JP6447008B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP6447008B2
JP6447008B2 JP2014220135A JP2014220135A JP6447008B2 JP 6447008 B2 JP6447008 B2 JP 6447008B2 JP 2014220135 A JP2014220135 A JP 2014220135A JP 2014220135 A JP2014220135 A JP 2014220135A JP 6447008 B2 JP6447008 B2 JP 6447008B2
Authority
JP
Japan
Prior art keywords
film forming
film
substrate
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014220135A
Other languages
Japanese (ja)
Other versions
JP2016084521A (en
Inventor
真也 織田
真也 織田
章夫 高塚
章夫 高塚
俊実 人羅
俊実 人羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Priority to JP2014220135A priority Critical patent/JP6447008B2/en
Publication of JP2016084521A publication Critical patent/JP2016084521A/en
Application granted granted Critical
Publication of JP6447008B2 publication Critical patent/JP6447008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、無機塩の成膜に有用な成膜装置および成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method useful for forming an inorganic salt.

従来、水酸化物の膜を基板上に形成する技術が検討されている。特許文献1には、配向した水酸化物の膜を基板上に形成することが記載されており、実施例では、噴霧法(スプレー法)で水酸化物膜を成膜している。しかしながら、特許文献1の方法では、水酸化物膜の密着性において、実用化できるものではなく、また、膜の均質性においても満足のいくものではなく、まだまだ多くの課題があった。   Conventionally, a technique for forming a hydroxide film on a substrate has been studied. Patent Document 1 describes that an oriented hydroxide film is formed on a substrate, and in the examples, a hydroxide film is formed by a spray method (spray method). However, the method of Patent Document 1 cannot be put into practical use in terms of the adhesion of the hydroxide film, and is not satisfactory in terms of film homogeneity, and still has many problems.

一方、金属酸化物の成膜方法として、ミストCVD法が知られている。特許文献2〜5には、ミストCVD法を用いて、金属塩や金属錯体から金属酸化物の膜を成膜することが記載されている。また、非特許文献1の記載にあるように、ミストCVD法による種々の金属酸化物の成膜が検討されている。しかしながら、ミストCVD法は、酸化膜の成膜に適していると考えられているため、金属水酸化物その他金属塩の膜の成膜への適用についてはあまり検討されておらず、検討例もない。   On the other hand, a mist CVD method is known as a metal oxide film forming method. Patent Documents 2 to 5 describe that a metal oxide film is formed from a metal salt or a metal complex using a mist CVD method. In addition, as described in Non-Patent Document 1, film formation of various metal oxides by the mist CVD method has been studied. However, since the mist CVD method is considered to be suitable for the formation of an oxide film, its application to the film formation of a metal hydroxide or other metal salt film has not been studied much, and examples of examination are also included. Absent.

特開平6−256959号公報JP-A-6-256959 特開2012−071301号公報JP2012-073011A 特開2014−72533号公報JP 2014-72533 A 特許第5397794号Japanese Patent No. 5398794 特許第5528612号Patent No. 5528612

金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月Kentaro Kaneko, “Growth and Physical Properties of Corundum Structure Gallium Oxide Mixed Crystal Thin Films”, Kyoto University Doctoral Dissertation, March 2013

本発明は、無機塩の膜と基体との密着性に優れており、均質な無機塩の膜を工業的有利に成膜できる成膜装置および成膜方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a film forming apparatus and a film forming method that are excellent in adhesion between an inorganic salt film and a substrate and can form a homogeneous inorganic salt film industrially advantageously.

本発明者らは、上記目的を達成すべく鋭意検討した結果、溶媒中の原料化合物を霧化する霧化部、前記霧化部により発生したミストをキャリアガスで基体まで搬送する搬送部、および該ミストを熱処理して該基体上に成膜する成膜部を備える成膜装置において、前記霧化部に、前記原料化合物としての無機塩を霧化する霧化手段を備え、前記成膜部に、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で前記ミストを加熱する熱処理手段を備える成膜装置を用いて、無機塩を成膜すると、得られた無機塩が基体との密着性に優れていること、また、種々の基体上に均質な無機塩の膜を成膜できること、工業的有利に成膜できること等を種々知見し、このような成膜装置が、上記した従来の課題を一挙に解決できることを見出した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have found that an atomization unit that atomizes a raw material compound in a solvent, a conveyance unit that conveys mist generated by the atomization unit to a substrate with a carrier gas, and In the film forming apparatus including a film forming unit that heat-treats the mist to form a film on the substrate, the atomizing unit includes an atomizing unit that atomizes the inorganic salt as the raw material compound, and the film forming unit In addition, when the inorganic salt has a thermal oxidation temperature at a temperature equal to or higher than the vaporization temperature of the solvent, a film forming apparatus including a heat treatment means for heating the mist at a temperature lower than the thermal oxidation temperature, When an inorganic salt is formed, the obtained inorganic salt is excellent in adhesion to the substrate, a homogeneous inorganic salt film can be formed on various substrates, and industrially advantageous. Such a film forming apparatus has been described above. It found that can solve the conventional problems at a stroke.

すなわち、本発明は、以下の発明に関する。
[1] 溶媒中の原料化合物を霧化する霧化部、前記霧化部により発生したミストをキャリアガスで基体まで搬送する搬送部、および該ミストを熱処理して該基体上に成膜する成膜部を備える成膜装置において、前記霧化部に、前記原料化合物としての無機塩を霧化する霧化手段を備え、前記成膜部に、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で前記ミストを加熱する熱処理手段を備えることを特徴とする成膜装置。
[2] 前記無機塩が金属塩である前記[1]記載の成膜装置。
[3] 前記金属塩が金属水酸化物である前記[2]記載の成膜装置。
[4] 前記金属塩がアルカリ金属塩またはアルカリ土類金属塩である前記[2]または前記[3]に記載の成膜装置。
[5] 前記原料化合物がカルシウム化合物である前記[1]〜前記[4]のいずれかに記載の成膜装置。
[6] 前記溶媒が、水を含む前記[1]〜前記[5]のいずれかに記載の成膜装置。
[7] 前記熱処理を、200℃〜500℃の温度で行う前記[5]記載の成膜装置。
[8] 溶媒中の原料化合物を霧化して発生したミストをキャリアガスで基体まで搬送し、該ミストを熱処理して該基体上に成膜する方法において、前記原料化合物が無機塩であり、前記熱処理を、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で行うことを特徴とする成膜方法。
[9] 前記無機塩が金属塩である前記[8]記載の成膜方法。
[10] 前記金属塩が金属水酸化物である前記[9]記載の成膜方法。
[11] 前記金属塩がアルカリ金属塩またはアルカリ土類金属塩である前記[9]または前記[10]に記載の成膜方法。
[12] 前記原料化合物がカルシウム化合物である前記[8]〜前記[11]のいずれかに記載の成膜方法。
[13] 前記溶媒が、水を含む前記[8]〜前記[12]のいずれかに記載の成膜方法。
[14] 前記熱処理を、200℃〜500℃の温度で行う前記[12]記載の成膜方法。
[15] 前記[8]〜前記[14]のいずれかに記載の成膜方法により得られた膜。
That is, the present invention relates to the following inventions.
[1] An atomizing unit for atomizing a raw material compound in a solvent, a conveying unit for conveying mist generated by the atomizing unit to a substrate with a carrier gas, and forming a film on the substrate by heat-treating the mist. In the film forming apparatus including a film unit, the atomizing unit includes an atomizing unit that atomizes the inorganic salt as the raw material compound, and the film forming unit has a temperature equal to or higher than a vaporization temperature of the solvent, and When the inorganic salt has a thermal oxidation temperature, the film forming apparatus includes a heat treatment means for heating the mist at a temperature lower than the thermal oxidation temperature.
[2] The film forming apparatus according to [1], wherein the inorganic salt is a metal salt.
[3] The film forming apparatus according to [2], wherein the metal salt is a metal hydroxide.
[4] The film forming apparatus according to [2] or [3], wherein the metal salt is an alkali metal salt or an alkaline earth metal salt.
[5] The film forming apparatus according to any one of [1] to [4], wherein the raw material compound is a calcium compound.
[6] The film forming apparatus according to any one of [1] to [5], wherein the solvent includes water.
[7] The film forming apparatus according to [5], wherein the heat treatment is performed at a temperature of 200 ° C. to 500 ° C.
[8] In the method in which a mist generated by atomizing a raw material compound in a solvent is conveyed to a substrate with a carrier gas, and the mist is heat-treated to form a film on the substrate, the raw material compound is an inorganic salt, A film forming method, wherein the heat treatment is performed at a temperature equal to or higher than a vaporization temperature of the solvent and, when the inorganic salt has a thermal oxidation temperature, at a temperature lower than the thermal oxidation temperature.
[9] The film forming method according to [8], wherein the inorganic salt is a metal salt.
[10] The film forming method according to [9], wherein the metal salt is a metal hydroxide.
[11] The film forming method according to [9] or [10], wherein the metal salt is an alkali metal salt or an alkaline earth metal salt.
[12] The film forming method according to any one of [8] to [11], wherein the raw material compound is a calcium compound.
[13] The film forming method according to any one of [8] to [12], wherein the solvent includes water.
[14] The film forming method according to [12], wherein the heat treatment is performed at a temperature of 200 ° C. to 500 ° C.
[15] A film obtained by the film forming method according to any one of [8] to [14].

本発明の成膜装置は、無機塩の膜と基体との密着性に優れており、均質な無機塩の膜を工業的有利に成膜できるという効果を奏する。   The film forming apparatus of the present invention is excellent in the adhesion between the inorganic salt film and the substrate, and has the effect of forming a homogeneous inorganic salt film industrially advantageously.

本発明の実施例で用いたミストCVD装置の構成図を示す。The block diagram of the mist CVD apparatus used in the Example of this invention is shown.

本発明の成膜装置は、溶媒中の原料化合物を霧化する霧化部、前記霧化部により発生したミストをキャリアガスで基体まで搬送する搬送部、および該ミストを熱処理して該基体上に成膜する成膜部を備える成膜装置において、前記霧化部に、前記原料化合物としての無機塩を霧化する霧化手段を備え、前記成膜部に、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で前記ミストを加熱する熱処理手段を備えることを特徴とする。   The film forming apparatus of the present invention includes an atomization unit that atomizes a raw material compound in a solvent, a conveyance unit that conveys mist generated by the atomization unit to a substrate with a carrier gas, and heat-treats the mist on the substrate. In the film forming apparatus including the film forming unit for forming a film, the atomizing unit includes an atomizing means for atomizing the inorganic salt as the raw material compound, and the film forming unit has a vaporization temperature equal to or higher than the vaporization temperature of the solvent. When the inorganic salt has a thermal oxidation temperature at a temperature, a heat treatment means for heating the mist at a temperature lower than the thermal oxidation temperature is provided.

また、本発明の成膜方法は、溶媒中の原料化合物を霧化して発生したミストをキャリアガスで基体まで搬送し、該ミストを熱処理して該基体上に成膜する方法において、前記原料化合物が無機塩であり、前記熱処理を、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で行うことを特徴とする。   Further, the film forming method of the present invention is a method in which a mist generated by atomizing a raw material compound in a solvent is conveyed to a substrate with a carrier gas, and the mist is heat-treated to form a film on the substrate. Is an inorganic salt, and the heat treatment is performed at a temperature equal to or higher than the vaporization temperature of the solvent, and when the inorganic salt has a thermal oxidation temperature, it is performed at a temperature lower than the thermal oxidation temperature.

前記原料化合物は、無機塩であれば特に限定されないが、本発明においては、前記無機塩が、カルシウム化合物であるのが好ましい。また、前記無機塩は、金属塩が好ましく、前記金属塩は、金属水酸化物であるのがより好ましい。また、前記金属塩は、アルカリ金属塩またはアルカリ土類金属塩であるのも好ましい。前記アルカリ金属塩またはアルカリ土類金属塩としては、例えば、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、アルコキシド、カルボン酸塩、リン酸塩、アジド、オクタン酸塩、ナフテン酸塩などが挙げられる。より具体的には、例えば水酸化カルシウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化ストロンチウム等の水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム等の炭酸塩、例えばリチウムメトキシド、ナトリウムマトキシド、カリウムメトキシド、ルビジウムメトキシド、セシウムメトキシド、カルシウムメトキシド、マグネシウムメトキシド、ナトリウムエトキシド、カリウムエトキシドなどのアルコキシド、例えば酢酸ナトリウム、酢酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム等のカルボン酸塩、例えばリン酸ナトリウム等のリン酸塩、例えばアジ化リチウム、アジ化ナトリウム、アジ化カリウム、アジ化ルビジウム、アジ化セシウム、ジアジドマグネシウム、ジアジドカルシウム、ジアジドストロンチウム等のアジド、オクタン酸リチウム、オクタン酸ナトリウム、オクタン酸カリウム、オクタン酸ルビジウム、オクタン酸セシウム、ビスオクタン酸マグネシウム、ビスオクタン酸カルシウム、ビスオクタン酸ストロンチウム等のオクタン酸塩、例えばナフテン酸リチウム、ナフテン酸ナトリウム、ナフテン酸カリウム、ナフテン酸ルビジウム、ナフテン酸セシウム、ナフテン酸マグネシウム、ナフテン酸カルシウム、ナフテン酸ストロンチウム等のナフテン酸塩などが挙げられる。本発明においては、前記金属塩が、アルカリ金属またはアルカリ土類金属の水酸化物であるのが好ましく、アルカリ土類金属の水酸化物であるのがより好ましい。   The raw material compound is not particularly limited as long as it is an inorganic salt, but in the present invention, the inorganic salt is preferably a calcium compound. The inorganic salt is preferably a metal salt, and the metal salt is more preferably a metal hydroxide. The metal salt is preferably an alkali metal salt or an alkaline earth metal salt. Examples of the alkali metal salt or alkaline earth metal salt include hydroxides, carbonates, alkoxides, carboxylates, phosphates, azides, octanoates, naphthenates of alkali metals or alkaline earth metals, and the like. Is mentioned. More specifically, for example, hydroxides such as calcium hydroxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, strontium hydroxide, lithium carbonate, sodium carbonate, Carbonates such as potassium carbonate, rubidium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, such as lithium methoxide, sodium matoxide, potassium methoxide, rubidium methoxide, cesium methoxide, calcium methoxide, magnesium methoxide Alkoxides such as sodium ethoxide, potassium ethoxide, etc., carboxylates such as sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, etc., phosphates such as sodium phosphate, Azide such as lithium azide, sodium azide, potassium azide, rubidium azide, cesium azide, diazide magnesium, diazide calcium, diazidostrontium, lithium octoate, sodium octoate, potassium octoate, rubidium octoate Octanoates such as cesium octoate, magnesium bisoctanoate, calcium bisoctanoate, strontium bisoctanoate, such as lithium naphthenate, sodium naphthenate, potassium naphthenate, rubidium naphthenate, cesium naphthenate, magnesium naphthenate, calcium naphthenate, Examples thereof include naphthenates such as strontium naphthenate. In the present invention, the metal salt is preferably an alkali metal or alkaline earth metal hydroxide, and more preferably an alkaline earth metal hydroxide.

本発明においては、通常、前記原料化合物を溶媒と混合して、液状またはゾル状で霧化に用いる。前記溶媒としては、水および/または有機溶媒(例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、モノメトキシエタノール、エチレングリコールモノメチルエーテル等のアルコール;アセトン、メチルケトン等のケトン類、又はこれらの混合液等)などが挙げられるが、本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのが好ましい。   In the present invention, the raw material compound is usually mixed with a solvent and used for atomization in liquid or sol form. Examples of the solvent include water and / or organic solvents (for example, alcohols such as methanol, ethanol, propanol, isopropyl alcohol, butanol, monomethoxyethanol, and ethylene glycol monomethyl ether; ketones such as acetone and methyl ketone, or a mixture thereof. In the present invention, the solvent preferably contains water, and is preferably water or a mixed solvent of water and alcohol.

前記原料化合物と前記溶媒との混合液の配合割合は、混合液に対して、原料化合物0.01〜60質量%であるのが好ましく、ハロゲン化金属塩0.1〜50質量%であるのがより好ましい。   The mixing ratio of the mixed solution of the raw material compound and the solvent is preferably 0.01 to 60% by mass of the raw material compound and 0.1 to 50% by mass of the metal halide salt with respect to the mixed solution. Is more preferable.

前記基体は、前記無機塩の膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体材料であってよく、有機化合物であってもよいし、無機化合物であってもよい。本発明では、基体の形状によらず、均質な膜を得ることができるので、種々の形状を有する基体に適用可能である。前記基体の形状としては、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、微粒子状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されないが、好ましくは、10〜2000μmであり、より好ましくは50〜800μmである。   The substrate is not particularly limited as long as it can support the inorganic salt film. The material of the substrate is not particularly limited as long as the object of the present invention is not impaired, and may be a known substrate material, which may be an organic compound or an inorganic compound. In the present invention, a uniform film can be obtained regardless of the shape of the substrate, and therefore it can be applied to substrates having various shapes. Examples of the shape of the substrate include plate shapes such as flat plates and discs, fiber shapes, rod shapes, columnar shapes, prismatic shapes, cylindrical shapes, spiral shapes, spherical shapes, fine particle shapes, ring shapes, and the like. In the substrate, a substrate is preferable. Although the thickness of a board | substrate is not specifically limited in this invention, Preferably, it is 10-2000 micrometers, More preferably, it is 50-800 micrometers.

前記基板は、絶縁体基板であってもよいし、半導体基板や導電体基板等の導電性基板であってもよいが、本発明においては、前記基板が、絶縁体基板であるのが好ましい。基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。絶縁体基板としては、例えば、ガラス基板、セラミック基板、石英基板、サファイア基板などが挙げられる。半導体基板としては、例えば、例えば、Si、SiGe、SiCなどが含まれているシリコン系半導体基板、GaAs、GaN、GaPなどが含まれているガリウム系半導体基板、InP、InAsなどが含まれているインジウム系半導体基板などが挙げられる。また、導電体基板としては、例えば、金属やステンレスなどが含まれている導電体基板等が挙げられる。   The substrate may be an insulator substrate or a conductive substrate such as a semiconductor substrate or a conductor substrate. In the present invention, the substrate is preferably an insulator substrate. The substrate material is not particularly limited as long as the object of the present invention is not impaired, and may be a known material. Examples of the insulator substrate include a glass substrate, a ceramic substrate, a quartz substrate, and a sapphire substrate. Examples of the semiconductor substrate include a silicon-based semiconductor substrate containing Si, SiGe, SiC, and the like, a gallium-based semiconductor substrate containing GaAs, GaN, GaP, and the like, InP, InAs, and the like. An indium-based semiconductor substrate can be used. Moreover, as a conductor board | substrate, the conductor board | substrate etc. in which a metal, stainless steel, etc. are contained are mentioned, for example.

本発明においては、前記基板が、ガラス基板であるのが好ましい。熱や温湿度に対する寸法変化がより少なく、また、後工程において使用される処理液等に対する耐性も汎用性も高いからである。前記ガラス基板は、無アルカリガラス基板が好ましく、このような好適な無アルカリガラス基板としては、例えば、アルミノシリケートガラス基板、アルミノホウケイ酸ガラス基板、バリウムホウケイ酸ガラス基板などが挙げられる。   In the present invention, the substrate is preferably a glass substrate. This is because the dimensional change with respect to heat and temperature / humidity is smaller, and the resistance to the treatment liquid used in the post-process and the versatility are high. The glass substrate is preferably an alkali-free glass substrate, and examples of such a suitable alkali-free glass substrate include an aluminosilicate glass substrate, an aluminoborosilicate glass substrate, and a barium borosilicate glass substrate.

本発明の成膜装置は、溶媒中の原料化合物を霧化する霧化部、前記霧化部により発生したミストをキャリアガスで基体まで搬送する搬送部、および該ミストを熱処理して該基体上に成膜する成膜部を備えている。前記霧化部は、前記溶媒中の前記原料化合物を霧化できれば特に限定されない。本発明においては、前記霧化部が、少なくとも超音波振動子を備えており、超音波振動によって、前記原料化合物を霧化する手段を有しているのが好ましい。前記搬送部は、前記霧化部により発生したミストを前記キャリアガスで基体まで搬送できれば特に限定されない。前記成膜部は、前記ミストを熱処理して該基体上に成膜するが、本発明では、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で前記ミストを加熱する熱処理手段を備えている。   The film forming apparatus of the present invention includes an atomization unit that atomizes a raw material compound in a solvent, a conveyance unit that conveys mist generated by the atomization unit to a substrate with a carrier gas, and heat-treats the mist on the substrate. A film forming unit for forming a film is provided. The said atomization part will not be specifically limited if the said raw material compound in the said solvent can be atomized. In the present invention, it is preferable that the atomizing unit includes at least an ultrasonic vibrator and has means for atomizing the raw material compound by ultrasonic vibration. The said conveyance part will not be specifically limited if the mist generated by the said atomization part can be conveyed to a base | substrate with the said carrier gas. The film forming section heat-treats the mist to form a film on the substrate.In the present invention, when the inorganic salt has a thermal oxidation temperature at a temperature equal to or higher than the vaporization temperature of the solvent, Heat treatment means for heating the mist at a temperature lower than the thermal oxidation temperature is provided.

本発明では、前記成膜装置を用いて、前記溶媒中の前記原料化合物を霧化し(霧化工程)、発生したミストをキャリアガスで前記基体まで搬送し(搬送工程)、該ミストを熱処理して該基体上に成膜する(成膜工程)。   In the present invention, the raw material compound in the solvent is atomized using the film forming apparatus (atomization step), the generated mist is conveyed to the substrate with a carrier gas (conveying step), and the mist is heat-treated. Then, a film is formed on the substrate (film forming process).

霧化工程では、溶媒中の原料化合物を霧化してミストを発生させる。霧化手段は、前記原料溶液を霧化できさえすれば特に限定されず、公知の霧化手段であってよいが、本発明においては、超音波を用いる霧化手段であるのが好ましい。超音波を用いることによって、より密着性に優れた膜を成膜することができる。   In an atomization process, the raw material compound in a solvent is atomized and mist is generated. The atomizing means is not particularly limited as long as it can atomize the raw material solution, and may be a known atomizing means, but in the present invention, it is preferably an atomizing means using ultrasonic waves. By using ultrasonic waves, a film having better adhesion can be formed.

搬送工程では、前記キャリアガスによって前記ミストを前記基体へ供給する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。前記キャリアガスの流量は、特に限定されないが、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。   In the transfer step, the mist is supplied to the substrate by the carrier gas. The type of the carrier gas is not particularly limited as long as the object of the present invention is not impaired. For example, an inert gas such as oxygen, ozone, nitrogen or argon, or a reducing gas such as hydrogen gas or forming gas is preferable. As mentioned. Further, the type of carrier gas may be one type, but may be two or more types, and a diluent gas (for example, a 10-fold diluted gas) whose carrier gas concentration is changed is used as the second carrier gas. Further, it may be used. Further, the supply location of the carrier gas is not limited to one location but may be two or more locations. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min.

成膜工程では、前記ミストを熱反応させて、前記基体表面の一部または全部に成膜する。前記熱反応は、酸化を伴わない反応であれば特に限定されない。本工程においては、通常、熱反応を、前記溶媒の気化温度以上の温度で、かつ前記無機塩が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で行う。本発明においては、前記熱処理を、200℃〜500℃の温度で行うのが好ましく、250℃〜400℃で行うのが好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよいが、本発明においては、酸素雰囲気下が好ましい。酸素雰囲気下で行うことにより、工業上有利に成膜できるからである。また、大気圧下で行うのも工業上有利に成膜できるので好ましい。なお、膜厚は成膜時間を調整することにより、設定することができる。   In the film forming step, the mist is reacted by heat to form a film on part or all of the substrate surface. The thermal reaction is not particularly limited as long as it does not involve oxidation. In this step, the thermal reaction is usually carried out at a temperature equal to or higher than the vaporization temperature of the solvent and, if the inorganic salt has a thermal oxidation temperature, at a temperature lower than the thermal oxidation temperature. In this invention, it is preferable to perform the said heat processing at the temperature of 200 to 500 degreeC, and it is preferable to carry out at 250 to 400 degreeC. Further, the thermal reaction may be performed under any atmosphere of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, and an oxygen atmosphere as long as the object of the present invention is not impaired. An atmosphere is preferred. This is because the film formation can be advantageously carried out industrially by carrying out in an oxygen atmosphere. Further, it is preferable to carry out the reaction under atmospheric pressure because the film can be formed advantageously industrially. The film thickness can be set by adjusting the film formation time.

上記のように好適な成膜方法で得られた無機塩の膜は、基板との密着性に優れており、均質な膜が成膜できる。   As described above, the inorganic salt film obtained by a suitable film forming method has excellent adhesion to the substrate, and a uniform film can be formed.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

<実施例1>
まず、図1を用いて、本実施例で用いたCVD装置19を説明する。CVD装置19は、絶縁体基板等の被成膜試料20を載置する試料台21と、キャリアガスを供給するキャリアガス源22と、キャリアガス源22から送り出されるキャリアガスの流量を調節するための流量調節弁23と、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる成膜室27と、成膜室27の周辺部に設置されたヒータ28を備えている。試料台21は、石英からなり、被成膜試料20を載置する面が水平面から傾斜している。成膜室27と試料台21をどちらも石英で作製することにより、被成膜試料20上に形成される薄膜内に装置由来の不純物が混入することを抑制している。
<Example 1>
First, the CVD apparatus 19 used in this example will be described with reference to FIG. The CVD apparatus 19 adjusts the flow rate of the carrier gas sent from the sample stage 21 on which the film-formed sample 20 such as an insulator substrate is placed, the carrier gas source 22 that supplies the carrier gas, and the carrier gas 22. A flow rate adjusting valve 23, a mist generating source 24 for storing a raw material solution 24a, a container 25 for containing water 25a, an ultrasonic transducer 26 attached to the bottom surface of the container 25, and a quartz tube having an inner diameter of 40 mm. A film forming chamber 27, and a heater 28 installed around the film forming chamber 27. The sample stage 21 is made of quartz, and the surface on which the deposition target sample 20 is placed is inclined from the horizontal plane. Both the film formation chamber 27 and the sample stage 21 are made of quartz, so that impurities derived from the apparatus are prevented from being mixed into the thin film formed on the film formation target sample 20.

水酸化カルシウム水溶液(濃度:0.02g/L)を原料溶液として用いた。この原料溶液24aをミスト発生源24内に収容した。次に、被成膜試料20として、1辺が10mmの正方形で厚さ600μmのガラス基板を試料台21上に設置させ、ヒータ28を作動させて成膜室27内の温度を350℃にまで昇温させた。次に、流量調節弁23を開いてキャリアガス源22からキャリアガスを成膜室27内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5L/minに調節した。キャリアガスとしては、酸素ガスを用いた。   An aqueous calcium hydroxide solution (concentration: 0.02 g / L) was used as a raw material solution. This raw material solution 24 a was accommodated in the mist generating source 24. Next, a glass substrate having a square with a side of 10 mm and a thickness of 600 μm is placed on the sample stage 21 as the film formation sample 20, and the heater 28 is operated to raise the temperature in the film formation chamber 27 to 350 ° C. The temperature was raised. Next, the flow rate adjusting valve 23 is opened to supply the carrier gas from the carrier gas source 22 into the film forming chamber 27, and the atmosphere in the film forming chamber 27 is sufficiently replaced with the carrier gas. Adjusted to min. Oxygen gas was used as the carrier gas.

次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて、原料微粒子を生成した。
この原料微粒子が、キャリアガスによって成膜室27内に導入され、成膜室27内で反応して、被成膜試料20上に薄膜を形成した。得られた薄膜の組成を調べたところ、水酸化カルシウムであった。
Next, the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a, whereby the raw material solution 24a was made into fine particles to produce raw material fine particles.
The raw material fine particles were introduced into the film forming chamber 27 by the carrier gas and reacted in the film forming chamber 27 to form a thin film on the film forming sample 20. When the composition of the obtained thin film was examined, it was calcium hydroxide.

<比較例1>
ミストCVD装置の代わりに噴射式のスプレーを用いて成膜したこと以外は、実施例1と同様にして基板上に水酸化カルシウム膜を成膜した。
<Comparative Example 1>
A calcium hydroxide film was formed on the substrate in the same manner as in Example 1 except that the film was formed using a spray spray instead of the mist CVD apparatus.

<試験例1>
実施例1および比較例1で得られた薄膜と、基板との密着性を評価した。手で剥離可能なものを「×」と評価し、金属製の切削工具を用いて剥離可能なものを「△」、全く剥離できなかったものを「○」と評価した。結果を表1に示す。
<Test Example 1>
The adhesion between the thin film obtained in Example 1 and Comparative Example 1 and the substrate was evaluated. Those that could be peeled by hand were evaluated as “×”, those that could be peeled using a metal cutting tool were evaluated as “Δ”, and those that could not be peeled off were evaluated as “◯”. The results are shown in Table 1.

表1から、実施例1の膜は、基板から全く剥離できずに、密着性が良好であった。また、比較例1の膜は、すぐに剥がれ、密着性が全くなかった。   From Table 1, the film of Example 1 was not peeled at all from the substrate and had good adhesion. Further, the film of Comparative Example 1 was peeled off immediately and had no adhesion.

本発明の成膜装置および成膜方法は、成膜品質に優れており、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができる。   The film forming apparatus and film forming method of the present invention are excellent in film forming quality, and are applicable to various fields such as semiconductors (for example, compound semiconductor electronic devices), electronic parts / electric equipment parts, optical / electrophotographic related apparatuses, industrial members, etc. Can be used.

19 ミストCVD装置
20 被成膜試料
21 試料台
22 キャリアガス源
23 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 成膜室
28 ヒータ
DESCRIPTION OF SYMBOLS 19 Mist CVD apparatus 20 Film-forming sample 21 Sample stand 22 Carrier gas source 23 Flow control valve 24 Mist generation source 24a Raw material solution 25 Container 25a Water 26 Ultrasonic vibrator 27 Deposition chamber 28 Heater

Claims (4)

溶媒中の原料化合物を霧化して発生したミストをキャリアガスで基体まで搬送し、該ミストを熱処理して該基体上に成膜する方法において、前記原料化合物が金属水酸化物であり、前記溶媒が水を含んでおり、前記熱処理を、前記溶媒の気化温度以上の温度で、かつ前記金属水酸化物が熱酸化温度を有する場合には、前記熱酸化温度未満の温度で行うことを特徴とする成膜方法。 In the method of transporting mist generated by atomizing a raw material compound in a solvent to a substrate with a carrier gas, and heat-treating the mist to form a film on the substrate, the raw material compound is a metal hydroxide , and the solvent Includes water, and the heat treatment is performed at a temperature equal to or higher than the vaporization temperature of the solvent, and when the metal hydroxide has a thermal oxidation temperature, the heat treatment is performed at a temperature lower than the thermal oxidation temperature. A film forming method. 前記金属水酸化物がアルカリ金属またはアルカリ土類金属の水酸化物である請求項記載の成膜方法。 The film forming method according to claim 1, wherein the metal hydroxide is an alkali metal hydroxide or alkaline earth metal. 前記原料化合物がカルシウム化合物である請求項1または2に記載の成膜方法。 The film forming method according to claim 1 or 2, wherein the starting compound is a calcium compound. 前記熱処理を、200℃〜500℃の温度で行う請求項1〜3のいずれかに記載の成膜方法。 The film-forming method in any one of Claims 1-3 which perform the said heat processing at the temperature of 200 to 500 degreeC.
JP2014220135A 2014-10-29 2014-10-29 Film forming apparatus and film forming method Active JP6447008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014220135A JP6447008B2 (en) 2014-10-29 2014-10-29 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014220135A JP6447008B2 (en) 2014-10-29 2014-10-29 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2016084521A JP2016084521A (en) 2016-05-19
JP6447008B2 true JP6447008B2 (en) 2019-01-09

Family

ID=55971961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220135A Active JP6447008B2 (en) 2014-10-29 2014-10-29 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP6447008B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477302A (en) * 1990-07-20 1992-03-11 Mitsubishi Cable Ind Ltd Production of superconducting layer
CA2048740A1 (en) * 1990-12-24 1992-06-25 John A. Deluca Method of preparing metal oxide films
JP2000036244A (en) * 1998-07-16 2000-02-02 Matsushita Electric Ind Co Ltd Manufacture of plasma display panel
JP2005255464A (en) * 2004-03-11 2005-09-22 Jsr Corp Composition for forming film

Also Published As

Publication number Publication date
JP2016084521A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
KR101708283B1 (en) Apparatus and method for forming film
KR101807544B1 (en) Method of forming metal film
CN1792474B (en) Ceramic sprayed member-cleaning method
JP2022050520A (en) Film deposition apparatus and film deposition method
JP6876893B2 (en) Method for manufacturing yttrium oxide film
WO2020129625A1 (en) Method for manufacturing gallium oxide film
JP2023017874A (en) Gallium oxide film and laminate
JP6447008B2 (en) Film forming apparatus and film forming method
JP2024023981A (en) Crystalline oxide thin film, laminate and method for manufacturing crystalline oxide thin film
JPS61286299A (en) Preparation of diamond
JP6547930B2 (en) Metal film formation method
JP2016027636A (en) Susceptor
JP2000265275A (en) Cleaning method
CN116940708A (en) Film forming apparatus, film forming method, gallium oxide film, and laminate
JP2021119614A (en) Film deposition device, manufacturing method of film deposition substrate, manufacturing device of semiconductor film, and manufacturing method of semiconductor film
JP2016157879A (en) Crystalline oxide semiconductor film and semiconductor device
TW200428416A (en) High voltage-endurance member
JP7407426B2 (en) semiconductor film
JP7240654B2 (en) Metal film forming method
JP6627132B2 (en) Film forming apparatus and film forming method
RU2558812C1 (en) Method of obtaining silicon carbide coating on quartz product
JP7023445B2 (en) Film formation method
JP7478372B2 (en) Crystal film manufacturing method
JP7478371B2 (en) Crystal film manufacturing method
JP2012062527A (en) Method for producing metal oxide thin film, and metal oxide thin film formation device using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250