JP6435930B2 - Resin type identification device - Google Patents

Resin type identification device Download PDF

Info

Publication number
JP6435930B2
JP6435930B2 JP2015045450A JP2015045450A JP6435930B2 JP 6435930 B2 JP6435930 B2 JP 6435930B2 JP 2015045450 A JP2015045450 A JP 2015045450A JP 2015045450 A JP2015045450 A JP 2015045450A JP 6435930 B2 JP6435930 B2 JP 6435930B2
Authority
JP
Japan
Prior art keywords
infrared light
sample
resin
infrared
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015045450A
Other languages
Japanese (ja)
Other versions
JP2016166740A (en
Inventor
田中 豊彦
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015045450A priority Critical patent/JP6435930B2/en
Publication of JP2016166740A publication Critical patent/JP2016166740A/en
Application granted granted Critical
Publication of JP6435930B2 publication Critical patent/JP6435930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、リサイクル樹脂を光学的手法により組成ごとに識別する樹脂種識別装置に関し、特に識別部に赤外分光光度計(以下「FTIR」と略す)を用いた樹脂種識別装置に関する。   The present invention relates to a resin type identification device that identifies a recycled resin for each composition by an optical technique, and more particularly to a resin type identification device that uses an infrared spectrophotometer (hereinafter abbreviated as “FTIR”) as an identification unit.

廃家電における樹脂のリサイクルに際し、手で解体できる部分は限られている。このため、小さな部品や複雑な構成の部品については、機械的に粉砕して、金属や樹脂等を選別したうえで、リサイクル材とする必要がある。この場合、粉砕して混合された状態から、それぞれの材料を選別することが要求されるため、高度な選別技術が必要となる。このうち、金属は、比重や電気又は磁気的な力により選別される。一方、樹脂類の選別(例えば、ポリプロピレン(PP)とポリスチレン(PS)とアクリロニトリルブタジエンスチレン(ABS)等)については、近赤外帯又は中赤外帯の光における樹脂の吸収率や反射率の波長(波数)依存性の違いに着目した識別方法が提案されている。   When recycling resin in waste home appliances, the parts that can be dismantled by hand are limited. For this reason, small parts and parts with complicated structures need to be pulverized mechanically to select metals, resins, and the like, and then used as recycled materials. In this case, since it is required to select each material from the pulverized and mixed state, an advanced sorting technique is required. Among these, metals are selected by specific gravity, electric or magnetic force. On the other hand, for the selection of resins (for example, polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (ABS), etc.) An identification method focusing on the difference in wavelength (wave number) dependence has been proposed.

このような識別方法として、順次コンベアで樹脂片(シュレッダーダスト)を搬送し、フーリエ変換型赤外分光光度計を用いて拡散反射法で識別するもの(赤外分光法)がある(例えば、特許文献1参照)。   As such an identification method, there is a method (infrared spectroscopy) in which resin pieces (shredder dust) are sequentially conveyed by a conveyor and identified by a diffuse reflection method using a Fourier transform infrared spectrophotometer (for example, a patent) Reference 1).

図5は、従来の樹脂種識別装置の構成を示す平面図であり、図6は、図5に示す樹脂種識別装置の側面図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
樹脂種識別装置100は、赤外光を出射する赤外光源部10と、赤外光検出部20と、試料となる樹脂片Sが配置される試料配置部130と、制御部150とを備える。
FIG. 5 is a plan view showing a configuration of a conventional resin type identification device, and FIG. 6 is a side view of the resin type identification device shown in FIG. One direction horizontal to the ground is defined as an X direction, a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction.
The resin type identification device 100 includes an infrared light source unit 10 that emits infrared light, an infrared light detection unit 20, a sample placement unit 130 on which a resin piece S as a sample is placed, and a control unit 150. .

赤外光源部10は、赤外光を出射する赤外光源12と、インターフェログラムを作成する主干渉計主要部40と、平面鏡13、14と、放物面鏡(集光鏡)11とを備える。そして、赤外光源12から出射された赤外光は、主干渉計主要部40のビームスプリッタ42に照射されるようになっている。   The infrared light source unit 10 includes an infrared light source 12 that emits infrared light, a main interferometer main unit 40 that creates an interferogram, plane mirrors 13 and 14, and a parabolic mirror (condensing mirror) 11. Is provided. The infrared light emitted from the infrared light source 12 is applied to the beam splitter 42 of the main part 40 of the main interferometer.

主干渉計主要部40には、移動鏡41aを備えた移動鏡ユニット41と、ビームスプリッタ42と、固定鏡43aを備えた固定鏡ユニット43とが配置されている。このような主干渉計主要部40によれば、赤外光源12から出射された赤外光は、ビームスプリッタ42に照射され、ビームスプリッタ42で移動鏡41aと固定鏡43aとの二方向に分割される。そして、移動鏡41aで反射された赤外光と固定鏡43aで反射された赤外光はビームスプリッタ42へ戻り、これらの赤外光はビームスプリッタ42で合成されて平面鏡13、14を介して放物面鏡11へ送られる。このとき、移動鏡41aは入射光軸方向Mで前後に往復動しているため、分割された二光束の光路長の差は周期的に変化し、ビームスプリッタ42から放物面鏡11へ向かう光は、時間的に振幅が変動するインターフェログラムとなる。   In the main part of the main interferometer 40, a movable mirror unit 41 including a movable mirror 41a, a beam splitter 42, and a fixed mirror unit 43 including a fixed mirror 43a are arranged. According to the main part 40 of the main interferometer, the infrared light emitted from the infrared light source 12 is applied to the beam splitter 42, and is split by the beam splitter 42 into two directions of the movable mirror 41a and the fixed mirror 43a. Is done. The infrared light reflected by the movable mirror 41a and the infrared light reflected by the fixed mirror 43a return to the beam splitter 42, and these infrared lights are combined by the beam splitter 42 and passed through the plane mirrors 13 and 14. It is sent to the parabolic mirror 11. At this time, since the movable mirror 41a reciprocates back and forth in the incident optical axis direction M, the difference in the optical path length of the divided two light beams changes periodically, and travels from the beam splitter 42 toward the parabolic mirror 11. Light becomes an interferogram whose amplitude varies with time.

赤外光検出部20は、インターフェログラム(赤外光)を検出する赤外検出器21と、2つの放物面鏡(集光鏡)22、23とを備える。   The infrared light detection unit 20 includes an infrared detector 21 that detects an interferogram (infrared light) and two parabolic mirrors (condensing mirrors) 22 and 23.

試料配置部130は、図6に示すように樹脂種識別装置100の下段に配置されており、搬送ベルト(試料載置板)131と、搬送ベルト131を所定の方向(Y方向)に移動させる駆動機構(図示略)とを備える。樹脂片Sは、搬送ベルト131の上面に載置されることになる。
そして、搬送ベルト131の左上方には、右下方に光を反射するための放物面鏡11が設けられるとともに、搬送ベルト131の右上方には、左下方からの光を反射するための放物面鏡22が設けられている。これにより、例えば樹脂片S2が所定の位置に配置されると、放物面鏡11によって集光された光が、樹脂片S2上面の第一測定点C1に照射され、樹脂片S2上面の第一測定点C1で反射した光が、放物面鏡22によって平行光とされ、その平行光が放物面鏡23によって赤外検出器21へ集光されるようになっている。
As shown in FIG. 6, the sample placement unit 130 is placed in the lower stage of the resin type identification device 100 and moves the transport belt (sample placement plate) 131 and the transport belt 131 in a predetermined direction (Y direction). A drive mechanism (not shown). The resin piece S is placed on the upper surface of the transport belt 131.
A parabolic mirror 11 for reflecting light to the lower right is provided at the upper left of the transport belt 131, and a light for reflecting light from the lower left is disposed at the upper right of the transport belt 131. An object mirror 22 is provided. Thereby, for example, when the resin piece S2 is arranged at a predetermined position, the light collected by the parabolic mirror 11 is irradiated to the first measurement point C1 on the upper surface of the resin piece S2, and the first of the upper surface of the resin piece S2 is irradiated. The light reflected at one measurement point C 1 is converted into parallel light by the parabolic mirror 22, and the parallel light is condensed on the infrared detector 21 by the parabolic mirror 23.

このような試料配置部130によれば、搬送ベルト131に複数個の樹脂片S(第一樹脂片S1、第二樹脂片S2、第三樹脂片S3、・・・)を載置した後、駆動機構によって搬送ベルト131を所定の方向に移動させることにより、所定の位置に第一樹脂片S1が配置され、その後、所定の位置に第二樹脂片S2が配置されるというように、順次所定の位置に樹脂片Sが1個ずつ配置される。   According to such a sample arrangement unit 130, after placing a plurality of resin pieces S (first resin piece S1, second resin piece S2, third resin piece S3,...) On the conveyor belt 131, By moving the conveyor belt 131 in a predetermined direction by the drive mechanism, the first resin piece S1 is arranged at a predetermined position, and then the second resin piece S2 is arranged at a predetermined position in order. One resin piece S is arranged at each position.

制御部150は、赤外検出器21から反射光強度(光強度情報)を取得する光強度情報取得部と、取得した光強度情報に基づいて各樹脂片Sの吸収スペクトルを作成する試料測定部と、得られた吸収スペクトルを用いてそれぞれの樹脂の種類を判別する樹脂種判別部とを有する。   The control unit 150 includes a light intensity information acquisition unit that acquires reflected light intensity (light intensity information) from the infrared detector 21, and a sample measurement unit that creates an absorption spectrum of each resin piece S based on the acquired light intensity information. And a resin type discriminating unit for discriminating the type of each resin using the obtained absorption spectrum.

国際公開WO2012/147717号公報International Publication WO2012 / 147717

しかしながら、樹脂種識別装置100で樹脂片Snを樹脂種ごとに選別することになるが、廃家電における樹脂のリサイクル工場では、正確に樹脂片Snを樹脂種ごとに選別することができないことがあった。   However, although the resin piece Sn is sorted for each resin type by the resin type identification device 100, there are cases where the resin piece Sn cannot be accurately sorted for each resin type in a resin recycling factory in a waste home appliance. It was.

本件発明者は、上記課題を解決するために、樹脂片(試料)を樹脂種ごとに正確に選別することができる樹脂種識別装置について鋭意検討を行った。
リサイクル工場等で家電等の成形品を粉砕した樹脂片(シュレッダーダスト)Snを樹脂種識別装置100で選別する際には、樹脂片Snを5mm〜20mm程度に粉砕しているが、家電等には樹脂表面に塗装が施されたものや、フィルム等が貼り合わされたものが多い。そのため、樹脂片Sn上面で反射した光を赤外検出器21で検出すると、塗装やフィルム等に含まれる材料の吸収スペクトルが得られることや、樹脂片Snのどちらの面を測定するかによって測定結果が異なることがわかった。
そこで、本件発明者は、樹脂片Snの上面と下面の両方を測定することにした。これにより、樹脂片Sn上面の測定結果と樹脂片Sn下面の測定結果とが異なれば、表面に塗装が施されているか、フィルム等が貼り合わされたものであると判定することを見出した。
In order to solve the above-mentioned problems, the present inventor has intensively studied a resin type identification device that can accurately sort resin pieces (samples) for each resin type.
When a resin piece (shredder dust) Sn obtained by pulverizing a molded product such as a home appliance at a recycling factory or the like is selected by the resin type identification device 100, the resin piece Sn is pulverized to about 5 mm to 20 mm. In many cases, the surface of the resin is painted or a film or the like is bonded. Therefore, when the light reflected from the upper surface of the resin piece Sn is detected by the infrared detector 21, an absorption spectrum of the material contained in the paint or film is obtained, and measurement is performed depending on which surface of the resin piece Sn is measured. The results were found to be different.
Therefore, the present inventors decided to measure both the upper surface and the lower surface of the resin piece Sn. As a result, it was found that if the measurement result of the upper surface of the resin piece Sn and the measurement result of the lower surface of the resin piece Sn are different, it is determined that the surface is coated or a film or the like is bonded.

すなわち、本発明の樹脂種識別装置は、樹脂からなる試料上面に赤外光を照射する第一赤外光源部と、前記試料上面で反射した赤外光の第一光強度情報を検出する第一赤外光検出部とを備える第一赤外分光光度計と、前記試料下面に赤外光を照射する第二赤外光源部と、前記試料下面で反射した赤外光の第二光強度情報を検出する第二赤外光検出部とを備える第二赤外分光光度計とを備え、前記第一赤外分光光度計の第一赤外光検出部と前記第二赤外分光光度計の第二赤外光検出部とは前記試料を挟んで配置され、前記第一光強度情報及び前記第二光強度情報に基づいて、前記試料の組成の均一性を評価する制御部とを備えるようにしている。 That is, the resin type identification device of the present invention includes a first infrared light source unit that irradiates infrared light on the upper surface of a sample made of resin, and first light intensity information of infrared light reflected by the upper surface of the sample. A first infrared spectrophotometer including a first infrared light detection unit; a second infrared light source unit that irradiates infrared light onto the lower surface of the sample; and a second light intensity of infrared light reflected from the lower surface of the sample A second infrared spectrophotometer comprising a second infrared light detector for detecting information, the first infrared light detector of the first infrared spectrophotometer and the second infrared spectrophotometer The second infrared light detection unit is disposed with the sample interposed therebetween, and includes a control unit that evaluates the uniformity of the composition of the sample based on the first light intensity information and the second light intensity information. I am doing so.

本発明の樹脂種識別装置によれば、試料の上面と下面の両面を測定しているので、試料を正確に選別することができる。   According to the resin type identification device of the present invention, since both the upper surface and the lower surface of the sample are measured, the sample can be accurately selected.

(その他の課題を解決するための手段および効果)
また、上記発明において、前記第一赤外光源部は、集光鏡を有し、当該集光鏡から前記試料上面の第一測定点に赤外光を照射し、前記第一赤外光検出部は、集光鏡を有し、前記試料上面の第一測定点で反射した赤外光を検出器へ集光することで第一反射光強度を得るとともに、前記第二赤外光源部は、集光鏡を有し、当該集光鏡から前記試料下面の第二測定点に赤外光を照射し、前記第二赤外光検出部は、集光鏡を有し、前記試料下面の第二測定点で反射した赤外光を検出器へ集光することで第二反射光強度を得るようにしてもよい。
(Means and effects for solving other problems)
In the above invention, the first infrared light source unit includes a condensing mirror, irradiates infrared light from the condensing mirror to the first measurement point on the upper surface of the sample, and detects the first infrared light. The part has a condensing mirror and obtains the first reflected light intensity by condensing the infrared light reflected at the first measurement point on the upper surface of the sample to the detector, and the second infrared light source part is , Irradiating infrared light to the second measurement point on the lower surface of the sample from the condensing mirror, the second infrared light detection unit has a condensing mirror, and You may make it obtain 2nd reflected light intensity | strength by condensing the infrared light reflected in the 2nd measurement point to a detector.

また、上記発明において、所定の方向に移動可能な試料載置板を備え、前記試料載置板が移動することで、赤外光が照射される所定の位置に前記試料が配置されるようにしてもよい。
ここで、「所定の位置」とは、赤外光源部から赤外光が照射され、その反射した赤外光が赤外光検出部に送られる位置であって、設計者等によって予め決められており、「所定の方向」もまた、設計者等によって予め決められている。
In the above invention, a sample mounting plate that is movable in a predetermined direction is provided, and the sample mounting plate is moved so that the sample is disposed at a predetermined position where infrared light is irradiated. May be.
Here, the “predetermined position” is a position where infrared light is irradiated from the infrared light source unit and the reflected infrared light is sent to the infrared light detection unit, and is determined in advance by a designer or the like. The “predetermined direction” is also predetermined by a designer or the like.

そして、上記発明において、前記試料が所定の位置に配置される前に、前記試料の上面及び/又は下面を整形する整形部を備えるようにしてもよい。
さらに、上記発明において、前記試料の上面及び/又は下面が整形された後、前記試料は、上下方向に所定間隔となる壁面が設けられた通路を通過し、前記通路中に所定の位置が設定されているようにしてもよい。
このような本発明の樹脂種識別装置によれば、試料の形状や寸法によらず正確な測定を行うことができる。
And in the said invention, before the said sample is arrange | positioned in a predetermined position, you may make it provide the shaping part which shapes the upper surface and / or lower surface of the said sample.
Furthermore, in the above invention, after the upper surface and / or lower surface of the sample is shaped, the sample passes through a passage provided with a wall surface having a predetermined interval in the vertical direction, and a predetermined position is set in the passage. You may be made to do.
According to such a resin type identification apparatus of the present invention, accurate measurement can be performed regardless of the shape and dimensions of the sample.

本発明の第一実施形態に係る樹脂種識別装置の構成を示す平面図。The top view which shows the structure of the resin kind identification device which concerns on 1st embodiment of this invention. 図1の側面図。The side view of FIG. 図1の装置を裏面から見たときの構成を示す平面図。The top view which shows a structure when the apparatus of FIG. 1 is seen from the back surface. 本発明の第二実施形態に係る樹脂種識別装置の構成を示す側面図。The side view which shows the structure of the resin kind identification device which concerns on 2nd embodiment of this invention. 従来の樹脂種識別装置の構成を示す平面図。The top view which shows the structure of the conventional resin kind identification device. 図5の側面図。The side view of FIG.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and includes various modes without departing from the spirit of the present invention.

<第一実施形態>
図1は、本発明の第一実施形態に係る樹脂種識別装置の構成を示す平面図であり、図2は、図1に示す樹脂種識別装置の側面図であり、図3は、図1の樹脂種識別装置を裏面から見たときの構成を示す平面図である。なお、先に述べた樹脂種識別装置100と同様のものについては、同じ符号を付すことにより説明を省略する。
樹脂種識別装置1は、赤外光を出射する第一赤外光源部10と、第一赤外光検出部20と、赤外光を出射する第二赤外光源部110と、第二赤外光検出部120と、試料となる樹脂片Snが配置される試料配置部30と、制御部50とを備える。
<First embodiment>
FIG. 1 is a plan view showing the configuration of a resin type identification device according to the first embodiment of the present invention, FIG. 2 is a side view of the resin type identification device shown in FIG. 1, and FIG. It is a top view which shows a structure when this resin kind identification device is seen from the back surface. In addition, about the thing similar to the resin kind identification device 100 mentioned previously, description is abbreviate | omitted by attaching | subjecting the same code | symbol.
The resin type identification device 1 includes a first infrared light source unit 10 that emits infrared light, a first infrared light detection unit 20, a second infrared light source unit 110 that emits infrared light, and a second red light source. An external light detection unit 120, a sample placement unit 30 on which a resin piece Sn serving as a sample is placed, and a control unit 50 are provided.

なお、本実施形態における樹脂片Snは、例えばリサイクル工場等で廃家電を5mm〜20mm程度に粉砕したもの(シュレッダーダスト)である。そして、本発明は、樹脂片Snを新たな製品用材料として再利用するために、樹脂片Snを樹脂種ごと(例えば、ポリプロピレン(PP)とポリスチレン(PS)とアクリロニトリルブタジエンスチレン(ABS)等)に識別するとともに、混合物(リサイクル不可品)を識別する際に使用される。   In addition, the resin piece Sn in this embodiment is a thing (shredder dust) which grind | pulverized the waste household appliance in about 5 mm-20 mm in the recycling factory etc., for example. In the present invention, in order to reuse the resin piece Sn as a new product material, the resin piece Sn is separated for each resin type (for example, polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (ABS), etc.)). And used to identify mixtures (non-recyclable).

第二赤外光源部110は、赤外光を出射する赤外光源112と、インターフェログラムを作成する主干渉計主要部140と、平面鏡113、114と、放物面鏡(集光鏡)111とを備える。そして、赤外光源112から出射された赤外光は、主干渉計主要部140のビームスプリッタ142に照射されるようになっている。
第二赤外光検出部120は、インターフェログラム(赤外光)を検出する赤外検出器121と、2つの放物面鏡(集光鏡)122、123とを備える。
The second infrared light source unit 110 includes an infrared light source 112 that emits infrared light, a main interferometer main unit 140 that creates an interferogram, plane mirrors 113 and 114, and a parabolic mirror (condenser mirror). 111. The infrared light emitted from the infrared light source 112 is applied to the beam splitter 142 of the main interferometer main part 140.
The second infrared light detection unit 120 includes an infrared detector 121 that detects an interferogram (infrared light) and two parabolic mirrors (condensing mirrors) 122 and 123.

試料配置部30は、樹脂種識別装置1の中段に配置されており、下側搬送ベルト(試料載置板)33、34と、下側搬送ベルト33、34の上方(Z方向)に配置された上側搬送ベルト31、32と、上下の搬送ベルト31〜34を所定の方向(Y方向)に移動させる駆動機構(図示略)と、試料移送板35と、ゴムローラ部(整形部)60とを備える。   The sample placement unit 30 is placed in the middle of the resin type identification device 1, and is placed above (in the Z direction) the lower transport belts (sample mounting plates) 33, 34 and the lower transport belts 33, 34. The upper transport belts 31 and 32, the drive mechanism (not shown) for moving the upper and lower transport belts 31 to 34 in a predetermined direction (Y direction), the sample transfer plate 35, and the rubber roller section (shaping section) 60 are provided. Prepare.

上側搬送ベルト31、32は、X方向に所定の間隔Δxの空隙(開口)P1をあけて平行に配置されており、下側搬送ベルト33、34は、X方向に所定の間隔Δxの空隙(開口)P2をあけて平行に配置されている。
上記「所定の間隔Δx」は、設計者等によって予め決められており、例えば3mm等となる。
The upper conveyance belts 31 and 32 are arranged in parallel with a gap (opening) P1 having a predetermined interval Δx in the X direction, and the lower conveyance belts 33 and 34 are gaps (with a predetermined interval Δx in the X direction). Opening) P2 is opened and arranged in parallel.
The “predetermined interval Δx” is determined in advance by a designer or the like, and is 3 mm, for example.

樹脂片Snは、図1に示すように、上側搬送ベルト31の下面に左部分(一部分)が押圧されるとともに、上側搬送ベルト32の上面に右部分(一部分)が押圧されることになる。これにより、上側搬送ベルト31、32の空隙P1に、樹脂片Sn上面の中央部分(第一測定点)C1が配置される。また、樹脂片Snは、図3に示すように、下側搬送ベルト33の上面に左部分(一部分)が載置されるとともに、下側搬送ベルト34の上面に右部分(一部分)が載置されることになる。これにより、下側搬送ベルト33、34の空隙P2に、樹脂片Sn下面の中央部分(第二測定点)C2が配置される。   As shown in FIG. 1, the resin piece Sn has a left portion (part) pressed against the lower surface of the upper conveyor belt 31 and a right portion (part) pressed against the upper surface of the upper conveyor belt 32. As a result, the central portion (first measurement point) C1 of the upper surface of the resin piece Sn is disposed in the gap P1 between the upper conveyance belts 31 and 32. Further, as shown in FIG. 3, the resin piece Sn has a left portion (part) placed on the upper surface of the lower transport belt 33 and a right portion (part) placed on the upper surface of the lower transport belt 34. Will be. Thereby, the central portion (second measurement point) C2 of the lower surface of the resin piece Sn is disposed in the gap P2 of the lower conveyance belts 33 and 34.

そして、赤外光が照射される所定の位置では、図2に示すように、上側搬送ベルト31、32と下側搬送ベルト33、34との間が所定の間隔Δzの通路となるように、円柱形状の上側第一回転ローラ63及び上側第二回転ローラ64と、円柱形状の下側第一回転ローラ65及び下側第二回転ローラ66とが配置されている。具体的には、上側第一回転ローラ63と下側第一回転ローラ65との間は、所定の間隔Δzとなり、所定の位置の前方(−Y方向)に配置されている。また、上側第二回転ローラ64と下側第二回転ローラ66との間も所定の間隔Δzとなり、所定の位置の後方(Y方向)に配置されている。
上記「所定の間隔Δz」は、設計者等によって予め決められており、例えば5mm等となる。
Then, at a predetermined position where the infrared light is irradiated, as shown in FIG. 2, the path between the upper conveyor belts 31 and 32 and the lower conveyor belts 33 and 34 is a path having a predetermined interval Δz 1. A cylindrical upper first rotating roller 63 and an upper second rotating roller 64, and a cylindrical lower first rotating roller 65 and a lower second rotating roller 66 are arranged. Specifically, the space between the upper first rotating roller 63 and the lower first rotating roller 65 is a predetermined interval Δz 1 and is disposed in front of the predetermined position (−Y direction). Further, the distance between the upper second rotating roller 64 and the lower second rotating roller 66 is also a predetermined distance Δz 1 , which is arranged behind the predetermined position (Y direction).
The “predetermined interval Δz 1 ” is determined in advance by a designer or the like, and is, for example, 5 mm.

また、ゴムローラ部60は、円柱形状の上側ゴムローラ61と円柱形状の下側ゴムローラ62とからなる。上側ゴムローラ61と下側ゴムローラ62との間は、所定の間隔Δzとなり、上下の搬送ベルト31〜34の前方(−Y方向)に配置されている。
上記「所定の間隔Δz」は、設計者等によって予め決められており、例えば5mm等となる。
The rubber roller portion 60 includes a cylindrical upper rubber roller 61 and a cylindrical lower rubber roller 62. A space between the upper rubber roller 61 and the lower rubber roller 62 is a predetermined interval Δz 2 and is disposed in front of the upper and lower conveying belts 31 to 34 (−Y direction).
The “predetermined interval Δz 2 ” is determined in advance by a designer or the like, and is, for example, 5 mm.

このような試料配置部30によれば、樹脂片Snは上側ゴムローラ61の下面と下側ゴムローラ62の上面との間隔Δzを通過する際に押圧され、押圧された樹脂片Snが上側搬送ベルト31、32下面と下側搬送ベルト33、34上面との間に移動する。そして、上下の搬送ベルト31〜34が所定の方向に移動していくことにより、樹脂片Snが所定の位置に移動する。このように樹脂片Snが上側ゴムローラ61下面と下側ゴムローラ62上面との間の所定の間隔Δzを通過していくことで、順次所定の位置に樹脂片Snが1個ずつ配置される。 According to such a sample placement unit 30, the resin piece Sn is pressed while passing through the gap Delta] z 2 between the lower surface and the upper surface of the lower rubber roller 62 of the upper rubber roller 61, the pressed resin piece Sn the upper conveyor belt It moves between the lower surfaces 31 and 32 and the upper surfaces of the lower conveyor belts 33 and 34. Then, the upper and lower transport belts 31 to 34 move in a predetermined direction, whereby the resin piece Sn moves to a predetermined position. As the resin pieces Sn pass through the predetermined distance Δz 2 between the lower surface of the upper rubber roller 61 and the upper surface of the lower rubber roller 62 in this way, the resin pieces Sn are sequentially arranged at predetermined positions one by one.

そして、上側搬送ベルト31、32の左上方には、右下方に光を反射するための放物面鏡11が設けられるとともに、上側搬送ベルト31、32の右上方には、左下方からの光を反射するための放物面鏡22が設けられている。これにより、樹脂片Snが所定の位置に配置されると、図1に示すように、放物面鏡11によって集光された光が、上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過して樹脂片S上面の第一測定点C1に照射され、樹脂片S上面の第一測定点C1で反射した光が、再度上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過して放物面鏡22によって平行光とされ、その平行光が放物面鏡23によって赤外検出器21へ集光されるようになっている。
なお、樹脂片Snが所定の位置に存在しないときには、放物面鏡11によって集光された光が、上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過し、さらに下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過して直進し続けるため、赤外検出器21や赤外検出器121には到達しない。
A parabolic mirror 11 for reflecting light to the lower right is provided at the upper left of the upper transport belts 31 and 32, and light from the lower left is disposed at the upper right of the upper transport belts 31 and 32. A parabolic mirror 22 for reflecting the light is provided. Thereby, when the resin piece Sn is arranged at a predetermined position, as shown in FIG. 1, the light condensed by the parabolic mirror 11 is a gap between the upper conveyance belt 31 and the upper conveyance belt 32. The light passing through P1 and irradiating the first measurement point C1 on the upper surface of the resin piece S and reflected by the first measurement point C1 on the upper surface of the resin piece S is again a gap between the upper conveyance belt 31 and the upper conveyance belt 32. The light passes through P1 and is converted into parallel light by the parabolic mirror 22, and the parallel light is condensed by the parabolic mirror 23 onto the infrared detector 21.
When the resin piece Sn does not exist at a predetermined position, the light collected by the parabolic mirror 11 passes through the gap P1 between the upper conveyance belt 31 and the upper conveyance belt 32, and further lower conveyance. Since it passes straight through the gap P <b> 2 between the belt 33 and the lower conveyance belt 34, it does not reach the infrared detector 21 or the infrared detector 121.

また、下側搬送ベルト33、34の右下方には、左上方に光を反射するための放物面鏡111が設けられるとともに、下側搬送ベルト33、34の左下方には、右上方からの光を反射するための放物面鏡122が設けられている。これにより、樹脂片Snが所定の位置に配置されると、図3に示すように、放物面鏡111によって集光された光が、下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過して樹脂片Sn下面の第二測定点C2に照射され、樹脂片Sn下面の第二測定点C2で反射した光が、再度下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過して放物面鏡122によって平行光とされ、その平行光が放物面鏡123によって赤外検出器121へ集光されるようになっている。
なお、樹脂片Snが所定の位置に存在しないときには、放物面鏡111によって集光された光が、下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過し、さらに上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過して直進し続けるため、赤外検出器21や赤外検出器121には到達しない。
Further, a parabolic mirror 111 for reflecting light to the upper left is provided at the lower right of the lower transport belts 33 and 34, and from the upper right to the lower left of the lower transport belts 33 and 34. A parabolic mirror 122 for reflecting the light is provided. As a result, when the resin piece Sn is disposed at a predetermined position, the light collected by the parabolic mirror 111 is placed between the lower conveyor belt 33 and the lower conveyor belt 34 as shown in FIG. The light passing through the gap P2 and irradiating the second measurement point C2 on the lower surface of the resin piece Sn and reflected by the second measurement point C2 on the lower surface of the resin piece Sn is again transmitted to the lower conveyance belt 33 and the lower conveyance belt 34. The parallel light passes through the gap P2 between the two and is made parallel light by the parabolic mirror 122, and the parallel light is condensed on the infrared detector 121 by the parabolic mirror 123.
When the resin piece Sn is not present at a predetermined position, the light collected by the parabolic mirror 111 passes through the gap P2 between the lower conveyance belt 33 and the lower conveyance belt 34, and further on the upper side. Since it passes straight through the gap P1 between the transport belt 31 and the upper transport belt 32, it does not reach the infrared detector 21 or the infrared detector 121.

制御部50は、赤外光源12から連続的に赤外光を出射させて赤外検出器21より第一反射光強度(第一光強度情報)を取得する第一光強度情報取得部と、赤外光源112から連続的に赤外光を出射させて赤外検出器121より第二反射光強度(第二光強度情報)を取得する第二光強度情報取得部と、第一反射光強度に基づいて各樹脂片Snの吸収スペクトルを作成する第一試料測定部と、第二反射光強度に基づいて各樹脂片Snの吸収スペクトルを作成する第二試料測定部と、第一試料測定部で作成された各吸収スペクトルを用いてそれぞれの樹脂の種類を判別する第一樹脂種判別部と、第二試料測定部で作成された各吸収スペクトルを用いてそれぞれの樹脂の種類を判別する第二樹脂種判別部と、第一樹脂種判別部で判別された樹脂の種類と第二樹脂種判別部で判別された樹脂の種類とに基づいて樹脂片Snの組成の均一性を評価する評価部とを有する。   The control unit 50 continuously emits infrared light from the infrared light source 12 and acquires a first reflected light intensity (first light intensity information) from the infrared detector 21; A second light intensity information acquisition unit that continuously emits infrared light from the infrared light source 112 and acquires second reflected light intensity (second light intensity information) from the infrared detector 121; A first sample measurement unit that creates an absorption spectrum of each resin piece Sn based on the first sample measurement unit, a second sample measurement unit that creates an absorption spectrum of each resin piece Sn based on the second reflected light intensity, and a first sample measurement unit A first resin type discriminating unit that discriminates the type of each resin using each absorption spectrum created in step 1 and a first type that discriminates each resin type using each absorption spectrum created by the second sample measurement unit. The resin type discriminated by the two resin type discriminating unit and the first resin type discriminating unit And a evaluation unit for evaluating the homogeneity of the composition of the resin pieces Sn based on the type of the resin is determined by the second resin type discriminating unit.

第一試料測定部は、第一反射光強度における時間ごとの光強度変化に基づいて、樹脂片Snが所定の位置にあるか否かを判定し、各樹脂片Snと各吸収スペクトル情報との関連付けを行い、各樹脂片Snの吸収スペクトルを作成する制御を行う。
第一試料測定部の機能について具体的に説明すると、反射光強度が所定の光強度閾値未満であれば、第一樹脂片S1が所定の位置に配置されていないと判定し、反射光強度が所定の光強度閾値以上になれば、第一樹脂片S1が所定の位置に配置されたと判定し、反射光強度が所定の光強度閾値未満になれば、第一樹脂片S1が所定の位置から除外されたと判定し、第一樹脂片S1が所定の位置に配置されたと判定したときの反射光強度(吸収スペクトル情報)に基づいて第一樹脂片S1の吸収スペクトルを作成する。
続いて、反射光強度が所定の光強度閾値未満であれば、第二樹脂片S2が所定の位置に配置されていないと判定し、反射光強度が所定の光強度閾値以上になれば、第二樹脂片S2が所定の位置に配置されたと判定し、反射光強度が所定の光強度閾値未満になれば、第二樹脂片S2が所定の位置から除外されたと判定し、第二樹脂片S2が所定の位置に配置されたと判定したときの反射光強度(吸収スペクトル情報)に基づいて第二樹脂片S2の吸収スペクトルを作成する。このようにして、各樹脂片Snの吸収スペクトルを作成する。
The first sample measurement unit determines whether or not the resin piece Sn is at a predetermined position based on the change in light intensity with time in the first reflected light intensity, and determines each resin piece Sn and each absorption spectrum information. Association is performed and control is performed to create an absorption spectrum of each resin piece Sn.
The function of the first sample measurement unit will be specifically described. If the reflected light intensity is less than a predetermined light intensity threshold, it is determined that the first resin piece S1 is not disposed at a predetermined position, and the reflected light intensity is If it becomes more than a predetermined light intensity threshold value, it will determine with the 1st resin piece S1 having been arrange | positioned in a predetermined position, and if the reflected light intensity becomes less than a predetermined light intensity threshold value, the 1st resin piece S1 will be from a predetermined position. An absorption spectrum of the first resin piece S1 is created based on the reflected light intensity (absorption spectrum information) when it is determined that the first resin piece S1 is disposed at a predetermined position.
Subsequently, if the reflected light intensity is less than the predetermined light intensity threshold, it is determined that the second resin piece S2 is not disposed at the predetermined position, and if the reflected light intensity is equal to or greater than the predetermined light intensity threshold, When it is determined that the two resin pieces S2 are arranged at the predetermined position and the reflected light intensity is less than the predetermined light intensity threshold, it is determined that the second resin piece S2 is excluded from the predetermined position, and the second resin piece S2 An absorption spectrum of the second resin piece S2 is created based on the reflected light intensity (absorption spectrum information) when it is determined that is disposed at a predetermined position. In this way, an absorption spectrum of each resin piece Sn is created.

第二試料測定部は、上記の第一試料測定部と同様に、第二反射光強度における時間ごとの光強度変化に基づいて、樹脂片Snが所定の位置にあるか否かを判定し、各樹脂片Snと各吸収スペクトル情報との関連付けを行い、各樹脂片Snの吸収スペクトルを作成する制御を行う。   The second sample measurement unit determines whether or not the resin piece Sn is at a predetermined position based on the light intensity change over time in the second reflected light intensity in the same manner as the first sample measurement unit. Each resin piece Sn is associated with each absorption spectrum information, and control is performed to create an absorption spectrum of each resin piece Sn.

第一樹脂種判別部は、第一試料測定部で作成された樹脂片Snの吸収スペクトルにおいて、例えばCN官能基に由来するピークの有無を判定することにより、樹脂片SnがABS樹脂であるか否かを判定するというように、樹脂片Snの樹脂種を判定する制御を行う。なお、この判定には、クラマース・クローニッヒ変換することで得られる吸収スペクトルを用い、複数の特定の波数におけるピークの有無を判定して樹脂種を判定することもできる。   Whether the resin piece Sn is an ABS resin by determining the presence or absence of a peak derived from the CN functional group in the absorption spectrum of the resin piece Sn created by the first sample measurement unit, for example. Control to determine the resin type of the resin piece Sn is performed so as to determine whether or not. In this determination, the resin type can also be determined by determining the presence or absence of peaks at a plurality of specific wave numbers using an absorption spectrum obtained by the Kramers-Kronig transformation.

第二樹脂種判別部は、第二試料測定部で作成された樹脂片Snの吸収スペクトルにおいて、上記の第一樹脂種判別部と同様に、樹脂片Snの樹脂種を判定する制御を行う。   The second resin type discriminating unit performs control for determining the resin type of the resin piece Sn in the absorption spectrum of the resin piece Sn created by the second sample measuring unit, similarly to the first resin type discriminating unit.

評価部は、第一樹脂種判別部で判別された樹脂の種類と第二樹脂種判別部で判別された樹脂の種類とに基づいて樹脂片Snの組成の均一性を評価する制御を行う。
評価部の機能について具体的に説明すると、第n樹脂片Snにおいて、第一樹脂種判別部で判別された樹脂の種類と第二樹脂種判別部で判別された樹脂の種類とが一致したときには、第n樹脂片Snの組成はその樹脂の種類であると決定する。一方、第一樹脂種判別部で判別された樹脂の種類と第二樹脂種判別部で判別された樹脂の種類とが一致しないときには、第n樹脂片Snの組成は混合物であると決定し、リサイクル不可品とする。
The evaluation unit performs control to evaluate the uniformity of the composition of the resin piece Sn based on the type of resin determined by the first resin type determination unit and the type of resin determined by the second resin type determination unit.
The function of the evaluation unit will be specifically described. In the n-th resin piece Sn, when the resin type determined by the first resin type determination unit matches the resin type determined by the second resin type determination unit. The composition of the nth resin piece Sn is determined to be the type of the resin. On the other hand, when the type of resin determined by the first resin type determination unit and the type of resin determined by the second resin type determination unit do not match, the composition of the nth resin piece Sn is determined to be a mixture, Not recyclable.

以上のように、第一実施形態の樹脂種識別装置1によれば、樹脂片Snの上面と下面の両面を測定しているので、正確に樹脂片Snを選別することができるとともに、樹脂片Snの形状や寸法によらず正確な測定を行うことができる。さらに、樹脂片Snが所定の位置に存在するときと存在しないときでの反射光強度の差異が明示されるので、所定位置への樹脂片Snの配置を検知するレーザセンサ等を設けることなく、制御部50は第一樹脂片S1による反射光強度と第二樹脂片S2による反射光強度とを識別することができる。   As described above, according to the resin type identification device 1 of the first embodiment, since both the upper surface and the lower surface of the resin piece Sn are measured, the resin piece Sn can be accurately sorted, and the resin piece Accurate measurement can be performed regardless of the shape and dimensions of Sn. Furthermore, since the difference in reflected light intensity between when the resin piece Sn is present at the predetermined position and when it does not exist is clearly shown, without providing a laser sensor or the like for detecting the arrangement of the resin piece Sn at the predetermined position, The controller 50 can distinguish between the reflected light intensity from the first resin piece S1 and the reflected light intensity from the second resin piece S2.

<第二実施形態>
図4は、本発明の第二実施形態に係る樹脂種識別装置の構成を示す側面図である。なお、先に述べた樹脂種識別装置1、100と同様のものについては、同じ符号を付すことにより説明を省略する。
樹脂種識別装置101は、赤外光を出射する第一赤外光源部と第一赤外光検出部とを有する第一赤外分光光度計104と、赤外光を出射する第二赤外光源部と第二赤外光検出部とを有する第二赤外分光光度計105と、制御部50(図示略)と、樹脂片Snが配置される試料配置部30と、第一反射測定用プローブ102と、第二反射測定用プローブ103とを備える。
<Second embodiment>
FIG. 4 is a side view showing the configuration of the resin type identification device according to the second embodiment of the present invention. In addition, about the thing similar to the resin kind identification apparatus 1 and 100 mentioned previously, description is abbreviate | omitted by attaching | subjecting the same code | symbol.
The resin type identification device 101 includes a first infrared spectrophotometer 104 having a first infrared light source unit that emits infrared light and a first infrared light detection unit, and a second infrared that emits infrared light. A second infrared spectrophotometer 105 having a light source unit and a second infrared light detection unit, a control unit 50 (not shown), a sample arrangement unit 30 on which a resin piece Sn is arranged, and a first reflection measurement A probe 102 and a second reflection measurement probe 103 are provided.

第一反射測定用プローブ102は、円柱形状の筐体102aと、筐体102aと第一赤外分光光度計104とを連結する光ファイバ102bとを備え、筐体102aの内部にはレンズ等が配置されている。そして、樹脂片Snが所定の位置に配置されると、第一反射測定用プローブ102から出射された光が、上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過して樹脂片Sn上面の第一測定点C1に照射され、樹脂片Sn上面の第一測定点C1で反射した光が、再度上側搬送ベルト31と上側搬送ベルト32との間の空隙P1を通過して、第一反射測定用プローブ102へ入射するようになっている。   The first reflection measurement probe 102 includes a cylindrical casing 102a and an optical fiber 102b that connects the casing 102a and the first infrared spectrophotometer 104, and a lens or the like is provided inside the casing 102a. Has been placed. When the resin piece Sn is arranged at a predetermined position, the light emitted from the first reflection measurement probe 102 passes through the gap P1 between the upper conveyance belt 31 and the upper conveyance belt 32, and the resin piece. The light irradiated to the first measurement point C1 on the upper surface of Sn and reflected at the first measurement point C1 on the upper surface of the resin piece Sn again passes through the gap P1 between the upper conveyance belt 31 and the upper conveyance belt 32, and The light is incident on the one-reflection measuring probe 102.

第二反射測定用プローブ103は、円柱形状の筐体103aと、筐体103aと第二赤外分光光度計105とを連結する光ファイバ103bとを備え、筐体103aの内部にはレンズ等が配置されている。そして、樹脂片Snが所定の位置に配置されると、第二反射測定用プローブ103から出射された光が、下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過して樹脂片Sn下面の第二測定点C2に照射され、樹脂片Sn下面の第二測定点C2で反射した光が、再度下側搬送ベルト33と下側搬送ベルト34との間の空隙P2を通過して、第二反射測定用プローブ103へ入射するようになっている。   The second reflection measurement probe 103 includes a cylindrical casing 103a and an optical fiber 103b that connects the casing 103a and the second infrared spectrophotometer 105, and a lens or the like is provided inside the casing 103a. Has been placed. When the resin piece Sn is disposed at a predetermined position, the light emitted from the second reflection measurement probe 103 passes through the gap P2 between the lower conveyance belt 33 and the lower conveyance belt 34. The light irradiated to the second measurement point C2 on the lower surface of the resin piece Sn and reflected at the second measurement point C2 on the lower surface of the resin piece Sn passes again through the gap P2 between the lower conveyance belt 33 and the lower conveyance belt 34. Then, the light enters the second reflection measurement probe 103.

以上のように、第二実施形態の樹脂種識別装置101によれば、樹脂片Snの上面と下面の両面を測定しているので、正確に樹脂片Snを選別することができるとともに、樹脂片Snの形状や寸法によらず正確な測定を行うことができる。   As described above, according to the resin type identification device 101 of the second embodiment, since both the upper surface and the lower surface of the resin piece Sn are measured, the resin piece Sn can be accurately sorted, and the resin piece Accurate measurement can be performed regardless of the shape and dimensions of Sn.

<他の実施形態>
(1)上述した樹脂種識別装置1において、試料配置部30は、上下2本ずつの搬送ベルト31〜34を備える構成としたが、これに代えて、赤外線を透過する材料で形成された上下1本ずつの搬送ベルトを備える構成としてもよい。すなわち、本発明における試料配置部は、試料の上面と下面とに赤外光を照射し、当該試料の上下両面から反射された赤外光の光強度情報を検出することができるものであればよい。
<Other embodiments>
(1) In the above-described resin type identification device 1, the sample placement unit 30 is configured to include the upper and lower transport belts 31 to 34. Instead, the upper and lower sides formed of a material that transmits infrared rays. It is good also as a structure provided with the conveyance belt of 1 each. In other words, the sample placement portion in the present invention can irradiate infrared light on the upper and lower surfaces of the sample and detect the light intensity information of the infrared light reflected from the upper and lower surfaces of the sample. Good.

(2)上述した樹脂種識別装置1において、試料配置部30はゴムローラ部60を備える構成としたが、これに代えて、樹脂片Snを変形可能な温度に加熱する加熱装置を備えた構成としてもよい。 (2) In the above-described resin type identification device 1, the sample placement unit 30 is configured to include the rubber roller unit 60. Instead, the sample placement unit 30 includes a heating device that heats the resin piece Sn to a deformable temperature. Also good.

本発明は、樹脂種識別装置等に好適に利用できる。   The present invention can be suitably used for a resin type identification device or the like.

1 樹脂種識別装置
10 第一赤外光源部
20 第一赤外光検出部
50 制御部
110 第二赤外光源部
120 第二赤外光検出部
DESCRIPTION OF SYMBOLS 1 Resin type identification apparatus 10 1st infrared light source part 20 1st infrared light detection part 50 Control part 110 2nd infrared light source part 120 2nd infrared light detection part

Claims (5)

樹脂からなる試料上面に赤外光を照射する第一赤外光源部と、前記試料上面で反射した赤外光の第一光強度情報を検出する第一赤外光検出部とを備える第一赤外分光光度計と、
前記試料下面に赤外光を照射する第二赤外光源部と、前記試料下面で反射した赤外光の第二光強度情報を検出する第二赤外光検出部とを備える第二赤外分光光度計とを備え、
前記第一赤外分光光度計の第一赤外光検出部と前記第二赤外分光光度計の第二赤外光検出部とは前記試料を挟んで配置され、
前記第一光強度情報及び前記第二光強度情報に基づいて、前記試料の組成の均一性を評価する制御部とを備えることを特徴とする樹脂種識別装置。
A first infrared light source unit that irradiates infrared light onto the upper surface of a sample made of resin, and a first infrared light detection unit that detects first light intensity information of infrared light reflected from the upper surface of the sample. An infrared spectrophotometer,
A second infrared light source comprising a second infrared light source unit that irradiates the sample lower surface with infrared light, and a second infrared light detection unit that detects second light intensity information of the infrared light reflected by the sample lower surface. With a spectrophotometer ,
The first infrared light detection unit of the first infrared spectrophotometer and the second infrared light detection unit of the second infrared spectrophotometer are arranged across the sample,
A resin type identification device comprising: a control unit that evaluates the uniformity of the composition of the sample based on the first light intensity information and the second light intensity information.
前記第一赤外光源部は、集光鏡を有し、当該集光鏡から前記試料上面の第一測定点に赤外光を照射し、
前記第一赤外光検出部は、集光鏡を有し、前記試料上面の第一測定点で反射した赤外光を検出器へ集光することで第一反射光強度を得るとともに、
前記第二赤外光源部は、集光鏡を有し、当該集光鏡から前記試料下面の第二測定点に赤外光を照射し、
前記第二赤外光検出部は、集光鏡を有し、前記試料下面の第二測定点で反射した赤外光を検出器へ集光することで第二反射光強度を得ることを特徴とする請求項1に記載の樹脂種識別装置。
The first infrared light source unit has a condensing mirror, irradiates infrared light from the condensing mirror to the first measurement point on the upper surface of the sample,
The first infrared light detection unit has a condensing mirror and obtains the first reflected light intensity by condensing the infrared light reflected at the first measurement point on the upper surface of the sample to the detector,
The second infrared light source unit has a condensing mirror, irradiates infrared light from the condensing mirror to the second measurement point on the lower surface of the sample,
The second infrared light detection unit has a condensing mirror, and collects infrared light reflected at a second measurement point on the lower surface of the sample to a detector to obtain a second reflected light intensity. The resin type identification device according to claim 1.
所定の方向に移動可能な試料載置板を備え、
前記試料載置板が移動することで、赤外光が照射される所定の位置に前記試料が配置されることを特徴とする請求項1又は請求項2に記載の樹脂種識別装置。
Provided with a sample mounting plate that can move in a predetermined direction,
3. The resin type identification device according to claim 1, wherein the sample is placed at a predetermined position irradiated with infrared light by moving the sample mounting plate. 4.
前記試料が所定の位置に配置される前に、前記試料の上面及び/又は下面を整形する整形部を備えることを特徴とする請求項3に記載の樹脂種識別装置。   The resin type identification device according to claim 3, further comprising a shaping unit that shapes an upper surface and / or a lower surface of the sample before the sample is arranged at a predetermined position. 前記試料の上面及び/又は下面が整形された後、前記試料は、上下方向に所定間隔となる壁面が設けられた通路を通過し、
前記通路中に所定の位置が設定されていることを特徴とする請求項4に記載の樹脂種識別装置。
After the upper surface and / or the lower surface of the sample is shaped, the sample passes through a passage provided with a wall surface having a predetermined interval in the vertical direction,
The resin type identification device according to claim 4, wherein a predetermined position is set in the passage.
JP2015045450A 2015-03-09 2015-03-09 Resin type identification device Expired - Fee Related JP6435930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045450A JP6435930B2 (en) 2015-03-09 2015-03-09 Resin type identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045450A JP6435930B2 (en) 2015-03-09 2015-03-09 Resin type identification device

Publications (2)

Publication Number Publication Date
JP2016166740A JP2016166740A (en) 2016-09-15
JP6435930B2 true JP6435930B2 (en) 2018-12-12

Family

ID=56898256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045450A Expired - Fee Related JP6435930B2 (en) 2015-03-09 2015-03-09 Resin type identification device

Country Status (1)

Country Link
JP (1) JP6435930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456409B2 (en) 2021-03-26 2024-03-27 株式会社島津製作所 Inspection equipment, inspection system, and inspection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155702A (en) * 1993-12-01 1995-06-20 Satake Eng Co Ltd Grain color sorting device
JPH10323629A (en) * 1997-05-28 1998-12-08 Ishikawajima Harima Heavy Ind Co Ltd Plastic separating device
US6610981B2 (en) * 2000-04-27 2003-08-26 National Recovery Technologies, Inc. Method and apparatus for near-infrared sorting of recycled plastic waste
JP4065179B2 (en) * 2001-10-29 2008-03-19 松下電器産業株式会社 Plastic identification device and plastic identification method
JP5056056B2 (en) * 2007-02-20 2012-10-24 マツダ株式会社 Recycling method for thermoplastic resin waste products
JP5901453B2 (en) * 2011-08-26 2016-04-13 三菱電機株式会社 Resin identification apparatus and method
JP2014106116A (en) * 2012-11-28 2014-06-09 Shimadzu Corp Plastic determination device

Also Published As

Publication number Publication date
JP2016166740A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5233963B2 (en) Resin identification device
EP2788741B1 (en) Method and system for identifying and sorting materials using terahertz waves
EP0361430B1 (en) Sensing of material of construction and color of containers
EP1281064B1 (en) Process for identifying objects using an optical spectrometer and a transport system
US9903760B2 (en) Resin identification device
WO1998019800A1 (en) Application of raman spectroscopy to identification and sorting of post-consumer plastics for recycling
CN103940772A (en) Resin type identification method and resin type identification apparatus
JP2018100903A (en) Resin determination method and apparatus
JP6435930B2 (en) Resin type identification device
CN109724935A (en) Resin determination method and resin decision maker
JPH08300354A (en) Plastic classifying apparatus
JP2011226821A (en) Identification device and identification method
MXPA98000206A (en) Identification of recirculable carpet materials using an infrared man spectrometer
JP5535043B2 (en) Resin identification device
WO2012147717A1 (en) Resin identification device
JP5229201B2 (en) Plastic identification apparatus and method
JP6187395B2 (en) Resin identification device
JP5143175B2 (en) Identification method and identification device based on Raman scattering, and Raman scattering spectrum measurement method and measurement device
JP4291951B2 (en) Method and apparatus for identifying the type of material of an object and use thereof
JP2017106783A (en) Sample identification method, and sample identification device
JP6464489B2 (en) Method and apparatus for determining specific brominated flame retardant
JP2020076636A (en) Method and device for determining resin
JP2019082459A (en) Resin determination method and device
JP2014070903A (en) Method and device for sorting recycled resin, and method and device for measuring purity of resin
JP2016045145A (en) Infrared spectrometry device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6435930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees