JP6434117B1 - High concentration hydrogen liquid combustion method - Google Patents

High concentration hydrogen liquid combustion method Download PDF

Info

Publication number
JP6434117B1
JP6434117B1 JP2017249011A JP2017249011A JP6434117B1 JP 6434117 B1 JP6434117 B1 JP 6434117B1 JP 2017249011 A JP2017249011 A JP 2017249011A JP 2017249011 A JP2017249011 A JP 2017249011A JP 6434117 B1 JP6434117 B1 JP 6434117B1
Authority
JP
Japan
Prior art keywords
hydrogen
combustion
liquid
concentration hydrogen
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249011A
Other languages
Japanese (ja)
Other versions
JP2019113291A (en
Inventor
武治 甕
武治 甕
和田 健
健 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOOD ENERGY INC.
HORIUCHI MICHIO
Original Assignee
GOOD ENERGY INC.
HORIUCHI MICHIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOOD ENERGY INC., HORIUCHI MICHIO filed Critical GOOD ENERGY INC.
Priority to JP2017249011A priority Critical patent/JP6434117B1/en
Application granted granted Critical
Publication of JP6434117B1 publication Critical patent/JP6434117B1/en
Priority to PCT/JP2018/047859 priority patent/WO2019131765A2/en
Publication of JP2019113291A publication Critical patent/JP2019113291A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】低コストで、量産化が可能で、COやPM2.5等を発生させず、社会貢献度の高い高濃度水素液の燃焼加工法を提供する。
【解決手段】直流微弱電流の永久電極を有し、遠赤外線電磁波並びに多量のマイナスイオンを放射する天然の電気石を使用して酸化還元電位(ORP)−700mv以下の高濃度水素液を加工し、地球温暖化軽減燃料助剤燃焼液とする。石炭火力発電所、木質バイオマス発電所、製鉄所、大型ボイラー等の燃焼助剤液として使用できる。高濃度水素液は、量産化、長期にわたる安定供給が可能で危険性の無い低コストの燃焼剤で、新しい発想の材料である。COの出ない、しかも厄介な焼却灰を排出しない電気石といった長期にわたり供給可能で国内未利用材による画期的高濃度水素水架構の燃焼剤となり得る。
【選択図】図1
A high-concentration hydrogen liquid combustion processing method that can be mass-produced at low cost, does not generate CO 2 , PM2.5, and the like and has a high social contribution.
A high-concentration hydrogen liquid having a redox potential (ORP) of -700 mV or less is processed using a natural tourmaline having a permanent electrode with a direct current weak current and emitting far-infrared electromagnetic waves and a large amount of negative ions. Suppose that the fuel aid combustion liquid reduces global warming. It can be used as a combustion auxiliary liquid for coal-fired power plants, woody biomass power plants, steelworks, large boilers, etc. High-concentration hydrogen liquid is a low-cost combustible material that can be mass-produced and can be stably supplied over a long period of time. It can be supplied over a long period of time, such as tourmaline that does not emit CO 2 and does not emit troublesome incineration ash, and can be a combustor for an innovative high-concentration hydrogen water frame made from domestic unused materials.
[Selection] Figure 1

Description

本発明は、低コストで、量産化が可能で危険度の低い材料である水素水を燃焼させることを特徴とする貢献度の高い高濃度水素液燃焼方法に関するものである。   The present invention relates to a high-concentration high-concentration hydrogen liquid combustion method characterized by combusting hydrogen water, which is a low-risk material that can be mass-produced at low cost.

地球環境に優しい水素社会を目指し、世界中の企業が研究・開発している。例えば、トヨタ自動車株式会社は既に燃料電池車「MIRAI(MIRAIはトヨタ自動車株式会社の登録商標)」を開発・販売し、世界を驚かせた。また、ドイツの水素実用化研究所「hヘルラル応用研究センター」は風車で余った電気を使って水を分解し、水素水を作ることによって、再生エネルギーを水素に変換し活用する技術実証の研究をしている。 Companies all over the world are researching and developing with the aim of creating a hydrogen-friendly hydrogen society. For example, Toyota Motor Corporation has already developed and sold a fuel cell vehicle “MIRAI (MIRAI is a registered trademark of Toyota Motor Corporation)” and has surprised the world. In addition, the German hydrogen research institute “h 2 Hell Application Research Center” is a technology demonstration that converts and uses renewable energy to hydrogen by decomposing water using surplus electricity in the windmill and producing hydrogen water. I'm doing research.

水素の製造装置や製造方法に関する発明として、例えば特許文献1〜3に記載の発明がある。   As inventions related to hydrogen production apparatuses and production methods, for example, there are inventions described in Patent Documents 1 to 3.

特許文献1には、有機ハイドライドを脱水素反応により水素と脱水素物質とに分解する脱水素反応器と、脱水素反応器での前記脱水素反応により生成された脱水素反応物を脱水素反応器で生成された脱水素反応物よりも水素濃度の高い脱水素反応物と凝縮された液化不純物とに気液分離する気液分離系と、気液分離系にて気液分離された脱水素反応物を第1水素含有物と、第1水素含有物よりも水素濃度の高い第2水素含有物とに精製する水素精製器と、水素精製器で分離された第1水素含有物を脱水素反応器における有機ハイドライドの入口側に供給可能な第1水素含有物供給ラインと、第1水素含有物の一部または全部を熱エネルギーとして利用する水素利用系と、を備え、水素利用系は、第1水素含有物内の水素ガスを燃焼させる触媒燃焼器を備え、触媒燃焼器で発生した熱エネルギーを装置内で用いることを特徴とする水素製造装置が記載されている。   Patent Document 1 discloses a dehydrogenation reactor that decomposes organic hydride into hydrogen and a dehydrogenated substance by a dehydrogenation reaction, and a dehydrogenation reaction product generated by the dehydrogenation reaction in the dehydrogenation reactor. A gas-liquid separation system that separates gas-liquid separation into a dehydrogenation reactant having a higher hydrogen concentration than the dehydrogenation reactant produced in the reactor and condensed liquefied impurities, and dehydrogenation that is gas-liquid separated in the gas-liquid separation system A hydrogen purifier for purifying the reaction product into a first hydrogen-containing material and a second hydrogen-containing material having a higher hydrogen concentration than the first hydrogen-containing material, and dehydrogenating the first hydrogen-containing material separated by the hydrogen purifier A first hydrogen-containing material supply line that can be supplied to the inlet side of the organic hydride in the reactor, and a hydrogen utilization system that uses part or all of the first hydrogen-containing material as thermal energy. Catalytic fuel that burns hydrogen gas in the first hydrogen-containing material A hydrogen production apparatus is described that includes a calciner and uses thermal energy generated in a catalytic combustor in the apparatus.

特許文献2には、水素および電気を生成する方法が記載されており、液体水素および/または電気を生成するのに適したシステムを設けるステップを備えている。そのシステムが、少なくとも、a)天然ガス供給を受け、天然ガスを改質して水素含有ガスを生成するように構成されるガス改質ユニットと、b)水素含有ガスにおける水素の少なくとも一部を受け、水素を変換して電気を生成するように構成される発電ユニットと、c)水素含有ガスにおける水素の一部を受け、水素を液化して液体水素を生成するように構成される水素液化ユニットであって、動作の間、発電ユニットによって生成される電気の少なくとも一部によって、給電される、水素液化ユニットと、を備えており、システムが、液体水素および/または電気を移出するように構成される動作の間、i)第1期間において、天然ガスをガス改質ユニットに供給し、液体水素を移出するようにシステムを動作させ、ii)第2期間において、天然ガスをガス改質ユニットに供給し、電気を移出するようにシステムを動作させ、第1期間は、外部電力需要が低いオフピーク時間に関係し、第2期間は、外部電力需要が高いピーク時間に関係する、方法が記載されている。   Patent Document 2 describes a method of generating hydrogen and electricity, and includes a step of providing a system suitable for generating liquid hydrogen and / or electricity. The system includes at least a) a gas reforming unit configured to receive a natural gas supply and reform the natural gas to produce a hydrogen-containing gas; and b) at least a portion of the hydrogen in the hydrogen-containing gas. A power generation unit configured to receive and convert hydrogen to generate electricity; and c) a hydrogen liquefaction configured to receive a portion of the hydrogen in the hydrogen-containing gas and liquefy the hydrogen to produce liquid hydrogen. A hydrogen liquefaction unit that is powered by at least a portion of the electricity generated by the power generation unit during operation, so that the system exports liquid hydrogen and / or electricity During the operation being configured, i) in the first period, the natural gas is supplied to the gas reforming unit and the system is operated to transfer liquid hydrogen; ii) in the second period The natural gas is supplied to the gas reforming unit and the system is operated so as to transfer electricity. The first period is related to the off-peak time when the external power demand is low, and the external power demand is high during the second period. A method relating to peak time is described.

特許文献3には、燃料を水蒸気存在下で加熱する加熱工程と、加熱工程で得られた生成ガスのうち、一酸化炭素と水蒸気とを反応させることにより二酸化炭素と水素に転化する転化工程と、転化工程後の生成ガスを冷却した後、一酸化炭素選択的酸化触媒と接触させ改質ガスとする改質工程と、改質ガスからガス分離装置によって水素を分離する水素分離工程と、を有する水素製造方法が記載されている。一酸化炭素選択的酸化触媒は冷却水によって冷却されており、一酸化炭素選択的酸化触媒を冷却した冷却水が回収した熱エネルギーは、転化工程へ供給する水蒸気の製造に利用される、水素製造方法であって、ガス分離装置が、アルカリ吸収法によって二酸化炭素を吸収するアルカリ吸収装置であり、アルカリ吸収装置においては、吸収塔から再生塔へと吸収液が加圧されて送られることによって、再生塔内が二酸化炭素の臨界圧付近又は臨界圧以上に維持されており、再生塔から吸収塔へと吸収液が送液される際、圧力調整装置によって減圧させている。   Patent Document 3 discloses a heating process in which fuel is heated in the presence of water vapor, and a conversion process in which carbon monoxide and water vapor are converted into carbon dioxide and hydrogen by reacting the product gas obtained in the heating process. A reforming step in which the product gas after the conversion step is cooled and then brought into contact with a carbon monoxide selective oxidation catalyst to form a reformed gas, and a hydrogen separation step in which hydrogen is separated from the reformed gas by a gas separator. A hydrogen production method is described. The carbon monoxide selective oxidation catalyst is cooled by cooling water, and the heat energy recovered by the cooling water that has cooled the carbon monoxide selective oxidation catalyst is used for the production of water vapor to be supplied to the conversion process. The method, wherein the gas separation device is an alkali absorption device that absorbs carbon dioxide by an alkali absorption method, and in the alkali absorption device, the absorbent is pressurized and sent from the absorption tower to the regeneration tower, The inside of the regeneration tower is maintained near the critical pressure of carbon dioxide or above the critical pressure, and when the absorbing liquid is sent from the regeneration tower to the absorption tower, the pressure is reduced by a pressure adjusting device.

特開2017-065937号公報JP 2017-065937 A 特許第5899231号公報Japanese Patent No. 5899231 特許第5629259号公報Japanese Patent No. 5629259

本発明は、上述のような背景のもとに開発されたものであり、低コストで、量産化が可能で、COやPM2.5等を発生させず、社会貢献度の高い高濃度水素液燃焼方法を提供することを目的としている。 The present invention was developed based on the background as described above, and can be mass-produced at low cost, does not generate CO 2 , PM2.5, etc., and has a high social contribution. The object is to provide a liquid combustion method.

本発明の高濃度水素液燃焼方法は、天然電気石に水を作用させて得られる水素飽和液を加圧・高温加工することで、酸化還元電位(ORP)が−100mv〜−300mvの高濃度水素液を作成し、前記高濃度水素液に水酸化ナトリウム、アルミニウム、または塩化マグネシウム等の水素発生剤または水素発生助剤を加え、加圧・加熱缶を使用して加圧および加熱することにより、酸化還元電位(ORP)−700mv以下の超高濃度水素液を作成し、前記超高濃度水素液をCO を発生しない燃焼剤として燃焼炉へ噴霧し燃焼剤として利用することを特徴とするものである。 The high concentration hydrogen liquid combustion method of the present invention is a high concentration of redox potential (ORP) of −100 mv to −300 mv by pressurizing and high-temperature processing a hydrogen saturated liquid obtained by allowing water to act on natural tourmaline. By preparing a hydrogen solution, adding a hydrogen generating agent or hydrogen generating aid such as sodium hydroxide, aluminum, or magnesium chloride to the high concentration hydrogen solution, and applying pressure and heating using a pressure / heating can. , the oxidation-reduction potential (ORP) of creates the following ultra-high-concentration hydrogen solution -700 mV, the ultra-high concentration hydrogen solution was sprayed in the combustion agent which does not generate CO 2 into combustion furnace, utilized as a combustion agent It is characterized by.

久電極を有するイオン帯電電気石に水を作用させて水素水を作り、物理的加圧、化学触媒混合により超高濃度水素水を加工し、高圧ノズルなどを使用して燃焼炉内に噴霧し燃焼させ、エネルギーとして利用することができる。 The ion charge tourmaline having a permanent electrode by the action of water Ri create the hydrogen water, physical pressure, and processing the ultra-high-concentration hydrogen water by chemical catalytic mixture, the combustion furnace using a high-pressure nozzle It can be sprayed and burned to be used as energy.

対象となる燃焼炉としては、例えば火力発電所、木質バイオマス発電所、製鉄所、または大型ボイラー等の高熱燃焼炉などを挙げることができる。   Examples of the target combustion furnace include a thermal power plant, a woody biomass power plant, a steel plant, or a high-heat combustion furnace such as a large boiler.

燃焼炉へ噴霧し燃焼させる方法としては、酸化還元電位(ORP)−700mv以下の高濃度水素液を、例えば高圧ノズルを使用して燃焼炉へ噴射し、燃焼させることができる。   As a method of spraying and burning to a combustion furnace, a high-concentration hydrogen liquid having an oxidation-reduction potential (ORP) of −700 mv or less can be injected and burned using a high-pressure nozzle, for example.

−700mv以下の高濃度水素液に関しては、基礎となる水素液を天然電気石に水を作用させて得られる水素飽和液を加圧・高温加工し、酸化還元電位(ORP)を−100mv〜−300mvの高濃度とし、この酸化還元電位(ORP)を−100mv〜−300mvに加工した高濃度水素液に、水酸化ナトリウム、アルミニウム、または塩化マグネシウム等の水素発生剤または水素発生助剤を加圧、加熱缶を使用することで、酸化還元電位(ORP)を−700mv以下の超高濃度水素液を製造することができる。 For the -700mv following hydrogen-rich solution, hydrogen was the underlying foundation and pressure and high temperature processing of hydrogen saturated solution obtained by the action of water naturally tourmaline, -100 mV to the oxidation-reduction potential (ORP) A hydrogen generator or hydrogen generation assistant such as sodium hydroxide, aluminum, or magnesium chloride is added to a high concentration hydrogen solution with a high concentration of −300 mv and this oxidation-reduction potential (ORP) processed to −100 mv to −300 mv. By using a pressure and heating can, an ultra-high concentration hydrogen liquid having an oxidation-reduction potential (ORP) of −700 mV or less can be produced.

本発明の高濃度水素液燃焼方法では、高濃度水素液が燃焼炉内燃焼にあってCO及びPM2.5を発生せず、石炭等混合燃焼剤の燃焼効率を高め、地球温暖化削減、並びに燃焼コスト削減を図ることができる。 The hydrogen-rich liquid combustion method of the present invention, hydrogen-rich liquid is not generated CO 2 and PM2.5 be in the combustion furnace combustion, improve the combustion efficiency of coal-like mixing combustor, global warming reduction, In addition, the combustion cost can be reduced.

本発明は、以上のような構成からなり、次のような効果が得られる。   The present invention is configured as described above, and the following effects are obtained.

(1) コストが小さく、量産化が可能で、危険度が低く、COやPM2.5、焼却灰などが発生しない。 (1) cost is small, can be mass-produced, low risk, CO 2 and PM2.5, do not occur, such as incinerator ash.

(2) 本発明の超高濃度水素水は、従来、実施されたことがない独自発想のものであり、例えば天然石のマイナスイオン帯電電気石を使用し、電気石に水を作用させ、水をマイナスイオン飽和水、水素飽和水に変換し、物理的圧力化学触媒を使用して超高濃度水素水に加工、石炭火力発電所、製鉄所木質バイオマス発電所燃焼炉に噴霧し、燃焼させる内容のものである。従来にないユニークな発想の発明であり、社会貢献が広く、効果が高い水素水利用技術である。 (2) The ultra-high-concentration hydrogen water of the present invention is an original idea that has never been implemented before, for example, using natural stone negative ion charged tourmaline, allowing water to act on tourmaline, Converted to negative ion saturated water and hydrogen saturated water, processed into ultra-high concentration hydrogen water using a physical pressure chemical catalyst, sprayed into a coal-fired power plant, steel plant woody biomass power plant combustion furnace and burned Is. It is an invention of a unique idea that has never existed before, and it is a hydrogen water utilization technology that has a wide social contribution and is highly effective.

(3) 本発明における高濃度加工水素液の燃焼技術は、天然の電気石に水を作用させて生ずる飽和水素水を原材料として使用することができ、原材料費をほとんど必要としない。 (3) The combustion technique of the high-concentration processed hydrogen liquid in the present invention can use saturated hydrogen water generated by allowing water to act on natural tourmaline as a raw material, and requires almost no raw material costs.

水を電気分解して水素水を加工する場合は、コスト的な問題もあるが、天然石・電気石は自然資源として大量に未利用で存在しており、経済性は極めて高い。特に低価格の他に、CO・PM2.5が発生せず、焼却灰も出ない特質と、大量の安定供給が図れるというメリットは極めて大きい。 When hydrogen water is processed by electrolyzing water, there is a cost problem, but natural stone and tourmaline exist in large quantities as a natural resource and are extremely economical. In particular, in addition to low price, CO 2 · PM2.5 is not generated, the characteristics that incineration ash does not come out, and the merit that a large amount of stable supply can be achieved is very great.

高濃度水素液は、高熱燃焼炉の中へ噴射して燃焼する燃焼助剤であり、燃焼水素ガスと異なり安全性が高い。   The high-concentration hydrogen liquid is a combustion aid that is injected into the high-temperature combustion furnace and burns, and unlike the combustion hydrogen gas, has high safety.

水素液を燃焼剤として加工することを説明した図である。It is a figure explaining processing a hydrogen liquid as a combustion agent. 石炭火力発電・木質バイオマス発電に利用するための概念と燃焼剤としての水素液の加工などを示した説明図である。It is explanatory drawing which showed the concept for utilizing for coal-fired power generation and woody biomass power generation, the process of the hydrogen liquid as a combustion agent, etc. 図1、図2の内容をグラフ化した図である。FIG. 3 is a graph of the contents of FIGS. 1 and 2. 表1の簡易試験(実証試験I)に関する写真である。It is a photograph regarding the simple test (demonstration test I) of Table 1. 表1の簡易試験に用いたORPメーターの写真である。It is the photograph of the ORP meter used for the simple test of Table 1. 表1の簡易試験における燃焼の様子を示す写真である。It is a photograph which shows the mode of combustion in the simple test of Table 1. 実証実験IIにおける高濃度水素液燃焼検証缶の構造と、試験方法を示す説明図である。It is explanatory drawing which shows the structure and test method of a high concentration hydrogen liquid combustion verification can in Demonstration Experiment II. 実証実験IIIの試験方法の説明図である。It is explanatory drawing of the test method of the demonstration experiment III. 実証実験IIIの写真である。It is a photograph of the demonstration experiment III. 実証試験IVの試験計画の説明図である。It is explanatory drawing of the test plan of the demonstration test IV. 実証試験IVで用いた試験機の写真である。It is a photograph of the testing machine used in Demonstration Test IV. 実証試験IVにおける燃焼試験の様子を示す写真である。It is a photograph which shows the mode of the combustion test in the demonstration test IV.

以下、本発明を添付した図面などに基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、水素液を燃焼剤として加工することを説明した図である。
水素の発生量は、酸化還元電位ORPという単位で表される。水素の発生量は、酸化還元電位ORPという単位で表される。ORPの数値は、水素の発生量→水素の燃焼性と連動して表される数値と一致して表示されることを確認している。図1の丸付き数字を(1)〜(14)に置き換えて説明すると、水素液の数値と燃焼性を実現するに至る数値が一致して得られる。
FIG. 1 is a diagram illustrating the processing of hydrogen liquid as a combustion agent.
The amount of hydrogen generated is expressed in units of redox potential ORP. The amount of hydrogen generated is expressed in units of redox potential ORP. It has been confirmed that the ORP numerical value is displayed in agreement with the numerical value expressed in conjunction with the amount of hydrogen generation → hydrogen flammability. If the circled numbers in FIG. 1 are replaced with (1) to (14), the numerical value of the hydrogen liquid and the numerical value that achieves combustibility are obtained in agreement.

(1)は天然石の石英斑岩・電気石に水を作用して得られる飽和水素水であり、ORPは+200mv〜+230mvの範囲である。電気石に水が作用した水素水は水を電気分解して生ずる水素水と異なり、マイナスイオンを帯電しており、電気石の組成元素である珪素84〜85%、アルミニウム7〜8%という鉱石の中にあって燃焼性を発揮する特殊な性質の石材である。   (1) is saturated hydrogen water obtained by applying water to natural porphyry quartz porphyry and tourmaline, and ORP is in the range of +200 mV to +230 mv. The hydrogen water in which water acts on tourmaline is different from the hydrogen water generated by electrolyzing water, and is charged with negative ions. The ore is composed of 84-85% silicon and 7-8% aluminum, which are constituent elements of tourmaline. It is a stone with special properties that exhibit flammability.

(1)の段階の水素水は植物育成、健康飲用材として使用される。(2)〜(7)の変化は、(1)で得られた飽和水素を加圧・加熱した時間経過のORP変化である。(8)〜(14)は、(7)の水素水を燃焼用に幾つかの条件を与えて変性した完全燃焼に至る移行のORP数値である。   Hydrogen water in stage (1) is used as a plant growing and health drink. Changes in (2) to (7) are ORP changes over time when the saturated hydrogen obtained in (1) was pressurized and heated. (8) to (14) are ORP values of transition to complete combustion in which hydrogen water of (7) is modified by giving several conditions for combustion.

(8)〜(10)の−400〜−600mvの主としてアルミニウム材を加えて得られる。(1)〜(6)の水素水は電気石と加圧・加熱が連続して行われており、(8)〜(10)の段階はアルミニウムを混在させて得られる高濃度の水素液である。   It is obtained by adding mainly an aluminum material of -400 to -600 mV of (8) to (10). The hydrogen water of (1) to (6) is pressed and heated continuously with tourmaline, and the steps (8) to (10) are high-concentration hydrogen liquid obtained by mixing aluminum. is there.

(11)〜(14)→は燃焼用の超高濃度を目的として特殊な水酸化ナトリウム材を均質撹拌材として投入して得られるORP数値で−700〜−1000mvに加工した燃焼用液剤である。   (11) to (14) → is a combustion liquid processed into -700 to -1000 mV by ORP value obtained by introducing a special sodium hydroxide material as a homogeneous stirring material for the purpose of ultra-high concentration for combustion. .

この−700〜−1000mvのORP数値によって表現される水素液は、石炭火力発電所、製鉄所、大型ボイラー等の燃焼剤(正確には燃焼助剤)として使用可能な性質のものである。   The hydrogen liquid expressed by the ORP value of −700 to −1000 mv is of a property that can be used as a combustion agent (more precisely, a combustion aid) for coal-fired power plants, steelworks, large boilers, and the like.

従って、図1における(1)〜(14)の電気石に作用して生ずる水素液は本件発明の技術の全体の流れを示したものである。   Accordingly, the hydrogen liquid generated by acting on the tourmaline (1) to (14) in FIG. 1 shows the overall flow of the technique of the present invention.

図2は、石炭火力発電・木質バイオマス発電に利用するための概念と燃焼剤としての水素液の加工などを示した説明図である。目的とする濃度は、ORP数値の加工方法は、図1を実施する加工内容→加工技術の概要を成すものである。   FIG. 2 is an explanatory diagram showing a concept for use in coal-fired power generation / woody biomass power generation, processing of hydrogen liquid as a combustion agent, and the like. The target concentration is the ORP numerical value processing method, which is an outline of processing contents → processing technology in which FIG. 1 is executed.

図3は、図1、図2の内容をグラフにしたものであり、図1、図2の内容を簡単に説明した図である。表1は、図2によって加工された水素液を段階ごとに燃焼性をチェックした簡易試験内容(実証試験I)である。図4〜図6は簡易試験に関する写真である。この試験により、ORP数値で示された水素液の燃焼性能が実証された。なお、表1における写真−1は図4の写真に相当するものである。   FIG. 3 is a graph showing the contents of FIGS. 1 and 2, and is a diagram simply explaining the contents of FIGS. 1 and 2. Table 1 shows the contents of a simple test (demonstration test I) in which the hydrogen liquid processed according to FIG. 4 to 6 are photographs relating to the simple test. This test demonstrated the combustion performance of the hydrogen liquid indicated by the ORP value. Photo 1 in Table 1 corresponds to the photo in FIG.

〔実証試験II〕
実証実験II(検証予備試験)として、図7に示すような構造の高濃度水素液燃焼検証缶を設計し、屋外での実証試験を行い、ORP−840mv水素液が燃焼することを確認した。
[Demonstration Test II]
As Demonstration Experiment II (Verification Preliminary Test), a high-concentration hydrogen liquid combustion verification can with a structure as shown in FIG. 7 was designed and an outdoor verification test was conducted to confirm that the ORP-840 mV hydrogen liquid burned.

〔実証試験III〕
実証試験IIIとして、上述の実証実験IIの検証缶及びORP−840mv水素液を使用し、図8に示す実証試験を行った。
[Verification III]
As the verification test III, the verification test shown in FIG. 8 was performed using the verification can of the above-described verification test II and the ORP-840 mv hydrogen solution.

図9は実証実験IIIにおいて、種火上のストーブで激しく燃焼している様子を示した写真である。   FIG. 9 is a photograph showing a state where the burning is intensely performed in the stove on the seed fire in the demonstration experiment III.

〔実証試験IV〕
続いて、実証試験IVとして、図10に示す試験計画を策定し、超高濃度水素液の加工・現場使用検証を行った。
[Verification test IV]
Subsequently, as a demonstration test IV, the test plan shown in FIG. 10 was formulated, and the ultrahigh-concentration hydrogen solution was processed and verified on site.

図11実証試験IVで用いた試験機の写真、図12は燃焼試験の様子を示す写真である。   FIG. 11 is a photograph of the testing machine used in the demonstration test IV, and FIG. 12 is a photograph showing the state of the combustion test.

これら実証試験I〜IVにより、本発明の高濃度水素液燃焼方法の火力発電所、木質バイオマス発電所、製鉄所、または大型ボイラー等への適用の可能性を確認した。   By these demonstration tests I to IV, the possibility of applying the high-concentration hydrogen liquid combustion method of the present invention to a thermal power plant, a woody biomass power plant, a steel plant, a large boiler, or the like was confirmed.

例えば、石炭火力発電所に於ける採用利点を踏まえ、事業化するための考え方は以下の通りである。   For example, based on the advantages of adoption in coal-fired power plants, the concept for commercialization is as follows.

1.石炭火力発電所燃焼炉における燃焼性の確認。
2.燃焼における発熱性能(石炭との比較)。
1. Confirmation of combustibility in a coal-fired power plant combustion furnace.
2. Heat generation performance in combustion (comparison with coal).

3.COの排出量。
4.この場合の石炭火力発電所全体のCO排出に対する単位当たりの貢献度。
5.例えば、50トン/日燃焼した場合のCO減少率(%)。
3. CO 2 emissions.
4). In this case, the contribution per unit to the CO 2 emission of the whole coal-fired power plant.
5. For example, CO 2 reduction rate (%) when burning 50 tons / day.

6.石炭燃焼トン当たりの燃焼価格と水素液の燃焼価格トン当たりを比較し、発電所の経営効率を図る。
7.石炭火力発電所の場合、使用する石炭品質、燃焼方法によって内容が異なるため、使用企業現場で効果のテストをする必要がある。
8.水素液は、設備をすれば100トン/日も可能である。
6). Compare the combustion price per ton of coal and the tonnage of hydrogen liquid per ton to improve the efficiency of power plant management.
7). In the case of a coal-fired power plant, the contents differ depending on the quality of coal used and the combustion method.
8). The hydrogen liquid can be 100 tons / day if equipped.

9.水素液は飲用可能なものまで、発電所燃焼炉で散布、燃焼前は着火も、公害的安全性は普通の水と同じ内容であり、安全である。 9. Hydrogen liquid is sprayed in the power plant combustion furnace until it can be drunk, and ignition before combustion is safe because it has the same pollution safety as ordinary water.

Claims (4)

天然電気石に水を作用させて得られる水素飽和液を加圧・高温加工することで、酸化還元電位(ORP)が−100mv〜−300mvの高濃度水素液を作成し、前記高濃度水素液に水酸化ナトリウム、アルミニウム、または塩化マグネシウム等の水素発生剤または水素発生助剤を加え、加圧・加熱缶を使用して加圧および加熱することにより、酸化還元電位(ORP)が−700mv以下の超高濃度水素液を作成し、前記超高濃度水素液をCO を発生しない燃焼剤として燃焼炉へ噴霧し燃焼剤として利用することを特徴とする高濃度水素液燃焼方法。 A high-concentration hydrogen liquid having an oxidation-reduction potential (ORP) of −100 mV to −300 mV is created by pressurizing and high-temperature processing a hydrogen saturated liquid obtained by allowing water to act on natural tourmaline, and the high-concentration hydrogen liquid By adding a hydrogen generating agent or hydrogen generating assistant such as sodium hydroxide, aluminum, or magnesium chloride, and pressurizing and heating using a pressure / heating can, the oxidation-reduction potential (ORP) is -700 mV or less of creating the ultra-high-concentration hydrogen solution, said ultra-high-concentration hydrogen solution with the combustion agent which does not generate CO 2 is sprayed into the combustion furnace, hydrogen-rich liquid combustion method characterized by the use as a combustion agent. 請求項1記載の高濃度水素液燃焼方法において、前記燃焼炉は火力発電所、木質バイオマス発電所、製鉄所、または大型ボイラー等の高熱燃焼炉であることを特徴とする高濃度水素液燃焼方法。   The high-concentration hydrogen liquid combustion method according to claim 1, wherein the combustion furnace is a high-temperature combustion furnace such as a thermal power plant, a woody biomass power plant, an iron works, or a large boiler. . 請求項2記載の高濃度水素液燃焼方法において、前記酸化還元電位(ORP)−700mv以下の高濃度水素液を、燃焼炉へ高圧ノズルを使用して噴射し、燃焼させることを特徴とする高濃度水素液燃焼方法。 In hydrogen-rich liquid combustion method according to claim 2, wherein the oxidation-reduction potential (ORP) of the following ultra-high-concentration hydrogen solution -700 mV, using a high pressure nozzle and injected into the combustion furnace, and characterized by burning High concentration hydrogen liquid combustion method. 請求項1〜のいずれか一項に記載の高濃度水素液燃焼方法において、前記高濃度水素液が燃焼炉内燃焼にあってCO及びPM2.5を発生せず、石炭等混合燃焼剤の燃焼効率を高め、地球温暖化削減、並びに燃焼コスト削減を図ることを特徴とした高濃度水素液燃焼方法。 In hydrogen-rich liquid combustion method according to any one of claims 1 to 3, wherein the ultra-high-concentration hydrogen solution is not generated CO 2 and PM2.5 be in the combustion furnace combustion, such as coal mixed combustion A high-concentration hydrogen liquid combustion method characterized by increasing the combustion efficiency of the agent, reducing global warming, and reducing combustion costs.
JP2017249011A 2017-12-26 2017-12-26 High concentration hydrogen liquid combustion method Active JP6434117B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017249011A JP6434117B1 (en) 2017-12-26 2017-12-26 High concentration hydrogen liquid combustion method
PCT/JP2018/047859 WO2019131765A2 (en) 2017-12-26 2018-12-26 Combustion method for high-concentration hydrogen-rich liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249011A JP6434117B1 (en) 2017-12-26 2017-12-26 High concentration hydrogen liquid combustion method

Publications (2)

Publication Number Publication Date
JP6434117B1 true JP6434117B1 (en) 2018-12-05
JP2019113291A JP2019113291A (en) 2019-07-11

Family

ID=64560665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249011A Active JP6434117B1 (en) 2017-12-26 2017-12-26 High concentration hydrogen liquid combustion method

Country Status (2)

Country Link
JP (1) JP6434117B1 (en)
WO (1) WO2019131765A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794180A (en) * 2018-12-28 2019-05-24 上海银玛标识股份有限公司 A kind of household hydrogen-rich water dispenser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206751A (en) * 1996-01-30 1997-08-12 Tadamasa Nakamura Generating method of electrolytic water
JP2000329308A (en) * 1999-05-19 2000-11-30 Nippon Kankyo Hozen Kk Fuel combustion method, burner and ash treating device
JP2002267135A (en) * 2001-03-05 2002-09-18 Nippon Kankyo Hozen Kk Method for burning and decomposing polybiphenyl chloride and high-temperature incinerator
JP2008149245A (en) * 2006-12-15 2008-07-03 Tadayoshi Fukagawa Functional water and its manufacturing method
JP2009102600A (en) * 2007-10-23 2009-05-14 E & E Corp Liquid fuel, its manufacturing system, and its manufacturing method
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP2017025133A (en) * 2015-07-16 2017-02-02 サンライズ・エナジー株式会社 Compound fuel production system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206751A (en) * 1996-01-30 1997-08-12 Tadamasa Nakamura Generating method of electrolytic water
JP2000329308A (en) * 1999-05-19 2000-11-30 Nippon Kankyo Hozen Kk Fuel combustion method, burner and ash treating device
JP2002267135A (en) * 2001-03-05 2002-09-18 Nippon Kankyo Hozen Kk Method for burning and decomposing polybiphenyl chloride and high-temperature incinerator
JP2008149245A (en) * 2006-12-15 2008-07-03 Tadayoshi Fukagawa Functional water and its manufacturing method
JP2009102600A (en) * 2007-10-23 2009-05-14 E & E Corp Liquid fuel, its manufacturing system, and its manufacturing method
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP2017025133A (en) * 2015-07-16 2017-02-02 サンライズ・エナジー株式会社 Compound fuel production system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794180A (en) * 2018-12-28 2019-05-24 上海银玛标识股份有限公司 A kind of household hydrogen-rich water dispenser

Also Published As

Publication number Publication date
WO2019131765A2 (en) 2019-07-04
JP2019113291A (en) 2019-07-11
WO2019131765A3 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
Lau et al. Thermodynamic assessment of CO2 to carbon nanofiber transformation for carbon sequestration in a combined cycle gas or a coal power plant
CN108884761A (en) ammonia cracking
US20130214542A1 (en) Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system
EP1780388A1 (en) Waste heat recovering apparatus, waste heat recovering system and waste heat recovering method
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
Weng et al. Ammonia production from biomass via a chemical looping–based hybrid system
Hosseini Design and analysis of renewable hydrogen production from biogas by integrating a gas turbine system and a solid oxide steam electrolyzer
Gutiérrez-Guerra et al. Electrochemical reforming vs. catalytic reforming of ethanol: A process energy analysis for hydrogen production
RU2385836C2 (en) Method of developing hydrogen energy chemical complex and device for its realisation
EP3359627B1 (en) Sustainable energy system
JP6411430B2 (en) Energy saving system for integrated combustion equipment
CN112601881A (en) Hydrogen energy storage
Mehr et al. Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system
Hosseini Integrating a gas turbine system and a flameless boiler to make steam for hydrogen production in a solid oxide steam electrolyzer
JP2007246369A (en) Apparatus, system and method for producing hydrogen
Gökalp A holistic approach to promote the safe development of hydrogen as an energy vector
JP6434117B1 (en) High concentration hydrogen liquid combustion method
Kameyama et al. Carbon capture and recycle by integration of CCS and green hydrogen
Qi et al. Thermodynamic and environmental analysis of an integrated multi-effect evaporation and organic wastewater supercritical water gasification system for hydrogen production
CN103912452B (en) A kind of electricity, heat, water co-production and system
JP2005232524A (en) Hydrogen production system using solid oxide electrolyte
CN116283490A (en) CO is realized to garbage power generation and photovoltaic power generation gas production coupling 2 Method and apparatus for recovering and producing methanol
JP2011236394A (en) Woody gas producer
RU2386819C2 (en) Method of energy conversion with regeneration of energy sources in barchan cyclic process
RU2699339C2 (en) Integrated energy-saving process of production of metals or alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180404

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181107

R150 Certificate of patent or registration of utility model

Ref document number: 6434117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250