JP6437965B2 - Method for measuring concentration of metal component contained in solar cell module - Google Patents

Method for measuring concentration of metal component contained in solar cell module Download PDF

Info

Publication number
JP6437965B2
JP6437965B2 JP2016151534A JP2016151534A JP6437965B2 JP 6437965 B2 JP6437965 B2 JP 6437965B2 JP 2016151534 A JP2016151534 A JP 2016151534A JP 2016151534 A JP2016151534 A JP 2016151534A JP 6437965 B2 JP6437965 B2 JP 6437965B2
Authority
JP
Japan
Prior art keywords
solar cell
concentration
metal component
cell module
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016151534A
Other languages
Japanese (ja)
Other versions
JP2018021774A (en
Inventor
瀬川 昇
昇 瀬川
泰裕 諸澤
泰裕 諸澤
信治 武田
信治 武田
Original Assignee
東芝環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝環境ソリューション株式会社 filed Critical 東芝環境ソリューション株式会社
Priority to JP2016151534A priority Critical patent/JP6437965B2/en
Priority to CN201710498665.3A priority patent/CN107677695B/en
Publication of JP2018021774A publication Critical patent/JP2018021774A/en
Application granted granted Critical
Publication of JP6437965B2 publication Critical patent/JP6437965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュールの含有金属成分濃度の測定方法に関するものである。   The present invention relates to a method for measuring the concentration of a metal component contained in a solar cell module.

太陽電池発電は、再生可能エネルギーの一つとして注目されており、特に震災以後、家庭用から電力用(メガソーラ)まで幅広い用途での需要が拡大している。太陽電池発電に使用する太陽電池モジュールは、様々な形状、構成であり、使用される材料も異なる。太陽電池モジュールの製造量は、日本だけでも年間約8GWに上る製造量実績があるため、製品寿命となった太陽電池モジュールの大量廃棄時代に向けて、今後、廃太陽電池モジュールの再資源化、無害化を可能とする適正処理プロセスを構築することが急務となっている。   Solar cell power generation is attracting attention as one of the renewable energies, and in particular, after the earthquake, demand for a wide range of applications from home use to power use (mega solar) has been increasing. Solar cell modules used for solar cell power generation have various shapes and configurations, and different materials are used. The production volume of solar cell modules is about 8 GW per year in Japan alone, so we are going to recycle waste solar cell modules for the era of mass disposal of solar cell modules that have reached the end of their product life. There is an urgent need to establish an appropriate treatment process that can be detoxified.

太陽電池モジュールは、ガラス基板と積層体(シリコン等の発電素子、導電作用を有す電極(集電線、結合線))を配し、これらをPET(ポリエチレンテレフタレート)等の有機性のバックシートで覆い、EVA(エチレンビニールアセテート)等の封止材で強固に固着したもの)からなるものが多いが、製造メーカ、モジュール型格により、太陽電池モジュールを構成する積層体が異なり、含有する金属成分に違いを生じている。金属成分は資源とも有害物とも区分けされるものであり、その金属成分を定性・定量的することは、太陽電池モジュールの大量廃棄時代に向けて、環境面から重要視されている。   The solar cell module is provided with a glass substrate and a laminate (power generation element such as silicon, conductive electrode (collection line, bond line)), and these are organic backsheets such as PET (polyethylene terephthalate). It is often made of a material that covers and is firmly fixed with a sealing material such as EVA (ethylene vinyl acetate)), but the laminated body constituting the solar cell module differs depending on the manufacturer and module type, and the metal components contained Makes a difference. Metal components are classified as either resources or harmful substances, and qualitative and quantitative determination of metal components is regarded as important from the environmental point of view in the era of mass disposal of solar cell modules.

太陽電池モジュールの含有金属化学成分を定性・定量的に判断するためには、ICP法(高周波誘導結合プラズマ発光分光分析法)などで代表される化学分析を実施する(特許文献1参照)。この化学分析では、太陽電池モジュールを試験可能な大きさに破壊しサンプルを取得し、そのサンプルを酸溶解、アルカリ溶解を繰り返すことで定性・定量成分を溶液化し、発電施設等の太陽電池モジュールが使用されている現場とは異なる場所にある化学分析機関による破壊検査が行われる。   In order to qualitatively and quantitatively determine the metal chemical components contained in the solar cell module, chemical analysis represented by the ICP method (high frequency inductively coupled plasma emission spectroscopy) is performed (see Patent Document 1). In this chemical analysis, a solar cell module is destroyed to a testable size, a sample is obtained, and the sample is repeatedly dissolved in acid and alkali to make a qualitative and quantitative component into a solution. Destructive inspection is carried out by a chemical analysis organization in a different location from the site where it is used.

特開2014−79667公報JP 2014-79667 A

本発明が解決しようとする課題は、太陽電池モジュールの含有金属成分濃度を、非破壊検査を用いて簡単で且つ高精度に測定することができる太陽電池モジュールの含有金属濃度の測定方法を提供することである。   The problem to be solved by the present invention is to provide a method for measuring the concentration of metal contained in a solar cell module, which can easily and accurately measure the concentration of metal component contained in the solar cell module using nondestructive inspection. That is.

上記課題を達成するために、実施形態の太陽電池モジュールの含有金属成分濃度の測定方法は、太陽電池単位セルの受光面の複数箇所に蛍光X線を照射し、蛍光X線分析法を用いて各々の含有金属成分濃度を測定する蛍光X線分析工程と、太陽電池モジュールの画像情報を取得する画像情報取得工程と、太陽電池単位セルの複数箇所各々の含有金属成分濃度の値および太陽電池モジュールの画像情報をもとに、太陽電池モジュールの含有金属成分濃度を求める濃度算出工程とを有する。   In order to achieve the above object, the method for measuring the metal component concentration of the solar cell module according to the embodiment irradiates a plurality of locations on the light receiving surface of the solar cell unit cell with fluorescent X-rays, and uses the fluorescent X-ray analysis method. Fluorescence X-ray analysis step for measuring each contained metal component concentration, image information obtaining step for obtaining image information of solar cell module, value of contained metal component concentration at each of a plurality of locations of solar cell unit cells, and solar cell module And a concentration calculating step for determining the concentration of the metal component contained in the solar cell module based on the image information.

第1および第2の実施形態による太陽電池モジュールの含有金属成分濃度を測定する測定装置の全体構成図。The whole block diagram of the measuring apparatus which measures the containing metal component density | concentration of the solar cell module by 1st and 2nd embodiment. 第1および第2の実施形態による太陽電池モジュールの含有金属成分濃度の測定方法における測定対象である太陽電池モジュールの上面図および断面図。The top view and sectional drawing of the solar cell module which is a measuring object in the measuring method of the containing metal component density | concentration of the solar cell module by 1st and 2nd embodiment. 図2の太陽電池モジュールにおける太陽電池単位セルの上面図および断面図。The top view and sectional drawing of the solar cell unit cell in the solar cell module of FIG. 第1の実施形態による太陽電池モジュールの含有金属成分濃度の測定の流れを示すフロー図。The flowchart which shows the flow of a measurement of the containing metal component density | concentration of the solar cell module by 1st Embodiment. 第1の実施形態による太陽電池モジュールの含有金属成分濃度の測定方法における蛍光X線の分析対象範囲。The fluorescent X-ray analysis object range in the measuring method of the metal component concentration of the solar cell module according to the first embodiment. 第1の実施形態による太陽電池モジュールの含有金属成分濃度の測定方法における蛍光X線分析結果の含有金属成分濃度の分布を示すグラフおよび含有金属成分濃度の平準化操作のイメージ図。The graph which shows distribution of the containing metal component density | concentration of the fluorescent X ray analysis result in the measuring method of the containing metal component density | concentration of the solar cell module by 1st Embodiment, and the image figure of leveling operation of a contained metal component density | concentration. 第2の実施形態による太陽電池モジュールの含有金属成分濃度の測定の流れを示すフロー図。The flowchart which shows the flow of a measurement of the containing metal component density | concentration of the solar cell module by 2nd Embodiment. 第2の実施形態による太陽電池モジュールの含有金属成分濃度の測定方法における蛍光X線の分析対象範囲。The fluorescent X-ray analysis object range in the measuring method of the metal component concentration of the solar cell module according to the second embodiment.

太陽電池モジュールは、製造メーカ、モジュール型格により、構成する積層体が異なり、含有金属成分に違いが生じている。これらの金属成分は資源とも有害物とも区分けされるものであり、その金属成分濃度を測定することは、太陽電池モジュールの大量廃棄時代に向けて環境面から重要視されている。以下に、本発明の実施形態に係る太陽電池モジュールの含有金属成分濃度の測定方法を説明する。   In the solar cell module, the laminated body to be configured differs depending on the manufacturer and module type, and the contained metal components are different. These metal components are classified as either resources or toxic substances, and measuring the concentration of the metal components is regarded as important from the environmental aspect toward the era of mass disposal of solar cell modules. Below, the measuring method of the containing metal component density | concentration of the solar cell module which concerns on embodiment of this invention is demonstrated.


(第1の実施形態)
第1の実施形態の太陽電池モジュールの含有金属成分濃度の測定方法を図1乃至図6を参照して説明する。図1は、第1の実施形態による太陽電池モジュールの含有金属成分濃度を測定する測定装置の全体構成図である。複数の太陽電池単位セル1を電気的に接続して構成された太陽電池モジュール2に対して、受光面側から蛍光X線を照射し蛍光X線分析を行なう可動式蛍光X線分析装置3と、受光面側から太陽電池モジュールの画像情報を取得するデジタルカメラ4とを設け、何れも情報端末機器5と接続する。情報端末機器5は、可動式蛍光X線分析装置3およびデジタルカメラ4の動作を制御し、各々から得た緒情報をもとに太陽電池モジュール2の含有金属成分濃度を求め、その値を表示する。

(First embodiment)
A method for measuring the concentration of the metal component contained in the solar cell module according to the first embodiment will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a measuring apparatus that measures the concentration of a metal component contained in a solar cell module according to the first embodiment. A movable fluorescent X-ray analyzer 3 for performing fluorescent X-ray analysis by irradiating fluorescent X-rays from the light-receiving surface side to a solar cell module 2 configured by electrically connecting a plurality of solar cell unit cells 1; A digital camera 4 that acquires image information of the solar cell module from the light receiving surface side is provided, and both are connected to the information terminal device 5. The information terminal device 5 controls the operation of the movable fluorescent X-ray analyzer 3 and the digital camera 4, obtains the concentration of the metal component contained in the solar cell module 2 based on the information obtained from each, and displays the value. To do.

図2は図1における太陽電池モジュール2の上面図および断面図(A−Aにおける断面図)である。太陽電池単位セル1枚では発生する電気出力が小さいため、複数の太陽電池単位セル1を直並列に接続して実用的な電気出力が得られるようにする必要があり、図2に示すように、太陽電池モジュール2は、同一の材料組成、形状を有す太陽電池単位セル1の繰り返しにより構成されている。半導体基板に形成された発電素子6は、隣り合う発電素子と結合線7により電気的に接続され、それらの周囲は封止材8で覆われている。受光面側にはガラス基板9を設けられ、非受光面側にはバックシート10を設けられる。このようにして構成された複数の太陽電池単位セル1全体の外周は金属フレーム11で覆われている。   FIG. 2 is a top view and a cross-sectional view (cross-sectional view taken along A-A) of the solar cell module 2 in FIG. Since the electric output generated in one solar cell unit cell is small, it is necessary to connect a plurality of solar cell unit cells 1 in series and parallel so that a practical electric output can be obtained, as shown in FIG. The solar cell module 2 is configured by repetition of solar cell unit cells 1 having the same material composition and shape. The power generation element 6 formed on the semiconductor substrate is electrically connected to the adjacent power generation element by a coupling line 7, and the periphery thereof is covered with a sealing material 8. A glass substrate 9 is provided on the light receiving surface side, and a back sheet 10 is provided on the non-light receiving surface side. The entire outer periphery of the plurality of solar cell unit cells 1 thus configured is covered with a metal frame 11.

図3は図2における太陽電池単位セル1の上面図および断面図(B−Bにおける断面図)示すように、太陽電池単位セル1は、半導体基板上に形成された発電素子6の受光面側には二種類の電極(バスバー12、フィンガーバー13)が直交して設けられている。フィンガーバー13は太陽電池単位セル1内部の集電効率を上げるために設けられており、フィンガーバー13に集められた電子はバスバー12に運ばれる。空隙部14は電極のない部分である。太陽電池モジュール2における資源性金属元素(銀、銅、アルミニウム、シリコン、インジウム)および有害性金属元素(鉛、セレン、ガリウム、砒素、アンチモン)は、主に太陽電池単位セル1に含まれている。   3 shows a top view and a cross-sectional view (a cross-sectional view taken along BB) of the solar cell unit cell 1 in FIG. 2, and the solar cell unit cell 1 has a light-receiving surface side of the power generation element 6 formed on the semiconductor substrate. Two types of electrodes (bus bar 12 and finger bar 13) are provided orthogonally. The finger bar 13 is provided to increase the current collection efficiency inside the solar cell unit cell 1, and the electrons collected in the finger bar 13 are carried to the bus bar 12. The gap 14 is a portion without an electrode. Resource metal elements (silver, copper, aluminum, silicon, indium) and harmful metal elements (lead, selenium, gallium, arsenic, antimony) in the solar cell module 2 are mainly contained in the solar cell unit cell 1. .

以下に、太陽電池モジュール2の含有金属成分濃度を測定する方法を説明する。図4は、太陽電池モジュール2の含有金属成分濃度の測定の流れを示すフロー図である。   Below, the method to measure the containing metal component density | concentration of the solar cell module 2 is demonstrated. FIG. 4 is a flowchart showing a flow of measurement of the concentration of the metal component contained in the solar cell module 2.

最初に、S1に示すように、一つの太陽電池単位セル1に対して蛍光X線分析を行なう。可動式蛍光X線分析装置3を太陽電池単位セル1内のX/Y方向各々に連続して移動させ、複数箇所の各含有金属成分濃度(単位面積当たり)を、対象となる金属成分を特定した上で(例えば、銀)、測定する。図5に、その際の可動式蛍光X線分析装置3の動きを示す。太陽電池単位セル1のX方向の端部から相対するもう一方の端部迄を蛍光X線の照射範囲をずらしながら移動させて特定の金属成分(例えば、銀)の各々の含有金属成分濃度を測定する。また、Y方向に対しても、X方向と同様に、各々の含有金属成分濃度を測定する。   First, as shown in S1, a fluorescent X-ray analysis is performed on one solar cell unit cell 1. The movable fluorescent X-ray analyzer 3 is continuously moved in each of the X / Y directions in the solar cell unit cell 1 and the concentration of each contained metal component (per unit area) at a plurality of locations is determined as the target metal component. (For example, silver) and measure. FIG. 5 shows the movement of the movable fluorescent X-ray analyzer 3 at that time. The concentration of each metal component contained in a specific metal component (for example, silver) is changed by shifting the X-ray end of the solar cell unit cell 1 to the other opposite end while shifting the irradiation range of the fluorescent X-rays. taking measurement. Also, the concentration of each contained metal component is measured in the Y direction as in the X direction.

次に、S2に示すように、S1で測定したX/Y方向の各々の含有金属成分濃度の値を平均化し、太陽電池単位セル1の半導体基板の含有金属成分濃度の平均値を求める。図6(a)はS1において測定した特定の金属成分(例えば、銀)の含有金属成分濃度の分布を示す。可動式蛍光X線分析装置3では、1回の測定面積に複数のフィンガーバー13と空隙部14を含むため、バスバー12と平行方向に対してはほぼ依存性がなく、垂直方向に対してはバスバー12上で大きなピーク強度の増強が見られる。このように、太陽電池単位セル1上の金属成分濃度の分布を視覚的に得ることができる。この結果を踏まえ太陽電池単位セル1の含有金属成分濃度の平準化を行う。図6(b)に平滑化操作のイメージ図を示す。太陽電池単位セル1は測定箇所によって異なる金属成分濃度を有するため、金属成分濃度の分布を考慮した平準化を行ない、全体の平均値を求める必要性がある。最初にグラフを関数によって近似し、これをX/Y方向に積分することで金属成分濃度の3次元情報を求める。得られた体積を太陽電池単位セル1の面積で除算することにより、太陽電池単位セル1の半導体基板の含有金属成分濃度の平均値(h)を求める。具体的には、太陽電池単位セルの半導体基板の含有金属成分濃度の平均値(h)は、下記式1を用いて求めることができる。   Next, as shown in S2, the value of each contained metal component concentration in the X / Y direction measured in S1 is averaged, and the average value of contained metal component concentration of the semiconductor substrate of the solar cell unit cell 1 is obtained. FIG. 6A shows the distribution of the concentration of the metal component contained in the specific metal component (for example, silver) measured in S1. In the movable X-ray fluorescence spectrometer 3, since a plurality of finger bars 13 and gaps 14 are included in one measurement area, there is almost no dependency on the parallel direction to the bus bar 12, and no vertical direction. A large peak intensity enhancement is seen on the bus bar 12. Thus, the distribution of the metal component concentration on the solar cell unit cell 1 can be obtained visually. Based on this result, the concentration of the metal component contained in the solar cell unit cell 1 is leveled. FIG. 6B shows an image diagram of the smoothing operation. Since the solar cell unit cell 1 has different metal component concentrations depending on the measurement location, it is necessary to perform leveling in consideration of the distribution of the metal component concentration and obtain the average value of the whole. First, the graph is approximated by a function, and this is integrated in the X / Y direction to obtain three-dimensional information of the metal component concentration. By dividing the obtained volume by the area of the solar cell unit cell 1, the average value (h) of the contained metal component concentration of the semiconductor substrate of the solar cell unit cell 1 is obtained. Specifically, the average value (h) of the contained metal component concentration of the semiconductor substrate of the solar cell unit cell can be obtained using the following formula 1.

(式1)
・SSi:半導体基板の単位面積
・Ai:i番目の濃度分布波形(x方向)の面積
・σxi:i番目の濃度分布波形(x方向)の分散
・uxi:i番目の濃度分布波形(x方向)の平均値
・Aj:j番目の濃度分布波形(y方向)の面積
・σyj:j番目の濃度分布波形(y方向)の分散
・uyj:j番目の濃度分布波形(y方向)の平均値
・Bg:半導体基板上におけるバスバーを除いた部分の金属成分濃度
次に、S3に示すように、デジタルカメラ4を用いて、太陽電池単位セル1を含む太陽電池モジュール2の受光面側の画像情報を取得し、太陽電位モジュール2上における半導体基板の無い部分の合計面積(SW)と、有る部分の合計面積(SW)を求める。
(Formula 1)
• S Si : Unit area of the semiconductor substrate • A i : Area of the i th concentration distribution waveform (x direction) • σ xi : Dispersion of the i th concentration distribution waveform (x direction) • u xi : i th concentration distribution Average value of waveform (x direction) • A j : Area of jth concentration distribution waveform (y direction) • σ yj : Variance of jth concentration distribution waveform (y direction) • u yj : jth concentration distribution waveform Average value of (y direction) Bg : Metal component concentration of the portion excluding the bus bar on the semiconductor substrate Next, as shown in S3, using the digital camera 4, the solar cell module including the solar cell unit cell 1 It acquires image information of the second light receiving surface side, obtaining a total area of a portion having no semiconductor substrate on the solar potential module 2 (S W), the total area of certain portions (S W).

次に、S4に示すように、S2およびS3の結果にもとづいて、下記式2を用いて、太陽電池モジュール2の含有金属成分濃度(CA)を求める。 Next, as shown in S4, based on the results of S2 and S3, the contained metal component concentration (C A ) of the solar cell module 2 is obtained using the following formula 2.

(式2)
・h :太陽電池単位セルの半導体基板の含有金属成分濃度の平均値
・SW:太陽電池モジュール上における半導体基板の無い部分の合計面積
・SB:太陽電池モジュール上における半導体基板の有る部分の合計面積
第1の実施形態の太陽電池モジュールの含有金属成分濃度の測定方法によれば、太陽電池モジュール2における同一の太陽電池単位セル1の反復性、繰り返し性を利用して、蛍光X線分析の結果および太陽電池モジュールの画像情報をうまく活用することにより、含有金属成分濃度を簡単に且つ高い精度で求めることができる。
(Formula 2)
・ H: Average concentration of metal components contained in the semiconductor substrate of the solar cell unit unit ・ S W : Total area of the part without the semiconductor substrate on the solar cell module ・ S B : Of the part with the semiconductor substrate on the solar cell module Total Area According to the method for measuring the concentration of metal components contained in the solar cell module according to the first embodiment, fluorescent X-ray analysis is performed using the repeatability and repeatability of the same solar cell unit cell 1 in the solar cell module 2. By properly utilizing the results and the image information of the solar cell module, the concentration of the contained metal component can be obtained easily and with high accuracy.

また、第1の実施形態の太陽電池モジュールの含有金属成分濃度の測定方法によれば、太陽電池モジュール2の含有金属成分濃度を求めた上で、更に、その有害性や資源性を判断しその結果を情報端末機器5に表示することができる。   In addition, according to the method for measuring the metal component concentration of the solar cell module according to the first embodiment, after determining the metal component concentration of the solar cell module 2, the harmfulness and resource properties are further determined and The result can be displayed on the information terminal device 5.

また、第1の実施形態の太陽電池モジュールの含有金属成分濃度の測定方法によれば、S1乃至S4の全ての工程は、情報端末機器5上で制御可能であり、簡易化・無人化が容易に実現できる。   In addition, according to the method for measuring the concentration of metal components contained in the solar cell module according to the first embodiment, all steps S1 to S4 can be controlled on the information terminal device 5 and can be easily simplified and unmanned. Can be realized.


(第2の実施形態)
第2の実施形態の太陽電池モジュールの含有金属成分濃度の測定方法を図7および図8を参照して説明する。第1の実施形態で説明した太陽電池モジュール2の含有金属成分濃度を測定する測定装置の全体構成図(図1)、太陽電池モジュール2の上面図および断面図(図2)、および太陽電池単位セル1の上面図および断面図(図3)については、第2の実施形態でも同じであるので、説明は省略する。第2の実施形態においては、太陽電池単位セル1における電極(バスバー12、フィンガーバー13)の有無を区別して扱いながら、太陽電池モジュールの含有金属成分濃度を求めることが第1の実施形態と異なる点である。

(Second Embodiment)
A method for measuring the concentration of the metal component contained in the solar cell module according to the second embodiment will be described with reference to FIGS. The whole block diagram (FIG. 1) of the measuring apparatus which measures the containing metal component density | concentration of the solar cell module 2 demonstrated in 1st Embodiment, the top view and sectional drawing (FIG. 2) of the solar cell module 2, and a solar cell unit Since the top view and the cross-sectional view (FIG. 3) of the cell 1 are the same in the second embodiment, the description thereof is omitted. The second embodiment differs from the first embodiment in that the concentration of the metal component contained in the solar cell module is determined while distinguishing the presence or absence of electrodes (bus bar 12, finger bar 13) in the solar cell unit cell 1. Is a point.

以下に、太陽電池モジュール2の含有金属成分濃度を測定する方法の詳細を説明する。図7は、太陽電池モジュール2の含有金属成分濃度の測定の流れを示すフロー図である。   Below, the detail of the method of measuring the containing metal component density | concentration of the solar cell module 2 is demonstrated. FIG. 7 is a flowchart showing the flow of measurement of the concentration of the metal component contained in the solar cell module 2.

最初に、S1に示すように、一つの太陽電池単位セル1に対して可動式蛍光X線分析装置3を用いて蛍光X線分析を行なう。その際、電極(バスバー12、フィンガーバー13)の有無を区別し、電極12、13の含有金属成分濃度と、空隙部14(電極が無い部分)の含有金属成分濃度を各々測定する。図8に、その際の可動式蛍光X線分析装置3の動きを示す。太陽電池単位セル1の電極12、13(A)の含有金属成分濃度と、空隙部14(電極が無い部)(B)の含有金属成分濃度を各々測定する。可動式蛍光X線分析装置3の1回の測定範囲は、電極12、13(A)ではその大部分が電極であり、空隙部14(B)ではその大部分が空隙部であるように設定する。また、本実施形態では各測定箇所は各々1つであるが(AとB)、各々複数箇所としても良い。各々複数箇所の含有金属成分濃度を測定し、各々平均値を求めることにより、金属成分濃度の測定精度はより向上する。   First, as shown in S1, fluorescent X-ray analysis is performed on one solar cell unit cell 1 using a movable fluorescent X-ray analyzer 3. At that time, the presence or absence of electrodes (bus bar 12, finger bar 13) is distinguished, and the contained metal component concentration of electrodes 12 and 13 and the contained metal component concentration of void portion 14 (portion where no electrode is present) are measured. FIG. 8 shows the movement of the movable fluorescent X-ray analyzer 3 at that time. The contained metal component concentration of the electrodes 12 and 13 (A) of the solar cell unit cell 1 and the contained metal component concentration of the void portion 14 (portion where no electrode is provided) (B) are measured. The one-time measurement range of the movable X-ray fluorescence spectrometer 3 is set so that most of the electrodes 12 and 13 (A) are electrodes, and most of the gaps 14 (B) are gaps. To do. In the present embodiment, each measurement point is one (A and B), but a plurality of measurement points may be provided. The measurement accuracy of the metal component concentration is further improved by measuring the contained metal component concentration at each of a plurality of locations and obtaining the average value.

次に、S2に示すように、デジタルカメラ4を用いて、太陽電池単位セル1を含む太陽電池モジュール2の受光面側の画像情報を取得し、太陽電池モジュール2の電極12、13の面積(SD)、空隙部14の面積(SK)、太陽電池モジュール2の面積(SM)を求める。一般的に、デジタルカメラ4で取得した画像情報では、太陽電池モジュール2の電極部(バスバー12およびフィンガーバー13)は白色であり、それ以外の空隙部14は黒色となる。このため撮影画像を2値化解析することで画像全体から必要部位を抜き出すことができる。例えば、モジュール面積を測定し、その値に対して全体の画素数に対する白色部画素数の割合を乗算することにより、電極の面積を求めることができる。 Next, as shown in S <b> 2, the digital camera 4 is used to acquire image information on the light receiving surface side of the solar cell module 2 including the solar cell unit cell 1, and the areas of the electrodes 12 and 13 of the solar cell module 2 ( S D ), the area (S K ) of the gap 14, and the area (S M ) of the solar cell module 2 are obtained. In general, in the image information acquired by the digital camera 4, the electrode portions (the bus bar 12 and the finger bar 13) of the solar cell module 2 are white, and the other gap portions 14 are black. For this reason, a necessary part can be extracted from the entire image by binarizing the captured image. For example, the area of the electrode can be obtained by measuring the module area and multiplying the value by the ratio of the number of white portion pixels to the total number of pixels.

次に、S3に示すように、S1およびS2の結果にもとづいて、下記式3を用いて、太陽電池モジュール2の含有金属成分濃度(CA)を求める。 Next, as shown in S3, based on the results of S1 and S2, the content metal component concentration (C A ) of the solar cell module 2 is obtained using the following formula 3.

(式3)
・CD:電極の金属成分濃度
・CK:空隙部の金属成分濃度
・SD:電極の面積
・SK:空隙部の面積
・SM:モジュール面積
第2の実施形態式1の太陽電池モジュール2の含有金属成分濃度の測定方法によれば、可動式蛍光X線分析装置3を用いて分析する箇所は電極12、13と空隙部14(電極が無い部分)のみであり少ないので、蛍光X線分析を短時間で行なうことができる。
(Formula 3)
C D : Metal component concentration of the electrode C K : Metal component concentration of the gap part S D : Area of the electrode S K : Area of the gap part S M : Module area Solar cell of the second embodiment formula 1 According to the method of measuring the concentration of the metal component contained in the module 2, only the electrodes 12 and 13 and the gap portion 14 (portion where there is no electrode) are analyzed using the movable fluorescent X-ray analyzer 3, and the fluorescence is reduced. X-ray analysis can be performed in a short time.

以上説明した第1および第2の実施形態によれば、蛍光X線分析の結果および太陽電池モジュール2の画像情報を活用することにより、太陽電池モジュール2の含有金属成分濃度を非破壊検査により簡単に且つ高い精度で測定することができる。例えば、長い間使用された太陽電池モジュール2をリサイクルする際、太陽電池モジュール2の使用現場で太陽電池モジュールを解体せずに、含有金属成分の濃度を簡単に且つ高い精度で測定することができる。   According to the first and second embodiments described above, the concentration of metal components contained in the solar cell module 2 can be easily determined by nondestructive inspection by utilizing the result of the fluorescent X-ray analysis and the image information of the solar cell module 2. And can be measured with high accuracy. For example, when recycling the solar cell module 2 that has been used for a long time, the concentration of the contained metal component can be measured easily and with high accuracy without disassembling the solar cell module at the site where the solar cell module 2 is used. .

尚、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and gist of the invention.

1・・・太陽電池単位セル
2・・・太陽電池モジュール
3・・・可動式蛍光X線分析装置
4・・・デジタルカメラ
5・・・情報端末機器
6・・・発電素子(半導体基板)
7・・・結合線
8・・・封止材
9・・・ガラス基板
10・・・バックシート
11・・・金属フレーム
12・・・バスバー(電極)
13・・・フィンガーバー(電極)
14・・・空隙部(電極でない部分)
DESCRIPTION OF SYMBOLS 1 ... Solar cell unit cell 2 ... Solar cell module 3 ... Movable fluorescent X-ray analyzer 4 ... Digital camera 5 ... Information terminal device 6 ... Power generation element (semiconductor substrate)
DESCRIPTION OF SYMBOLS 7 ... Bond line 8 ... Sealing material 9 ... Glass substrate 10 ... Back sheet 11 ... Metal frame 12 ... Bus bar (electrode)
13 ... Finger bar (electrode)
14: Gaps (parts not electrodes)

Claims (11)

半導体基板上に形成された発電素子を含む複数の太陽電池単位セルを電気的に接続して構成された太陽電池モジュールの含有金属成分濃度の測定方法において、
前記太陽電池単位セルの受光面の複数箇所に蛍光X線を照射し、蛍光X線分析法を用いて各々の含有金属成分濃度を測定する蛍光X線分析工程と、
前記太陽電池モジュールの受光面の画像情報を取得する画像情報取得工程と、
前記太陽電池単位セルの複数箇所各々の含有金属成分濃度の値および前記太陽電池モジュールの画像情報をもとに、前記太陽電池モジュールの含有金属成分濃度を求める濃度算出工程とを有することを特徴とする太陽電池モジュールの含有金属成分濃度の測定方法。
In the method for measuring the concentration of metal components contained in a solar cell module configured by electrically connecting a plurality of solar cell unit cells including a power generation element formed on a semiconductor substrate,
A fluorescent X-ray analysis step of irradiating a plurality of locations on the light-receiving surface of the solar cell unit cell with fluorescent X-rays and measuring each contained metal component concentration using a fluorescent X-ray analysis method;
An image information acquisition step of acquiring image information of a light receiving surface of the solar cell module;
A concentration calculation step of obtaining a concentration of a metal component contained in the solar cell module based on a value of a concentration of the metal component contained in each of a plurality of locations of the solar cell unit cell and image information of the solar cell module. To measure the concentration of metal components contained in a solar cell module.
前記蛍光X線分析工程において、前記太陽電池単位セル内のX方向およびY方向に各々連続した複数箇所の各含有金属成分濃度を測定し、前記太陽電池単位セル内の金属成分濃度分布を考慮して、前記太陽電池単位セルの半導体基板の含有金属成分濃度の平均値を求め、
前記画像情報取得工程において、前記太陽電池モジュール上の半導体基板の無い部分の面積と有る部分の面積の各々の値を求め、
前記濃度算出工程において、前記太陽電池単位セルの半導体基板の含有金属成分濃度の平均値、および前記太陽電池モジュール上の半導体基板の無い部分の面積と有る部分の面積の各々の値を用いて前記太陽電池モジュールの含有金属成分濃度を求めることを特徴とする請求項1に記載の太陽電池モジュールの含有金属成分濃度の測定方法。
In the fluorescent X-ray analysis step, the concentration of each contained metal component in a plurality of locations that are continuous in the X direction and the Y direction in the solar cell unit cell is measured, and the metal component concentration distribution in the solar cell unit cell is taken into consideration. Obtaining an average value of the concentration of metal components contained in the semiconductor substrate of the solar cell unit cell,
In the image information acquisition step, determine the value of the area of the part and the area of the part without the semiconductor substrate on the solar cell module,
In the concentration calculation step, the average value of the contained metal component concentration of the semiconductor substrate of the solar cell unit cell, and the area of the portion without the semiconductor substrate on the solar cell module and the value of the area of the portion are used. The method for measuring the concentration of a metal component contained in a solar cell module according to claim 1, wherein the concentration of the metal component contained in the solar cell module is determined.
前記蛍光X線分析工程において、前記太陽電池単位セルの半導体基板の含有金属成分濃度の平均値(h)は、
(式1)
(SSi:半導体基板の単位面積、Ai:i番目の濃度分布波形(x方向)の面積、σxi:i番目の濃度分布波形(x方向)の分散、uxi:i番目の濃度分布波形(x方向)の平均値、Aj:j番目の濃度分布波形(y方向)の面積、σyj:j番目の濃度分布波形(y方向)の分散、uyj :j番目の濃度分布波形(y方向)の平均値、Bg:半導体基板上におけるバスバーを除いた部分の金属成分濃度)
を用いて求めることを特徴とする請求項2に記載の太陽電池モジュールの含有金属成分濃度の測定方法。
In the fluorescent X-ray analysis step, the average value (h) of the metal component concentration contained in the semiconductor substrate of the solar cell unit cell is:
(Formula 1)
(S Si : Unit area of semiconductor substrate, A i : Area of i-th concentration distribution waveform (x direction), σ xi : Dispersion of i-th concentration distribution waveform (x direction), u xi : i-th concentration distribution Average value of waveform (x direction), A j : area of jth concentration distribution waveform (y direction), σ yj : variance of jth concentration distribution waveform (y direction), u yj : jth concentration distribution waveform (Y direction average value, B g : metal component concentration of the portion excluding the bus bar on the semiconductor substrate)
3. The method for measuring the concentration of a metal component contained in a solar cell module according to claim 2, wherein the concentration is determined using
前記濃度算出工程において、前記太陽電池モジュールの含有金属成分濃度(C)は、
(式2)
(h:太陽電池単位セルの半導体基板の含有金属成分濃度の平均値、SW:太陽電池モジュール上における半導体基板の無い部分の合計面積、SB:太陽電池モジュール上における半導体基板の有る部分の合計面積)
を用いて求めることを特徴とする請求項2および3に記載の太陽電池モジュールの含有金属成分濃度の測定方法。
In the concentration calculation step, the concentration of the metal component contained in the solar cell module (C A ) is:
(Formula 2)
(H: Average value of the concentration of metal components contained in the semiconductor substrate of the solar cell unit cell, S W : Total area of the portion without the semiconductor substrate on the solar cell module, S B : Of the portion with the semiconductor substrate on the solar cell module Total area)
The method for measuring the concentration of metal components contained in a solar cell module according to claim 2 or 3, wherein the concentration is determined using
前記半導体基板上に形成された発電素子は電極を有し、
前記蛍光X線分析工程において、前記太陽電池単位セル内の前記電極と空隙部(電極が無い部分)の各含有金属成分濃度を測定し、
前記画像情報取得工程において、前記太陽電池モジュール内の前記電極の面積と空隙部(電極が無い部分)の面積を各々求め、
前記濃度算出工程において、前記太陽電池単位セル内の電極と空隙部(電極が存在しない部分)の各含有金属成分濃度、前記太陽電池モジュール内の電極の面積と空隙部(電極が存在しない部分)の各面積を用いて、前記太陽電池モジュールの含有金属成分濃度を求めることを特徴とする請求項1に記載の太陽電池モジュールの含有金属成分濃度の測定方法。
The power generation element formed on the semiconductor substrate has an electrode,
In the fluorescent X-ray analysis step, the concentration of each contained metal component in the electrode and the void portion (portion where there is no electrode) in the solar cell unit cell is measured,
In the image information acquisition step, the area of the electrode in the solar cell module and the area of the gap (part where there is no electrode) are obtained,
In the concentration calculation step, the concentration of each contained metal component in the electrode and the void portion (portion where no electrode is present) in the solar cell unit cell, the area of the electrode and the void portion (portion where no electrode is present) in the solar cell module 2. The method for measuring the metal component concentration in a solar cell module according to claim 1, wherein the metal component concentration in the solar cell module is determined using each of the areas.
前記電極はバスバーおよびフィンガーバーであることを特徴とする請求項5に記載の太陽電池モジュールの含有金属成分濃度の測定方法。   The said electrode is a bus bar and a finger bar, The measuring method of the containing metal component density | concentration of the solar cell module of Claim 5 characterized by the above-mentioned. 前記濃度算出工程において、前記太陽電池モジュールの含有金属成分濃度(C)は、
(式3)
(CD:電極の含有金属成分濃度、CK:空隙部の含有金属成分濃度、SD:電極の面積、SK:空隙部の面積、SM:太陽電池モジュールの面積)
を用いて求めることを特徴とする請求項5および6に記載の太陽電池モジュールの含有金属成分濃度の測定方法。
In the concentration calculation step, the concentration of the metal component contained in the solar cell module (C A ) is:
(Formula 3)
(C D : Concentration of metal component in electrode, C K : Concentration of metal component in gap, S D : Area of electrode, S K : Area of gap, S M : Area of solar cell module)
The method for measuring the concentration of a metal component contained in a solar cell module according to claim 5 or 6, wherein the concentration is determined using
前記太陽電池モジュールの含有金属成分濃度の測定は、太陽電池モジュールを設置した敷地内で実施する非破壊検査であることを特徴とする請求項1乃至7に記載の太陽電池モジュールの含有金属成分濃度の測定方法。   The measurement of the metal component concentration of the solar cell module is a nondestructive inspection carried out in a site where the solar cell module is installed. The metal component concentration of the solar cell module according to claim 1, Measuring method. 前記太陽電池モジュールの含有金属成分濃度の測定方法を用いて、前記太陽電池モジュールの資源性または有害性を判断することを特徴とする請求項1乃至7に記載の太陽電位モジュールの含有金属成分濃度の測定方法。   8. The metal component concentration in the solar potential module according to claim 1, wherein the resource property or harmfulness of the solar cell module is determined using a method for measuring the metal component concentration in the solar cell module. 9. Measuring method. 前記資源性を有する金属元素とは、銀、銅、アルミニウム、シリコン、インジウムの少なく一つであること特徴とする請求項9に記載の太陽電池モジュールの含有金属成分濃度の測定方法。   The method for measuring a concentration of a metal component contained in a solar cell module according to claim 9, wherein the metal element having resource is at least one of silver, copper, aluminum, silicon, and indium. 前記有害性を有する金属元素とは、鉛、セレン、ガリウム、砒素、アンチモンの少なく一つであること特徴とする請求項9に記載の太陽電池モジュールの含有金属成分濃度の測定方法。   The method for measuring a concentration of a metal component contained in a solar cell module according to claim 9, wherein the harmful metal element is at least one of lead, selenium, gallium, arsenic, and antimony.
JP2016151534A 2016-08-01 2016-08-01 Method for measuring concentration of metal component contained in solar cell module Active JP6437965B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016151534A JP6437965B2 (en) 2016-08-01 2016-08-01 Method for measuring concentration of metal component contained in solar cell module
CN201710498665.3A CN107677695B (en) 2016-08-01 2017-06-27 Method for measuring concentration of metal component contained in solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151534A JP6437965B2 (en) 2016-08-01 2016-08-01 Method for measuring concentration of metal component contained in solar cell module

Publications (2)

Publication Number Publication Date
JP2018021774A JP2018021774A (en) 2018-02-08
JP6437965B2 true JP6437965B2 (en) 2018-12-12

Family

ID=61133490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151534A Active JP6437965B2 (en) 2016-08-01 2016-08-01 Method for measuring concentration of metal component contained in solar cell module

Country Status (2)

Country Link
JP (1) JP6437965B2 (en)
CN (1) CN107677695B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117184A (en) * 2022-06-28 2022-09-27 河海大学 Method for determining structure of heterojunction solar cell to be recovered

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL180482A0 (en) * 2007-01-01 2007-06-03 Jordan Valley Semiconductors Inspection of small features using x - ray fluorescence
JP2009031072A (en) * 2007-07-26 2009-02-12 Covalent Materials Corp Impurity concentration analysis method of siliceous powder
JP2009096656A (en) * 2007-10-15 2009-05-07 National Institute Of Advanced Industrial & Technology ZnO ROD ARRAY AND METHOD FOR MANUFACTURING THE SAME
JP5307503B2 (en) * 2008-07-01 2013-10-02 株式会社日立ハイテクサイエンス X-ray analyzer and X-ray analysis method
JP5938309B2 (en) * 2012-09-12 2016-06-22 東芝環境ソリューション株式会社 How to recycle solar panels
JP6167359B2 (en) * 2012-10-13 2017-07-26 宮崎県 Method for recovering valuable materials from CIS thin film solar cells
CN102980905B (en) * 2012-12-03 2015-03-11 无锡市产品质量监督检验中心 Method for detecting content of iron in photovoltaic glass based on X-ray fluorescence energy spectrum
US9389192B2 (en) * 2013-03-24 2016-07-12 Bruker Jv Israel Ltd. Estimation of XRF intensity from an array of micro-bumps
US9722113B2 (en) * 2014-07-23 2017-08-01 The Regents Of The University Of Michigan Tetradymite layer assisted heteroepitaxial growth and applications
JP6596735B2 (en) * 2014-11-10 2019-10-30 株式会社ジンテク Method of recovering valuable material from solar cell module and processing device for recovery

Also Published As

Publication number Publication date
CN107677695A (en) 2018-02-09
CN107677695B (en) 2021-07-09
JP2018021774A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
US20130195244A1 (en) X-Ray Inspector
US8891729B2 (en) X-ray analyzer and X-ray analysis method
JP6604629B2 (en) Inspection apparatus and inspection method
Wang et al. Metal contamination distribution detection in high-voltage transmission line insulators by laser-induced breakdown spectroscopy (LIBS)
Lin et al. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy
JP2015106565A (en) Charged-particle microscope with enhanced electron detection
Romano et al. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution
Xu et al. Integrated BiPO 4 nanocrystal/BiOBr heterojunction for sensitive photoelectrochemical sensing of 4-chlorophenol
JP6437965B2 (en) Method for measuring concentration of metal component contained in solar cell module
Ebihara et al. Lifetime mapping of photo-excited charge carriers by the transient grating imaging technique for nano-particulate semiconductor films
JP2017055657A (en) Inspection device for solar battery module and inspection method for solar battery module
Haug et al. Modulating the field-effect passivation at the SiO2/c-Si interface: Analysis and verification of the photoluminescence imaging under applied bias method
Fada et al. Democratizing an electroluminescence imaging apparatus and analytics project for widespread data acquisition in photovoltaic materials
Noll et al. Laser-induced breakdown spectroscopy as enabling key methodology for inverse production of end-of-life electronics
Buonassisi et al. Applications of synchrotron radiation X-ray techniques on the analysis of the behavior of transition metals in solar cells and single-crystalline silicon with extended defects
US20200150060A1 (en) Non-destructive inspection system for detecting defects in compound semiconductor wafer and method of operating the same
CN104882390B (en) For the method and system for the junction depth for identifying ultra-shallow junctions
Voland et al. Defect recognition in crystalline silicon solar cells by X‐ray tomosynthesis with layer resolution
Mironov et al. Laser photoelectron projection microscopy of an organic conducting polymer
JP2015042969A (en) Sample measurement result processing device, sample measurement result processing method, and program
TW200413737A (en) Ion beam distribution detection device and ion beam orientation processing device using the same
Gu et al. A High-Detection-Efficiency Optoelectronic Device for Trace Cadmium Detection
Tian et al. Spatiotemporal Visualization of Photogenerated Carriers on an Avalanche Photodiode Surface Using Ultrafast Scanning Electron Microscopy
Stroyuk et al. Identification of the Backsheet Type of Silicon Photovoltaic Modules from Encapsulant Fluorescence Images
CN102207481A (en) Photoinduced-electrochemical analyzer with functions of continuous wavelength scanning and 3-D spectrum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181115

R150 Certificate of patent or registration of utility model

Ref document number: 6437965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250