透明になる」とは、水で飽和状態まで膨潤した後の生体適合長繊維不織布(厚さ1.5mm)の波長400〜800nmの範囲における平均透過率が10%以上であることを意味する。水で飽和状態まで膨潤した後の生体適合長繊維不織布(厚さ1.5mm)の波長400〜800nmの範囲における平均透過率は、好ましくは15%以上であり、より好ましくは20%以上である。   The biocompatible long-fiber nonwoven fabric becomes transparent when wet with water. This transparency is such that the inside of the scaffold can be observed with an inverted microscope in the culture solution. If it is transparent enough to be observed with an inverted microscope, the culture state can be confirmed, which is convenient. Specifically, in the present invention, “transparent when wet with water” means in a wavelength range of 400 to 800 nm of a biocompatible long-fiber nonwoven fabric (thickness 1.5 mm) after swelling to a saturated state with water. It means that the average transmittance is 10% or more. The average transmittance in the wavelength range of 400 to 800 nm of the biocompatible long-fiber nonwoven fabric (thickness 1.5 mm) after swelling to saturation with water is preferably 15% or more, more preferably 20% or more. .

前記生体適合長繊維不織布は、シート状に形成されているのが好ましい。シート状であれば様々な形状に成形できる。   The biocompatible long fiber nonwoven fabric is preferably formed in a sheet shape. If it is a sheet, it can be formed into various shapes.

前記生体適合長繊維不織布は、架橋しているのが好ましい。これにより形態安定性及び耐熱性を保てる。架橋は加熱脱水架橋が生体安全性のために好ましい。また、架橋前の生体適合長繊維又は生体適合ポリマーは水溶性であるのが好ましい。生体適合ポリマーが水溶性であると、紡糸液として水溶液の状態で紡糸でき、生体に対する安全性を高くすることができる。   The biocompatible long fiber nonwoven fabric is preferably crosslinked. Thereby, shape stability and heat resistance can be maintained. Crosslinking is preferably heat dehydration crosslinking for biological safety. In addition, the biocompatible long fiber or the biocompatible polymer before crosslinking is preferably water-soluble. When the biocompatible polymer is water-soluble, it can be spun in the state of an aqueous solution as a spinning solution, and the safety to the living body can be increased.

前記生体適合ポリマーは、ゼラチン、コラーゲン、キトサン、アルギン酸、ヒアルロン酸、ムコ多糖、デキストラン、カルボキシメチルセルロース、ポリビニルアルコール、ポリエチレングリコールなどの水溶性高分子およびこれらの修飾体からなる群から選ばれる少なくとも一つのポリマーであるのが好ましい。ここで、「修飾体」とは、水溶性を損なわない程度に分子末端や側鎖等を変性することを意味する。これらは水(加熱水を含む)に溶解しやすく、溶液紡糸が可能で、繊維形成後にゲル化し、架橋させることができ、形態安定性の高い不織布に形成できることから好ましい。この中でもゼラチンがより好ましい。   The biocompatible polymer is at least one selected from the group consisting of water-soluble polymers such as gelatin, collagen, chitosan, alginic acid, hyaluronic acid, mucopolysaccharide, dextran, carboxymethylcellulose, polyvinyl alcohol, polyethylene glycol, and modified products thereof. A polymer is preferred. Here, the “modified product” means that the molecular ends, side chains and the like are modified to such an extent that the water solubility is not impaired. These are preferable because they are easily dissolved in water (including heated water), can be solution-spun, can be gelled and cross-linked after fiber formation, and can be formed into a nonwoven fabric with high form stability. Of these, gelatin is more preferable.

本発明の生体適合長繊維不織布の製造方法は、生体適合ポリマーを含む紡糸液をノズル吐出口から空気中に押し出し、前記ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射し、前記押し出された紡糸液を前記圧力流体に随伴させて繊維形成させ、得られた生体適合長繊維を集積させて不織布とする。本発明において、生体適合長繊維不織布の製造に用いる製造装置は、生体適合ポリマーを含む紡糸液をノズル吐出口から空気中に押し出す手段と、前記ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射する手段と、前記押し出された紡糸液が前記圧力流体に随伴されて形成される生体適合長繊維を集積させる手段を含む。圧力流体噴射口は、ノズル吐出口とは独立にかつ非接触状態で後方に配置されているため、紡糸液が混入することはない。このため、製品にコンタミが混入することを防止できる。   In the method for producing a biocompatible long-fiber nonwoven fabric of the present invention, a spinning solution containing a biocompatible polymer is extruded from the nozzle discharge port into the air, is located behind the nozzle discharge port, and is in a non-contact state with the nozzle discharge port. A pressure fluid is ejected forward from the fluid ejection port, the extruded spinning solution is caused to form a fiber along with the pressure fluid, and the obtained biocompatible long fibers are accumulated to form a nonwoven fabric. In the present invention, a manufacturing apparatus used for manufacturing a biocompatible long-fiber nonwoven fabric includes: a means for extruding a spinning solution containing a biocompatible polymer into air from a nozzle discharge port; and the nozzle discharge port located behind the nozzle discharge port. Includes means for ejecting pressure fluid forward from a fluid ejection port in a non-contact state, and means for accumulating biocompatible long fibers formed by the extruded spinning solution accompanying the pressure fluid. Since the pressure fluid injection port is disposed rearwardly in a non-contact state independently of the nozzle discharge port, the spinning solution is not mixed. For this reason, contamination can be prevented from entering the product.

前記紡糸液の温度は、紡糸液が流動する温度以上、かつ生体適合ポリマーの分解温度未満であることが好ましい。紡糸液が流動する温度以上でないと紡糸することはできず、生体適合ポリマーの分解温度以上であると分解物が製品に混入する恐れがある。   The temperature of the spinning solution is preferably not less than the temperature at which the spinning solution flows and less than the decomposition temperature of the biocompatible polymer. If the temperature is not higher than the temperature at which the spinning solution flows, spinning cannot be performed. If the temperature is higher than the decomposition temperature of the biocompatible polymer, the decomposition product may be mixed into the product.

前記圧力流体の噴射圧力は0.05〜0.5MPaであるのが好ましい。前記の範囲であれば、ノズル吐出口から空気中に押し出された紡糸液を吹き飛ばして繊維化できる。また、前記圧力流体の温度は前記紡糸液の温度近辺が好ましく、より好ましくは、圧力流体の温度は紡糸液の温度±50℃であり、さらに好ましくは紡糸液の温度±30℃とする。この状態であればノズル吐出口から空気中に押し出された紡糸液は急冷されず、流動状態で繊維化され、その後空気中で冷却されて固体の繊維が形成される。   The pressure pressure of the pressure fluid is preferably 0.05 to 0.5 MPa. If it is the said range, it can fiberize by blowing off the spinning liquid extruded in the air from the nozzle discharge port. The temperature of the pressure fluid is preferably around the temperature of the spinning solution, more preferably the temperature of the pressure fluid is the temperature of the spinning solution ± 50 ° C., and more preferably the temperature of the spinning solution ± 30 ° C. In this state, the spinning solution extruded from the nozzle discharge port into the air is not rapidly cooled, but is fiberized in a fluidized state, and then cooled in the air to form solid fibers.

前記紡糸液の粘度は、温度60℃において500〜3000mPa・sであるのが好ましい。粘度が前記範囲であれば、繊維化するのに都合がよい。   The spinning solution preferably has a viscosity of 500 to 3000 mPa · s at a temperature of 60 ° C. If the viscosity is within the above range, it is convenient for fiberization.

前記生体適合長繊維不織布は、真空凍結乾燥し、その後、架橋させることが好ましい。真空凍結乾燥するのは、生体適合長繊維(生体適合ポリマー)の変質を防いで急速に乾燥させるためである。その後、架橋させるのは、形態安定性のために好ましい。架橋は、化学試薬を用いた架橋、加熱脱水架橋、光架橋、紫外線、電子線、放射線等のエネルギー線架橋等でもよい。加熱脱水架橋の温度は生体ポリマーの種類によって異なるが、例えば、ガラス転移点以上軟化点以下が好ましい。ゼラチン長繊維の加熱脱水架橋温度は100〜160℃が好ましい。   The biocompatible long fiber nonwoven fabric is preferably freeze-dried in vacuum and then crosslinked. The reason for vacuum freeze-drying is to prevent the deterioration of the biocompatible long fiber (biocompatible polymer) and to dry it rapidly. Then, it is preferable to crosslink because of shape stability. The cross-linking may be cross-linking using a chemical reagent, heat dehydration cross-linking, photo cross-linking, energy ray cross-linking such as ultraviolet ray, electron beam, radiation, or the like. The temperature of heat dehydration crosslinking varies depending on the type of biopolymer, but is preferably, for example, from the glass transition point to the softening point. The heat dehydration crosslinking temperature of the gelatin long fiber is preferably 100 to 160 ° C.

以下、ゼラチン長繊維不織布を例に挙げて説明する。ゼラチン長繊維不織布は、医療用不織布又は細胞培養の足場用に好適である。ゼラチン自体は生体適合性、生分解性があり、長繊維不織布であると使い勝手が良い。   Hereinafter, the gelatin long fiber nonwoven fabric will be described as an example. The gelatin long fiber nonwoven fabric is suitable for a medical nonwoven fabric or a scaffold for cell culture. Gelatin itself is biocompatible and biodegradable, and it is easy to use if it is a non-woven fabric.

ゼラチン長繊維不織布の製造方法は、下記の工程を含む。
1.準備工程
(1)ゼラチンを加熱水に溶解する。溶解温度(加熱水の温度)は20〜90℃が好ましい。溶解した後、フィルトレーションして異物やごみなどを除去してもよい。
(2)その後、減圧又は真空脱泡して溶解空気を除去してもよい。
2.本工程
(1)加熱したゼラチン水溶液(紡糸液)を紡糸機のノズルから吐出する。
(2)前記ノズル周囲から圧力流体を供給し、前記吐出したゼラチン水溶液を前記圧力流体に随伴させて繊維形成させる。
(3)得られたゼラチン長繊維を集積させてゼラチン長繊維不織布とする。
3.後工程
(1)ゼラチン長繊維不織布を真空凍結乾燥する。
(2)乾燥したゼラチン長繊維不織布は所定の大きさにカットし、所定の形状に成形してもよい。成形はプレス成形等を使用できる。
(3)ゼラチン長繊維不織布を架橋させる。架橋は、加熱脱水架橋、熱架橋、電子線架橋、γ線等の放射線架橋、紫外線架橋等を採用できる。
(4)所定形状のゼラチン長繊維不織布、又はシートは滅菌する。滅菌はエチレンオキサイドガス滅菌、水蒸気、電子線照射、γ線等の放射線照射等を使用できる。電子線照射、γ線等の放射線照射の場合は、滅菌とともに架橋を同時にすることもできる。
4.使用時の滅菌
医療用及び細胞培養の足場等に使用する際の準備工程として、エチレンオキサイド滅菌、または蒸気滅菌してもよい。架橋後のゼラチン長繊維不織布は蒸気滅菌できる。
The method for producing a gelatin long fiber nonwoven fabric includes the following steps.
1. Preparation step (1) Gelatin is dissolved in heated water. The dissolution temperature (heated water temperature) is preferably 20 to 90 ° C. After dissolution, it may be filtered to remove foreign matter or dust.
(2) Thereafter, the dissolved air may be removed by decompression or vacuum degassing.
2. Step (1) A heated gelatin aqueous solution (spinning solution) is discharged from a nozzle of a spinning machine.
(2) A pressure fluid is supplied from the periphery of the nozzle, and the discharged gelatin aqueous solution is accompanied with the pressure fluid to form fibers.
(3) The obtained gelatin long fibers are accumulated to obtain a gelatin long fiber nonwoven fabric.
3. Post-process (1) The gelatin long fiber nonwoven fabric is vacuum freeze-dried.
(2) The dried gelatin long fiber nonwoven fabric may be cut into a predetermined size and formed into a predetermined shape. For the molding, press molding or the like can be used.
(3) Crosslinking the gelatin long fiber nonwoven fabric. For crosslinking, heat dehydration crosslinking, thermal crosslinking, electron beam crosslinking, radiation crosslinking such as γ rays, ultraviolet crosslinking, or the like can be employed.
(4) The gelatin long fiber nonwoven fabric or sheet having a predetermined shape is sterilized. Sterilization can be performed using ethylene oxide gas sterilization, water vapor, electron beam irradiation, irradiation with γ rays, or the like. In the case of radiation such as electron beam irradiation and γ-ray irradiation, crosslinking can be carried out simultaneously with sterilization.
4). Sterilization at the time of use As a preparatory step for use in medical or cell culture scaffolding, ethylene oxide sterilization or steam sterilization may be performed. The cross-linked gelatin long fiber nonwoven fabric can be steam sterilized.

前記加熱したゼラチン水溶液(紡糸液)の温度は20〜90℃であることが好ましい。前記の範囲であればゼラチンは安定したゾル状態を維持できる。また、前記加熱したゼラチン水溶液のゼラチン濃度は、ゼラチン水溶液を100質量%とした時、30〜55質量%であることが好ましい。さらに好ましい濃度は35〜50質量%である。前記の濃度であれば安定したゾル状態を維持できる。前記加熱したゼラチン水溶液(紡糸液)の粘度は500〜3000mPa・sが好ましい。前記の粘度であれば安定した紡糸ができる。   The temperature of the heated gelatin aqueous solution (spinning solution) is preferably 20 to 90 ° C. If it is the said range, gelatin can maintain the stable sol state. The gelatin concentration of the heated gelatin aqueous solution is preferably 30 to 55% by mass when the gelatin aqueous solution is 100% by mass. A more preferable concentration is 35 to 50% by mass. If it is the said density | concentration, the stable sol state can be maintained. The viscosity of the heated gelatin aqueous solution (spinning solution) is preferably 500 to 3000 mPa · s. With the above viscosity, stable spinning can be performed.

前記圧力流体の温度は、ゼラチン水溶液(紡糸液)の場合は80〜120℃が好ましい。圧力流体の流速及び周囲雰囲気の温度にもよるが、前記の温度範囲であれば安定した紡糸ができる。圧力流体は空気を使用することが好ましく、圧力は0.1〜1MPaが好ましい。   The temperature of the pressure fluid is preferably 80 to 120 ° C. in the case of an aqueous gelatin solution (spinning solution). Although depending on the flow rate of the pressure fluid and the temperature of the surrounding atmosphere, stable spinning can be performed within the above temperature range. The pressure fluid is preferably air, and the pressure is preferably 0.1 to 1 MPa.

本発明の細胞培養用立体足場は、前記生体適合長繊維不織布を使用して作製する。一例として、架橋させた後の不織布(シート)を所定の形に打ち抜くなどして成形し、細胞培養用足場とする。或いは、所定の液体培地で膨潤した後に、目的の細胞培養用足場とする。前記液体培地で膨潤する前(乾燥状態)の足場の厚さは0.2mm以上であることが好ましく、より好ましくは0.3mm以上10mm以下である。厚さが前記の範囲であれば、水又は液体培地で膨潤した後にピンセットで把持する際に、形状維持性が高いとともに、屈曲しにくくハンドリング性が良好になる。また、積層培養に用いる場合、液体培地で膨潤する前(乾燥状態)の足場の密度は、0.8g/cm3以上が好ましく、より好ましくは1.0g/cm3以上1.3g/cm3以下である。密度が前記の範囲であれば、積層培養に用いる場合、水又は液体培地で膨潤した後にピンセットで把持する際に、形状維持性が高いとともに、屈曲しにくくハンドリング性が良好になる。The three-dimensional scaffold for cell culture of the present invention is produced using the biocompatible long-fiber nonwoven fabric. As an example, the non-woven fabric (sheet) after cross-linking is molded by punching it into a predetermined shape to obtain a cell culture scaffold. Alternatively, after swelling with a predetermined liquid medium, a target scaffold for cell culture is obtained. The scaffold thickness before swelling (dry state) in the liquid medium is preferably 0.2 mm or more, more preferably 0.3 mm or more and 10 mm or less. When the thickness is in the above-mentioned range, when it is swollen with water or a liquid medium and then gripped with tweezers, the shape maintaining property is high, and it is difficult to bend and the handling property is good. Further, when used for layered culture, the density of the scaffold before swelling (dry state) in the liquid medium is preferably 0.8 g / cm 3 or more, more preferably 1.0 g / cm 3 or more and 1.3 g / cm 3. It is as follows. When the density is within the above range, when used for layered culture, when it is swelled with water or a liquid medium and then gripped with tweezers, the shape maintaining property is high and it is difficult to bend and the handling property is good.

前記足場を用いた細胞培養は、特に限定されないが、例えば、下記のように行うことができる。まず、目的とする細胞を液体培地中に、所定の濃度で懸濁し、細胞懸濁液を準備するとともに、同様の液体培地にゼラチン長繊維不織布製の足場等の生体適合長繊維不織布製の足場を入れ、所定時間(例えば30分間)静置して、十分に膨潤させる。次に、膨潤させた生体適合長繊維不織布製の足場を、チューブや培養皿中に入れ、ここに細胞懸濁液を加え、インキュベーター中のシェイカー上で振盪し、細胞播種する。細胞懸濁液は、1種の細胞の懸濁液であってもよく、2種以上の複数種の異なる細胞の懸濁液であってもよい。すなわち、細胞播種は、単一細胞を播種してもよく、異なる細胞種を同時に播種することで行っても良い。細胞播種後、リン酸緩衝液で生体適合長繊維不織布製の足場を洗浄し、未接着の細胞を除去し、細胞播種した生体適合長繊維不織布製の足場を得る。細胞播種した生体適合長繊維不織布製の足場をプレートや培養皿に移し、液体培地を加え、所定条件(例えば温度37℃、5%CO2)のインキュベーター中で静置培養してもよい。液体培地は、2〜3日毎に交換してもよい。或いは、細胞播種した生体適合長繊維不織布製の足場を培養容器に配置し、細胞播種した生体適合長繊維不織布製の足場が浸るまで、液体培地を加え、37℃、5%CO2のインキュベーター中に置いたマグネティックスターラー上で液体培地を撹拌して循環させながら、撹拌培養してもよい。3〜4日毎に、液体培地を半分量除き、等量の新たな液体培地を加えることで、培地交換を行ってもよい。或いは、細胞播種した生体適合長繊維不織布製の足場を培養容器に配置し、細胞播種した生体適合長繊維不織布製の足場が浸るまで、液体培地を加え、37℃、5%CO2のインキュベーター中で振とうさせながら培養してもよい。3〜4日毎に、液体培地を半分量除き、等量の新たな液体培地を加えることで、培地交換を行ってもよい。本発明の生体適合長繊維不織布及び生体適合長繊維不織布を用いた細胞培養用立体足場は、水に濡れると透明になる。この透明性は、培養液中で倒立顕微鏡により足場の内部まで観察できる程度の透明性である。倒立顕微鏡で観察できる程度の透明性があれば、培養状態を確認でき、好都合である。上記のように生体適合長繊維不織布製足場に細胞を播種し、細胞培養を行うと、後述するように3次元細胞凝集体が得られる。得られた3次元細胞凝集体は、単一の細胞の細胞シート又は複数種の細胞の細胞シートと組み合わせて用いることができる。Cell culture using the scaffold is not particularly limited, and can be performed, for example, as follows. First, a target cell is suspended in a liquid medium at a predetermined concentration to prepare a cell suspension, and a scaffold made of biocompatible long fiber nonwoven fabric such as a gelatin long fiber nonwoven fabric scaffold is prepared in the same liquid medium. And let stand for a predetermined time (for example, 30 minutes) to swell sufficiently. Next, a swollen scaffold made of biocompatible long fiber nonwoven fabric is placed in a tube or a culture dish, to which a cell suspension is added, shaken on a shaker in an incubator, and seeded with cells. The cell suspension may be a suspension of one type of cell or a suspension of two or more different types of cells. That is, cell seeding may be performed by seeding a single cell or simultaneously seeding different cell types. After cell seeding, the scaffold made of biocompatible long fiber nonwoven fabric is washed with a phosphate buffer solution to remove unadhered cells, and a cell seeded scaffold made of biocompatible long fiber nonwoven fabric is obtained. The cell-seeded scaffold made of biocompatible long-fiber nonwoven fabric may be transferred to a plate or a culture dish, and a liquid medium may be added, followed by stationary culture in an incubator under predetermined conditions (for example, temperature 37 ° C., 5% CO 2 ). The liquid medium may be changed every 2-3 days. Alternatively, a cell-seeded biocompatible long-fiber nonwoven fabric scaffold is placed in a culture vessel, and a liquid medium is added until the cell-seeded biocompatible long-fiber nonwoven fabric scaffold is immersed, in a 37 ° C., 5% CO 2 incubator. The agitation culture may be performed while the liquid medium is agitated and circulated on a magnetic stirrer. The medium may be changed every 3 to 4 days by removing half of the liquid medium and adding an equal amount of new liquid medium. Alternatively, a cell-seeded biocompatible long-fiber nonwoven fabric scaffold is placed in a culture vessel, and a liquid medium is added until the cell-seeded biocompatible long-fiber nonwoven fabric scaffold is immersed, in a 37 ° C., 5% CO 2 incubator. You may culture | cultivate, making it shake. The medium may be changed every 3 to 4 days by removing half of the liquid medium and adding an equal amount of new liquid medium. The biocompatible long fiber nonwoven fabric and the solid scaffold for cell culture using the biocompatible long fiber nonwoven fabric of the present invention become transparent when wet. This transparency is such that the inside of the scaffold can be observed with an inverted microscope in the culture solution. If it is transparent enough to be observed with an inverted microscope, the culture state can be confirmed, which is convenient. As described above, when cells are seeded on a biocompatible long-fiber nonwoven fabric scaffold and cell culture is performed, a three-dimensional cell aggregate is obtained as described later. The obtained three-dimensional cell aggregate can be used in combination with a cell sheet of a single cell or a cell sheet of a plurality of types of cells.

また、生体適合長繊維不織布製の足場を複数枚積層させて、細胞培養を行ってもよい。例えば、細胞培養して得られた細胞シートと、液体培地で膨潤させた生体適合長繊維不織布製の足場を交互に複数枚積層させて細胞培養を行うことができる。積層培養を行う際、ハンドリング性を高める観点から、上述したとおり、積層培養に用いる場合、液体培地で膨潤する前(乾燥状態)の足場の厚さは0.2mm以上であり、密度は、0.8g/cm3以上であることが好ましい。複数枚細胞培養する方法では細胞シートが同一の細胞種に限られることはなく、複数種の細胞からなる細胞シート及び複数種の異なる細胞の細胞シートを積層して共培養してもよい。Further, cell culture may be performed by laminating a plurality of scaffolds made of biocompatible long-fiber nonwoven fabric. For example, cell culture can be performed by alternately laminating a plurality of cell sheets obtained by cell culture and scaffolds made of biocompatible long-fiber nonwoven fabric swollen with a liquid medium. From the viewpoint of improving the handling property when performing the layered culture, as described above, when used for the layered culture, the thickness of the scaffold before swelling (dry state) in the liquid medium is 0.2 mm or more, and the density is 0. It is preferable that it is 0.8 g / cm 3 or more. In the method of culturing a plurality of cells, the cell sheet is not limited to the same cell type, and a cell sheet composed of a plurality of types of cells and a cell sheet of a plurality of types of different cells may be laminated and co-cultured.

次に図面を用いて説明する。図1は本発明の一実施例で得られたゼラチン長繊維不織布の走査型電子顕微鏡(SEM,日立走査型顕微鏡S−2600N、100倍)の写真である。図2は同、ゼラチン長繊維不織布の走査型電子顕微鏡(SEM,日立走査型顕微鏡S−2600N、500倍)の写真である。不織布を構成するゼラチン長繊維は長さ方向で繊維直径が変化していることが分かる。また、不織布を構成するゼラチン長繊維は、繊維交点が部分的に溶着していることも確認できる。   Next, it demonstrates using drawing. FIG. 1 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, 100 ×) of a gelatin long fiber nonwoven fabric obtained in one example of the present invention. FIG. 2 is a photograph of a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, 500 times) of the gelatin long-fiber nonwoven fabric. It turns out that the fiber diameter of the gelatin long fiber which comprises a nonwoven fabric is changing in the length direction. Moreover, it can also confirm that the fiber intersection is partially welded to the gelatin long fiber which comprises a nonwoven fabric.

図3は本発明の一実施例で得られた長繊維不織布(縦35mm、横25mm、厚さ0.95mm)の写真である。本発明の生体適合長繊維不織布の製造方法によれば、長尺シート状の不織布が得られるが、細胞培養用立体足場にする場合の取り扱い性を考慮して、一例として前記の大きさにすることができる。   FIG. 3 is a photograph of the long fiber nonwoven fabric (length 35 mm, width 25 mm, thickness 0.95 mm) obtained in one example of the present invention. According to the method for producing a biocompatible long-fiber nonwoven fabric of the present invention, a long sheet-shaped nonwoven fabric can be obtained. In view of handling in the case of a three-dimensional scaffold for cell culture, the size is set as an example. be able to.

図4は本発明の一実施例で使用する不織布製造装置の模式的説明図である。不織布製造装置10において、加温槽1に入れた生体適合ポリマーを含む紡糸液2をノズル吐出口3から空気中に押し出す。加温槽1にはコンプレッサー4により、所定の圧力をかけておく。12は保温容器である。
また、ノズル吐出口3の後方に位置し、ノズル吐出口3とは非接触状態の流体噴射口5から前方に向けて圧力流体7を噴射させる。流体噴射口5にはコンプレッサー6から圧力流体(例えば圧空)が供給される。流体噴射口5とノズル吐出口3との距離は5〜30mmが好ましい。
押し出された紡糸液は圧力流体7に随伴されて長繊維8となり、巻き取りロール11上で長繊維不織布9となって堆積される。この時、堆積された長繊維は水分を含んでいたり、完全には固化していないので、繊維交点の少なくとも一部において接している繊維が互いに溶着する。なお、巻き取りロール以外でもネット等で長繊維を捕集し堆積して不織布にしてもよい。
FIG. 4 is a schematic explanatory view of a nonwoven fabric manufacturing apparatus used in one embodiment of the present invention. In the nonwoven fabric manufacturing apparatus 10, the spinning solution 2 containing the biocompatible polymer placed in the heating tank 1 is pushed out into the air from the nozzle discharge port 3. A predetermined pressure is applied to the heating tank 1 by a compressor 4. Reference numeral 12 denotes a heat retaining container.
Further, the pressure fluid 7 is ejected forward from a fluid ejection port 5 that is located behind the nozzle ejection port 3 and is not in contact with the nozzle ejection port 3. A pressure fluid (for example, compressed air) is supplied to the fluid ejection port 5 from the compressor 6. The distance between the fluid ejection port 5 and the nozzle ejection port 3 is preferably 5 to 30 mm.
The extruded spinning solution is accompanied by the pressure fluid 7 to become long fibers 8 and is deposited on the take-up roll 11 as long fiber nonwoven fabrics 9. At this time, since the accumulated long fibers contain moisture or are not completely solidified, the fibers that are in contact at least at a part of the fiber intersections are welded to each other. In addition to the take-up roll, long fibers may be collected and deposited by a net or the like to form a nonwoven fabric.

図21は一実施例の生体適合長繊維不織布製の足場を用いて撹拌培養を行う際の細胞培養装置の模式的説明図である。この撹拌培養試験装置20は、スピナーフラスコ21内に攪拌棒22と攪拌子23を備えており、攪拌棒22を回転させることにより、液体培地24が攪拌される。液体培地24内には例えば22ゲージ針25に通した生体適合長繊維不織布製の足場26を入れ、細胞培養する。フラスコ内には所定の雰囲気ガスを送り込んでもよい。培養液は攪拌以外に、振とうさせてもよく、循環させてもよい。このように細胞培養すると、短期で、大きな3次元細胞凝集体が得られ、その凝集体内部で、細胞は高生存率となる。また、得られた3次元細胞凝集体は、ゼラチン長繊維不織布等の生体適合長繊維不織布製の足場が消失し、細胞及び細胞が産生する細胞外マトリクスと置き換わることもある。さらに、得られた3次元細胞凝集体は、高強度を示す。このようにして得られた3次元細胞凝集体は、その他の単一の細胞の細胞シート又は複数種の細胞の細胞シートと適宜に組み合わせて用いることができる。   FIG. 21 is a schematic explanatory diagram of a cell culture device when performing agitation culture using a scaffold made of a biocompatible long-fiber nonwoven fabric according to one embodiment. The stirring culture test apparatus 20 includes a stirring bar 22 and a stirring bar 23 in a spinner flask 21, and the liquid medium 24 is stirred by rotating the stirring bar 22. For example, a scaffold 26 made of a biocompatible non-woven fabric passed through a 22-gauge needle 25 is placed in the liquid medium 24, and cell culture is performed. A predetermined atmospheric gas may be fed into the flask. In addition to stirring, the culture solution may be shaken or circulated. When cells are cultured in this way, large three-dimensional cell aggregates are obtained in a short period of time, and the cells have a high survival rate within the aggregates. In addition, the obtained three-dimensional cell aggregate may lose a scaffold made of a biocompatible long fiber nonwoven fabric such as a gelatin long fiber nonwoven fabric, and may be replaced with cells and an extracellular matrix produced by the cells. Furthermore, the obtained three-dimensional cell aggregate exhibits high strength. The three-dimensional cell aggregates thus obtained can be used in appropriate combination with other single cell cell sheets or cell sheets of plural types of cells.

図36は本発明の一実施例の生体適合長繊維不織布製の足場を複数枚積層して細胞培養する工程説明図である。(a)に示されているように、所定の液体培地30を入れた培養皿31に所定の濃度の細胞懸濁液32を播種し、所定の時間(例えば10日間)静置培養して、(b)に示されているように、細胞シート33を作製する。次に、ピペットの液流によって、細胞シート33を、(c)に示されているように、培養皿から剥離する。培養皿31から液体培地30を除去した後、所定の液体培地中で所定時間(例えば30分)膨潤させておいた生体適合長繊維不織布製の足場34をピンセットで把持して入れ、(d)に示されているように、剥離された細胞シート33の上に載せる。次に、(e)に示されているように、それらを上から所定の圧力35(例えば1kPa)で数秒押すことで、細胞シート33と足場34を一体化できる。細胞シート33と足場34が一体化したものをピンセットで把持して、(f)に示されているように、複数枚積層する。このようにして3次元化した大きな細胞の塊を作製する。従来は、足場をピペットで吸い上げて積層しており、手間暇がかかるうえ、成功率も低く、熟練を要するという問題があった。これに比較して、本発明のゼラチン長繊維不織布製の足場等の生体適合長繊維不織布製の足場はピンセットで把持できるので、取扱性は飛躍的に向上できる。ピンセットで把持する操作は、例えば、図6−9に示すとおりに行う。図36では細胞シートと足場を積層して複数枚細胞培養する方法を説明しているが、細胞懸濁液を所定の液体培地で所定時間膨潤したゼラチン長繊維不織布製の足場に播種し、所定時間細胞培養して得られた細胞培養後の足場を複数枚積層して、3次元化した大きな細胞の塊を作製してもよい。この所定時間細胞培養して得られた細胞培養後の足場は、足場内部に細胞が浸潤してもよい。また細胞が足場表面に留まるように培養し細胞シート様の構造となってもよい。複数枚細胞培養する方法では細胞シートが同一の細胞種に限られることはなく、複数種の細胞からなる細胞シート及び複数種の異なる細胞の細胞シートを積層して共培養してもよい。   FIG. 36 is an explanatory diagram of a process for culturing cells by laminating a plurality of scaffolds made of biocompatible long-fiber nonwoven fabric according to an embodiment of the present invention. As shown in (a), a cell suspension 32 having a predetermined concentration is seeded in a culture dish 31 containing a predetermined liquid medium 30, and statically cultured for a predetermined time (for example, 10 days), As shown in (b), the cell sheet 33 is produced. Next, as shown in (c), the cell sheet 33 is peeled off from the culture dish by a pipette flow. After removing the liquid medium 30 from the culture dish 31, a scaffold 34 made of a biocompatible non-woven fabric that has been swollen in a predetermined liquid medium for a predetermined time (for example, 30 minutes) is held by tweezers, and (d) As shown in Fig. 4, the cell sheet 33 is placed on the peeled cell sheet 33. Next, as shown in (e), the cell sheet 33 and the scaffold 34 can be integrated by pushing them from above with a predetermined pressure 35 (for example, 1 kPa) for several seconds. A cell sheet 33 and a scaffold 34 integrated with each other are held with tweezers, and a plurality of sheets are laminated as shown in FIG. In this way, a large three-dimensional cell mass is produced. In the past, the scaffolds were sucked up with a pipette and laminated, which required time and labor, a low success rate, and skill. Compared with this, since the scaffold made of biocompatible long fiber nonwoven fabric such as the gelatin long fiber nonwoven fabric scaffold of the present invention can be grasped with tweezers, the handleability can be improved dramatically. The operation of gripping with tweezers is performed as shown in FIGS. 6-9, for example. FIG. 36 illustrates a method of culturing a plurality of cells by laminating cell sheets and scaffolds, but the cell suspension is seeded on a scaffold made of gelatin long-fiber nonwoven fabric that has been swollen for a predetermined time in a predetermined liquid medium. A plurality of scaffolds after cell culture obtained by time cell culture may be laminated to produce a large three-dimensional cell mass. The scaffold after cell culture obtained by culturing cells for a predetermined time may infiltrate cells inside the scaffold. Alternatively, the cells may be cultured so as to remain on the scaffold surface to have a cell sheet-like structure. In the method of culturing a plurality of cells, the cell sheet is not limited to the same cell type, and a cell sheet composed of a plurality of types of cells and a cell sheet of a plurality of types of different cells may be laminated and co-cultured.

以下、実施例を用いてさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, more specific description will be made using examples. In addition, this invention is not limited to the following Example.

測定方法は下記のとおりである。
<繊維直径>
生体適合長繊維不織布の走査型電子顕微鏡(SEM、日立走査型顕微鏡S−2600N、500倍)の写真から任意に選択した50本の繊維を用いて、平均繊維直径及びその変化の度合いを測定した。
<その他>
後述のとおり、JIS又は業界の規定する測定方法に従って測定した。
The measuring method is as follows.
<Fiber diameter>
Using 50 fibers arbitrarily selected from a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N, 500 times) photograph of a biocompatible long-fiber nonwoven fabric, the average fiber diameter and the degree of change were measured. .
<Others>
As described later, the measurement was performed according to a measurement method defined by JIS or industry.

(実施例1)
ゼラチンとして新田ゼラチン社製(ゼリー強度262g 原料:アルカリ処理牛骨)を使用し、ゼラチン:水=3:5の質量比(ゼラチン濃度37.5質量%)とし、温度60℃で溶解した。60℃における粘度は960〜970mPa・sであった。このゼラチン水溶液を紡糸液とし、図4に示す不織布製造装置を使用して長繊維不織布を製造した。紡糸液の温度は60℃、ノズル直径(内径)250μm、吐出圧0.3MPa、ノズル高さ5mm、エアー圧力0.3MPa、エアー温度100℃、流体噴射口5とノズル吐出口3との距離は20mm、捕集距離100cmとし、巻き取りローラ11で長繊維不織布9を巻き取った。
次いで、長繊維不織布は真空凍結乾燥し(−80℃、13Pa、72時間)、その後、加熱脱水架橋させた。架橋条件は温度140℃、48時間とした。
Example 1
As the gelatin, Nitta Gelatin Co., Ltd. (jelly strength: 262 g, raw material: alkali-treated beef bone) was used, and the mass ratio of gelatin: water = 3: 5 (gelatin concentration: 37.5% by mass) was dissolved at 60 ° C. The viscosity at 60 ° C. was 960 to 970 mPa · s. Using this gelatin aqueous solution as a spinning solution, a nonwoven fabric nonwoven fabric was produced using the nonwoven fabric production apparatus shown in FIG. The temperature of the spinning solution is 60 ° C., the nozzle diameter (inner diameter) is 250 μm, the discharge pressure is 0.3 MPa, the nozzle height is 5 mm, the air pressure is 0.3 MPa, the air temperature is 100 ° C., and the distance between the fluid injection port 5 and the nozzle discharge port 3 is The long fiber nonwoven fabric 9 was wound up by a winding roller 11 with a collection distance of 20 mm and a collection distance of 100 cm.
Subsequently, the long fiber nonwoven fabric was freeze-dried in vacuum (−80 ° C., 13 Pa, 72 hours), and then heat dehydrated and crosslinked. The crosslinking conditions were a temperature of 140 ° C. and 48 hours.

得られた実施例1の不織布を走査型電子顕微鏡(SEM、日立走査型顕微鏡S−2600N)で観察し、その結果を図1(100倍)及び図2(500倍)に示した。図2の生体適合長繊維不織布の走査型電子顕微鏡写真(500倍)から任意に選択した50本の繊維直径を測定したところ、前記不織布を構成する長繊維の平均繊維直径は51μmであり、51±20μmの範囲で繊維直径が変化していた。また、図1〜2に示すように構成繊維は、繊維交点において部分的に溶着していた。   The obtained nonwoven fabric of Example 1 was observed with a scanning electron microscope (SEM, Hitachi scanning microscope S-2600N), and the results are shown in FIG. 1 (100 times) and FIG. 2 (500 times). When the diameters of 50 fibers arbitrarily selected from the scanning electron micrograph (500 times) of the biocompatible long fiber nonwoven fabric of FIG. 2 were measured, the average fiber diameter of the long fibers constituting the nonwoven fabric was 51 μm, 51 The fiber diameter changed in the range of ± 20 μm. Moreover, as shown in FIGS. 1-2, the component fiber was welded partially in the fiber intersection.

得られた実施例1の不織布を、直径φ4mmの円柱状に打ち抜いた。打ち抜いた不織布サンプルを、37℃の精製水中で、1晩静置し、飽和状態になるまで十分に膨潤させ、ピンセットで持った際の形状維持性を確認した。その結果を図5に示した。図5に示されているように、実施例1の不織布は膨潤後の形態維持性が良好であり、膨潤後にピンセットで持っても、形状を維持しておりハンドリング性に優れていた。また、膨潤させた不織布サンプルの直径を計測後、(株)山電製クリープメータ物性試験システムRE2−33005Cにて、厚さ(H1)を測定し、直径φ40mmのプランジャーを用い、0.05mm/secで圧縮した。ひずみ1〜5%の圧縮弾性率(kPa)及び、ひずみ10%、20%、30%の中間圧縮応力(kPa)を測定した。また、無荷重時の厚さ(ひずみ0%)を基準とし、圧縮応力1kPa時の厚さの変化率(ひずみ率)を算出し、圧縮変形率とした。ひずみ1〜5%の圧縮弾性率(kPa)は初期弾性率に該当する。また、プレートリーダー社製、型番「Spectra Max i3」)を用いて、膨潤させた不織布サンプル(厚み1.5mm)の波長範囲400〜800nmにおける透過率を10nm間隔で測定し、400〜800nmの範囲における平均透過率を算出した。   The obtained nonwoven fabric of Example 1 was punched into a cylindrical shape having a diameter of 4 mm. The punched nonwoven fabric sample was allowed to stand in purified water at 37 ° C. overnight, fully swollen until saturated, and confirmed for shape maintenance when held with tweezers. The results are shown in FIG. As shown in FIG. 5, the nonwoven fabric of Example 1 had good shape maintenance after swelling, and even when held with tweezers after swelling, the shape was maintained and handling properties were excellent. Further, after measuring the diameter of the swollen nonwoven fabric sample, the thickness (H1) was measured with a creep meter physical property test system RE2-30005C manufactured by Yamaden Co., Ltd., and a 0.05 mm diameter plunger was used. Compressed at / sec. The compression elastic modulus (kPa) with a strain of 1 to 5% and the intermediate compressive stress (kPa) with a strain of 10%, 20% and 30% were measured. Further, the thickness change rate (strain rate) at the time of compressive stress of 1 kPa was calculated based on the thickness at the time of no load (strain 0%) as the compressive deformation rate. A compression elastic modulus (kPa) with a strain of 1 to 5% corresponds to the initial elastic modulus. Moreover, the transmittance | permeability in the wavelength range 400-800nm of the swollen nonwoven fabric sample (thickness 1.5mm) was measured at 10nm intervals using the plate reader company make, model number "Spectra Max i3", and the range of 400-800nm. The average transmittance was calculated.

(実施例2)
吐出圧0.15MPaとした以外は実施例1と同様にして不織布を作製し、実施例1と同様にして物性を測定した。
(Example 2)
A nonwoven fabric was produced in the same manner as in Example 1 except that the discharge pressure was 0.15 MPa, and the physical properties were measured in the same manner as in Example 1.

(実施例3)
吐出圧0.2MPaとした以外は実施例1と同様にして不織布を作製し、実施例1と同様にして物性を測定した。
Example 3
A nonwoven fabric was produced in the same manner as in Example 1 except that the discharge pressure was 0.2 MPa, and the physical properties were measured in the same manner as in Example 1.

(実施例4)
吐出圧0.1MPaとし、エアー圧力0.2MPa、捕集距離50cmとした以外は実施例1と同様にして不織布を作製し、実施例1と同様にして物性を測定した。
(Example 4)
A non-woven fabric was prepared in the same manner as in Example 1 except that the discharge pressure was 0.1 MPa, the air pressure was 0.2 MPa, and the collection distance was 50 cm, and the physical properties were measured in the same manner as in Example 1.

(実施例5)
不織布の作製時間を増やし、膨潤後、無荷重時での厚さが3.03mmになるようにした以外は、実施例4と同様に不織布を作製し、実施例1と同様にして物性測定をした。
(Example 5)
The nonwoven fabric was produced in the same manner as in Example 4 except that the production time of the nonwoven fabric was increased, and after swelling, the thickness at no load was 3.03 mm, and the physical properties were measured in the same manner as in Example 1. did.

(実施例6)
不織布の作製時間を減らし、膨潤後、無荷重時での厚さが0.69mmになるようにした以外は、実施例4と同様に不織布を作製し、物性測定に用いた不織布サンプルの直径φ6mmにした以外は、実施例1と同様にして物性測定をした。
(Example 6)
The nonwoven fabric was prepared in the same manner as in Example 4 except that the nonwoven fabric production time was reduced and the thickness at the time of no load after swelling was 0.69 mm. The physical properties were measured in the same manner as in Example 1 except that.

(比較例1)
比較例1として、熱架橋後のゼラチンスポンジ(ファイザー株式会社、商品名「ゼルフォーム」)を任意の厚さにスライスした後、直径φ4mmに打ち抜き、37℃の精製水中で、1晩静置し、飽和状態になるまでに十分に膨潤させ、実施例1と同様に物性測定した。
(Comparative Example 1)
As Comparative Example 1, gelatin sponge after thermal crosslinking (Pfizer Co., Ltd., trade name “Zelfoam”) was sliced to an arbitrary thickness, punched out to a diameter of 4 mm, and left in purified water at 37 ° C. overnight. The sample was sufficiently swollen until saturated, and the physical properties were measured in the same manner as in Example 1.

以上の条件及び結果は表1にまとめて示す。また、実施例2〜4のゼラチン長繊維不織布、比較例1のゼラチンスポンジ、及び実施例6のゼラチン長繊維不織布を精製水中で膨潤させ、ピンセットで持った際の形状維持性を確認した結果を図6〜9、37にそれぞれ示した。図6〜9、37から分かるように、実施例2〜4のゼラチン長繊維不織布も、実施例1のゼラチン長繊維不織布と同様、膨潤後の形態維持性が良好であり、膨潤後にピンセットで持っても、形状を維持しておりハンドリング性に優れていた。一方、比較例1のゼラチンスポンジは、膨潤後の形態維持性が悪く、膨潤後にピンセットで持った場合、形状が崩れていた。   The above conditions and results are summarized in Table 1. In addition, the results of confirming the shape maintainability when the gelatin long fiber nonwoven fabrics of Examples 2 to 4, the gelatin sponge of Comparative Example 1 and the gelatin long fiber nonwoven fabric of Example 6 were swollen in purified water and held with tweezers were obtained. These are shown in FIGS. As can be seen from FIGS. 6 to 9 and 37, the gelatin long-fiber nonwoven fabrics of Examples 2 to 4 also have good shape retention after swelling, similar to the gelatin long-fiber nonwoven fabric of Example 1, and have tweezers after swelling. However, the shape was maintained and the handling was excellent. On the other hand, the gelatin sponge of Comparative Example 1 had poor shape maintenance after swelling, and its shape collapsed when held with tweezers after swelling.

表1から明らかなとおり、比較例1のゼラチンスポンジは、膨潤前後での厚さを対比すると、膨潤後の方が薄くなった。また、比較例1のゼラチンスポンジは、圧縮特性において、圧縮弾性率が低く、またひずみに伴い、圧縮応力変化が小さいことから、非常に変形しやすく、腰がなかった。一方で、本発明の各実施例のゼラチン長繊維不織布は、膨潤前後の厚さを対比すると、膨潤後の方が、厚くなった。ゼラチンスポンジと比較して、圧縮弾性率が約1.2〜3.0倍高かった。さらに繊維直径が太いほど、ひずみに伴い、圧縮応力が増大しており、変形に強かった。また、1.0kPaの圧縮応力時の圧縮変形率(ひずみ率)は、ゼラチンスポンジは56.8%と大きく変形するが、実施例のゼラチン長繊維不織布は、35%以下であり、腰が強かった。   As is clear from Table 1, the gelatin sponge of Comparative Example 1 was thinner after swelling when compared with the thickness before and after swelling. Further, the gelatin sponge of Comparative Example 1 has a low compressive elasticity modulus in compression characteristics and a small change in compressive stress due to strain. Therefore, the gelatin sponge is very easily deformed and has no stiffness. On the other hand, the gelatin long fiber nonwoven fabric of each Example of the present invention was thicker after swelling when the thickness before and after swelling was compared. Compared to gelatin sponge, the compression modulus was about 1.2 to 3.0 times higher. Furthermore, as the fiber diameter increased, the compressive stress increased with strain and was more resistant to deformation. In addition, the compression deformation rate (strain rate) at a compressive stress of 1.0 kPa is greatly deformed to 56.8% in the gelatin sponge, but the gelatin long-fiber nonwoven fabric of the example is 35% or less and has a strong waist. It was.

(実施例A1)
本実施例は、静置培養による細胞培養試験の例である。実施例4で得られたゼラチン長繊維不織布製の足場(乾燥時の厚さ1.2mm、密度 0.44g/cm3、直径4mm)を用いて細胞の静置培養を行った。
1.試験の内容
(1)細胞培養
(a)ヒト骨髄由来間葉系幹細胞(hMSC)を、液体培地中(ウシ胎児血清10質量%、ペニシリンストレプトマイシン1質量%を含むαMEM培地)に、2.0×106cells/mLとなるよう懸濁し、細胞懸濁液を準備した。
(b)エチレンオキサイドガス滅菌後のゼラチン長繊維不織布製の足場を、液体培地に30分間静置して、十分に膨潤させた。
(c)膨潤させたゼラチン長繊維不織布製の足場を、15mLのPPチューブ中に入れ、ここに細胞懸濁液200μLを加え、37℃インキュベーター中で、オービタルシェイカー上で、300rpm、6時間振盪し、細胞播種した。
(d)細胞播種後、リン酸緩衝液(pH7.4)でゼラチン長繊維不織布製の足場を洗浄し、未接着の細胞を除去し、12ウェルプレートにピンセットで移し、液体培地3mLを加え、温度37℃、5%CO2のインキュベーター中で静置培養した。液体培地は、2〜3日毎に交換した。
(2)培養時の観察
細胞培養中の足場を、ルーチン倒立顕微鏡(カールツァイスマイクロスコピー社製の「Primo Vert」)で観察、撮影した。
(3)細胞数
培養した足場をリン酸緩衝液(pH7.4)で洗浄し、37℃の、0.2mg/mLのドデシル硫酸ナトリウムを含んだ30mMの塩化ナトリウム−クエン酸溶液(SSC溶液)300μL中で、24時間、300rpmで撹拌し、細胞を回収した。回収した細胞の分散液100μLに、30mMの塩化ナトリウム−クエン酸溶液(SSC溶液)400μLを加え、得られた溶液に核染色剤であるHoechest33258(ナカライテスク社)を1μL/mLとなるよう加えた。得られた溶液をEx355nm、Em460nmで蛍光強度測定し、細胞数既知の溶液から得られた標準線から、細胞数を求めた。
(4)足場内の細胞分布
培養した足場をリン酸緩衝液で洗浄後、4%パラホルムアルデヒドで固定し、さらにリン酸緩衝液(pH7.4)で3回洗浄した。洗浄後、OCTコンパウンド(サクラファインテックジャパン社)で包埋後、凍結状態で、円柱状の足場の直径と垂直方向に、切片を作製した。凍結切片をヘマトキシリンエオジン染色し、足場内の細胞分布の仕方を光学顕微鏡(株式会社キーエンス社製、型番「BZ−X710」)観察した。
(5)足場内の低酸素状態の評価
細胞培養中の液体培地を取り除き、新たに加えたαMEM培地に、Hypoxia Probe LOX−1(ORGANOGENIX社)を所定量加え、一晩インキュベートした。培養中の足場を、蛍光顕微鏡(株式会社キーエンス製の「BZ−X710」)で、Ex510−560nm、Em580nmで蛍光観察した。Image Jでコントラストを調整した。
(Example A1)
This example is an example of a cell culture test by stationary culture. The cells were statically cultured using the scaffold made of the gelatin long-fiber nonwoven fabric obtained in Example 4 (dry thickness 1.2 mm, density 0.44 g / cm 3 , diameter 4 mm).
1. Details of test (1) Cell culture (a) Human bone marrow-derived mesenchymal stem cells (hMSC) were placed in a liquid medium (αMEM medium containing 10% by mass of fetal bovine serum and 1% by mass of penicillin streptomycin) at 2.0 ×. A cell suspension was prepared by suspending to 10 6 cells / mL.
(B) The gelatin long fiber non-woven fabric scaffold after sterilization with ethylene oxide gas was allowed to stand in a liquid medium for 30 minutes to be sufficiently swollen.
(C) Place the swollen gelatin long fiber non-woven scaffold into a 15 mL PP tube, add 200 μL of the cell suspension, and shake in an incubator at 37 ° C. on an orbital shaker at 300 rpm for 6 hours. Cell seeding.
(D) After cell seeding, the gelatin long fiber nonwoven fabric scaffold was washed with phosphate buffer (pH 7.4), unadhered cells were removed, transferred to a 12-well plate with tweezers, 3 mL of liquid medium was added, The culture was stationary in an incubator at a temperature of 37 ° C. and 5% CO 2 . The liquid medium was changed every 2-3 days.
(2) Observation during culture The scaffold during cell culture was observed and photographed with a routine inverted microscope (“Primo Vert” manufactured by Carl Zeiss Microscopy).
(3) Number of cells The cultured scaffold was washed with a phosphate buffer (pH 7.4), and a 30 mM sodium chloride-citrate solution (SSC solution) containing 0.2 mg / mL sodium dodecyl sulfate at 37 ° C. The cells were collected by stirring at 300 rpm in 300 μL for 24 hours. To 100 μL of the collected cell dispersion, 400 μL of 30 mM sodium chloride-citric acid solution (SSC solution) was added, and Hoech33258 (Nacalai Tesque), which is a nuclear stain, was added to the resulting solution to 1 μL / mL. . The obtained solution was subjected to fluorescence intensity measurement at Ex 355 nm and Em 460 nm, and the cell number was determined from a standard line obtained from a solution with a known cell number.
(4) Cell distribution in the scaffold The cultured scaffold was washed with a phosphate buffer, fixed with 4% paraformaldehyde, and further washed three times with a phosphate buffer (pH 7.4). After washing, after embedding with an OCT compound (Sakura Finetech Japan Co., Ltd.), a slice was prepared in a frozen state in a direction perpendicular to the diameter of the columnar scaffold. The frozen section was stained with hematoxylin and eosin, and the manner of cell distribution in the scaffold was observed with an optical microscope (manufactured by Keyence Corporation, model number “BZ-X710”).
(5) Evaluation of hypoxic condition in the scaffold The liquid medium in the cell culture was removed, and a predetermined amount of Hypoxia Probe LOX-1 (Organogenix) was added to the newly added αMEM medium and incubated overnight. The scaffold in culture was observed with a fluorescence microscope ("BZ-X710" manufactured by Keyence Corporation) at Ex510-560 nm and Em580 nm. The contrast was adjusted with Image J.

(実施例A2)
実施例4で得られたゼラチン長繊維不織布製の足場に代わりに、実施例2で得られたゼラチン長繊維不織布製の足場を用いた以外は、実施例A1に記載のとおりに細胞培養を行った。
(Example A2)
Cell culture was performed as described in Example A1, except that the gelatin long-fiber nonwoven fabric scaffold obtained in Example 2 was used instead of the gelatin long-fiber nonwoven fabric scaffold obtained in Example 4. It was.

(比較例A1〜A3)
実施例4で得られたゼラチン長繊維不織布製の足場に代わりに、比較例1のゼラチンスポンジ製の足場(比較例A1)、比較例2として繊維径40μmのポリプロピレン長繊維不織布製の足場(比較例A2)、比較例3として繊維径2μmのポリ乳酸長繊維不織布製の足場(比較例A3)を用いた以外は、実施例A1に記載のとおりに細胞培養を行った。
(Comparative Examples A1 to A3)
Instead of the gelatin long-fiber nonwoven fabric scaffold obtained in Example 4, the gelatin sponge scaffold of Comparative Example 1 (Comparative Example A1), and Comparative Example 2 made of a polypropylene long-fiber nonwoven fabric scaffold (Comparative Example 2) Cell culture was performed as described in Example A1 except that as a comparative example 3, a scaffold made of a polylactic acid long fiber nonwoven fabric having a fiber diameter of 2 μm (comparative example A3) was used.

2.結果
(1)細胞培養及び培養時の観察性
図10に実施例4のゼラチン長繊維不織布製の足場を用いて細胞培養した時の細胞播種直後の倒立顕微鏡観察写真(20倍)を示し、図11に同培養7日目の倒立顕微鏡観察写真(20倍)を示した。図10及び図11から分かるように、実施例4のゼラチン長繊維不織布製の足場は、培養液中で透明で、細胞培養の様子が観察できた。また、細胞播種後は、ゼラチン長繊維の交点に細胞接着が見られ、培養7日目には繊維間隙を細胞が覆い尽くした。一方、比較例1のゼラチンスポンジの足場を用いた比較例A1(図12)、比較例2のポリプロピレン不織布製の足場を用いた比較例A2(図13)、比較例3のポリ乳酸不織布製の足場を用いた比較例A3で(図14)は、細胞培養時に光が足場を透過せず、細胞の状態を観察できなかった。実施例で得られたゼラチン長繊維不織布を用いた足場は、細胞培養しながら細胞形態の観察が可能であるため、研究用途に使いやすいことが確認できた。
(2)細胞数
表2及び図20に実施例2で得られたゼラチン長繊維不織布製の足場及び実施例4で得られたゼラチン長繊維不織布製の足場を用いた場合の細胞増殖データのデータを示す。実施例4のゼラチン長繊維不織布製の足場を用いた場合は、培養7日目で、細胞播種後の約3.5倍、培養14日目で細胞播種後の約8.2倍、培養21日目で細胞播種後の約19.5倍に細胞増殖した。
2. Results (1) Cell culture and observability during culture FIG. 10 shows an inverted microscope observation photograph (20 times) immediately after cell seeding when the cells were cultured using the gelatin long-fiber nonwoven fabric scaffold of Example 4. 11 shows an inverted microscope observation photograph (20 times) on the seventh day of the same culture. As can be seen from FIGS. 10 and 11, the gelatin long-fiber nonwoven fabric scaffold of Example 4 was transparent in the culture medium, and the state of cell culture could be observed. Further, after cell seeding, cell adhesion was observed at the intersection of the gelatin long fibers, and the cells covered the fiber gaps on the 7th day of culture. On the other hand, Comparative Example A1 (FIG. 12) using the gelatin sponge scaffold of Comparative Example 1, Comparative Example A2 (FIG. 13) using the polypropylene nonwoven scaffold of Comparative Example 2, and Polylactic acid nonwoven fabric of Comparative Example 3 In Comparative Example A3 using a scaffold (FIG. 14), light did not pass through the scaffold during cell culture, and the state of the cells could not be observed. It was confirmed that the scaffolds using the gelatin long-fiber nonwoven fabric obtained in the Examples can be easily used for research purposes because the cell morphology can be observed while culturing cells.
(2) Number of cells Table 2 and FIG. 20 show data on cell proliferation when using the gelatin long-fiber non-woven scaffolds obtained in Example 2 and the gelatin long-fiber non-woven scaffolds obtained in Example 4. Indicates. When the scaffold made of the gelatin long-fiber nonwoven fabric of Example 4 was used, it was about 3.5 times after cell seeding on day 7 of culture, about 8.2 times after cell seeding on day 14 of culture, culture 21 On the day, the cells proliferated approximately 19.5 times after cell seeding.

(3)足場内の細胞分布
図15に、実施例4で得られたゼラチン長繊維不織布製の足場を用いて8日間細胞培養した後の足場切片のヘマトキシリンエオジン染色し、光学顕微鏡で観察した全体像の写真(10倍で観察した写真をソフトウェア上で連結)を示し、図16にその部分拡大写真(10倍)を示した。図15及び図16から明らかなように、本発明の実施例4で得られたゼラチン長繊維不織布製の足場不織布製の足場を用いて細胞培養した時、足場の内部まで、細胞が侵入していた。一方、比較例2のポリプロピレン不織布製の足場を用いた比較例A2では、細胞侵入は足場の外側までであった(図17:倍率4の写真)。図15〜17において、濃色に見える部分は細胞核である。
(4)足場内の酸素分圧
図18に、実施例4で得られたゼラチン長繊維不織布製の足場を用いて12日間細胞培養を行った時の足場の光学顕微鏡観察写真(20倍)を示した。図19に、実施例4で得られたゼラチン長繊維不織布製の足場を用いて細胞培養を12日間行った後の足場内の酸素状態を低酸素マーカーによって観察した蛍光観察顕微鏡写真(明度の高い部分(白色に近い部分):低酸素部位)(20倍)を示した。実施例4で得られたゼラチン長繊維不織布製の足場は、図18の光学顕微鏡観察写真で繊維と同定できる部位にて、低酸素マーカーによる蛍光強度が弱いことから(図19)、繊維内を酸素が拡散していることが確認できた。本発明の実施例で得られたゼラチン長繊維不織布製の足場は、構成繊維が部分的に溶着し、水に濡れてもへたらないことから、酸素がゼラチン長繊維不織布製の足場全体に行きわたり、立体足場として有用であった。
(3) Cell distribution in scaffold FIG. 15 shows the whole of the scaffold section stained with hematoxylin and eosin after cell culture for 8 days using the gelatin long-fiber nonwoven fabric scaffold obtained in Example 4 and observed with an optical microscope. The photograph of the image (the photograph observed at 10 times is connected on the software) is shown, and the partially enlarged photograph (10 times) is shown in FIG. As is clear from FIGS. 15 and 16, when cells were cultured using the scaffold made of non-woven fabric made of gelatin long fiber nonwoven fabric obtained in Example 4 of the present invention, the cells had penetrated into the inside of the scaffold. It was. On the other hand, in Comparative Example A2 using the scaffold made of polypropylene nonwoven fabric of Comparative Example 2, cell invasion was up to the outside of the scaffold (FIG. 17: photograph at a magnification of 4). 15 to 17, the portion that appears dark is the cell nucleus.
(4) Oxygen partial pressure in the scaffold FIG. 18 shows an optical microscope observation photograph (20 times) of the scaffold when the cell culture was performed for 12 days using the gelatin long fiber nonwoven fabric scaffold obtained in Example 4. Indicated. FIG. 19 is a fluorescence observation micrograph (high lightness) in which the oxygen state in the scaffold was observed with a hypoxic marker after cell culture was performed for 12 days using the gelatin long-fiber nonwoven fabric scaffold obtained in Example 4. Part (part close to white): hypoxic part) (20 times) was shown. Since the scaffold made of the gelatin long-fiber nonwoven fabric obtained in Example 4 can be identified as a fiber in the optical microscope observation photograph of FIG. 18, the fluorescence intensity by the low oxygen marker is weak (FIG. 19). It was confirmed that oxygen was diffusing. In the scaffold made of the gelatin long fiber nonwoven fabric obtained in the examples of the present invention, since the constituent fibers are partially welded and do not sag even when wet with water, oxygen goes to the entire scaffold made of the gelatin long fiber nonwoven fabric. It was useful as a three-dimensional scaffold.

(実施例A3)
本実施例は、撹拌培養による細胞培養試験の例である。
1.試験の内容
(1)ゼラチン長繊維不織布の作製
実施例5で得られたゼラチン長繊維不織布製の足場(乾燥時の厚さ1.6mm、密度0.44g/cm3、直径4mm)を用いて撹拌培養による細胞培養を行った。
(2)細胞培養
上記で得られたゼラチン長繊維不織布製の足場を用い、上述の静置培養と同様の細胞播種方法にて、細胞播種した。図21に示す装置を用いて、細胞播種したゼラチン長繊維不織布製の足場26を、22ゲージの滅菌針25に複数個刺し、足場26間の距離が2mmとなるよう調整した。ゼラチン長繊維不織布製の足場26を刺した22G針25をスピナーフラスコ21の上部のゴム栓に刺し、固定した。ゼラチン長繊維不織布製の足場が浸るまで、液体培地を加え、37℃、5%CO2のインキュベーター中に置いたマグネティックスターラー上で、100rpmで撹拌し、培養液を撹拌させた。3〜4日毎に、液体培地を半分量除き、等量の新たな液体培地を加えることで、培地交換を行った。
(3)細胞生死の確認
培養中の足場を、リン酸緩衝液で洗浄した。リン酸緩衝液に、Calcein AM(Life Technologies社)0.75μL/mL、Ethidium homodimer−1(Life Technologies社)2μL/mLとなるよう、溶液を調整した。24ウェルプレート中に置いた足場に、上記溶液を1mL加え、37℃で30分間インキュベートした。インキュベート後、溶液を除去し、リン酸緩衝液を1mL加え、37℃で5分間インキュベートすることで、洗浄した。洗浄後の足場を、OCTコンパウンド(サクラファインテックジャパン社)で包埋後、凍結状態で、円柱状の足場の直径と垂直方向に、切片を作製した。蛍光顕微鏡(株式会社キーエンス製、型番「BZ−X710」)を用い、生細胞をEx:470nm、Em:525nm、死細胞をEx:545nm、Em:605nmで蛍光観察した。
(4)脱細胞処理
培養した足場をリン酸緩衝液で洗浄し、37℃の、0.2mg/mLのドデシル硫酸ナトリウムを含んだ30mMの塩化ナトリウム―クエン酸(SSC)溶液300μL中で、24時間、300rpmで撹拌し、細胞を抽出し、脱細胞処理を行った。
(5)細胞分布
撹拌培養後の足場及び脱細胞処理を行った足場を、リン酸緩衝液で洗浄後、4%パラホルムアルデヒドで固定し、さらにリン酸緩衝液で3回洗浄した。洗浄後、OCTコンパウンド(サクラファインテックジャパン社)で包埋後、凍結状態で、円柱状の足場の直径と垂直方向になるように、切片を作製した。凍結切片をヘマトキシリンエオジン染色し、足場内の細胞分布の仕方を光学顕微鏡(株式会社キーエンス製、型番「BZ−X710」)で観察した。
(6)足場の強度測定
細胞培養後の足場及び脱細胞処理後の足場の直径を計測し、(株)山電製のクリープメータ物性試験システムRE2−33005Cにて、厚さを測定し、φ40mmのプランジャーを用い、0.05mm/secの速度で圧縮した。ひずみ1〜5%の圧縮弾性率(kPa)及び、ひずみ10%、20%、30%の中間圧縮応力(kPa)を測定した。また無荷重時(ひずみ0%)を基準とし、圧縮応力1kPa時のひずみを寸法変化率とした。
(Example A3)
This example is an example of a cell culture test by stirring culture.
1. Details of test (1) Production of gelatin long fiber nonwoven fabric Scaffold made of gelatin long fiber nonwoven fabric obtained in Example 5 (dry thickness 1.6 mm, density 0.44 g / cm 3 , diameter 4 mm) was used. Cell culture was performed by stirring culture.
(2) Cell culture Cells were seeded by the same cell seeding method as in the stationary culture described above, using the gelatin long-fiber nonwoven fabric scaffold obtained above. Using the apparatus shown in FIG. 21, a plurality of gelatin-spun fiber non-woven scaffolds 26 seeded with cells were stabbed into a 22-gauge sterilization needle 25, and the distance between the scaffolds 26 was adjusted to 2 mm. A 22G needle 25 pierced with a gelatin long fiber non-woven fabric scaffold 26 was stabbed into a rubber stopper at the top of the spinner flask 21 and fixed. The liquid medium was added until the scaffold made of the gelatin long-fiber nonwoven fabric was immersed, and the culture was stirred on a magnetic stirrer placed in a 37 ° C., 5% CO 2 incubator at 100 rpm. Every 3 to 4 days, half of the liquid medium was removed and an equal amount of new liquid medium was added to change the medium.
(3) Confirmation of cell viability The scaffold in culture was washed with a phosphate buffer. The solution was adjusted so that it might become Calcein AM (Life Technologies) 0.75 microliters / mL and Ethium homodimer-1 (Life Technologies) 2 microliters / mL to a phosphate buffer solution. 1 mL of the above solution was added to a scaffold placed in a 24-well plate and incubated at 37 ° C. for 30 minutes. After the incubation, the solution was removed, and 1 mL of phosphate buffer was added, followed by washing at 37 ° C. for 5 minutes for washing. After washing, the scaffold was embedded with OCT compound (Sakura Finetech Japan Co., Ltd.), and then frozen and sliced in the direction perpendicular to the diameter of the cylindrical scaffold. Using a fluorescence microscope (manufactured by Keyence Corporation, model number “BZ-X710”), live cells were observed for fluorescence at Ex: 470 nm, Em: 525 nm, and dead cells were observed at Ex: 545 nm, Em: 605 nm.
(4) Decellularization treatment The cultured scaffolds were washed with a phosphate buffer solution, and the cells were washed in a 30 mM sodium chloride-citrate (SSC) solution (300 μL) containing 0.2 mg / mL sodium dodecyl sulfate at 37 ° C. The cells were agitated at 300 rpm for a period of time to extract the cells and perform decellularization treatment.
(5) Cell distribution The scaffold after stirring culture and the scaffold subjected to the decellularization treatment were washed with a phosphate buffer, fixed with 4% paraformaldehyde, and further washed three times with a phosphate buffer. After washing, after embedding with an OCT compound (Sakura Finetech Japan Co., Ltd.), a slice was prepared in a frozen state so as to be perpendicular to the diameter of the cylindrical scaffold. The frozen section was stained with hematoxylin and eosin, and the manner of cell distribution in the scaffold was observed with an optical microscope (manufactured by Keyence Corporation, model number “BZ-X710”).
(6) Strength measurement of scaffold The diameter of the scaffold after cell culture and the scaffold after decellularization treatment was measured, and the thickness was measured with a creep meter physical property test system RE2-30005C manufactured by Yamaden Co., Ltd. Were compressed at a speed of 0.05 mm / sec. The compression elastic modulus (kPa) of 1-5% strain and the intermediate compressive stress (kPa) of 10%, 20%, 30% strain were measured. The strain at the time of compressive stress of 1 kPa was defined as the dimensional change rate with no load (strain 0%) as a reference.

2.結果
(1)撹拌培養による足場形状の変化
培養日時の経過により、ゼラチン長繊維不織布製の足場の形状が変化した。図22に、培養中の足場を、横方向からデジタルカメラで撮影した写真を示した。図23に、培養後、足場一つ分を切り出した、細胞足場の外観写真を示した。図24に、脱細胞処理した細胞足場の写真を示した。撹拌培養により、ゼラチン長繊維不織布製の足場は、培養7日目で、ゼラチン長繊維不織布製の足場の角が取れ、14日目以降で直径が小さくなり、白く濁った。培養25日目には、2mm間隔で針に配置した足場同士が繋がり、一体となった。細胞培養後の足場は、脱細胞処理を行っても形状を維持していた。
(2)細胞の分布
図25に、実施例A3において、14日間撹拌培養した後の足場の切片(足場断面)をヘマトキシリンエオジン染色し、光学顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。図26に、その端部における部分拡大写真(20倍)を示した。図25及び26から明らかなように、細胞が足場内部まで侵入しており、特に足場の端部では、細胞がより高密度に増殖していた。図25、26において、濃色に見える部分は細胞核である。
図27に、実施例A3において、14日間撹拌培養後、脱細胞処理した後の足場の切片をヘマトキシリンエオジン染色し、端部を光学顕微鏡で観察した(20倍)を示した。細胞が高密度で増殖した足場端部では、足場を取り除いた後も、ゼラチン繊維間に組織が残存しており、細胞が細胞外マトリクスを産生していることが分かった。
図28に、実施例A3において、25日間撹拌培養した後の足場の切片をヘマトキシリンエオジン染色し、光学顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。図29に、その端部における部分拡大写真(20倍)を示した。図28及び29から明らかなように、細胞が組織中心部まで高密度に増殖した。図28、29において、濃色に見える部分は細胞核である。
図30に、実施例A3において、25日間撹拌培養後、脱細胞処理した後の足場の切片をヘマトキシリンエオジン染色し、光学顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。図31に、その端部及び中心部における部分拡大写真(20倍)を示した。図30及び31より明らかなように、培養25日目には、ゼラチン繊維が見られず、細胞外マトリクスのみが見られるため、細胞が高密度に凝集する中で、ゼラチン長繊維不織布が分解し、細胞が産生した細胞外マトリクスとすべて置き換わったことが分かった。
(3)細胞生死
図32に、実施例A3において、14日間撹拌培養した後の足場の切片の生細胞を蛍光顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。生細胞部位にて、蛍光強度が強いため、明度の高い部位(白色に近い部位)が、生細胞である。
図33に、実施例A3において、14日間撹拌培養した後の足場の切片の死細胞を蛍光顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。死細胞部位にて、蛍光強度が強いため、明度の高い部位(白色に近い部位)が、死細胞部位である。
図32〜33より明らかなように、ゼラチン長繊維不織布内部では、生細胞が多くみられ、死細胞がほぼ見られない。ゼラチン長繊維不織布を細胞培養足場とすることで、3次元の細胞凝集体においても、組織中心部で細胞が、高い生存率を示すことが分かった。
図34に、実施例A3において、25日間撹拌培養した後の足場の切片の生細胞を蛍光顕微鏡で観察した全体像の写真(10倍)で観察し、ソフトウェア上で連結)を示した。生細胞部位にて、蛍光強度が強いため、明度の高い部位(白色に近い部位)が、生細胞である。
図35に、実施例A3において、25日間撹拌培養した後の足場の切片の死細胞を蛍光顕微鏡で観察した全体像の写真(10倍で観察し、ソフトウェア上で連結)を示した。死細胞部位にて、蛍光強度が強いため、明度の高い部位(白色に近い部位)が、死細胞部位である。
図34及び35より明らかなように、ゼラチン長繊維不織布が消失し、細胞と細胞外マトリクスで構成される組織と置き換わった後においても、細胞組織内部では、生細胞が多くみられ、死細胞がほぼ見られなかった。ゼラチン長繊維不織布を足場として細胞培養した時、ゼラチン長繊維不織布が、直径2mm以上と大きく、かつ高密度の3次元細胞凝集体と置き換わったあとも、高い生存率を示すことが分かった。
(4)足場の強度測定
実施例A3において、撹拌培養した後の足場及び、脱細胞処理した足場の力学特性を表3に示した。ゼラチン長繊維不織布を用い、撹拌培養することで、1-5%弾性率及び中間応力は、いずれも上昇した。ゼラチン長繊維不織布の空隙内、細胞が密に増殖していくことで、強度が向上した。さらにこれらの力学挙動は、脱細胞処理した足場においても、同傾向であり、細胞が産生した細胞外マトリクスが、ゼラチン長繊維不織布の空隙内を満たすことによって、強度が向上した。特に、培養25日目においては、ゼラチン長繊維不織布が消失し、細胞及び細胞外マトリクスのみからなる細胞凝集体となっているにも関わらず、高強度となっており、細胞が産生した細胞外マトリクスには、エラスチンなどの弾性線維が含まれており、よりヒトの生態環境に近い細胞凝集体となっていると期待できる。
2. Results (1) Change in scaffold shape by stirring culture The shape of the scaffold made of gelatin long-fiber nonwoven fabric changed with the passage of the culture date. FIG. 22 shows a photograph of the scaffold in culture taken with a digital camera from the lateral direction. FIG. 23 shows a photograph of the appearance of a cell scaffold obtained by cutting out one scaffold after culturing. FIG. 24 shows a photograph of the cell scaffold that has been decellularized. By the stirring culture, the scaffold made of the gelatin long-fiber non-woven fabric had the corner of the gelatin long-fiber non-woven fabric scaffold taken on the seventh day of culture, and the diameter became small and clouded white after the 14th day. On the 25th day of the culture, the scaffolds arranged on the needles were connected at an interval of 2 mm and integrated. The scaffold after cell culture maintained its shape even after decellularization.
(2) Cell distribution In FIG. 25, in Example A3, a section (scaffold cross section) of the scaffold after 14 days of stirring culture was stained with hematoxylin-eosin, and a photograph of the whole image observed with an optical microscope (observed at 10 times). , Linked on software). FIG. 26 shows a partially enlarged photograph (20 ×) at the end. As is clear from FIGS. 25 and 26, the cells have penetrated into the scaffold, and the cells proliferated more densely, particularly at the end of the scaffold. In FIGS. 25 and 26, the dark-colored portion is the cell nucleus.
In FIG. 27, in Example A3, the section of the scaffold after 14-day stirring culture and decellularization treatment was stained with hematoxylin eosin, and the end portion was observed with an optical microscope (20 times). At the end of the scaffold where the cells grew at a high density, the tissue remained between the gelatin fibers even after the scaffold was removed, indicating that the cells were producing extracellular matrix.
FIG. 28 shows a photograph of the whole image (observed at 10 times and linked on software) of the scaffold section after stirring culture for 25 days in Example A3, stained with hematoxylin-eosin and observed with an optical microscope. FIG. 29 shows a partially enlarged photograph (20 ×) at the end. As is clear from FIGS. 28 and 29, the cells proliferated at high density to the center of the tissue. In FIGS. 28 and 29, the dark-colored portion is the cell nucleus.
In FIG. 30, in Example A3, a section of the scaffold after 25 days of agitation culture and decellularization was stained with hematoxylin-eosin, and a photograph of the whole image observed with an optical microscope (observed at 10 times and connected on software) )showed that. FIG. 31 shows a partially enlarged photograph (20 ×) at the end and the center. As apparent from FIGS. 30 and 31, on the 25th day of culturing, gelatin fibers are not seen but only extracellular matrix is seen, so that the gelatin long fiber nonwoven fabric is decomposed while the cells are densely aggregated. It was found that all of the extracellular matrix produced by the cells was replaced.
(3) Cell Life and Death FIG. 32 is a photograph of the whole image of the living cells of the section of the scaffold after stirring and culturing for 14 days in Example A3 (observed at 10 times and connected on the software). Indicated. Since the fluorescence intensity is strong at the live cell site, the site with high brightness (site close to white) is the live cell.
FIG. 33 shows a photograph of the whole image of the dead cells of the section of the scaffold after 14 days of stirring culture in Example A3 (observed at 10 times and connected on the software). Since the fluorescence intensity is strong at the dead cell site, a site with high brightness (a site close to white) is the dead cell site.
As is clear from FIGS. 32 to 33, many living cells are observed inside the gelatin long fiber nonwoven fabric, and almost no dead cells are observed. It was found that by using a gelatin long fiber nonwoven fabric as a cell culture scaffold, even in a three-dimensional cell aggregate, cells showed a high survival rate at the center of the tissue.
FIG. 34 shows, in Example A3, a living cell of a section of a scaffold after stirring and culturing for 25 days, as a whole image (10 times) observed with a fluorescence microscope, and linked on software). Since the fluorescence intensity is strong at the live cell site, the site with high brightness (site close to white) is the live cell.
FIG. 35 shows a photograph of a whole image (observed at 10 × and connected on software) of dead cells in a section of the scaffold after stirring and culturing for 25 days in Example A3. Since the fluorescence intensity is strong at the dead cell site, a site with high brightness (a site close to white) is the dead cell site.
As apparent from FIGS. 34 and 35, even after the gelatin long-fiber nonwoven fabric disappears and is replaced with a tissue composed of cells and extracellular matrix, many living cells are observed inside the cell tissue, and dead cells are observed. It was hardly seen. When cell culture was performed using a gelatin long-fiber nonwoven fabric as a scaffold, it was found that the gelatin long-fiber nonwoven fabric showed a high survival rate even after being replaced with a high-density three-dimensional cell aggregate having a large diameter of 2 mm or more.
(4) Strength measurement of scaffold Table 3 shows the mechanical properties of the scaffold after stirring culture and the decellularized scaffold in Example A3. Both the 1-5% elastic modulus and the intermediate stress increased by stirring culture using gelatin long fiber nonwoven fabric. The strength of the gelatin long-fiber non-woven fabric was improved by densely growing cells in the voids. Furthermore, these mechanical behaviors are the same in the decellularized scaffolds, and the strength was improved by filling the voids of the gelatin long-fiber nonwoven fabric with the extracellular matrix produced by the cells. In particular, on the 25th day of culturing, the gelatin long-fiber nonwoven fabric disappeared, and although it became a cell aggregate composed only of cells and extracellular matrix, the strength was high and the extracellular produced by the cells The matrix contains elastic fibers such as elastin and can be expected to be a cell aggregate closer to the human ecological environment.

本実施例のゼラチン長繊維不織布製の足場を用いて撹拌下で細胞培養した結果から、次のことが分かる。
(1)培養25日の短期で、大きさ2mm以上の3次元細胞凝集体が得られ、その凝集体内部で、細胞は高生存率であった。
(2)得られた3次元細胞凝集体では、ゼラチン長繊維不織布が消失し、細胞及び細胞が産生する細胞外マトリクスと置き換わっていた。
(3)得られた3次元細胞凝集体は、高強度を示した。
From the results of cell culture under stirring using the gelatin long-fiber nonwoven fabric scaffold of this example, the following can be understood.
(1) Three-dimensional cell aggregates having a size of 2 mm or more were obtained in a short period of 25 days, and the cells had a high survival rate within the aggregates.
(2) In the obtained three-dimensional cell aggregate, the gelatin long-fiber nonwoven fabric disappeared and replaced with cells and an extracellular matrix produced by the cells.
(3) The obtained three-dimensional cell aggregate showed high strength.

(実施例A4)
本実施例は、積層培養による細胞培養試験の例である。実施例6で得られたゼラチン長繊維不織布製の足場(乾燥時の厚さ0.2mm、密度0.8g/cm3、直径6mm)を用いて細胞の静置培養を行った。
(Example A4)
This example is an example of a cell culture test using stacked culture. Using the gelatin long-fiber nonwoven fabric scaffold obtained in Example 6 (dry thickness 0.2 mm, density 0.8 g / cm 3 , diameter 6 mm), cells were statically cultured.

1.細胞培養
(1)ゼラチン長繊維不織布製の足場と細胞シートの交互積層
(a)ヒト骨髄由来間葉系幹細胞(hMSC)を、液体培地中(ウシ胎児血清10質量%、ペニシリンストレプトマイシン1質量%を含むαMEM培地)に、2.0×106cells/mLとなるよう懸濁し、細胞懸濁液を準備した。
(b)12穴のウェルプレートに液体培地を1mL加え、そこに細胞懸濁液を50μL播種し、10日間静置培養して細胞シートを作製した。
(c)1000mLのマイクロピペットを用い、液流によって細胞シートを12穴のウェルプレートから剥離した。
(d)エチレンオキサイドガス滅菌後のゼラチン長繊維不織布製の足場を、液体培地に30分間静置して、十分に膨潤させた。
(d)ウェルプレートの培地を抜き、細胞シートの上に膨潤させたゼラチン長繊維不織布製の足場を置いた。ゼラチン長繊維不織布製の足場の上から圧力1.3kPaの圧力をかけて、細胞シートとゼラチン不織布を接着させた。
(e)ピンセットを用いて、同様にして作製した細胞シート・ゼラチン長繊維不織布製の足場の一体物を3層積層させて(図36−f)、温度37℃、5%CO2の条件で60分間インキュベートして、層同士を接着し一体化した。
(2)積層体の上面の観察
積層後の足場と細胞シートの積層体を、光学顕微鏡(株式会社キーエンス製、型番「BZ−X710」)で観察し、撮影した。
(3)積層体の断面の観察
積層体をリン酸緩衝液で洗浄後、4%パラホルムアルデヒドで固定し、さらにリン酸緩衝液(pH7.4)で3回洗浄した。洗浄後、OCTコンパウンド(サクラファインテックジャパン社)で包埋後、凍結状態で、円柱状の足場の直径と垂直方向に、切片を作製した。凍結切片をヘマトキシリン・エオジン染色し、足場内の細胞分布の仕方を光学顕微鏡(株式会社キーエンス製、型番「BZ−X710」)で観察した。
1. Cell culture (1) Alternating lamination of gelatin long fiber non-woven scaffold and cell sheet (a) Human bone marrow-derived mesenchymal stem cells (hMSC) in liquid medium (fetal bovine serum 10% by mass, penicillin streptomycin 1% by mass) Cell suspension) to 2.0 × 10 6 cells / mL to prepare a cell suspension.
(B) 1 mL of a liquid medium was added to a 12-well well plate, and 50 μL of the cell suspension was seeded there, followed by stationary culture for 10 days to prepare a cell sheet.
(C) Using a 1000 mL micropipette, the cell sheet was peeled from the well plate with 12 holes by a liquid flow.
(D) The gelatin long fiber non-woven fabric scaffold after sterilization with ethylene oxide gas was allowed to stand in a liquid medium for 30 minutes to be sufficiently swollen.
(D) The medium in the well plate was removed, and a swollen gelatin long fiber non-woven fabric scaffold was placed on the cell sheet. A pressure of 1.3 kPa was applied from above the gelatin long fiber nonwoven fabric scaffold to adhere the cell sheet and the gelatin nonwoven fabric.
(E) Using tweezers, three layers of the same cell sheet / gelatin long fiber nonwoven fabric scaffold made in the same manner were laminated (FIG. 36-f), under conditions of a temperature of 37 ° C. and 5% CO 2 . Incubate for 60 minutes to bond the layers together.
(2) Observation of the upper surface of a laminated body The laminated body of the scaffold and cell sheet after lamination | stacking was observed and image | photographed with the optical microscope (the Keyence Corporation make, model number "BZ-X710").
(3) Observation of cross section of laminate The laminate was washed with a phosphate buffer, fixed with 4% paraformaldehyde, and further washed three times with a phosphate buffer (pH 7.4). After washing, after embedding with an OCT compound (Sakura Finetech Japan Co., Ltd.), a slice was prepared in a frozen state in a direction perpendicular to the diameter of the columnar scaffold. The frozen section was stained with hematoxylin and eosin, and the cell distribution in the scaffold was observed with an optical microscope (manufactured by Keyence Corporation, model number “BZ-X710”).

2.結果
(1)積層体の観察
図39に、積層体を上面から観察した顕微鏡写真(4倍)を蛍光顕微鏡(株式会社キーエンス製、型番「BZ−X710」)のソフトウェア上で連結し、全体像としたものを示した。細胞シートがゼラチン不織布の上面にシワなく重なっていることが確認できた。
図40にゼラチン長繊維不織布と細胞シートを3層交互に積層した積層体の断面図の顕微鏡写真を示した。ヘマトキシリン・エオジンによって染色された細胞核と細胞質が線状にみられることから、細胞シートの存在が確認できた。また、その細胞シートが一定の間隔を置いて3層みられた。その間隔は膨潤したゼラチン長繊維不織布の厚さ(約0.7mm)と同等であり、ゼラチン長繊維不織布と細胞シートが交互積層していることが確認できた。
2. Result (1) Observation of Laminate In FIG. 39, a micrograph (4 times) of the laminate observed from the top is connected on the software of a fluorescence microscope (manufactured by Keyence Co., Ltd., model number “BZ-X710”). I showed that. It was confirmed that the cell sheet overlapped the upper surface of the gelatin nonwoven fabric without wrinkles.
FIG. 40 shows a micrograph of a cross-sectional view of a laminate in which three layers of gelatin long fiber nonwoven fabric and cell sheets are alternately laminated. The cell nucleus and cytoplasm stained with hematoxylin and eosin were seen in a linear form, confirming the presence of the cell sheet. In addition, the cell sheet was seen in three layers at regular intervals. The interval was equivalent to the thickness (about 0.7 mm) of the swollen gelatin long fiber nonwoven fabric, and it was confirmed that the gelatin long fiber nonwoven fabric and the cell sheets were alternately laminated.

(実施例B1)
異なる厚さ(乾燥状態)及び密度(乾燥状態)のゼラチン長繊維不織布を用いて、積層用足場に好ましいゼラチン長繊維不織布を検討した。ハンドリグ性が良好というのは、液体培地で膨潤した後の足場をピンセットで把持した際に形状維持性は良好であるとともに、屈曲しにくいことを意味する。例えば、図5〜8及び図37は、水又は液体培地で膨潤した後の足場をピンセットで把持した際に形状維持性が良好であとともに、屈曲していない例である。一方、図38には、ピンセットで把持した際に形状維持性が良好であるが、屈曲している例を示した。ゼラチン長繊維不織布製の足場のハンドリング性を片持ち梁で評価した。直方体の台を試験台とした。片持ち梁となるように、試験片の面積の半分が台座から出るように、台座の端に試験片を置いた。試験片の俯角を測定して45度以内であればハンドリング性良好(A)、45度より大きければハンドリング性不良(B)と判断した。片持ち梁試験において、ハンドリング性良好の例を図41に示し、ハンドリング性不良の例を図42に示した。ハンドリング性の結果を図43に示した。図43から、ゼラチン長繊維不織布製の足場を液体培地で膨潤させてピンセットで把持する際に、膨潤する前の乾燥状態の厚さが0.2mm以上、密度は0.8g/cm3以上が好ましいことが分かった。
(Example B1)
Using gelatin long fiber nonwoven fabrics of different thickness (dry state) and density (dry state), gelatin long fiber nonwoven fabrics preferred for a scaffold for lamination were studied. Good hand rigging means that when the scaffold after swelling in the liquid medium is grasped with tweezers, the shape maintaining property is good and it is difficult to bend. For example, FIGS. 5 to 8 and FIG. 37 are examples in which, when the scaffold after swelling with water or a liquid medium is gripped with tweezers, the shape maintaining property is good and not bent. On the other hand, FIG. 38 shows an example in which the shape maintainability is good when gripped with tweezers but is bent. The handling property of the scaffold made of gelatin long fiber nonwoven fabric was evaluated with a cantilever beam. A rectangular parallelepiped base was used as a test base. The test piece was placed on the end of the pedestal so that half of the area of the test piece came out of the pedestal so that it could be a cantilever. When the included angle of the test piece was measured within 45 degrees, it was judged that the handleability was good (A), and when it was greater than 45 degrees, the handleability was poor (B). In the cantilever test, an example of good handling properties is shown in FIG. 41, and an example of poor handling properties is shown in FIG. The results of handling properties are shown in FIG. From FIG. 43, when a gelatin long fiber nonwoven fabric scaffold is swollen with a liquid medium and grasped with tweezers, the dry thickness before swelling is 0.2 mm or more, and the density is 0.8 g / cm 3 or more. It turned out to be preferable.

本発明の生体適合長繊維不織布は、細胞培養用立体足場に好適であるほか、様々な医療用途にも適用できる。   The biocompatible long-fiber nonwoven fabric of the present invention is suitable for a three-dimensional scaffold for cell culture and can also be applied to various medical uses.

1 加温槽
2 紡糸液
3 ノズル吐出口
4,6 コンプレッサー
5 流体噴射口
7 圧力流体
8 長繊維
9 長繊維不織布
10 不織布製造装置
11 巻き取りロール
12 保温容器
20 撹拌培養試験装置
21 スピナーフラスコ
22 攪拌棒
23 攪拌子
24、30 液体培地
25 22ゲージ針
26、34 足場
31 培養皿
32 細胞懸濁液
33 細胞シート
35 圧力
DESCRIPTION OF SYMBOLS 1 Heating tank 2 Spinning liquid 3 Nozzle discharge port 4,6 Compressor 5 Fluid injection port 7 Pressure fluid 8 Long fiber 9 Long fiber nonwoven fabric 10 Nonwoven fabric manufacturing apparatus 11 Winding roll 12 Heat insulation container 20 Stirring culture test apparatus 21 Spinner flask 22 Stirring Bar 23 Stirrer 24, 30 Liquid medium 25 22 gauge needle 26, 34 Scaffold 31 Culture dish 32 Cell suspension 33 Cell sheet 35 Pressure

Claims (18)

生体適合ポリマーを主成分とする生体適合長繊維不織布であって、
前記生体適合長繊維不織布を構成する生体適合長繊維は、長さ方向で繊維直径が変化しており、
前記生体適合長繊維不織布を構成する生体適合長繊維は、繊維交点が少なくとも部分的に溶着しており、
前記生体適合長繊維不織布は加熱脱水架橋されており、
水に濡れてもへたらず、水に濡れると透明になることを特徴とする生体適合長繊維不織布。
A biocompatible long-fiber nonwoven fabric mainly composed of a biocompatible polymer,
The biocompatible long fiber constituting the biocompatible long fiber nonwoven fabric has a fiber diameter that changes in the length direction,
The biocompatible long fiber constituting the biocompatible long-fiber nonwoven fabric has a fiber intersection at least partially welded,
The biocompatible long fiber nonwoven fabric is heat dehydrated and crosslinked,
A biocompatible non-woven fabric that does not sag when wet and becomes transparent when wet.
前記生体適合長繊維は、平均繊維直径(D)が1〜70μmの範囲にあり、D±0.5Dの範囲で繊維直径が変化している請求項1に記載の生体適合長繊維不織布。   The biocompatible long fiber nonwoven fabric according to claim 1, wherein the biocompatible long fiber has an average fiber diameter (D) in the range of 1 to 70 µm, and the fiber diameter varies in a range of D ± 0.5D. 前記生体適合長繊維は、実質的に未延伸状態である請求項1又は2に記載の生体適合長繊維不織布。   The biocompatible long fiber nonwoven fabric according to claim 1 or 2, wherein the biocompatible long fiber is substantially in an unstretched state. 前記生体適合長繊維不織布は、1.0kPaの圧縮応力時の圧縮変形率が40%以下である請求項1〜3のいずれか1項に記載の生体適合長繊維不織布。   The biocompatible long-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the biocompatible long-fiber nonwoven fabric has a compressive deformation rate of 40% or less at a compressive stress of 1.0 kPa. 前記生体適合長繊維不織布を構成する生体適合長繊維は、架橋前は水溶性である請求項1〜のいずれか1項に記載の生体適合長繊維不織布。 The biocompatible long fiber nonwoven fabric according to any one of claims 1 to 4 , wherein the biocompatible long fiber constituting the biocompatible long fiber nonwoven fabric is water-soluble before crosslinking. 前記生体適合ポリマーは、ゼラチン、コラーゲンおよびこれらの修飾体からなる群から選ばれる少なくとも一つの水溶性高分子である請求項1〜のいずれかに記載の生体適合長繊維不織布。 The biocompatible polymer is gelatin, collagen Contact and biocompatible filament nonwoven fabric according to any one of claims 1 to 5, at least one water soluble polymer selected from the group consisting of modifications. 請求項1〜のいずれか1項に記載の生体適合長繊維不織布の製造方法であって、
生体適合ポリマーを含む紡糸液をノズル吐出口から空気中に押し出し、
前記ノズル吐出口の後方に位置し、前記ノズル吐出口とは非接触状態の流体噴射口から前方に向けて圧力流体を噴射し、
前記押し出された紡糸液を前記圧力流体に随伴させて繊維形成させ、前記繊維形成した繊維を集積させて不織布とし、
前記生体適合長繊維不織布を真空凍結乾燥し、その後加熱脱水架橋することを特徴とする生体適合長繊維不織布の製造方法。
It is a manufacturing method of the biocompatible continuous fiber nonwoven fabric of any one of Claims 1-6 ,
Push the spinning solution containing biocompatible polymer into the air from the nozzle outlet,
The pressure fluid is ejected forward from the fluid ejection port which is located behind the nozzle ejection port and is not in contact with the nozzle ejection port,
The extruded spinning solution is accompanied with the pressure fluid to form a fiber, and the fiber-formed fiber is accumulated to form a nonwoven fabric .
A method for producing a biocompatible long-fiber non-woven fabric, wherein the bio-compatible long-fiber non-woven fabric is vacuum freeze-dried and then subjected to heat dehydration crosslinking .
前記紡糸液の温度は、紡糸液が流動する温度以上、かつ生体適合ポリマーの分解温度以下である請求項に記載の生体適合長繊維不織布の製造方法。 The method for producing a biocompatible non-woven fabric according to claim 7 , wherein the temperature of the spinning solution is not less than the temperature at which the spinning solution flows and not more than the decomposition temperature of the biocompatible polymer. 前記圧力流体の噴射圧力は0.05〜0.5MPaであり、前記圧力流体の温度は前記紡糸液の温度±30℃である請求項又はに記載の生体適合長繊維不織布の製造方法。 The method for producing a biocompatible continuous fiber non-woven fabric according to claim 7 or 8 , wherein an injection pressure of the pressure fluid is 0.05 to 0.5 MPa, and a temperature of the pressure fluid is a temperature of the spinning solution ± 30 ° C. 前記紡糸液の粘度は、温度60℃において500〜3000mPa・sである請求項のいずれか1項に記載の生体適合長繊維不織布の製造方法。 The method for producing a biocompatible nonwoven fabric according to any one of claims 7 to 9 , wherein the spinning solution has a viscosity of 500 to 3000 mPa · s at a temperature of 60 ° C. 請求項1〜のいずれか1項に記載の生体適合長繊維不織布を細胞培養用立体足場とすることを特徴とする細胞培養用立体足場。 A three-dimensional scaffold for cell culture, wherein the biocompatible long-fiber nonwoven fabric according to any one of claims 1 to 6 is used as a three-dimensional scaffold for cell culture. 前記足場の厚みが0.2mm以上であり、足場内部でも細胞が生存する請求項11に記載の細胞培養用立体足場。 The three-dimensional scaffold for cell culture according to claim 11 , wherein the scaffold has a thickness of 0.2 mm or more, and cells survive inside the scaffold. 請求項11又は12に記載の細胞培養用立体足場を使用した細胞培養方法であって、
前記足場に細胞を播種した後、細胞播種した足場を液体培地中に入れて、細胞培養することを特徴とする細胞培養方法。
A cell culture method using the three-dimensional scaffold for cell culture according to claim 11 or 12 ,
A cell culture method comprising seeding cells on the scaffold, then placing the seeded scaffold in a liquid medium and culturing cells.
前記足場の厚みが0.2mm以上であり、足場内部でも細胞が生存する請求項13に記載の細胞培養方法。 The cell culture method according to claim 13 , wherein the scaffold has a thickness of 0.2 mm or more, and the cells survive inside the scaffold. 前記液体培地を攪拌、循環及び振とうから選ばれる少なくとも一つの手段で流動させながら細胞培養する請求項13又は14に記載の細胞培養方法。 The cell culture method according to claim 13 or 14 , wherein the cell culture is performed while flowing the liquid medium by at least one means selected from stirring, circulation, and shaking. 前記細胞培養中に、前記足場は消失し、培養した細胞及び前記細胞が産生する細胞外マトリクスと置き換わる請求項1315のいずれか1項に記載の細胞培養方法。 The cell culture method according to any one of claims 13 to 15 , wherein during the cell culture, the scaffold disappears and is replaced with cultured cells and an extracellular matrix produced by the cells. 前記足場をピンセットで把持して細胞シートと積層する工程を含む請求項1316のいずれか1項に記載の細胞培養方法。 The cell culture method according to any one of claims 13 to 16 , comprising a step of grasping the scaffold with tweezers and laminating the scaffold with a cell sheet. 前記足場の厚さは0.2mm以上であり、密度が0.8g/cm3以上である請求項17に記載の細胞培養方法。 The cell culture method according to claim 17 , wherein the scaffold has a thickness of 0.2 mm or more and a density of 0.8 g / cm 3 or more.
JP2018555291A 2017-06-20 2018-06-15 Biocompatible long-fiber nonwoven fabric, production method thereof, solid scaffold for cell culture, and cell culture method using the same Active JP6450894B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017120759 2017-06-20
JP2017120759 2017-06-20
JP2018049476 2018-03-16
JP2018049476 2018-03-16
PCT/JP2018/022988 WO2018235745A1 (en) 2017-06-20 2018-06-15 Biocompatible long-fiber nonwoven fabric, production method therefor, three-dimensional scaffold for cell culturing, and cell culturing method using same

Publications (2)

Publication Number Publication Date
JP6450894B1 true JP6450894B1 (en) 2019-01-09
JPWO2018235745A1 JPWO2018235745A1 (en) 2019-06-27

Family

ID=64736975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018555291A Active JP6450894B1 (en) 2017-06-20 2018-06-15 Biocompatible long-fiber nonwoven fabric, production method thereof, solid scaffold for cell culture, and cell culture method using the same

Country Status (2)

Country Link
JP (1) JP6450894B1 (en)
WO (1) WO2018235745A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760710A4 (en) * 2018-02-27 2021-12-15 University of The Ryukyus Method for isolating and extracting adipose-derived stem cells from adipose tissue and culturing same without using collagenase, and kit for isolating and extracting adipose-derived stem cells
JP7299387B2 (en) * 2019-06-18 2023-06-27 日本毛織株式会社 Gelatin filament yarn and fiber structure using the same
JP7232131B2 (en) * 2019-06-18 2023-03-02 日本毛織株式会社 Manufacturing method of gelatin filament yarn
WO2020262469A1 (en) * 2019-06-28 2020-12-30 日本毛織株式会社 Gelatin short fiber, production method thereof, cell aggregates including same, production method of cell aggregates, and production kit
WO2020262458A1 (en) * 2019-06-28 2020-12-30 日本毛織株式会社 Cell sheet, method for producing same, and fabrication kit
WO2021054232A1 (en) * 2019-09-18 2021-03-25 国立研究開発法人物質・材料研究機構 Biological tissue adhesive sheet, biological tissue reinforcing material kit, and method for manufacturing biological tissue adhesive sheet
EP4063477A4 (en) * 2019-11-21 2023-12-27 The Japan Wool Textile Co., Ltd. Cell aggregate, production method for cell aggregate, production kit for cell aggregate, and chemical compound evaluation method using cell aggregate
JP7267172B2 (en) * 2019-11-21 2023-05-01 日本毛織株式会社 Three-dimensional scaffold for cell culture, method for producing the same, method for seeding cells using the same, and method for cell culture
US20230340403A1 (en) * 2020-09-17 2023-10-26 Konica Minolta, Inc. Cell-supporting body, manufacturing method therefor, cell culturing method, and cell structure
CA3209100A1 (en) 2021-02-09 2022-08-18 Shin-Etsu Chemical Co., Ltd. Gelatin-containing device
WO2024059251A1 (en) * 2022-09-15 2024-03-21 Biosurfaces, Inc. Method and scaffold device to enable oxygen-carbon dioxide exchange

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125757A (en) * 2001-10-26 2003-05-07 Kuraray Co Ltd Tool and material for culture medium and culture medium for microorganism
WO2014192803A1 (en) * 2013-05-31 2014-12-04 学校法人同志社 Tissue regeneration matrix
WO2014196549A1 (en) * 2013-06-03 2014-12-11 国立大学法人京都大学 Method for three-dimensional culture of cells using fiber-on-fiber and substrate therefor
JP2015501343A (en) * 2011-10-14 2015-01-15 コーディス・コーポレイションCordis Corporation Segmented ε-caprolactone rich poly (ε-caprolactone-co-p-dioxane) copolymer and devices derived therefrom for medical use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125757A (en) * 2001-10-26 2003-05-07 Kuraray Co Ltd Tool and material for culture medium and culture medium for microorganism
JP2015501343A (en) * 2011-10-14 2015-01-15 コーディス・コーポレイションCordis Corporation Segmented ε-caprolactone rich poly (ε-caprolactone-co-p-dioxane) copolymer and devices derived therefrom for medical use
WO2014192803A1 (en) * 2013-05-31 2014-12-04 学校法人同志社 Tissue regeneration matrix
WO2014196549A1 (en) * 2013-06-03 2014-12-11 国立大学法人京都大学 Method for three-dimensional culture of cells using fiber-on-fiber and substrate therefor

Also Published As

Publication number Publication date
JPWO2018235745A1 (en) 2019-06-27
WO2018235745A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6450894B1 (en) Biocompatible long-fiber nonwoven fabric, production method thereof, solid scaffold for cell culture, and cell culture method using the same
Chen et al. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration
Barud et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration
Kai et al. Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications
Bhattarai et al. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity
Yang et al. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering
Sun et al. Electrospun anisotropic architectures and porous structures for tissue engineering
Duan et al. A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning
KR101685248B1 (en) Multi-layered electrospun fiber incorporated hydrogel
Cai et al. Novel biodegradable three‐dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering
Zheng et al. Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold
Chen et al. A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly (d, l-lactide) membrane for the improvement of cytocompatibility
US20140046236A1 (en) Chitosan biomimetic scaffolds and methods for preparing the same
CN110538006B (en) Manufacturing method of fiber-reinforced three-dimensional printing cartilage acellular matrix scaffold
Jing et al. Electrospinning homogeneous nanofibrous poly (propylene carbonate)/gelatin composite scaffolds for tissue engineering
Lin et al. In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration
Pattanashetti et al. Development of multilayered nanofibrous scaffolds with PCL and PVA: NaAlg using electrospinning technique for bone tissue regeneration
Li et al. Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis
Wan et al. Submicrofiber‐Incorporated 3D Bacterial Cellulose Nanofibrous Scaffolds with Enhanced Cell Performance
Li et al. Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge
Pázmány et al. Ultrasound induced, easy-to-store porous poly (amino acid) based electrospun scaffolds
JP7444409B2 (en) Short gelatin fibers, methods for producing the same, cell aggregates containing the same, methods for producing cell aggregates, and production kits
Kennell et al. Fish skin gelatin nanofibrous scaffolds spun using alternating field electrospinning and in-vitro tested with tdTomato mice fibroblasts
CN109943974B (en) Preparation method of nerve conduit material based on polyhydroxyalkanoate/gelatin electrospun nanofiber
JP5320526B1 (en) Method for producing auricular cartilage tissue and auricular cartilage tissue

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181030

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R150 Certificate of patent or registration of utility model

Ref document number: 6450894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250