JP6441603B2 - Joule heating device temperature control apparatus and Joule heating device - Google Patents
Joule heating device temperature control apparatus and Joule heating device Download PDFInfo
- Publication number
- JP6441603B2 JP6441603B2 JP2014151407A JP2014151407A JP6441603B2 JP 6441603 B2 JP6441603 B2 JP 6441603B2 JP 2014151407 A JP2014151407 A JP 2014151407A JP 2014151407 A JP2014151407 A JP 2014151407A JP 6441603 B2 JP6441603 B2 JP 6441603B2
- Authority
- JP
- Japan
- Prior art keywords
- heating device
- joule heating
- unit
- pipe
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 82
- 238000011144 upstream manufacturing Methods 0.000 claims description 23
- 235000013305 food Nutrition 0.000 claims description 6
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004063 acid-resistant material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Landscapes
- Control Of Resistance Heating (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Description
本発明は、ジュール加熱装置の温度調整器具及びジュール加熱装置に関する。 The present invention relates to a temperature adjusting device for a joule heating device and a joule heating device.
<背景技術の説明>
被加熱物を流路内で連続的に搬送し、ジュール熱により加熱するジュール加熱装置が広く利用されている。従来、ジュール加熱装置に関し、各種の技術が提案されている(例えば、特許文献1参照)。
<Description of background technology>
2. Description of the Related Art A Joule heating device that continuously conveys an object to be heated in a flow path and heats it by Joule heat is widely used. Conventionally, various techniques have been proposed for the Joule heating device (see, for example, Patent Document 1).
<特許文献1の説明−1>
特許文献1には、上流側の通電加熱部及び下流側の通電加熱部を備える加熱装置が開示されており、加熱装置は、上流側の通電加熱部に流入する被加熱物の温度を検出する第1の温度センサと、下流側の通電加熱部から排出された被加熱物の温度を検出する第2の温度センサとを有する。この加熱装置では、第1の温度センサの検出値と第2の温度センサの検出値の差に基づいて、下流側の通電加熱部に設けられた電極に供給される電力をフィードフォワード制御する。
<Description-1 of Patent Document 1>
Patent Document 1 discloses a heating device including an upstream current heating unit and a downstream current heating unit, and the heating device detects the temperature of an object to be heated flowing into the upstream current heating unit. It has a 1st temperature sensor and a 2nd temperature sensor which detects the temperature of the to-be-heated material discharged | emitted from the energization heating part of the downstream. In this heating device, the power supplied to the electrode provided in the downstream energization heating unit is feedforward controlled based on the difference between the detection value of the first temperature sensor and the detection value of the second temperature sensor.
<特許文献1の説明−2>
ところで、近年、ジュール加熱装置において加熱後の被加熱物の温度をより正確に検出したいとの要望がある。しかし、第2の温度センサを下流側の通電加熱部の出口側に単に設けた特許文献1の技術では、被加熱物における温度分布が不均一になり易く、上記要望に応えることは難しい。
<Description-2 of Patent Document 1>
By the way, in recent years, there is a demand for more accurately detecting the temperature of an object to be heated after heating in a Joule heating device. However, in the technique of Patent Document 1 in which the second temperature sensor is simply provided on the outlet side of the downstream energization heating unit, the temperature distribution in the object to be heated tends to be uneven, and it is difficult to meet the above demand.
<背景技術の課題>
本発明は、このような事情に鑑みてなされたものであり、その目的は、被加熱物の温度分布の均一化を図ることにより、加熱後の被加熱物の温度をより正確に検出できるジュール加熱装置の温度調整器具及びジュール加熱装置を提供することにある。
<Background technology issues>
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a Joule that can more accurately detect the temperature of the heated object by making the temperature distribution of the heated object uniform. An object of the present invention is to provide a temperature adjusting device for a heating device and a Joule heating device.
<請求項1の内容>
このような目的を達成するため、本発明は、以下の構成によって把握される。
(1)本発明は、流動性を有する飲食物を被加熱物として流路内で連続的に搬送しつつ、管状の通電加熱部でジュール熱により前記被加熱物を加熱するジュール加熱装置の温度調整器具であって、前記通電加熱部の排出口と前記排出口の下流側に設けられた温度センサとを結ぶ配管の管路に嵌合される円板状の基部と、前記基部の周方向に略等間隔に並んで設けられ、前記排出口からの前記被加熱物を相反する複数の方向に流動させる断面円形の複数の傾斜流路と、を有し、前記複数の傾斜流路の断面積の合計が、前記排出口の断面積の0.8倍以上1.2倍以下の大きさであり、前記傾斜流路の軸線が、前記配管の軸線に対し30°以上60°以下の傾斜角度で傾斜していることを特徴とする。
<Content of Claim 1>
In order to achieve such an object, the present invention is grasped by the following configuration.
(1) The present invention is a temperature of a Joule heating device that heats the heated object by Joule heat in a tubular energization heating unit while continuously transporting food and drink having fluidity as the heated object in the flow path. An adjusting device, a disc-shaped base fitted into a pipe line connecting a discharge port of the energization heating unit and a temperature sensor provided downstream of the discharge port, and a circumferential direction of the base A plurality of inclined channels having a circular cross section that flow in a plurality of directions opposite to each other to be heated from the discharge port. The total area is 0.8 to 1.2 times the cross-sectional area of the discharge port, and the axis of the inclined channel is inclined at an angle of 30 ° to 60 ° with respect to the axis of the pipe. It is inclined at an angle.
<請求項2の内容>
(2)本発明は、(1)の構成において、前記基部と前記複数の傾斜流路とが1つのユニットを構成し、1対の前記ユニットが前記配管の軸線に沿って対向して配置され、1対の前記ユニットの離間距離が、前記基部の直径に対し、0.5倍以上2.0倍以下の長さであることを特徴とする。
<Content of Claim 2>
(2) According to the present invention, in the configuration of (1), the base and the plurality of inclined flow paths constitute one unit, and a pair of the units are arranged to face each other along the axis of the pipe. The distance between the pair of units is 0.5 to 2.0 times the diameter of the base.
<請求項3の内容>
(3)本発明は、(2)の構成において、前記ユニットには、2つ、3つ又は4つの前記傾斜流路が設けられることを特徴とする。
<Content of Claim 3>
(3) In the configuration of (2), the present invention is characterized in that the unit is provided with two, three, or four inclined flow paths.
<請求項4の内容>
(4)本発明は、上記(2)又は(3)の構成において、1対の前記ユニットの前記基部同士を連結する連結部を有することを特徴とする。
<Content of Claim 4>
(4) The present invention is characterized in that in the configuration of the above (2) or (3), there is a connecting portion that connects the base portions of the pair of units.
<請求項5の内容>
(5)本発明は、上記(1)ないし(3)のいずれかの構成において、前記配管の口径が、前記通電加熱部の前記排出口の口径に対し、1.2倍以上2.5倍以下の大きさであることを特徴とする。
<Content of Claim 5>
(5) In the configuration according to any one of the above (1) to (3), the present invention is configured such that the diameter of the pipe is 1.2 times or more and 2.5 times the diameter of the discharge port of the energization heating unit. It has the following size.
<請求項6の内容>
(6)本発明は、上記(2)ないし(5)のいずれかの構成において、1対の前記ユニットのうち下流側のユニットが、前記配管の下流側の端部から上流側に離れて配置され、前記配管の下流側の端部に対する前記下流側のユニットの位置を正規の位置に保持する位置規制部を有することを特徴とする。
<Content of Claim 6>
(6) In the configuration according to any one of the above (2) to (5), the downstream unit of the pair of the units is disposed away from the downstream end of the pipe to the upstream side. And a position restricting portion that holds the position of the downstream unit relative to the downstream end of the pipe at a regular position.
<請求項7の内容>
(7)本発明は、流動性を有する飲食物を被加熱物として流路内で連続的に搬送しつつ、管状の通電加熱部でジュール熱により前記被加熱物を加熱するジュール加熱装置であって、上記(1)ないし(6)のいずれか1つのジュール加熱装置の温度調整器具を備えることを特徴とする。
<Content of Claim 7>
(7) The present invention is a Joule heating device that heats the heated object by Joule heat in a tubular energization heating unit while continuously transporting fluid food and drink as the heated object in the flow path. The temperature adjusting device of any one of the above (1) to (6) is provided.
本発明によれば、被加熱物の温度分布の均一化を図ることにより、加熱後の被加熱物の温度をより正確に検出可能なジュール加熱装置の温度調整器具及びジュール加熱装置を提供することができる。 According to the present invention, it is possible to provide a temperature adjusting device for a Joule heating device and a Joule heating device capable of more accurately detecting the temperature of the heated object after heating by making the temperature distribution of the heated object uniform. Can do.
<実施形態の説明>
以下、添付図面を参照して、本発明を実施するための形態(以下、「実施形態」と称する)について詳細に説明する。実施形態の説明の全体を通して同じ要素には同じ番号を付している。
<Description of Embodiment>
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the accompanying drawings. The same number is attached | subjected to the same element through the whole description of embodiment.
<ジュール加熱装置の説明−1>
まず、ジュール加熱装置10の構成を図1に基づいて説明する。
<Description of Joule Heating Device-1>
First, the configuration of the Joule heating device 10 will be described with reference to FIG.
<ジュール加熱装置の説明−2>
図1に示すように、ジュール加熱装置10は、飲食物の製造システムに用いられるものであり、流動性を有する飲食物(例えば、ドレッシングやマヨネーズなど)を被加熱物として流路内で連続的に搬送しつつ、管状の通電加熱部20でジュール熱により被加熱物を加熱・殺菌する。
<Description of Joule Heating Device-2>
As shown in FIG. 1, the Joule heating device 10 is used in a food and drink manufacturing system, and is continuous in a flow path using a fluid food or drink (such as dressing or mayonnaise) as an object to be heated. The object to be heated is heated and sterilized by Joule heat in the tubular energization heating unit 20 while being conveyed.
<ジュール加熱装置の説明−3>
なお、以下の説明では、ジュール加熱装置10の各部において、上流及び下流側に同一の機能の部材がある場合、いずれも同一の番号に、上流側の部材には「U」を、下流側の部材には「D」を後続させた符号で示す。また、それらを纏めて称するときは、番号のみを用いる。
<Description of Joule Heating Device-3>
In the following description, in each part of the Joule heating device 10, when there are members having the same function on the upstream side and the downstream side, both are assigned the same number, “U” for the upstream member, The member is indicated by a symbol followed by “D”. Also, when referring to them collectively, only numbers are used.
<ジュール加熱装置の説明−3>
ジュール加熱装置10は、接続管11を介して連なる複数(この例では、2つ)の通電加熱部20と、上流側の通電加熱部20Uの流入口21に連通する流路22と、この流路22の上流側に設けられる上流側の温度センサ23Uとを備える。また、ジュール加熱装置10は、下流側の通電加熱部20Dの排出口25に連通する配管26と、この配管26の下流側に設けられる下流側の温度センサ23Dとを備える。さらに、ジュール加熱装置10は、上流側の通電加熱部20Uに電力を供給する上流側の電源ユニット27Uと、下流側の通電加熱部20Dに電力を供給する下流側の電源ユニット27Dと、上流側の電源ユニット27U及び下流側の電源ユニット27Uを制御する制御ユニット28とを備える。
<Description of Joule Heating Device-3>
The Joule heating device 10 includes a plurality of (in this example, two) energization heating units 20 that are connected via a connecting pipe 11, a flow path 22 that communicates with an inlet 21 of an upstream energization heating unit 20U, And an upstream temperature sensor 23 </ b> U provided on the upstream side of the path 22. Further, the Joule heating device 10 includes a pipe 26 communicating with the discharge port 25 of the downstream energization heating unit 20 </ b> D, and a downstream temperature sensor 23 </ b> D provided on the downstream side of the pipe 26. Furthermore, the Joule heating device 10 includes an upstream power supply unit 27U that supplies power to the upstream energization heating unit 20U, a downstream power supply unit 27D that supplies power to the downstream energization heating unit 20D, and an upstream side And a control unit 28 for controlling the downstream power supply unit 27U.
<通電加熱部の説明>
通電加熱部20は、被加熱物を案内する流路を有する円筒状であり、その筒軸方向に沿って複数のリング状の電極31a,31bを備える。電極31a,31bは、ケーブルを介して電源ユニット27に接続されており、筒軸方向に隣り合う電極31a,31bが相互に逆極性となるように配置される。電極31a,31bには、電源ユニット27から高周波電流が供給される。なお、電極31a,31bの数は、加熱温度(殺菌温度)などに応じて任意に設定可能である。
<Description of energization heating unit>
The energization heating unit 20 has a cylindrical shape having a flow path for guiding an object to be heated, and includes a plurality of ring-shaped electrodes 31a and 31b along the cylinder axis direction. The electrodes 31a and 31b are connected to the power supply unit 27 via a cable, and are arranged so that the electrodes 31a and 31b adjacent in the cylinder axis direction have opposite polarities. A high frequency current is supplied from the power supply unit 27 to the electrodes 31a and 31b. The number of electrodes 31a and 31b can be arbitrarily set according to the heating temperature (sterilization temperature) and the like.
<制御ユニットの説明>
制御ユニット28は、上流側の温度センサ23U及び下流側の温度センサ23Dのそれぞれに接続されており、温度センサ23Uの検出値と温度センサ23Dの検出値の差に基づいて、電源ユニット27のそれぞれの電圧を制御し、通電加熱部20U,20Dのそれぞれに供給される電力を制御する。
<Description of control unit>
The control unit 28 is connected to each of the upstream temperature sensor 23U and the downstream temperature sensor 23D. Based on the difference between the detection value of the temperature sensor 23U and the detection value of the temperature sensor 23D, each of the power supply units 27 is controlled. Is controlled to control the power supplied to each of the energization heating units 20U and 20D.
<温度調整器具の説明−1>
次に、実施形態1に係る温度調整器具40の構成を図2〜図5に基づいて説明する。
<Explanation of temperature control instrument-1>
Next, the configuration of the temperature adjustment device 40 according to the first embodiment will be described with reference to FIGS.
<温度調整器具の説明−2>
図2に示すように、温度調整器具40は、円板状の基部42U及び断面円形の複数の傾斜流路43Uにより構成される上流側のユニット41Uと、円板状の基部42D及び断面円形の複数の傾斜流路43Dにより構成される下流側のユニット41Dと、を備える。このように温度調整器具40は、1対のユニット41を備えており、さらに1対のユニット41を連結する連結部45aを備える。また、温度調整器具40には、ユニット41の位置を正規の位置に保持する位置規制部45bが設けられる。なお、温度調整器具40を構成する材料は、各種の材料から選択可能であるが、耐酸性の材料(例えば、ステンレス鋼など)を好適に用いることができる。
<Explanation of temperature control instrument-2>
As shown in FIG. 2, the temperature adjusting device 40 includes an upstream unit 41U configured by a disk-shaped base portion 42U and a plurality of circular flow paths 43U having a circular cross section, a disk-shaped base portion 42D, and a circular cross-section. A downstream unit 41D configured by a plurality of inclined channels 43D. As described above, the temperature adjustment device 40 includes a pair of units 41 and further includes a connecting portion 45 a that connects the pair of units 41. In addition, the temperature adjusting device 40 is provided with a position restricting portion 45b that holds the position of the unit 41 at a regular position. In addition, although the material which comprises the temperature control instrument 40 can be selected from various materials, an acid-resistant material (for example, stainless steel etc.) can be used suitably.
<配管の説明>
図3に示すように、配管26は、下流側の通電加熱部20Dの排出口25を形成する加熱部側接続管48と、下流側の温度センサ23Dに通じるセンサ側接続管49との間にシール材26aを介して介在されており、配管26の口径d1は、排出口25の口径(加熱部側接続管48の口径)d2及びセンサ側接続管49の口径d3よりも大きく設定される。より詳細には、配管26の口径d1は、通電加熱部20Dの排出口25の口径d2に対し、1.2倍以上2.5倍以下の大きさ(例えば、2倍程度)に設定される。このように配管26の口径d1を排出口25の口径d2よりも大きく設定することにより、排出口25において流路が急激に拡大するため、排出口25から配管26に流入した被加熱物の流れに渦が生じ易くなる。
<Description of piping>
As shown in FIG. 3, the pipe 26 is provided between a heating unit side connecting pipe 48 that forms the discharge port 25 of the downstream heating unit 20 </ b> D and a sensor side connecting pipe 49 that leads to the downstream temperature sensor 23 </ b> D. The diameter d1 of the pipe 26 is set to be larger than the diameter (the diameter of the heating unit side connecting pipe 48) d2 of the discharge port 25 and the diameter d3 of the sensor side connecting pipe 49. More specifically, the diameter d1 of the pipe 26 is set to 1.2 times or more and 2.5 times or less (for example, about 2 times) the diameter d2 of the discharge port 25 of the energization heating unit 20D. . By setting the diameter d1 of the pipe 26 to be larger than the diameter d2 of the discharge port 25 in this way, the flow path rapidly expands at the discharge port 25, so that the flow of the heated object flowing into the pipe 26 from the discharge port 25 Vortices are likely to occur.
<基部の説明>
1対のユニット41は、配管26の管路46の軸線C1に沿って対向して配置される。対向する2つの基部42U,42Dのそれぞれは、管路46に嵌合されており、2つのユニット41U,41Dの離間距離Lは、基部42U,42Dの直径d4(図5参照)に対し、0.5倍以上2.0倍以下の長さである。この例では、離間距離Lを基部42U,42Dの直径d4と同程度(1倍程度)に設定する。
<Description of the base>
The pair of units 41 are disposed to face each other along the axis C <b> 1 of the pipe 46 of the pipe 26. Each of the two opposing base portions 42U and 42D is fitted into the pipe 46, and the separation distance L between the two units 41U and 41D is 0 with respect to the diameter d4 (see FIG. 5) of the base portions 42U and 42D. The length is 5 times or more and 2.0 times or less. In this example, the separation distance L is set to be approximately the same as the diameter d4 of the base portions 42U and 42D (about 1 time).
<傾斜流路の説明−1>
図4に示すように、複数(この例では、2つ)の傾斜流路43は、基部42の周方向に略等間隔(この例では、180°間隔)に設けられる。複数の傾斜流路43は、基部42から下流側に向けて管状に突出して設けられ、互いにねじれの位置の関係にある。複数の傾斜流路43は、排出口25(図3参照)からの被加熱物を相反する複数の方向(この例では、2つの方向)に流動させて螺旋状の流れを形成する作用をなす。
<Explanation-1 of inclined channel>
As shown in FIG. 4, a plurality (two in this example) of inclined channels 43 are provided at substantially equal intervals (180 ° in this example) in the circumferential direction of the base 42. The plurality of inclined channels 43 are provided so as to project in a tubular shape from the base portion 42 toward the downstream side, and are in a twisted position relationship with each other. The plurality of inclined channels 43 act to form a spiral flow by causing the heated object from the discharge port 25 (see FIG. 3) to flow in a plurality of opposite directions (in this example, two directions). .
<傾斜流路の説明−2>
図5に示すように、各傾斜流路43の軸線C2は、管路46の軸線C1(被加熱物の進行方向)に対し、30°以上60°以下の傾斜角度θで傾斜しており、図5では、傾斜角度θを45°とした例を示している。また、複数の傾斜流路43の断面積の合計は、排出口25(図3参照)の断面積の0.8倍以上1.2倍以下の大きさに設定されており、このような断面積の倍率が得られるように、排出口25の直径d2(図3参照)に対し、傾斜流路43の直径d5及び個数が定められている。
<Description of inclined flow path-2>
As shown in FIG. 5, the axis C2 of each inclined flow path 43 is inclined at an inclination angle θ of 30 ° or more and 60 ° or less with respect to the axis C1 (the traveling direction of the object to be heated) of the pipe 46, FIG. 5 shows an example in which the inclination angle θ is 45 °. Further, the sum of the cross-sectional areas of the plurality of inclined channels 43 is set to 0.8 to 1.2 times the cross-sectional area of the discharge port 25 (see FIG. 3). The diameter d5 and the number of the inclined channels 43 are determined with respect to the diameter d2 of the discharge port 25 (see FIG. 3) so that the area magnification can be obtained.
<傾斜流路の説明−3>
図2に戻る。図2に示すように、1対のユニット41では、上流側のユニット41Uで形成される被加熱物の螺旋状の流れと、下流側のユニット41Dで形成される被加熱物の螺旋状の流れが連続するように、基部42の周方向における傾斜流路43U,43D(例えば、傾斜流路43U1と傾斜流路43D1)の位置が揃えられ、かつ、軸線C1に沿って対向する傾斜流路43同士(例えば、傾斜流路43U1と傾斜流路43D1)の向きが揃えられている。
なお、被加熱物の螺旋状の流れの連続を損なわない範囲で、傾斜流路43Uと傾斜流路43Dの流路数が異なっていてもよい。
<Description of inclined flow path-3>
Returning to FIG. As shown in FIG. 2, in the pair of units 41, the spiral flow of the heated object formed by the upstream unit 41U and the helical flow of the heated object formed by the downstream unit 41D. The inclined channels 43U and 43D (for example, the inclined channel 43U1 and the inclined channel 43D1) in the circumferential direction of the base 42 are aligned, and the inclined channels 43 are opposed along the axis C1. The directions of each other (for example, the inclined channel 43U1 and the inclined channel 43D1) are aligned.
Note that the number of the inclined channels 43U and the inclined channels 43D may be different as long as the continuity of the spiral flow of the object to be heated is not impaired.
<連結部の説明>
連結部45aは、1対のユニット41のそれぞれの基部42の外周を連結する。この連結部45aの少なくとも外面は、管路46(図3参照)の内周面の曲率に合わせた曲面状に形成される。
<Description of connecting part>
The connecting portion 45 a connects the outer peripheries of the base portions 42 of the pair of units 41. At least the outer surface of the connecting portion 45a is formed in a curved surface shape that matches the curvature of the inner peripheral surface of the conduit 46 (see FIG. 3).
<位置規制部の説明>
図3に示すように、位置規制部45bは、下流側のユニット41Dの外周部から下流側に突出した脚部であり、センサ側接続管49の上流側の端部に当接する。このように位置規制部45bがセンサ側接続管49の上流側の端部に当接することで、位置規制部45bの長さ分だけ下流側のユニット41Dがセンサ側接続管49から離れた位置に位置決めされる。また、必要に応じて、上流側のユニット41Uから上流側に突出した位置規制部45bを設けてもよい。なお、本発明にいう「位置規制部」は、配管の内周に設けられユニットの基部を直接支持する段部でもよい。
<Explanation of position restriction unit>
As shown in FIG. 3, the position restricting portion 45 b is a leg portion that protrudes downstream from the outer peripheral portion of the downstream unit 41 </ b> D, and abuts on the upstream end portion of the sensor side connecting tube 49. Thus, the position restricting portion 45b abuts on the upstream end of the sensor side connecting tube 49, so that the downstream unit 41D is separated from the sensor side connecting tube 49 by the length of the position restricting portion 45b. Positioned. Moreover, you may provide the position control part 45b which protruded upstream from the unit 41U of the upstream as needed. The “position restricting portion” referred to in the present invention may be a step portion provided on the inner periphery of the pipe and directly supporting the base of the unit.
<実施形態1の作用>
次に、温度調整器具40の作用を図6に基づいて説明する。
図6に示すように、排出口25から配管26に流入した被加熱物は、上流側のユニット41Uの傾斜した複数の傾斜流路43Uを通過することで相反する複数の方向(この例では、2つの方向)に流動する。そして、複数の方向に流動した被加熱物は、管路46の内周面で反射するように向きを変えた後、下流側のユニット41Dの複数の傾斜流路43Dに流れ、複数の傾斜流路43Dを通過することで、再び相反する複数の方向に流動する。この際、流路22の傾斜流路43U1を通過した被加熱物は、主に上流側の傾斜流路43D2を通過し(矢印(1))、上流側の傾斜流路43U2を通過した被加熱物は、主に下流側の傾斜流路43D1を通過する(矢印(2))。これにより、管路46の軸線C1(図3参照)を中心軸とした螺旋状の被加熱物の流れが得られ易くなる。
<Operation of Embodiment 1>
Next, the operation of the temperature adjusting device 40 will be described with reference to FIG.
As shown in FIG. 6, the object to be heated that has flowed into the pipe 26 from the discharge port 25 passes through a plurality of inclined flow paths 43U of the upstream unit 41U so as to conflict with each other (in this example, In two directions). And the to-be-heated material which flowed in the several direction changes direction so that it may reflect in the internal peripheral surface of the pipe line 46, Then, it flows into the several inclined flow path 43D of the unit 41D of the downstream side, A several inclined flow By passing through the path 43D, it flows again in a plurality of opposite directions. Under the present circumstances, the to-be-heated material which passed through the inclined flow path 43U1 of the flow path 22 mainly passed through the upstream inclined flow path 43D2 (arrow (1)) and passed through the upstream inclined flow path 43U2. The thing mainly passes through the inclined channel 43D1 on the downstream side (arrow (2)). Thereby, it becomes easy to obtain a spiral flow of the object to be heated with the axis C1 (see FIG. 3) of the conduit 46 as the central axis.
<実施形態1の効果−1>
以上、説明した実施形態の効果について述べる。
実施形態1によれば、下流側の通電加熱部20Dの排出口25から排出された被加熱物が、温度調整器具40によって管路46を螺旋状に流れ、良好に撹拌される。その結果、下流側の温度センサ23D付近において、管路46の径方向における被加熱物の温度分布が均一化するため、加熱後の被加熱物の温度をより正確に検出することができる。
<Effect-1 of Embodiment-1>
The effects of the embodiment described above will be described.
According to the first embodiment, the object to be heated discharged from the discharge port 25 of the downstream energization heating unit 20 </ b> D flows spirally through the conduit 46 by the temperature adjusting device 40 and is well stirred. As a result, in the vicinity of the downstream temperature sensor 23D, the temperature distribution of the heated object in the radial direction of the pipe line 46 is made uniform, so that the temperature of the heated object after heating can be detected more accurately.
<実施形態1の効果−2>
また、実施形態1では、下流側の通電加熱部20Dの排出口25と下流側の温度センサ23Dの間に温度調整器具40を設けた。これに対し、被加熱物の流れを螺旋状とする撹拌構造を通電加熱部の内部に設けることも可能である。しかし、この場合、通電加熱部の内部構造が複雑になることに加え、既存の通電加熱部に後から撹拌構造を追加することが難しくなる。この点、実施形態1は、通電加熱部20Dと下流側温度センサとの間に配管26及び温度調整器具40を介在させる構成であるため、既存の通電加熱部20Dをそのまま利用できる。したがって、装置の改造が少なくて済み、設備投資を最小限に抑えることができる。
<Effect-2 of Embodiment-1>
In the first embodiment, the temperature adjusting device 40 is provided between the discharge port 25 of the downstream energization heating unit 20D and the downstream temperature sensor 23D. On the other hand, it is also possible to provide the stirring structure which makes the flow of a to-be-heated object spiral, in the electricity heating part. However, in this case, in addition to the internal structure of the current heating unit becoming complicated, it becomes difficult to add a stirring structure to the existing current heating unit later. In this regard, the first embodiment is configured such that the pipe 26 and the temperature adjusting device 40 are interposed between the energization heating unit 20D and the downstream temperature sensor, so that the existing energization heating unit 20D can be used as it is. Therefore, it is possible to reduce the number of modifications of the apparatus and to minimize the capital investment.
<実施形態1の効果−3>
また、基部42と複数の傾斜流路43とからなるユニット41を管路46の軸線C1に沿って複数配置したので、被加熱物をより効果的に撹拌することができ、下流側の温度センサ23D付近における被加熱物の温度分布をより均一化することができる。
<Effect-3 of Embodiment 1>
In addition, since a plurality of units 41 including the base portion 42 and the plurality of inclined channels 43 are arranged along the axis C1 of the pipe 46, the object to be heated can be more effectively stirred, and the downstream temperature sensor The temperature distribution of the object to be heated in the vicinity of 23D can be made more uniform.
<実施形態1の効果−4>
また、複数の傾斜流路43の断面積の合計を、排出口25の断面積の0.8倍以上1.2倍以下の大きさに設定したので、排出口25から排出される被加熱物の流量と、各ユニット41において複数の傾斜流路43を通過する被加熱物の流量との差を小さくできるので、配管26内において部分的に圧力が高まることを防止し被加熱物を良好に流動させることができる。
<Effect 4 of Embodiment 1>
In addition, since the sum of the cross-sectional areas of the plurality of inclined channels 43 is set to be 0.8 to 1.2 times the cross-sectional area of the discharge port 25, the object to be heated discharged from the discharge port 25 And the difference between the flow rate of the object to be heated passing through the plurality of inclined channels 43 in each unit 41 can be reduced, so that the pressure is partially prevented from increasing in the pipe 26 and the object to be heated is improved. It can be made to flow.
<実施形態1の効果−5>
また、位置規制部45bによって、下流側のユニット41Dをセンサ側接続管49から一定の長さだけ離した位置に配置できる。仮にこのような位置規制部がなく、下流側のユニット41Dを管路46に単に嵌合させた場合、下流側のユニット41Dが、被加熱物の流れに押されることでセンサ側接続管49側に移動して近接してしまい、下流側のユニット41Dにおいて被加熱物を良好に拡散できなくなる場合がある。この点、実施形態1では、位置規制部45bにより下流側のユニット41Dをセンサ側接続管49から一定の長さだけ離して配置できるので、下流側のユニット41Dが被加熱物の流れに押されて移動することを防止でき、下流側のユニット41Dによる被加熱物の拡散作用を良好に得ることができる。
<Effect of Embodiment 1-5>
Further, the downstream side unit 41D can be arranged at a position separated from the sensor side connecting pipe 49 by a certain length by the position restricting portion 45b. If there is no such a position restricting portion and the downstream unit 41D is simply fitted to the pipe 46, the downstream unit 41D is pushed by the flow of the object to be heated, so that the sensor side connecting pipe 49 side May be moved close to each other and the object to be heated cannot be diffused satisfactorily in the downstream unit 41D. In this regard, in the first embodiment, the downstream side unit 41D can be disposed by a certain length away from the sensor side connection pipe 49 by the position restricting portion 45b, so that the downstream side unit 41D is pushed by the flow of the object to be heated. And the diffusion action of the object to be heated by the downstream unit 41D can be obtained well.
<実施形態1の効果−6>
また、配管26の口径d1を排出口25の口径d2に対し、1.2倍以上2.5倍以下の大きさに設定したので、排出口25から配管26に流入した被加熱物の流れに渦が生じ易くなる。その結果、この渦による拡散作用と、温度調整器具40の拡散作用とが相俟って、被加熱物をより良好に拡散することができる。
<Effect of Embodiment 1-6>
Further, since the diameter d1 of the pipe 26 is set to be 1.2 times or more and 2.5 times or less than the diameter d2 of the discharge port 25, the flow of the heated object flowing into the pipe 26 from the discharge port 25 is set. Vortex tends to occur. As a result, the diffusion action by the vortex and the diffusion action of the temperature adjusting device 40 can be combined to diffuse the heated object better.
<実施形態1の変形例に係る温度調整器具の説明>
次に、実施形態1の変形例に係る温度調整器具40のそれぞれを図7及び図8に基づいて説明する。
<Explanation of Temperature Control Device According to Modification of Embodiment 1>
Next, each of the temperature adjusting devices 40 according to the modification of the first embodiment will be described with reference to FIGS. 7 and 8.
<変形例1に係る温度調整器具の説明−1>
前述した実施形態1に係る温度調整器具40(図4参照)においては、基部42に2つの傾斜流路43を設けた構成を例示したが、この他、3つ以上の傾斜流路43を基部42に設けることもできる。
<Explanation-1 of Temperature Control Apparatus According to Modification 1>
In the temperature adjustment device 40 (see FIG. 4) according to the first embodiment described above, the configuration in which the two inclined channels 43 are provided in the base portion 42 is exemplified, but in addition, three or more inclined channel channels 43 are provided in the base portion. 42 can also be provided.
<変形例1に係る温度調整器具の説明−2>
例えば、図7に示すように、変形例1に係る温度調整器具40では、基部42の周方向に沿って3つの傾斜流路43(図7では、傾斜流路43U)を略等間隔に並べて設ける。3つの傾斜流路43は、基部42の中心を回転中心として互いに60°回転させた形状である。このように3つの傾斜流路43を基部42に設けることにより、被加熱物は、相反する3つの方向に流動するとともに管路46を螺旋状に流れる。この変形例1においても、前述した実施形態1と同様の作用効果を得ることができる。
<Explanation-2 of Temperature Control Device According to Modification 1>
For example, as shown in FIG. 7, in the temperature adjustment device 40 according to Modification 1, three inclined channels 43 (in FIG. 7, inclined channels 43 </ b> U) are arranged at substantially equal intervals along the circumferential direction of the base 42. Provide. The three inclined channels 43 have shapes that are rotated by 60 ° from each other with the center of the base 42 as the center of rotation. Thus, by providing the three inclined flow paths 43 in the base part 42, the to-be-heated material flows in three opposite directions and spirally flows in the pipe 46. Also in this modification 1, the same operation effect as Embodiment 1 mentioned above can be acquired.
<変形例2に係る温度調整器具の説明>
また、図8に示すように、変形例2に係る温度調整器具40では、基部42の周方向に沿って4つの傾斜流路43(図8では、傾斜流路43U)を略等間隔に並べて設ける。このように4つの傾斜流路43を基部42に設けることにより、被加熱物は、相反する4つの方向に流動するとともに管路46を螺旋状に流れる。この変形例2においても、前述した実施形態1と同様の作用効果を得ることができる。
<Explanation of temperature control instrument according to Modification 2>
Further, as shown in FIG. 8, in the temperature adjusting device 40 according to Modification 2, four inclined channels 43 (in FIG. 8, inclined channels 43U) are arranged at substantially equal intervals along the circumferential direction of the base 42. Provide. Thus, by providing the four inclined flow paths 43 in the base part 42, the to-be-heated material flows in four directions opposite to each other and flows in the pipe 46 in a spiral shape. Also in this modification 2, the same effect as Embodiment 1 mentioned above can be acquired.
<実施形態2に係る温度調整器具の説明−1>
次に、実施形態2に係る温度調整器具40を図9〜図11に基づいて説明する。
<Explanation-1 of Temperature Control Apparatus According to Embodiment 2>
Next, the temperature adjusting device 40 according to the second embodiment will be described with reference to FIGS.
<実施形態2に係る傾斜流路の説明−1>
前述した実施形態1に係る温度調整器具40(図4参照)においては、基部42から下流側に向けて管状に突出した傾斜流路43を例示したが、この他、基部42を厚み方向に貫通した貫通穴によって傾斜流路43を形成することもできる。
<Description of Inclined Channel According to Second Embodiment-1>
In the temperature adjustment device 40 (see FIG. 4) according to the first embodiment described above, the inclined flow path 43 protruding in a tubular shape from the base portion 42 toward the downstream side is exemplified, but in addition, the base portion 42 is penetrated in the thickness direction. The inclined channel 43 can also be formed by the through-hole.
<実施形態2に係る傾斜流路の説明−2>
例えば、図9に示すように、実施形態2に係る温度調整器具40では、上流側のユニット41U及び下流側のユニット41Dのそれぞれの基部42U,42Dを比較的肉厚に形成し、このような基部42U,42Dの厚み方向に貫通した貫通穴で傾斜流路43U,43Dを形成する。また、基部42U,42Dの中心同士を丸棒状の連結部45aにより、連結する。この例では、離間距離Lを基部42U,42Dの直径d4(図11(c)参照)の0.5倍以上2.0倍以下に設定する。
<Description-2 of Inclined Channel According to Embodiment 2>
For example, as shown in FIG. 9, in the temperature adjustment device 40 according to the second embodiment, the base portions 42U and 42D of the upstream unit 41U and the downstream unit 41D are formed relatively thick, The inclined channels 43U and 43D are formed by through holes penetrating in the thickness direction of the base portions 42U and 42D. Further, the centers of the base portions 42U and 42D are connected by a connecting portion 45a having a round bar shape. In this example, the separation distance L is set to 0.5 to 2.0 times the diameter d4 (see FIG. 11C) of the base portions 42U and 42D.
<実施形態2に係る傾斜流路の説明−3>
傾斜流路43の個数は任意であるが、図10に示すように、ここでは、3つの傾斜流路43を基部42に設けた構成を例示する。より具体的には、図11(a)に示すように、基部42の周方向に略等間隔(120°間隔)に3つの傾斜流路43を設ける。各傾斜流路43の軸線C2は、管路46の軸線C1(被加熱物の進行方向)に対し、30°以上60°以下の傾斜角度θで傾斜しており、図11(b)では、傾斜角度θを45°とした例を示している。
<Explanation-3 of the inclined channel according to Embodiment 2>
Although the number of the inclined channels 43 is arbitrary, as shown in FIG. 10, here, a configuration in which three inclined channels 43 are provided in the base 42 is illustrated. More specifically, as shown in FIG. 11A, three inclined flow paths 43 are provided in the circumferential direction of the base portion 42 at substantially equal intervals (120 ° intervals). The axis C2 of each inclined channel 43 is inclined at an inclination angle θ of 30 ° or more and 60 ° or less with respect to the axis C1 (the traveling direction of the object to be heated) of the pipe 46, and in FIG. An example in which the inclination angle θ is 45 ° is shown.
<実施形態2に係る傾斜流路の説明−4>
また、この実施形態2においても、1つのユニット41における複数の傾斜流路43の断面積の合計は、排出口25の断面積の0.8倍以上1.2倍以下の大きさに設定されており、このような断面積の倍率が得られるように、排出口25の直径d2に対し、傾斜流路43の直径d5(図11(c)参照)、個数が定められている。例えば、排出口25の断面積を240mm2(口径d2=17.7mm)としたとき、断面積78.5mm2(直径d5=10mm)の傾斜流路43を3個設定することにより、複数の傾斜流路43の断面積の合計(235mm2)を排出口25の断面積(240mm2)の0.98倍程度の大きさに設定することができる。
<Explanation-4 of the inclined flow path which concerns on Embodiment 2>
Also in the second embodiment, the sum of the cross-sectional areas of the plurality of inclined channels 43 in one unit 41 is set to a size that is not less than 0.8 times and not more than 1.2 times the cross-sectional area of the discharge port 25. In order to obtain such a magnification of the cross-sectional area, the diameter d5 of the inclined channel 43 (see FIG. 11C) and the number thereof are determined with respect to the diameter d2 of the discharge port 25. For example, when the cross-sectional area of the discharge port 25 is 240 mm 2 (diameter d2 = 17.7 mm), a plurality of inclined flow paths 43 having a cross-sectional area of 78.5 mm 2 (diameter d5 = 10 mm) are set. it is possible to set the total cross-sectional area of the inclined channel 43 (235 mm 2) to 0.98 times the size of the cross-sectional area of the outlet 25 (240mm 2).
<実施形態2の効果>
この実施形態2においても、前述した実施形態1と同様に、被加熱物の温度分布の均一化を図ることにより、加熱後の被加熱物の温度をより正確に検出することができる。
<Effect of Embodiment 2>
Also in the second embodiment, similarly to the first embodiment described above, the temperature distribution of the heated object can be more accurately detected by making the temperature distribution of the heated object uniform.
<実施形態2の変形例に係る温度調整器具の説明>
また、図12に示される実施形態2の変形例のように、基部42U及び基部42Dのそれぞれに、貫通穴からなる2つの傾斜流路43U及び貫通穴からなる2つの傾斜流路43Dを設けることもできる。この場合においても、複数の傾斜流路43の断面積の合計は、排出口25の断面積の0.8倍以上1.2倍以下の大きさに設定されており、このような断面積の倍率が得られるように、排出口25の直径d2に対し、傾斜流路43の直径d5、個数が定められている。例えば、排出口25の断面積を240mm2(口径d2=17.5mm)としたとき、断面積132.7mm2(直径d5=13mm)の傾斜流路43を2個設定することにより、複数の傾斜流路43の断面積の合計(265mm2)を排出口25の断面積(240mm2)の1.1倍程度の大きさに設定することができる。
<Explanation of Temperature Control Device According to Modification of Embodiment 2>
In addition, as in the modification of the second embodiment shown in FIG. 12, two inclined channels 43U formed of through holes and two inclined channels 43D formed of through holes are provided in the base portion 42U and the base portion 42D, respectively. You can also. Even in this case, the sum of the cross-sectional areas of the plurality of inclined channels 43 is set to a size of 0.8 to 1.2 times the cross-sectional area of the discharge port 25. The diameter d5 and the number of the inclined channels 43 are determined with respect to the diameter d2 of the discharge port 25 so that the magnification can be obtained. For example, when the cross-sectional area of the discharge port 25 is 240 mm 2 (diameter d2 = 17.5 mm), a plurality of inclined flow paths 43 having a cross-sectional area of 132.7 mm 2 (diameter d5 = 13 mm) are set. it is possible to set the total cross-sectional area of the inclined channel 43 (265mm 2) to about 1.1 times the size of the cross-sectional area of the outlet 25 (240mm 2).
<実施形態2の効果>
この実施形態2においても、前述した実施形態1と同様に、被加熱物の温度分布の均一化を図ることにより、加熱後の被加熱物の温度をより正確に検出することができる。
<Effect of Embodiment 2>
Also in the second embodiment, similarly to the first embodiment described above, the temperature distribution of the heated object can be more accurately detected by making the temperature distribution of the heated object uniform.
以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。またその様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. Further, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
10 ジュール加熱装置
20 通電加熱部
20D 通電加熱部
23D 温度センサ
25 排出口
26 配管
40 温度調整器具
41 ユニット
41U ユニット
41D ユニット
42 基部
42U 基部
42D 基部
43 傾斜流路
43U 傾斜流路
43U1 傾斜流路
43U2 傾斜流路
43D 傾斜流路
43D1 傾斜流路
43D2 傾斜流路
45a 連結部
45b 位置規制部
46 管路
L 離間距離
d1 配管の口径
d2 加熱部側接続管の口径(排出口の口径)
d4 基部の直径
d5 傾斜流路の直径
C1 管路の軸線
C2 傾斜流路の軸線
θ 傾斜角度
DESCRIPTION OF SYMBOLS 10 Joule heating apparatus 20 Current heating part 20D Current heating part 23D Temperature sensor 25 Outlet 26 Pipe 40 Temperature adjustment instrument 41 Unit 41U Unit 41D Unit 42 Base 42U Base 42D Base 43 Inclined flow path 43U Inclined flow path 43U1 Inclined flow path 43U2 Inclined Channel 43D Inclined channel 43D1 Inclined channel 43D2 Inclined channel 45a Connecting part 45b Position restricting part 46 Pipe line L Separation distance d1 Diameter of pipe d2 Diameter of heating part side connecting pipe (Diameter of outlet)
d4 Base diameter d5 Inclined channel diameter C1 Pipeline axis C2 Inclined channel axis θ Inclination angle
Claims (6)
前記通電加熱部の排出口と前記排出口の下流側に設けられた温度センサとを結ぶ配管の管路に嵌合される円板状の基部と、
前記基部の周方向に略等間隔に並んで設けられ、前記排出口からの前記被加熱物を相反する複数の方向に流動させる断面円形の複数の傾斜流路と、を有し、
前記複数の傾斜流路の断面積の合計が、前記排出口の断面積の0.8倍以上1.2倍以下の大きさであり、
前記傾斜流路の軸線が、前記配管の軸線に対し30°以上60°以下の傾斜角度で傾斜し、
前記配管の口径が、前記通電加熱部の前記排出口の口径に対し、1.2倍以上2.5倍
以下の大きさである、
ことを特徴とするジュール加熱装置の温度調整器具。 A temperature adjusting device for a Joule heating device that heats the article to be heated by Joule heat in a tubular energization heating unit while continuously transporting food and drink having fluidity in the flow path as the article to be heated,
A disc-shaped base that is fitted into a pipe line connecting a discharge port of the energization heating unit and a temperature sensor provided on the downstream side of the discharge port;
A plurality of inclined flow channels having a circular cross section provided in a circumferential direction of the base portion at substantially equal intervals, and flowing in a plurality of opposite directions to the heated object from the discharge port;
The sum of the cross-sectional areas of the plurality of inclined flow paths is 0.8 to 1.2 times the cross-sectional area of the discharge port;
The axis of the inclined channel is inclined at an inclination angle of 30 ° or more and 60 ° or less with respect to the axis of the pipe ;
The diameter of the pipe is 1.2 times or more and 2.5 times the diameter of the discharge port of the energization heating unit.
Is the following size,
A temperature adjusting device for a Joule heating device.
前記基部と前記複数の傾斜流路とが1つのユニットを構成し、
1対の前記ユニットが前記配管の軸線に沿って対向して配置され、
1対の前記ユニットの離間距離が、前記基部の直径に対し、0.5倍以上2.0倍以下の長さであることを特徴とするジュール加熱装置の温度調整器具。 In the temperature control instrument of the Joule heating device according to claim 1,
The base and the plurality of inclined channels constitute one unit,
A pair of the units are arranged facing each other along the axis of the pipe;
A temperature adjusting instrument for a joule heating device, wherein a distance between the pair of units is 0.5 to 2.0 times the diameter of the base.
前記ユニットには、2つ、3つ又は4つの前記傾斜流路が設けられることを特徴とするジュール加熱装置の温度調整器具。 In the temperature control instrument of the Joule heating device according to claim 2,
The unit is provided with two, three, or four inclined flow paths, and a temperature adjusting device for a Joule heating device.
1対の前記ユニットの前記基部同士を連結する連結部を有することを特徴とするジュール加熱装置の温度調整器具。 In the temperature adjustment instrument of the Joule heating device according to claim 2 or 3,
It has a connection part which connects the said base parts of a pair of said unit, The temperature control instrument of a Joule heating apparatus characterized by the above-mentioned.
1対の前記ユニットのうち下流側のユニットが、前記配管の下流側の端部から上流側に離れて配置され、
前記配管の下流側の端部に対する前記下流側のユニットの位置を正規の位置に保持する位置規制部を有することを特徴とするジュール加熱装置の温度調整器具。 In the temperature adjustment instrument of the Joule heating device according to any one of claims 2 to 4 ,
The downstream unit of the pair of units is disposed away from the downstream end of the pipe to the upstream side,
A joule heating device temperature adjusting device, comprising: a position restricting portion that holds a position of the downstream unit relative to a downstream end of the pipe at a regular position.
請求項1ないし5のいずれか1項に記載のジュール加熱装置の温度調整器具を備えることを特徴とするジュール加熱装置。
A Joule heating device that heats the object to be heated by Joule heat in a tubular energization heating unit while continuously conveying the food and drink having fluidity as the object to be heated in the flow path,
A joule heating device comprising the temperature adjusting device of the joule heating device according to any one of claims 1 to 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014151407A JP6441603B2 (en) | 2014-07-25 | 2014-07-25 | Joule heating device temperature control apparatus and Joule heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014151407A JP6441603B2 (en) | 2014-07-25 | 2014-07-25 | Joule heating device temperature control apparatus and Joule heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016028556A JP2016028556A (en) | 2016-03-03 |
JP6441603B2 true JP6441603B2 (en) | 2018-12-19 |
Family
ID=55434867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014151407A Active JP6441603B2 (en) | 2014-07-25 | 2014-07-25 | Joule heating device temperature control apparatus and Joule heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6441603B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10816429B2 (en) | 2018-12-07 | 2020-10-27 | Raytheon Technologies Corporation | Determining a moment weight of a component based on measured surface geometry/solid model of the component |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11332475A (en) * | 1998-05-27 | 1999-12-07 | Kikkoman Corp | Indirect heating apparatus |
JP3883342B2 (en) * | 1999-11-01 | 2007-02-21 | 大和製罐株式会社 | Joule heating device |
JP4737847B2 (en) * | 2001-02-22 | 2011-08-03 | 株式会社フロンティアエンジニアリング | Continuous energization heating device for fluid food materials |
JP3965599B2 (en) * | 2002-04-25 | 2007-08-29 | 株式会社フロンティアエンジニアリング | Continuous energization heating device for fluid food materials |
JP4124693B2 (en) * | 2002-05-28 | 2008-07-23 | 株式会社フロンティアエンジニアリング | Heating device |
JP2004063232A (en) * | 2002-07-29 | 2004-02-26 | Izumi Food Machinery Co Ltd | Apparatus for continuous energizing heating of fluid material |
JP4065768B2 (en) * | 2002-11-28 | 2008-03-26 | 株式会社フロンティアエンジニアリング | Food and beverage heating equipment |
JP2004290094A (en) * | 2003-03-27 | 2004-10-21 | Toyo Jidoki Co Ltd | Method and system for food sterilization |
JP2006078030A (en) * | 2004-09-08 | 2006-03-23 | B M Showa:Kk | Heat exchanger |
JP2011086443A (en) * | 2009-10-14 | 2011-04-28 | Izumi Food Machinery Co Ltd | Energization heating device of migration body |
JP2012187037A (en) * | 2011-03-10 | 2012-10-04 | Tokyo Electric Power Co Inc:The | Sterilization system |
-
2014
- 2014-07-25 JP JP2014151407A patent/JP6441603B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10816429B2 (en) | 2018-12-07 | 2020-10-27 | Raytheon Technologies Corporation | Determining a moment weight of a component based on measured surface geometry/solid model of the component |
Also Published As
Publication number | Publication date |
---|---|
JP2016028556A (en) | 2016-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107076589B (en) | Flow sensing module | |
JP6642902B2 (en) | Flow control device | |
CA2617340C (en) | Piping having fluid-mixing region | |
JP2011185635A (en) | Pressure sensor, pressure-differential flow rate meter, and flow rate controller | |
JP6441603B2 (en) | Joule heating device temperature control apparatus and Joule heating device | |
US11291966B2 (en) | Mixer and vaporization apparatus | |
JP2011086443A (en) | Energization heating device of migration body | |
JP6577717B2 (en) | System comprising fluid buffer volume device and corresponding method | |
JP6299082B2 (en) | Human body local cleaning equipment | |
KR102116746B1 (en) | Fluid mixing element | |
JP6728671B2 (en) | Human body local cleaning device | |
WO2018222984A3 (en) | Glass manufacturing apparatus and methods | |
CN209224662U (en) | A kind of heating plate and laminater | |
WO2007037022A1 (en) | Piping with fluid mixing region | |
GB2490022A (en) | Apparatus and method, particularly for processing flowable food products | |
CN109626804A (en) | Temperature-adjusting device and glass substrate production line for glass substrate | |
CN107824045A (en) | A kind of SCR methods denitration flue gas flow guiding device | |
WO2018236868A1 (en) | Baffle assembly for modifying transitional flow effects between different cavities | |
CN106813375B (en) | Water heater and pipeline electric heating device for water heater | |
CN207576138U (en) | A kind of SCR methods denitration flue gas flow guiding device | |
KR101510215B1 (en) | Thermal mixing inline heater | |
JP2000074486A (en) | Fluid heating device and substrate processing equipment using the same | |
US20150114470A1 (en) | Flow control device and the method for controlling the flow thereof | |
CN211232409U (en) | Air inlet device | |
JPWO2020234618A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6441603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |