JP6433835B2 - Method for producing aromatic compound - Google Patents

Method for producing aromatic compound Download PDF

Info

Publication number
JP6433835B2
JP6433835B2 JP2015059875A JP2015059875A JP6433835B2 JP 6433835 B2 JP6433835 B2 JP 6433835B2 JP 2015059875 A JP2015059875 A JP 2015059875A JP 2015059875 A JP2015059875 A JP 2015059875A JP 6433835 B2 JP6433835 B2 JP 6433835B2
Authority
JP
Japan
Prior art keywords
aromatic compound
aromatic
producing
decarboxylation
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015059875A
Other languages
Japanese (ja)
Other versions
JP2016179950A (en
Inventor
正人 森本
正人 森本
慶新 鄭
慶新 鄭
利公 鷹觜
利公 鷹觜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015059875A priority Critical patent/JP6433835B2/en
Publication of JP2016179950A publication Critical patent/JP2016179950A/en
Application granted granted Critical
Publication of JP6433835B2 publication Critical patent/JP6433835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、芳香族化合物の製造方法に関し、特に、芳香族炭化水素を豊富に含有する資源から、ベンゼン、ナフタレンなどの芳香族化合物を製造する方法に関する。   The present invention relates to a method for producing an aromatic compound, and more particularly to a method for producing an aromatic compound such as benzene and naphthalene from a resource rich in aromatic hydrocarbons.

ベンゼン、ナフタレンなどの芳香族化合物を、石油、石炭等の芳香族炭化水素を豊富に含有する資源(以下、「含芳香族炭素資源」という)から製造する代表的な従来法として、図1に示す方法がある。   As a typical conventional method for producing aromatic compounds such as benzene and naphthalene from resources rich in aromatic hydrocarbons such as petroleum and coal (hereinafter referred to as “aromatic carbon resources”), FIG. There is a way to show.

該図の(a)に示す方法は、石炭を約1000℃で乾留して得られるコールタールを蒸留して、ベンゼン、ナフタレン等の芳香族化合物を得る方法である。
また、該図の(b)に示す方法は、石油のナフサ留分を950℃以上で水蒸気クラッキングして得られる分解ガソリンを蒸留して、ベンゼン、ナフタレン等の芳香族化合物を得る方法である。
これら(a)、(b)の方法は、それぞれコークスおよび分解ガソリン製造過程の副生物を原料とするものであるが、1000℃という高温プロセスを含んでいるため好ましくない。
The method shown in (a) of the figure is a method of obtaining an aromatic compound such as benzene and naphthalene by distilling coal tar obtained by dry distillation of coal at about 1000 ° C.
The method shown in (b) of the figure is a method for obtaining aromatic compounds such as benzene and naphthalene by distilling cracked gasoline obtained by steam cracking a naphtha fraction of petroleum at 950 ° C. or higher.
These methods (a) and (b) are made by using co-products and by-products of the cracked gasoline production process as raw materials, but are not preferable because they include a high-temperature process of 1000 ° C.

同図に示す(c)の方法は、石油のナフサ留分を500〜525℃、0.8〜5MPaの水素雰囲気で塩化白金または塩化ロジウム触媒と接触させて得られる分解ガソリンを蒸留して、ベンゼン、ナフタレン等の芳香族化合物を得る方法である。
この方法は、前記の(a)、(b)の方法と比べると、比較的低温であるが、大量の水素と貴金属を使用するため好ましくないため、穏和な条件で、多様な天然資源から、ベンゼン、ナフタレンなどの芳香族化合物を製造することができる方法の開発が望まれている。
The method (c) shown in the figure is obtained by distilling cracked gasoline obtained by bringing a naphtha fraction of petroleum into contact with a platinum chloride or rhodium chloride catalyst in a hydrogen atmosphere of 500 to 525 ° C. and 0.8 to 5 MPa, This is a method for obtaining an aromatic compound such as benzene and naphthalene.
This method is relatively low in temperature compared with the methods (a) and (b) described above, but is not preferable because it uses a large amount of hydrogen and noble metals. Development of a method capable of producing aromatic compounds such as benzene and naphthalene is desired.

同図の(d)に示す方法は、該問題を解決する方法の1つとして、Stockらが提案している方法である(非特許文献1参照)。この方法では、まず、石炭を水と酸素の存在下で200℃に加熱酸化して芳香族カルボン酸を製造し、得られた生成物を有機溶媒で抽出し、抽出物を亜酸化銅触媒存在下、有機溶媒中で12時間、250℃に加熱して脱炭酸する方法である。
しかし、該方法は、1段目の酸化処理は水中で、2段目の脱炭酸処理は有機溶媒中で実施するため、1段目の後に有機溶媒抽出と乾燥工程という分離工程を設ける必要がある。よって、プロセスは煩雑であり好ましくない。また脱炭酸処理に12時間もの長時間がかかるため、好ましくない。
しがって、1段目と2段目の間に分離・乾燥工程を必要としない高効率なプロセスが望まれる。
The method shown in FIG. 4D is a method proposed by Stock et al. As one of the methods for solving the problem (see Non-Patent Document 1). In this method, first, coal is heated and oxidized at 200 ° C. in the presence of water and oxygen to produce an aromatic carboxylic acid, the resulting product is extracted with an organic solvent, and the extract is present with a cuprous oxide catalyst. Then, decarboxylation is performed by heating to 250 ° C. for 12 hours in an organic solvent.
However, in this method, since the first stage oxidation treatment is carried out in water and the second stage decarboxylation treatment is carried out in an organic solvent, it is necessary to provide a separation step of organic solvent extraction and drying step after the first step. is there. Therefore, the process is complicated and not preferable. Further, the decarboxylation process takes a long time of 12 hours, which is not preferable.
Therefore, a highly efficient process that does not require a separation / drying step between the first stage and the second stage is desired.

また、同図の(e)に示す方法は、Entelが提案している方法であり(非特許文献2参照)、まず、石炭を水と酸素の存在下で、270℃で加熱酸化して芳香族カルボン酸を製造し、アルカリ存在下で炭酸銅(II)を加えることで、芳香族カルボン酸を銅炭酸塩(銅カルボキシレート)とし、さらに得られた銅炭酸塩を水中で200℃、24時間加熱することで芳香族化合物を得る方法である。
この方法は、1段目と2段目の間に分離・乾燥工程を必要としない。しかしながら、消費した炭酸銅を回収できず、脱炭酸処理に24時間もの長時間がかかるため、好ましくない。
The method shown in (e) of the figure is a method proposed by Entel (see Non-Patent Document 2). First, coal is heated and oxidized at 270 ° C. in the presence of water and oxygen to produce an aroma. An aromatic carboxylic acid is made into a copper carbonate (copper carboxylate) by adding copper carbonate (II) in the presence of an alkali, and the obtained copper carbonate is further heated at 200 ° C., 24 ° C. In this method, the aromatic compound is obtained by heating for a period of time.
This method does not require a separation / drying step between the first and second stages. However, it is not preferable because consumed copper carbonate cannot be recovered and the decarboxylation process takes 24 hours.

Stock, L. M., Obeng, M., Energy Fuels, 11, 987-997 (1997).Stock, L. M., Obeng, M., Energy Fuels, 11, 987-997 (1997). Entel, J., J Am Chem Soc, 77, 611 (1955).Entel, J., J Am Chem Soc, 77, 611 (1955).

石炭、石油などの化石燃料の枯渇が問題となっている現在、前述の(d)及び(e)の方法は、原料として、石炭以外に、例えば、バイオマス、有機廃棄物等、さらに、それらを処理して得られる含芳香族炭素資源にも適用可能であると考えられるため、有望な方法である。
しかしながら、前述のとおり、酸化処理工程と脱炭酸処理工程の間に分離・乾燥工程を必要とせず、しかも、脱炭酸処理工程を短時間で完了でき、さらには、水と汎用金属酸化物のみを使い、使用済みの触媒を回収できる方法はこれまでに提案されていない。
At present, the depletion of fossil fuels such as coal and oil has become a problem. The above-mentioned methods (d) and (e) are used as raw materials in addition to coal, for example, biomass, organic waste, etc. This is a promising method because it can be applied to aromatic carbon resources obtained by treatment.
However, as described above, no separation / drying step is required between the oxidation treatment step and the decarboxylation treatment step, and the decarboxylation treatment step can be completed in a short time. To date, no method has been proposed that can recover used and spent catalyst.

本発明は、こうした現状を鑑みてなされたものであって、含芳香族炭素資源から、ベンゼン、ナフタレンなどの芳香族化合物を製造する方法において、酸化工程と脱炭酸工程の間に分離・乾燥工程を必要とせず、しかも、脱炭酸工程を短時間で完了できる方法を提供することを目的とするものである。また、本発明は、酸、アルカリ、有機溶媒、水素、及び希少金属等を使用することなく、水と汎用金属酸化物のみを使い、かつ使用済みの触媒を回収できる方法を提供することを目的とするものである。   The present invention has been made in view of such a situation, and in a method for producing an aromatic compound such as benzene and naphthalene from an aromatic carbon resource, a separation / drying step is performed between an oxidation step and a decarboxylation step. It is an object of the present invention to provide a method that can complete the decarboxylation step in a short time. Another object of the present invention is to provide a method that uses only water and a general-purpose metal oxide and can recover a used catalyst without using an acid, an alkali, an organic solvent, hydrogen, a rare metal, or the like. It is what.

本発明者らは、これまでに、酸、アルカリ、有機溶媒、水素、及び希少金属を使用することなく、水中で、安息香酸からベンゼンを或いはナフタレンカルボン酸からナフタレンを効率良く製造する方法を提案している(特願2015−018475)。
しかしながら、原料が芳香族カルボン酸の混合物であった時の有効性は、これまで確かめられていない。
The present inventors have so far proposed a method for efficiently producing benzene from benzoic acid or naphthalene from naphthalenecarboxylic acid in water without using an acid, an alkali, an organic solvent, hydrogen, and a rare metal. (Japanese Patent Application No. 2015-018475).
However, the effectiveness when the raw material is a mixture of aromatic carboxylic acids has not been confirmed so far.

本発明者らが更に検討を重ねた結果、原料が芳香族カルボン酸の混合物であっても、上記の提案の方法が有効であること、すなわち、脱炭酸触媒として亜酸化銅を用いること、及び反応媒体として亜臨界水を用いることにより、石炭、石油、バイオマス、有機廃棄物などの含芳香族炭素資源を酸化して得られる生成物からベンゼンやナフタレンなどの芳香族化合物を生成しうることが判明した。さらに検討した結果、亜臨界水中おける加熱処理を、温度250〜370℃、圧力10〜35MPa、という条件で行うことで、迅速かつ高効率に芳香族化合物を製造しうるという知見を得た。   As a result of further studies by the present inventors, even if the raw material is a mixture of aromatic carboxylic acids, the above-described proposed method is effective, that is, using cuprous oxide as a decarboxylation catalyst, and By using subcritical water as a reaction medium, aromatic compounds such as benzene and naphthalene can be produced from products obtained by oxidizing aromatic carbon resources such as coal, petroleum, biomass and organic waste. found. As a result of further investigation, it was found that an aromatic compound can be produced quickly and efficiently by performing heat treatment in subcritical water under conditions of a temperature of 250 to 370 ° C. and a pressure of 10 to 35 MPa.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]含芳香族炭素資源から、酸化工程及び脱炭酸工程を経て芳香族化合物を製造する方法であって、
前記脱炭酸工程を、触媒として亜酸化銅を用い、該触媒の存在下、亜臨界水中で加熱処理することにより行うこと特徴とする芳香族化合物の製造方法。
[2]前記含芳香族炭素資源が、石炭、石油、バイオマス、有機廃棄物、或いはこれらを更に処理して得られるもの、のいずれかであることを特徴とする[1]に記載の芳香族化合物の製造方法。
[3]前記加熱処理を、温度250〜370℃の条件下で行うことを特徴とする[1]又は[2]に記載の芳香族化合物の製造方法。
[4]前記加熱処理を、圧力10〜35MPaの条件下で行うことを特徴とする[1]〜[3]のいずれかに記載の芳香族化合物の製造方法。
[5]前記酸化工程を、有機溶媒を用いずに行うことを特徴とする[1]〜[4]のいずれかに記載の芳香族化合物の製造方法。
[6]前記酸化工程と前記脱炭酸工程の間に、分離工程及び/又は乾燥工程を有しないことを特徴とする[1]〜[5]のいずれかに記載の芳香族化合物の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A method for producing an aromatic compound from an aromatic carbon resource through an oxidation step and a decarboxylation step,
A method for producing an aromatic compound, wherein the decarboxylation step is performed by using cuprous oxide as a catalyst and heat-treating in subcritical water in the presence of the catalyst.
[2] The aromatic according to [1], wherein the aromatic carbon resource is any one of coal, petroleum, biomass, organic waste, or those obtained by further processing these. Compound production method.
[3] The method for producing an aromatic compound according to [1] or [2], wherein the heat treatment is performed at a temperature of 250 to 370 ° C.
[4] The method for producing an aromatic compound according to any one of [1] to [3], wherein the heat treatment is performed under a pressure of 10 to 35 MPa.
[5] The method for producing an aromatic compound according to any one of [1] to [4], wherein the oxidation step is performed without using an organic solvent.
[6] The method for producing an aromatic compound according to any one of [1] to [5], wherein a separation step and / or a drying step are not provided between the oxidation step and the decarboxylation step.

本発明によれば、石炭、石油、バイオマス、有機廃棄物等、或いはそれらを処理して得られる含芳香族炭素資源から、水と汎用金属酸化物のみを使い、ベンゼン、ナフタレン等の芳香族化合物を、迅速かつ高効率に芳香族化合物を製造することができ、環境負荷およびコストを大幅に低減することができる。また、本発明において触媒として用いる亜酸化銅は、反応媒体として用いる亜臨界水中に溶出せず安定であって、反応後にほぼ完全に固体として回収することができるため、再利用が容易であるという利点を有する。   According to the present invention, aromatic compounds such as benzene, naphthalene, etc., using only water and general-purpose metal oxides from coal, petroleum, biomass, organic waste, etc., or aromatic carbon resources obtained by treating them. Aromatic compounds can be produced quickly and efficiently, and the environmental burden and cost can be greatly reduced. In addition, cuprous oxide used as a catalyst in the present invention is stable without being eluted in subcritical water used as a reaction medium, and can be recovered almost completely as a solid after the reaction, so that it can be easily reused. Have advantages.

従来の、石炭、石油などの含芳香族炭素資源から、ベンゼン、ナフタレンなどの芳香族化合物を製造する代表的な方法を示す図。The figure which shows the typical method of manufacturing aromatic compounds, such as benzene and naphthalene, from the conventional aromatic carbon resources, such as coal and petroleum. 本発明の、含芳香族炭素資源から、ベンゼン、ナフタレンなどの芳香族化合物を製造する方法を示す図。The figure which shows the method of manufacturing aromatic compounds, such as benzene and naphthalene, from the aromatic carbon resource of this invention. 実施例で得られた生成物を、ガスクロマトグラフィ/マススペクトロメトリーによって同定した結果を示す図。The figure which shows the result of having identified the product obtained in the Example by gas chromatography / mass spectrometry.

本発明は、含芳香族炭素資源を酸化工程及び脱炭酸工程を経て芳香族化合物を製造する方法であって、前記脱炭酸処理を、触媒として亜酸化銅を用い、該触媒の存在下、亜臨界水中で加熱処理することにより行うこと特徴とする。
また、本発明においては、前記酸化工程を、有機溶剤を用いずに水中で行うものであり、さらに、酸化工程と脱炭酸工程の間に分離・乾燥工程を必要としないことを特徴とする。
The present invention is a method for producing an aromatic compound through an oxidation process and a decarboxylation process of an aromatic carbon resource, wherein the decarboxylation treatment is performed using cuprous oxide as a catalyst, and in the presence of the catalyst, It is characterized by carrying out heat treatment in critical water.
Further, the present invention is characterized in that the oxidation step is performed in water without using an organic solvent, and further, a separation / drying step is not required between the oxidation step and the decarboxylation step.

図2は、本発明の方法を示す図であり、含芳香族炭素資源として石炭を用いた場合を示している。
本発明において、含芳香族炭素資源としては、石炭以外に、石油、バイオマス、有機廃棄物、或いはそれらを処理したものなど、芳香族炭素を含有するものであれば用いることができ、特に限定されない。
FIG. 2 is a diagram showing the method of the present invention, and shows a case where coal is used as the aromatic carbon resource.
In the present invention, the aromatic carbon resource can be used as long as it contains aromatic carbon such as petroleum, biomass, organic waste, or those treated in addition to coal, and is not particularly limited. .

また、本発明において触媒として用いる亜酸化銅は、反応媒体として用いる亜臨界水中に溶出せず安定であって、反応後にほぼ完全に固体として回収することができるため、再利用が容易であるという利点を有する。   In addition, cuprous oxide used as a catalyst in the present invention is stable without being eluted in subcritical water used as a reaction medium, and can be recovered almost completely as a solid after the reaction, so that it can be easily reused. Have advantages.

本発明における脱炭酸反応は、210℃以下では殆ど反応が進行せず、高温であるほど反応は進行する。したがって、本発明の脱炭酸工程における加熱処理、少なくとも250℃以上で実施することが好ましく、水の臨界温度が374℃であることを考慮すると、適当な温度範囲は250℃〜370℃である。   In the decarboxylation reaction in the present invention, the reaction hardly proceeds at 210 ° C. or lower, and the reaction proceeds as the temperature increases. Therefore, the heat treatment in the decarboxylation step of the present invention is preferably carried out at a temperature of at least 250 ° C. Considering that the critical temperature of water is 374 ° C., an appropriate temperature range is 250 ° C. to 370 ° C.

また、本発明における脱炭酸反応は、高圧であるほど反応が進行する。したがって、本発明の方法において、上記加熱処理は、10〜35MPaの条件下で行うことが好ましい。   In the decarboxylation reaction in the present invention, the reaction proceeds as the pressure increases. Therefore, in the method of the present invention, the heat treatment is preferably performed under a condition of 10 to 35 MPa.

本発明によれば、有機溶媒を使用することなく、水と汎用金属酸化物のみを使い、含芳香族資源を芳香族化合物に転換する方法を提供することができ、従来の、高温、有機溶媒、水素、及び貴金属を使用する方法、および、酸化処理後に分離工程と比較して、環境負荷およびコストを大幅に低減することができる。
また、本発明の方法において触媒として用いる亜酸化銅は、反応後にほぼ完全に固体として回収することができるため、再利用が容易である。
According to the present invention, it is possible to provide a method for converting an aromatic resource into an aromatic compound using only water and a general-purpose metal oxide without using an organic solvent. Compared with the method using hydrogen, noble metal, and the separation step after the oxidation treatment, the environmental burden and cost can be greatly reduced.
Moreover, the cuprous oxide used as a catalyst in the method of the present invention can be almost completely recovered as a solid after the reaction, and thus can be easily reused.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(実施例)
含芳香族炭素資源としてオーストラリア産の褐炭であるLoy Yang炭(以下、LYと略す)を用いた。
内容積50mLのオートクレーブに、LYを2.5g、水20g、水酸化ナトリウム3gを加え、初期圧8.7MPaで酸素を封入し、240℃で、30分間加熱した後に冷却した。本操作によって、1段目の酸化が実施された。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(Example)
Loy Yang coal (hereinafter abbreviated as LY), an Australian brown coal, was used as an aromatic carbon resource.
To an autoclave with an internal volume of 50 mL, 2.5 g of LY, 20 g of water, and 3 g of sodium hydroxide were added, oxygen was sealed at an initial pressure of 8.7 MPa, and the mixture was heated at 240 ° C. for 30 minutes and then cooled. By this operation, the first stage oxidation was performed.

次いで、硫酸を加えてオートクレーブ内部の水溶液のpHを1.5に調整し、水10gと亜酸化銅1gを加え、窒素雰囲気で、350℃、60分間加熱した後に冷却した。本操作によって、酸化処理後に分離工程を経ず、2段目の脱炭酸が実施された。   Next, sulfuric acid was added to adjust the pH of the aqueous solution inside the autoclave to 1.5, 10 g of water and 1 g of cuprous oxide were added, and the mixture was heated in a nitrogen atmosphere at 350 ° C. for 60 minutes and then cooled. By this operation, the second stage decarboxylation was carried out after the oxidation treatment without passing through the separation step.

なお、ここでは、酸化処理時に水酸化ナトリウムを用い、脱炭酸処理前に硫酸でpHを調整しているが、酸化処理の条件を変更することで、必ずしもアルカリと酸を使用する必要はない。   Here, sodium hydroxide is used during the oxidation treatment, and the pH is adjusted with sulfuric acid before the decarboxylation treatment. However, it is not always necessary to use an alkali and an acid by changing the oxidation treatment conditions.

生成物を、ガスクロマトグラフィ/マススペクトロメトリーによって同定した結果を、図3と表1に示す。
図及び表に示すとおり、ベンゼン、ナフタレン、フルオレノンを高い純度で得られることが確認された。
The results of product identification by gas chromatography / mass spectrometry are shown in FIG.
As shown in the figure and table, it was confirmed that benzene, naphthalene and fluorenone can be obtained with high purity.

Figure 0006433835
Figure 0006433835

本実施例により、酸化処理後に分離工程を経ず、350℃以下という穏和な条件で、かつ1時間という短時間で、石炭から比較的高い純度のベンゼン、ナフタレン、フルオレノンを製造できることが確認された。また、本発明者らの先の出願(特願2015−18475)の方法が、原料が天然資源由来の芳香族カルボン酸を含む混合物に対しても有効であることがわかった。   According to this example, it was confirmed that relatively high purity benzene, naphthalene, and fluorenone can be produced from coal in a short time of 1 hour under mild conditions of 350 ° C. or less without undergoing a separation step after the oxidation treatment. . Moreover, it turned out that the method of our previous application (Japanese Patent Application No. 2015-18475) is effective also with respect to the mixture in which a raw material contains the aromatic carboxylic acid derived from a natural resource.

Claims (6)

含芳香族炭素資源から、酸化工程及び脱炭酸工程を経て芳香族化合物を製造する方法であって、
前記脱炭酸工程を、触媒として亜酸化銅を用い、該触媒の存在下、亜臨界水中で加熱処理することにより行うこと特徴とする芳香族化合物の製造方法。
A method for producing an aromatic compound from an aromatic carbon resource through an oxidation step and a decarboxylation step,
A method for producing an aromatic compound, wherein the decarboxylation step is performed by using cuprous oxide as a catalyst and heat-treating in subcritical water in the presence of the catalyst.
前記含芳香族炭素資源が、石炭、石油、バイオマス、有機廃棄物、或いはこれらを更に処理して得られるもの、のいずれかであることを特徴とする請求項1に記載の芳香族化合物の製造方法。   2. The production of an aromatic compound according to claim 1, wherein the aromatic carbon resource is any one of coal, petroleum, biomass, organic waste, or one obtained by further processing these. Method. 前記加熱処理を、温度50〜370℃の条件下で行うことを特徴とする請求項1又は2に記載の芳香族化合物の製造方法。 Manufacturing method of the heat treatment, an aromatic compound according to claim 1 or 2, characterized in that under the conditions of a temperature 3 50-370 ° C.. 前記加熱処理を、圧力10〜35MPaの条件下で行うことを特徴とする請求項1〜3のいずれか1項に記載の芳香族化合物の製造方法。   The method for producing an aromatic compound according to any one of claims 1 to 3, wherein the heat treatment is performed under a pressure of 10 to 35 MPa. 前記酸化工程を、有機溶媒を用いずに行うことを特徴とする請求項1〜4のいずれか1項に記載の芳香族化合物の製造方法。   The method for producing an aromatic compound according to claim 1, wherein the oxidation step is performed without using an organic solvent. 前記酸化工程と前記脱炭酸工程の間に、分離工程及び乾燥工程を有しないことを特徴とする請求項1〜5のいずれか1項に記載の芳香族化合物の製造方法。 Production method of the during the oxidation step and the decarboxylation step, the aromatic compound according to any one of claims 1 to 5, characterized in that it does not have a separation step及beauty Drying process.
JP2015059875A 2015-03-23 2015-03-23 Method for producing aromatic compound Active JP6433835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059875A JP6433835B2 (en) 2015-03-23 2015-03-23 Method for producing aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059875A JP6433835B2 (en) 2015-03-23 2015-03-23 Method for producing aromatic compound

Publications (2)

Publication Number Publication Date
JP2016179950A JP2016179950A (en) 2016-10-13
JP6433835B2 true JP6433835B2 (en) 2018-12-05

Family

ID=57132566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059875A Active JP6433835B2 (en) 2015-03-23 2015-03-23 Method for producing aromatic compound

Country Status (1)

Country Link
JP (1) JP6433835B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143130A (en) * 1984-08-07 1986-03-01 Nippon Shokubai Kagaku Kogyo Co Ltd Production of 1,2,3,4-tetrafluorobenzene
CA2025044C (en) * 1989-09-22 1999-12-21 Michael Siskin Process for converting and upgrading organic resource materials in aqueous environments
DE19515985A1 (en) * 1995-05-02 1996-11-07 Hoechst Ag Process for the preparation of aromatic compounds by decarboxylation of aromatic carboxylic acids
DE19546520A1 (en) * 1995-12-13 1997-06-19 Hoechst Ag New derivatives of 2,3,6-trifluorophenol and a process for their preparation
WO2006014486A1 (en) * 2004-07-07 2006-02-09 California Institute Of Technology Process to upgrade oil using metal oxides

Also Published As

Publication number Publication date
JP2016179950A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
Du et al. Hydrogen‐Independent reductive transformation of carbohydrate biomass into γ‐valerolactone and pyrrolidone derivatives with supported gold catalysts
AR047498A1 (en) EXTRACTION PROCESS FOR REMOVAL OF IMPURITIES FROM AN OXIDIZING PURGE CURRENT IN THE CARBOXYLIC ACID SYNTHESIS
JP6255093B2 (en) Method for treating magnesium chloride solution
Pan et al. Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization
JP2012525388A5 (en)
US10221149B2 (en) Process for the preparation of gamma-valerolactone by catalytic hydrogenation of levulinic acid using Ru-based catalysts
TW201629236A (en) Leaching method for lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
SG162780A1 (en) Process for the manufacture of carboxylic acids
JP2021151651A (en) Recycling method of food wastes
JP6433835B2 (en) Method for producing aromatic compound
TW201540788A (en) Fly ash removing process of scrap tire
Lee et al. Development of bioprocess for corncob-derived levulinic acid production
JP2016511760A (en) Method for producing methyl lactate
CN103805774A (en) Method for synergistically reducing pyrolusite by using organic matters with low carbon numbers
JP5635275B2 (en) Alcohol oxidation method
JP2010083789A (en) Solid base catalyst, method for producing the same, and method for using the same
JP2010144094A (en) Production method of reformed coal and hydrocarbon oil
CN103224537A (en) Method for degrading coal by using Fenton reaction
JP2011092024A (en) Method for producing and using hydrogen
US1903834A (en) Process for producing carbonaceous material
JP6433801B2 (en) Method for producing benzene or naphthalene
JP3931224B2 (en) Separation and recovery of phenols from treated water
JP6450503B1 (en) Method for producing tar acid
JP2015003955A (en) Method of decomposing lignin
JP2010131489A (en) Method of treating aromatic amines-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181107

R150 Certificate of patent or registration of utility model

Ref document number: 6433835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250