JP6435533B2 - 金属材の摩擦攪拌接合方法 - Google Patents

金属材の摩擦攪拌接合方法 Download PDF

Info

Publication number
JP6435533B2
JP6435533B2 JP2014163168A JP2014163168A JP6435533B2 JP 6435533 B2 JP6435533 B2 JP 6435533B2 JP 2014163168 A JP2014163168 A JP 2014163168A JP 2014163168 A JP2014163168 A JP 2014163168A JP 6435533 B2 JP6435533 B2 JP 6435533B2
Authority
JP
Japan
Prior art keywords
joint
friction stir
stir welding
comparative
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014163168A
Other languages
English (en)
Other versions
JP2015057292A (ja
Inventor
藤井 英俊
英俊 藤井
林太郎 上路
林太郎 上路
好昭 森貞
好昭 森貞
橋本 健司
健司 橋本
直樹 河田
直樹 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Japan Transport Engineering Co
Original Assignee
Osaka University NUC
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Japan Transport Engineering Co filed Critical Osaka University NUC
Priority to JP2014163168A priority Critical patent/JP6435533B2/ja
Publication of JP2015057292A publication Critical patent/JP2015057292A/ja
Application granted granted Critical
Publication of JP6435533B2 publication Critical patent/JP6435533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は金属材の摩擦攪拌接合方法に関し、より具体的には、面心立方格子構造を有し再結晶温度が300℃以下の金属材であっても、母材と同等以上の継手強度を得ることができる金属材の摩擦攪拌接合方法に関する。
摩擦熱を利用した金属材の接合方法として、摩擦攪拌接合(FSW:Friction Stir Welding)が広く知られている。摩擦攪拌接合では、接合しようとする金属材を接合部において対向させ、回転ツールの先端に設けられたプローブを接合部に挿入し、回転ツールを移動させることで金属材の接合が達成される。
一般的に、適切な摩擦攪拌接合条件で形成された継手は攪拌部が微細等軸粒組織となり、従来の溶融溶接で形成された継手と比較して良好な接合強度を示すことが知られている。その他、摩擦攪拌接合は継手の歪が小さい等の多くの利点を有しており、種々の金属材に関して急速に実用化が進んでいる。しなしながら、金属材によっては摩擦攪拌接合継手の接合強度が母材よりも低下し、要求される機械的特性を満たすことができない場合が存在する。
例えば、非特許文献1(Effect of friction stir welding parameters on strain hardening behavior of pure copper joints, Mater. Des., 2012, 35, 330−334)では、純銅に対して摩擦攪拌接合条件を最適化し、接合部に欠陥のない継手が得られることが示されている。
しかしながら、上記非特許文献1に記載されている継手の引張強度及び降伏強度は母材よりも低い値となっている。この理由の一つとして、面心立方格子構造を有し再結晶温度が低い銅は、摩擦攪拌接合中に導入される転位が減少しやすく、母材と比較して攪拌部中の転位密度が低くなることが挙げられる。つまり、攪拌部の組織が微細になる場合であっても、母材と比較して転位密度が低くなる場合は十分な接合強度が得られないことになる。
また、例えば、特許文献1(特許第4610907号公報)では、複数の押出し形材を摩擦攪拌接合して構成される鉄道車両構体において、摩擦攪拌接合される前記各押出し形材は平板部と、前記平板部の接合端部に、該平板部の表面より摩擦攪拌接合用工具が挿入される側へ突出した突部を備え、該突部の上面と平板部の上面とは、前記突部の側面と、該側面に接続する小さな半径を有する円弧と該円弧に接続する大きな半径を有する円弧とからなる連結部と、によって接続されており、該連結部は、摩擦攪拌接合後に残される前記突部を後工程で切削除去することによって、前記押出し形材の平板部の上面に前記大きな半径を有する円弧が残るように形成され、前記各押出し形材を鉄道車両構体の外板として用い、各押出し形材の連結部側を車内側に配置したこと、を特徴とする鉄道車両構体が開示されている。
上記特許文献1の鉄道車両構体においては、摩擦攪拌接合部の強度低下を補うために、平板部よりも接合部の板厚を厚くしており、押出し形材の平板部を極力薄く構成することで鉄道車両構体として必要な強度を確保しつつ、軽量化を図ることができるとされている。これは、面心立方格子構造を有し再結晶温度が低いアルミニウム合金に関して、摩擦攪拌接合部の強度低下が避けられない場合が存在することへの対策である。
特許第4610907号公報
Effect of friction stir welding parameters on strain hardening behavior of pure copper joints, Mater. Des., 2012, 35, 330−334
上記非特許文献1に開示されている銅の摩擦攪拌接合継手のように、被接合材が面心立方格子構造を有し再結晶温度が低く、転位が減少しやすい金属材の場合は継手強度が母材強度よりも低くなってしまう。また、上記特許文献1に開示されている鉄道車両構体を用いることで、摩擦攪拌接合部の強度低下を許容することができるが、摩擦攪拌接合を施す部分の板厚を増加させる必要があり、板材が高コストとなるだけでなく、構体の設計自由度が著しく低下してしまう。
以上のような従来技術における問題点に鑑み、本発明の目的は、面心立方格子構造を有し再結晶温度が300℃以下の金属材であっても、母材と同等以上の継手強度を得ることができる金属材の摩擦攪拌接合方法を提供することにある。
本発明者は上記目的を達成すべく、摩擦攪拌接合条件及び摩擦攪拌接合中の接合部の温度履歴等について鋭意研究を重ねた結果、面心立方格子構造を有し再結晶温度が300℃以下の金属材に対しては、強制冷却を伴った摩擦攪拌接合を施すことが極めて有効であることを見出し、本発明に到達した。
即ち、本発明は、
少なくとも一方の被接合材が面心立方格子構造を有し再結晶温度が300℃以下の金属材である被接合材同士を接合部において当接させ、
前記接合部に回転する棒状のツールを挿入し、前記接合部に冷却した冷媒を供給するとともに、前記ツールを移動させることにより、前記被接合材同士を接合する摩擦攪拌接合工程を有すること、
を特徴とする金属材の摩擦攪拌接合方法を提供する。
本発明の金属材料の摩擦攪拌接合方法においては、前記摩擦攪拌接合工程を前記接合部に対して2回以上施すことが好ましく、前記冷媒が液体CO2であることが好ましい。
更に、本発明の金属材料の摩擦攪拌接合方法においては、前記面心立方格子構造を有し再結晶温度が300℃以下の金属材が銅、銅合金、アルミニウム、アルミニウム合金よりなる群から選ばれることが好ましい。
本発明によれば、面心立方格子構造を有し再結晶温度が300℃以下の金属材であっても母材と同等以上の継手強度を得ることができる金属材の摩擦攪拌接合方法を提供し、より具体的には、転位が減少しやすい金属材に関し、十分に転位を含んだ微細等軸粒からなる攪拌部を形成することができる金属材の摩擦攪拌接合方法を提供する。
本発明の金属材の摩擦攪拌接合方法を示す概略図である。 摩擦攪拌接合時の被接合材の温度プロファイルである。 継手1、比較継手3及び比較継手5の接合部の断面マクロ写真である。 継手1、比較継手3及び比較継手5の接合部及び母材の微細組織写真である。 継手1、比較継手3及び比較継手5の攪拌部中央におけるEBSDマッピングである。 継手1、比較継手3及び比較継手5の攪拌部中央におけるミスオリエンテーション角度の分布を示すグラフである。 継手1、比較継手3及び比較継手5の攪拌部中央のTEM写真である。 継手1、比較継手3及び比較継手5の攪拌部中央の攪拌部中央のビッカース硬度水平プロファイルである。 引張試験後の試験片の外観写真である。 接合部を引張試験した際の応力ひずみ線図である。 継手2〜4の攪拌部中央のビッカース硬度水平プロファイルである。 比較継手1〜6の攪拌部中央におけるEBSDマッピングである。 比較継手1〜3の攪拌部中央におけるビッカース硬度水平プロファイルである。 比較継手4〜6の攪拌部中央におけるビッカース硬度水平プロファイルである。 比較継手1〜6の各種引張特性を示すグラフである。 継手5〜7の表面外観写真及び接合部の断面マクロ写真である。 継手5〜7の接合部の微細組織写真である。 継手5〜7の攪拌部中央におけるビッカース硬度水平プロファイルである。 継手5〜7の各種引張特性を示すグラフである。 継手8及び比較継手7の外観写真である。 継手8及び比較継手7の断面マクロ写真である。 継手8及び比較継手7の攪拌部中央におけるEBSDマッピングである。 継手8及び比較継手7の攪拌部中央におけるビッカース硬度水平プロファイルである。 継手8及び比較継手7の接合部を引張試験した際の応力ひずみ線図である。 継手8〜10の攪拌部中央におけるEBSDマッピングである。 継手11の断面マクロ写真及びA7N01側攪拌部の組織写真である。 比較継手8の断面マクロ写真及びA7N01側攪拌部の組織写真である。 継手12の断面マクロ写真及びM1側攪拌部の組織写真である。 比較継手9の断面マクロ写真及びM1側攪拌部の組織写真である。 比較継手10及び比較継手11の外観写真である。 比較継手10及び比較継手11の断面マクロ写真である。 比較継手10及び比較継手11の攪拌部中央におけるEBSDマッピングである。 継手13及び比較継手12の攪拌部中央におけるビッカース硬度水平プロファイルである。
以下、図面を参照しながら本発明の金属材の摩擦攪拌接合方法の代表的な実施形態について、突合せ接合の場合を中心に詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
(A)摩擦攪拌接合方法
図1は、本発明の金属材の摩擦攪拌接合方法を示す概略図である。本発明の金属材の摩擦攪拌接合方法は、少なくとも一方の被接合材2が面心立方格子構造を有し再結晶温度が300℃以下の金属材である被接合材2同士を接合部4において当接させ、接合部4に回転する棒状のツール6を挿入し、接合部4に冷却した冷媒を供給しながら、ツール6を接合部4に沿って移動させることで被接合材2同士を接合する摩擦攪拌接合工程を有する。
冷却した冷媒の供給方法は、本発明の効果を損なわない範囲で従来公知の種々の供給方法を用いることができるが、冷媒供給用ノズル8をツール6の近傍に配置し、冷媒供給用ノズル8から冷媒をツール6の近傍に照射することが好ましい。また、冷媒供給用ノズル8はツール6に対してどの方向から配置してもよいが、ツール6の後方に配置することが好ましい。更に、冷媒供給用ノズル8はツール6に合わせて移動し、冷媒供給用ノズル8とツール6との距離は一定とすることが好ましい。この他、接合部4を含む領域をチャンバー等で覆い、当該領域を冷媒雰囲気とすることで接合部4を強制冷却することもできる。なお、接合部4への冷却した冷媒の供給は連続的であることが好ましいが、間欠的に供給してもよい。
冷媒供給用ノズル8から供給する冷媒としては、液体CO2を用いることが好ましい。液体CO2はボンベの中(約5気圧)では液体であるが、大気圧下に供給されると微小なドライアイス粒子(固体粒子)となる。当該ドライアイス粒子が接合部4に固体−固体接触することで、効率的に接合部4を冷却することができる。液体CO2の他にも、例えば、液体N2等を用いることができるが、液体N2を冷媒として供給した場合、接合部4やツール6の表面においてガスの層を生成し、冷却効率が低下するため、冷媒としては液体CO2を用いることが好ましい。ここで、CO2の比熱が窒素よりも大きいことも、より効率的な冷却を達成することができる理由の一つである。
本実施形態では、冷媒供給用ノズル8は、ツール6の移動方向の後方から冷媒を供給する配置となっているが、冷媒の供給方向はこれに限定されない。被接合材2のツール6を挿入する側とは反対側の面から冷媒を供給しても良いが、被接合材2のツール6を挿入する側から冷媒を供給することが好ましい。さらに、冷媒を冷媒供給用ノズル8から供給する手法以外にも、ツール6の内部からプローブ及びショルダのいずれかの先端へ通じる放出孔から冷媒を放出させる手法によっても、冷媒を接合部4及びツール6に供給することができる。あるいは、ツール6の周囲を円筒状の部材で囲繞し、当該円筒状の部材内に冷媒を流入させることによっても、冷媒を接合部4及びツール6に供給することができる。
冷媒供給用ノズル8に電磁弁を接続し、冷媒の供給を制御することができる。当該電磁弁は、制御電源より供給された制御信号により、冷媒供給用ノズル8から放出される冷媒の流路を適宜開閉するための物である。冷媒の供給量は、例えば、1.0〜2.0kg/minであり、供給時の圧力が1.5〜3.0MPa、温度が−70℃〜−20℃で供給される。
ツール6には、本発明の効果を損なわない範囲で従来公知の種々の摩擦攪拌接合用ツールを用いることができる。一般的に、ツール6は、先端にショルダと被接合材2同士の接合部4に挿入されるプローブとを備えており、プローブはショルダより小径の略円柱形をなしている。ツール6は、接合部4にプローブを挿入し、回転させつつ接合部4に沿って移動させることによって、接合部4の金属を攪拌して被接合材2同士を接合するための物である。
本実施形態において、ツール6の材質は、例えば、JISに規格されているSKD61鋼等の工具鋼や、タングステンカーバイト(WC)、コバルト(Co)からなる超硬合金、コバルト(Co)基合金、イリジウム(Ir)等の高融点金属及びその合金、またはSi34等のセラミックスからなるものとすることができる。
本発明における「摩擦攪拌接合」とは、ツール6を回転させつつ接合方向に向けて移動させる摩擦攪拌接合、ツール6を回転させつつ接合部位で移動させないスポット摩擦攪拌接合、被接合材2同士を接合部位で突合せる摩擦攪拌接合、及び被接合材2同士を重ね合わせて一方の被接合材2の側から重ね合せた部位までツール6を挿入する摩擦攪拌接合の4つのいずれかの態様、並びにこれらを任意に組み合わせた態様が含まれる。
本発明の金属材の摩擦攪拌接合においては、強制冷却を伴った摩擦攪拌接合を接合部4に対して1パス施すのみでも、母材と同等以上の転位を含み、かつ、母材と比較して微細な組織を攪拌部に形成させることができる。しかしながら、母材と同等以上の接合強度を確実に実現するためには、同一の接合部4に対し、重畳して2パス以上の強制冷却を伴った摩擦攪拌接合を施すことが好ましい。同一の接合部4に対し、重畳して2パス以上の強制冷却を伴った摩擦攪拌接合を施すことで、攪拌部の結晶粒を、十分な転位を含んだ状態でより微細にすることができる。
なお、強制冷却を伴わない一般的な摩擦攪拌接合を同一の接合部4に対して重畳して2パス以上施した場合、基本的には攪拌部の結晶粒径が1パス目と比較して小さくなることは稀である。これは、1パス目による攪拌部の結晶粒微細化に起因して接合部4の硬度が上昇し、2パス目の摩擦攪拌接合ではより大きな摩擦熱が発生するためである。
(B)被接合材
本発明の金属材の摩擦攪拌接合方法は、少なくとも一方の被接合材が面心立方格子構造を有し再結晶温度が300℃以下の金属材である被接合材同士を接合するものである。
一般的に、面心立方格子構造を有する金属材においては、摩擦攪拌接合によって形成される攪拌部の再結晶粒の転位密度が著しく低下してしまう。特に、再結晶温度が300℃以下の金属材においては顕著であり、ツールの回転速度、移動速度、及び押込荷重等の摩擦攪拌接合条件を種々最適化しても、母材と同等以上の接合強度を有する継手を得ることは極めて困難である。
これに対して発明者は、面心立方格子構造を有し、かつ、再結晶温度が300℃以下の金属材に関しても、強制冷却を伴った摩擦攪拌接合を施すこと、特に、強制冷却を伴った摩擦攪拌接合を同一の接合部に対して2回以上施すことで、母材と同等以上の接合強度が確実に得られることを見出し、本発明を完成させたものである。
面心立方格子構造を有する金属材としては、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)等を例示でき、それらの工業用純度における再結晶温度は金(Au):〜200℃、銀(Ag):〜200℃、銅(Cu):200〜250℃、ニッケル(Ni):530〜660℃、アルミニウム(Al):150〜200℃である(図解機械材料 第3版, 東京電機大学出版局)。なお、大まかには再結晶温度は融点と相関することが知られており、融点が低い金属材の再結晶温度は低くなる傾向となる。
よって、本発明の金属材の摩擦攪拌接合の対象となる被接合材としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、及びその合金等が好ましく、接合を用いて構造材を製造するという観点からは、銅、銅合金、アルミニウム、及びアルミニウム合金であることがより好ましい。
本発明の金属材の摩擦攪拌接合方法においては、被接合材の少なくとも一方が面心立方格子構造を有し、再結晶温度が300℃以下の金属材であれば、従来の摩擦攪拌接合と比較して高い接合強度を有する継手を得ることができる。しかしながら、被接合材の両方が面心立方格子構造を有し、再結晶温度が300℃以下の金属材である場合に、従来の摩擦攪拌接合と比較してより顕著に高い接合強度を有する継手を得ることができる。
なお、微細析出物の分散を強化機構として用いた被接合材を使用する際、摩擦攪拌接合中に当該微細析出物が母材に固溶して硬度低下が生じる場合がある。この場合、適当な時効処理等を施すことで、微細析出物の分散による強化を回復することができる。ここで、強制冷却を伴った摩擦攪拌接合によって結晶粒径が微細化されているため、微細析出物分散による強化機構を回復することで、従来の摩擦攪拌接合と比較してより顕著に高い接合強度を有する継手を得ることができる。なお、自然時効が生じる被接合材(例えば、A7N01アルミニウム合金等)を使用する場合には、摩擦攪拌接合後に時効処理を施す必要はない。
以上、本発明の金属材の摩擦攪拌接合方法の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。また、本発明の摩擦攪拌接合方法は金属材の接合のみならず、金属材の補修又は改質方法としても用いることができる。
≪実施例1≫
市販の工業用純銅(純度99.97%,1/2H)の板材(140mmL×70mmW×2mmT)を2枚突合せ、図1に示すように接合部及び回転ツールに液体CO2を供給しつつ摩擦攪拌接合を行った。回転ツールはショルダ径12mm、プローブ径4mm、プローブ長さ1.9mmを有する超硬合金製のものを用い、回転速度800rpm、移動速度150mm/min、回転ツールへの荷重1500kgfの条件で摩擦攪拌接合を行い、継手1を得た。なお、ツールの前進角は3°とした。
≪実施例2≫
冷媒を液体N2とし、ツールの回転速度を400rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、継手2を得た。
≪実施例3≫
冷媒を液体N2とし、ツールの回転速度を350rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、継手3を得た。
≪実施例4≫
冷媒を液体N2とし、ツールの回転速度を300rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、継手4を得た。
≪実施例5≫
市販の工業用七三黄銅(1/4H,冷間圧延)の板材(140mmL×70mmW×2mmT)を2枚突合せ、図1に示すように接合部及び回転ツールに液体CO2を供給しつつ摩擦攪拌接合を行った。なお、板材の化学組成は、Cu:69.5wt%、Pb:0.004wt%、Fe:0.001wt%、Zn:残部である。回転ツールはショルダ径12mm、プローブ径4mm、プローブ長さ1.9mmを有する超硬合金製のものを用い、回転速度800rpm、移動速度200mm/min、回転ツールへの荷重800kgfの条件で摩擦攪拌接合を行い、継手5を得た。なお、ツールの前進角は3°とした。
≪実施例6≫
実施例5と同様の摩擦攪拌接合を同一の接合部に重畳して2回施し、継手6を得た。
≪実施例7≫
実施例5と同様の摩擦攪拌接合を同一の接合部に重畳して3回施し、継手7を得た。
≪実施例8≫
市販の工業用純アルミニウム(A1050P−H24)の板材(140mmL×70mmW×2mmT)を2枚突合せ、実施例1と同様にして摩擦攪拌接合を行った。回転ツールはショルダ径12mm、プローブ径4mm、プローブ長さ1.9mmを有する工具鋼製のものを用い、回転速度600rpm、移動速度200mm/min、回転ツールへの荷重300kgfの条件で摩擦攪拌接合を行い、継手8を得た。なお、ツールの前進角は3°とした。
≪実施例9≫
実施例8と同様の摩擦攪拌接合を同一の接合部に重畳して2回施し、継手9を得た。
≪実施例10≫
実施例8と同様の摩擦攪拌接合を同一の接合部に重畳して3回施し、継手10を得た。
≪実施例11≫
市販の工業用アルミニウム合金(A6N01)の板材(330mmL×100mmW×3mmT)と市販の工業用アルミニウム合金(A7N01)の板材(330mmL×100mmW×3mmT)とを2枚突合せ、実施例1と同様にして摩擦攪拌接合を行った。ここで、A7N01合金板を回転ツールの進行方向と回転ツールの回転方向が同一となる前進側(Advancing Side:AS)に、A6N01合金板を回転ツールの進行方向と回転ツールの回転方向が逆向きとなる後退側(Retreating Side:RS)に配置した。回転ツールはショルダ径15mm、プローブ径5mm、プローブ長さ2.9mmを有する工具鋼製のものを用い、回転速度1200rpm、移動速度600mm/min、ツール前進角3°、ツール位置制御の条件で摩擦攪拌接合を行った。同一の接合部に重畳して3回の摩擦攪拌接合を施し、継手11を得た。
≪実施例12≫
市販の工業用アルミニウム合金(A6N01)の板材(330mmL×100mmW×3mmT)と市販の工業用アルミニウム合金(ASTM M1)の板材(330mmL×100mmW×3mmT)とを2枚突合せ、実施例1と同様にして摩擦攪拌接合を行った。ここで、A6N01合金板を回転ツールの進行方向と回転ツールの回転方向が同一となる前進側(Advancing Side:AS)に、M1合金板を回転ツールの進行方向と回転ツールの回転方向が逆向きとなる後退側(Retreating Side:RS)に配置した。回転ツールはショルダ径15mm、プローブ径5mm、プローブ長さ2.9mmを有する工具鋼製のものを用い、回転速度1750rpm、移動速度1200mm/min、ツール前進角3°、ツール位置制御の条件で摩擦攪拌接合を行い、継手12を得た。
≪実施例13≫
市販の工業用アルミニウム合金(A6N01)の板材(330mmL×100mmW×3mmT)を2枚突合せ、実施例1と同様にして摩擦攪拌接合を行った。回転ツールはショルダ径15mm、プローブ径5mm、プローブ長さ2.9mmを有する工具鋼製のものを用い、回転速度800rpm、移動速度1000mm/min、ツール前進角3°、ツール位置制御の条件で摩擦攪拌接合を行い、継手13を得た。
≪比較例1≫
冷媒による冷却を伴わず、ツールの回転速度を300rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手1を得た。
≪比較例2≫
冷媒による冷却を伴わず、ツールの回転速度を350rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手2を得た。
≪比較例3≫
冷媒による冷却を伴わず、ツールの回転速度を400rpm、移動速度を400mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手3を得た。
≪比較例4≫
冷媒による冷却を伴わず、ツールの回転速度を500rpm、移動速度を200mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手4を得た。
≪比較例5≫
冷媒による冷却を伴わず、ツールの回転速度を550rpm、移動速度を200mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手5を得た。
≪比較例6≫
冷媒による冷却を伴わず、ツールの回転速度を600rpm、移動速度を200mm/minとした以外は実施例1と同様にして摩擦攪拌接合を行い、比較継手6を得た。
≪比較例7≫
冷媒による冷却を伴わない以外は実施例8と同様にして摩擦攪拌接合を行い、比較継手7を得た。
≪比較例8≫
冷媒による冷却を伴わない以外は実施例11と同様にして摩擦攪拌接合を行い、比較継手8を得た。
≪比較例9≫
冷媒による冷却を伴わない以外は実施例12と同様にして摩擦攪拌接合を行い、比較継手9を得た。
≪比較例10≫
市販のマグネシウム合金(AZ31)の板材(150mmL×75mmW×4mmT)を2枚突合せ、実施例1と同様にして摩擦攪拌接合を行った。回転ツールはショルダ径15mm、プローブ径5mm、プローブ長さ3.8mmを有する工具鋼製のものを用い、回転速度1400rpm、移動速度300mm/min、回転ツールへの荷重800kgfの条件で摩擦攪拌接合を行い、比較継手10を得た。なお、ツールの前進角は3°とした。
≪比較11≫
冷媒による冷却を伴わない以外は比較例8と同様にして摩擦攪拌接合を行い、比較継手11を得た。
≪比較例12≫
冷媒による冷却を伴わず、ツールの回転速度を300rpm、移動速度を50mm/minとした以外は実施例13と同様にして摩擦攪拌接合を行い、比較継手12を得た。
[評価]
実施例1、比較例3及び比較例5における摩擦攪拌接合時の被接合材の温度プロファイルを図2に示す。熱電対の分岐点が接合部裏面となるように設置し、回転ツールが通り過ぎていく際の被接合材の温度変化を測定及び記録した。
比較例3及び比較例5と比較して、実施例1の場合は被接合材の冷却速度が速く、高温に保持される時間が短くなっていることが分かる。比較例5、比較例3、及び実施例1の冷却速度はそれぞれ15℃/s、14℃/s、及び38℃/sであった。なお、液体CO2は被接合材の表面に供給されているため、表面では液体CO2供給の有無による冷却速度の差がより大きくなるものと考えられる。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の接合部の断面マクロ写真を図3に示す。いずれの断面においても欠陥は観察されず、良好な継手が得られていることが分かる。また、継手1の攪拌部(点線の内側)は比較継手3及び比較継手5と比較して明らかに小さくなっている。これは、液体CO2の冷却が効果的に働き、塑性流動領域が狭くなった結果である。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の接合部(熱影響部、熱加工影響部、攪拌部)及び母材の微細組織写真(OM写真)を図4に示す。なお、熱加工影響部は攪拌部の外縁に形成される熱と加工との両方の影響を受けた領域であり、熱影響部は熱加工影響部の外縁に形成される熱の影響のみを受けた領域である。比較継手3及び比較継手5では接合部の組織が母材とそれ程変わらないのに対し、継手1では顕著に結晶粒が微細化されていることが分かる。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の攪拌部中央におけるEBSDマッピングを図5に示す。比較継手3及び比較継手5では接合部の結晶粒径が母材とそれ程変わらないのに対し、継手1では顕著に結晶粒が微細化されているのが分かる。なお、EBSDマッピングには株式会社TSLソリューションズ社製のOIMシステムを備えた日本電子株式会社製のFE−SEM(JEM−7001FA)を用いた。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の攪拌部中央におけるミスオリエンテーション角度の分布を図6に示す。母材と比較して、比較継手3及び比較継手5では転位に起因する低角度域の割合が極めて小さくなっている。これに対し、継手1では低角度域の割合が母材よりも大きくなっており、再結晶により結晶粒が微細化されているにもかかわらず、高い転位密度を有していることが分かる。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の攪拌部中央のTEM写真を図7に示す。なお、TEM観察には日本電子株式会社製のJEM−2100Fを用いた。母材と比較して、比較継手3及び比較継手5の転位密度は小さくなっている。これに対し、継手1では再結晶により結晶粒が微細化されているにもかかわらず、高い転位密度を有していることが分かる。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5の攪拌部中央の攪拌部中央のビッカース硬度水平プロファイルを図8に示す。比較継手3及び比較継手5では母材と比較すると若干結晶粒が微細化しているにもかかわらず、硬度は明瞭に低下している。これに対し、継手1の硬度は母材よりも高い値を示している。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5に関し、接合部を引張試験した後の試験片の外観写真を図9に示す。なお、試験片は平行部に接合部及び母材を含む形状としている。比較例3及び比較例5では接合部(攪拌部)で破断しているのに対し、継手1では母材で破断している。これは、継手1の接合部が母材よりも高強度であることを意味している。
実施例1、比較例3及び比較例5で得られた継手1、比較継手3及び比較継手5に関し、接合部を引張試験した際の応力ひずみ線図を図10に示す。加えて、母材を引張試験した際の応力ひずみ線図も図10に示す。比較継手3及び比較継手5の引張強度は母材よりも低いが、継手1の引張強度は母材よりも高くなっている。
実施例2〜4で得られた継手2〜4の攪拌部中央のビッカース硬度水平プロファイルを図11に示す。継手2〜4の全てにおいて、攪拌部の硬度は母材よりも高くなっている。しかしながら、液体CO2を用いた冷却を伴って得られた継手1と比較すると、低い硬度となっている。
比較例1〜6で得られた比較継手1〜6の攪拌部中央におけるEBSDマッピングを図12に示す。摩擦攪拌接合条件のみによってもある程度攪拌部の結晶粒径が変化し、入熱量が小さな摩擦攪拌接合条件(ツールの回転速度が遅く、移動速度が速い条件)でより微細な結晶粒が得られていることが分かる。
比較例1〜3で得られた比較継手1〜3の攪拌部中央におけるビッカース硬度水平プロファイルを図13に、比較例4〜6で得られた比較継手4〜6の攪拌部中央におけるビッカース硬度水平プロファイルを図14にそれぞれ示す。比較継手1〜6の全てで攪拌部の硬度が母材よりも低くなっており、摩擦攪拌接合条件のみでは母材よりも高硬度な攪拌部を得ることは極めて困難であることが分かる。
比較例1〜6で得られた比較継手1〜6の各種引張特性を図15に示す。比較継手1〜6の全てで引張強度及び降伏強度が母材よりも低くなっており、摩擦攪拌接合条件のみでは母材よりも高強度な接合部を得ることは極めて困難であることが分かる。
実施例5〜7で得られた継手5〜7の表面外観写真及び断面マクロ写真を図16に示す。継手5〜7の全てにおいて、表面及び断面に欠陥等は観察されず、良好な継手が得られていることが分かる。
実施例5〜7で得られた継手5〜7の接合部(熱影響部、熱加工影響部、攪拌部)の微細組織写真(OM写真)を図17に示す。なお、前進側とはツールの回転と移動の方向が一致する側を意味し、後退側とはツールの回転と移動の方向が逆となる側を意味する。強制冷却を伴う摩擦攪拌接合を1回施した継手5の結晶粒も微細化されているが、当該摩擦攪拌接合を2回及び3回施した継手6及び7では結晶粒がより顕著に微細化されていることが分かる。
実施例5〜7で得られた継手5〜7の攪拌部中央におけるビッカース硬度水平プロファイルを図18に示す。再結晶温度が低く、転位が減少しやすい七三黄銅では1回の摩擦攪拌接合のみでは攪拌部の硬度が母材と同程度に留まっている(継手5)。これに対し、強制冷却を伴った摩擦攪拌接合を2回及び3回施した継手6及び7では攪拌部の硬度が母材よりも高い値を示していることが分かる。
実施例5〜7で得られた継手5〜7の各種引張特性を図19に示す。継手5では引張強度は母材と同程度、降伏強度は母材よりも低い値となっている。これに対し、継手6及び7では引張強度及び降伏強度が共に母材よりも高い値となっている。この結果より、極めて転位が減少しやすい材料であっても、強制冷却を伴った摩擦攪拌接合を同一の接合部に複数回重畳して施すことで、極めて機械的特性に優れた継手を得ることができるということが分かる。なお、試験片の平行部において、攪拌部は他の領域よりも僅かに薄くなっているため、攪拌部が高強度の場合、接合強度が母材強度を上回る結果となる。
実施例8で得られた継手8及び比較例7で得られた比較継手7の外観写真及び断面マクロ写真を図20及び図21にそれぞれ示す。継手8及び比較継手7共に良好な外観を有しており、攪拌部に欠陥等は認められない。なお、強制冷却の影響で、継手8は比較継手7よりもバリが少なく、攪拌部が小さくなっている。
継手8及び比較継手7の攪拌部中央におけるEBSDマッピングを図22に示す。継手8及び比較継手7の結晶粒径はそれぞれ1.3μm及び9.2μmとなっている。当該結果より、本発明の摩擦攪拌接合を用いることで、アルミニウム材に関しても効果的に結晶粒径を微細化できることが分かる。
継手8及び比較継手7の攪拌部中央におけるビッカース硬度水平プロファイルを図23に示す。比較継手7においては攪拌部の硬度が母材よりも大幅に低下しており、アルミニウム材に関しては、比較的接合時の入熱が小さな摩擦攪拌接合を用いても硬度低下を抑制できないことが分かる。これに対し、継手8においては攪拌部の硬度が母材と同程度の値を示している。
継手8及び比較継手7の接合部を引張試験した際の応力ひずみ線図を図24に示す。なお、比較としてA1050P−H24母材(未接合部)の応力ひずみ線図も示している。母材の引張強度が120MPaであるのに対して比較継手7の引張強度は93MPaとなっており、顕著な強度低下が認められる。これに対し、継手8の引張強度は114MPaとなっており、母材と同程度の値が得られている。また、継手8の伸びは10%であり、母材の4%よりも高い値を示している。
継手8〜10の攪拌部中央におけるEBSDマッピングを図25に示す。攪拌部の結晶粒は摩擦攪拌接合のパス数の増加に伴って微細化が進行しており、3パスの摩擦攪拌接合を施した継手10に関しては結晶粒径が0.8μmにまで微細化されている。
継手11の断面マクロ写真及びA7N01側攪拌部の組織写真を図26に示す。また、比較継手8の断面マクロ写真及びA7N01側攪拌部の組織写真を図27に示す。継手11及び比較継手8の攪拌部には欠陥等は観察されず、共に良好な継手となっている。ここで、強制冷却を伴う摩擦攪拌接合によって得られた継手11のA7N01側攪拌部の結晶粒径は11.0μmであり、比較継手8の15.6μmと比較して小さな値となっている。加えて、比較継手8の引張強度が177MPaであるのに対し、継手11の引張強度は202MPaであり、本発明の摩擦攪拌接合方法が異材接合にも効果的であることが分かる。
継手12の断面マクロ写真及びM1側攪拌部の組織写真を図28に示す。また、比較継手9の断面マクロ写真及びM1側攪拌部の組織写真を図29に示す。継手12及び比較継手9の攪拌部には欠陥等は観察されず、共に良好な継手となっている。ここで、強制冷却を伴う摩擦攪拌接合によって得られた継手12のM1側攪拌部の結晶粒径は5.5μmであり、比較継手9の9.4μmと比較して小さな値となっている。比較継手9の引張強度が82MPaであるのに対し、継手12の引張強度は100MPaであり、本発明の摩擦攪拌接合方法が異材接合にも効果的であることが分かる。
比較継手10及び比較継手11の外観写真を図30に示す。また、比較継手10及び比較継手11の断面マクロ写真を図31に示す。比較継手10及び比較継手11共に良好な外観を有しており、攪拌部に欠陥等は認められない。
比較継手10及び比較継手11の攪拌部中央におけるEBSDマッピングを図32に示す。比較継手10及び比較継手11の結晶粒径はそれぞれ14.6μm及び13.3μmであり、ほぼ同一の値を示している。本発明の摩擦攪拌接合と異なり、六方最密充填構造を有するマグネシウム合金(AZ31)を被接合材とする場合は強制冷却の効果が顕著に現れず、強制冷却を伴わない場合と比較して殆ど結晶粒が微細化されないことが分かる。
実施例13及び比較例12で得られた継手13及び比較継手12の攪拌部中央の攪拌部中央のビッカース硬度水平プロファイルを図33に示す。比較例12では回転速度を300rpmと可能な限り低下させて攪拌部における温度上昇を抑制しているにもかかわらず、大幅な硬度低下が認められる。これに対し、強制冷却を伴う場合は、回転速度を800rpmにした場合であっても、硬度低下が効果的に抑制されていることが分かる。
2・・・被接合材、
4・・・接合部、
6・・・ツール、
8・・・冷媒供給用ノズル。

Claims (2)

  1. 少なくとも一方の被接合材が面心立方格子構造を有し再結晶温度が300℃以下の金属材である被接合材同士を接合部において当接させ、
    前記接合部に回転する棒状のツールを挿入し、前記接合部に液体CO を供給するとともに、前記ツールを移動させることにより、前記被接合材同士を接合する摩擦攪拌接合工程を有し、
    前記摩擦攪拌接合工程を前記接合部に対して2回以上施すこと、
    を特徴とする金属材の摩擦攪拌接合方法。
  2. 前記面心立方格子構造を有し再結晶温度が300℃以下の金属材が銅、銅合金、アルミニウム、アルミニウム合金よりなる群から選ばれること、
    を特徴とする請求項1に記載の金属材の摩擦攪拌接合方法。
JP2014163168A 2013-08-09 2014-08-08 金属材の摩擦攪拌接合方法 Active JP6435533B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014163168A JP6435533B2 (ja) 2013-08-09 2014-08-08 金属材の摩擦攪拌接合方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013166408 2013-08-09
JP2013166408 2013-08-09
JP2014163168A JP6435533B2 (ja) 2013-08-09 2014-08-08 金属材の摩擦攪拌接合方法

Publications (2)

Publication Number Publication Date
JP2015057292A JP2015057292A (ja) 2015-03-26
JP6435533B2 true JP6435533B2 (ja) 2018-12-12

Family

ID=52815596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163168A Active JP6435533B2 (ja) 2013-08-09 2014-08-08 金属材の摩擦攪拌接合方法

Country Status (1)

Country Link
JP (1) JP6435533B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579596B2 (ja) 2016-03-11 2019-09-25 国立大学法人大阪大学 金属材の低温接合方法及び接合構造物
CN109402540A (zh) * 2018-12-11 2019-03-01 江苏科技大学 一种消除颗粒增强az91d镁基复合材料位错的方法
CN114965615A (zh) * 2022-05-24 2022-08-30 天津大学 机械搅拌制备具有高密度位错的铜电极及用于电化学析氢反应

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104860A (ja) * 1997-10-01 1999-04-20 Showa Alum Corp 摩擦撹拌接合法及び摩擦撹拌接合装置
JP2007237282A (ja) * 2006-03-10 2007-09-20 Osaka Univ 金属材の接合方法
JP4957588B2 (ja) * 2008-03-03 2012-06-20 日本軽金属株式会社 接合方法
JP5618314B2 (ja) * 2009-03-26 2014-11-05 国立大学法人大阪大学 金属材の製造方法及び金属材

Also Published As

Publication number Publication date
JP2015057292A (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
Shao et al. Effect of joining parameters on microstructure of dissimilar metal joints between aluminum and galvanized steel
Sadeesh et al. Studies on friction stir welding of AA 2024 and AA 6061 dissimilar metals
Muralimohan et al. Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding
Arora et al. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87
Jiang et al. Feasibility study of friction stir welding of 6061-T6 aluminium alloy with AISI 1018 steel
Lee et al. The joint characteristics of friction stir welded AZ91D magnesium alloy
Masoudian et al. Microstructure and mechanical properties of friction stir weld of dissimilar AZ31-O magnesium alloy to 6061-T6 aluminum alloy
Khojastehnezhad et al. Microstructural characterization and mechanical properties of aluminum 6061-T6 plates welded with copper insert plate (Al/Cu/Al) using friction stir welding
US11964338B2 (en) Method for low-temperature joining of metal materials, and joint structure
Ji et al. New technique for eliminating keyhole by active-passive filling friction stir repairing
Dawood et al. Advantages of the green solid state FSW over the conventional GMAW process
Papaefthymiou et al. Micro-friction stir welding of titan zinc sheets
Liu et al. Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints
Sandnes et al. Exploring the hybrid metal extrusion and bonding process for butt welding of Al–Mg–Si alloys
Bahemmat et al. Mechanical, micro-, and macrostructural analysis of AA7075–T6 fabricated by friction stir butt welding with different rotational speeds and tool pin profiles
Subravel et al. Effect of welding speed on microstructural characteristics and tensile properties of GTA welded AZ31B magnesium alloy
Kumari et al. Friction stir welding by using counter-rotating twin tool
Wan et al. Friction welding of AA6061 to AISI 316L steel: characteristic analysis and novel design equipment
JP6435533B2 (ja) 金属材の摩擦攪拌接合方法
Zhang et al. Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints
Hernández-García et al. Friction stir welding of dissimilar AA7075-T6 to AZ31B-H24 alloys
Shan et al. Dissimilar joining of AZ31B magnesium alloy and pure copper via thermo-compensated resistance spot welding
Padmanaban et al. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints
Simar et al. Friction stir processing for architectured materials
Swarnkar et al. A review on Friction Stir Welding: An environment friendly welding technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6435533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250