JP6432040B2 - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP6432040B2
JP6432040B2 JP2014255776A JP2014255776A JP6432040B2 JP 6432040 B2 JP6432040 B2 JP 6432040B2 JP 2014255776 A JP2014255776 A JP 2014255776A JP 2014255776 A JP2014255776 A JP 2014255776A JP 6432040 B2 JP6432040 B2 JP 6432040B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
partition plate
storage member
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014255776A
Other languages
Japanese (ja)
Other versions
JP2016114337A (en
Inventor
山本 照夫
照夫 山本
安藤 智朗
智朗 安藤
由樹 山岡
由樹 山岡
繁男 青山
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014255776A priority Critical patent/JP6432040B2/en
Publication of JP2016114337A publication Critical patent/JP2016114337A/en
Application granted granted Critical
Publication of JP6432040B2 publication Critical patent/JP6432040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、潜熱蓄熱材を利用した蓄熱装置に関する。   The present invention relates to a heat storage device using a latent heat storage material.

従来、蓄熱装置として、図6に示すような、容器に蓄熱材を封入してなる蓄熱部材11を、筐体内に多層に配列、充填し、該蓄熱部材11間に波状の金属スペーサ15を介在せしめ、隣り合った蓄熱部材11の間に熱媒体を通過させて蓄熱するものが知られている(例えば、特許文献1参照)。   Conventionally, as a heat storage device, as shown in FIG. 6, a heat storage member 11 in which a heat storage material is sealed in a container is arranged and filled in multiple layers in a casing, and a corrugated metal spacer 15 is interposed between the heat storage members 11. It is known that heat is stored by passing a heat medium between adjacent heat storage members 11 (see, for example, Patent Document 1).

特公昭58−55439号公報Japanese Patent Publication No.58-55439

一般に蓄熱装置は、装置の体積に制約がある中で蓄放熱性能を最大化させるために、蓄熱材の充填量を大きくし、かつ蓄熱材の熱伝導をよくするために蓄熱部材を薄く、さらに個数を多くして伝熱面積を増やす必要がある。また、各蓄熱部材の間隔を小さくする必要がある。   In general, a heat storage device is designed to increase the amount of heat storage material in order to maximize the heat storage and heat dissipation performance while the volume of the device is constrained. It is necessary to increase the heat transfer area by increasing the number. Moreover, it is necessary to make the space | interval of each heat storage member small.

しかしながら、前記従来の構成では、蓄熱部材の間隔が小さくなればなるほど、隣接する蓄熱部材の表面どうしの全体にわたって、薄く均一な間隔の熱媒体流路を、波上の金属スペーサで形成することは困難であった。このため、熱媒体の流れが偏在して蓄熱部材全面からうまく伝熱されなくなるという課題を有していた。   However, in the conventional configuration, as the interval between the heat storage members becomes smaller, it is possible to form the heat medium flow path with a thin and uniform interval with the metal spacer on the wave over the entire surfaces of the adjacent heat storage members. It was difficult. For this reason, there existed a subject that the flow of a heat medium was unevenly distributed and heat transfer was not carried out well from the heat storage member whole surface.

本発明は、上記課題を解決するもので、装置全体の体積を極力小さくする中で蓄熱材の充填量を大きくしつつ、蓄熱材と熱媒体とがまんべんなく熱交換をおこなうことのできる蓄熱装置を提供することを目的とする。   The present invention solves the above-described problem, and provides a heat storage device that can exchange heat evenly between the heat storage material and the heat medium while increasing the filling amount of the heat storage material while reducing the volume of the entire device as much as possible. The purpose is to provide.

前記従来の課題を解決するために、本発明の蓄熱装置は、筐体と、前記筐体内に設けられ、袋状の容器に潜熱蓄熱材が封入された複数の蓄熱部材と、互いに対向する前記蓄熱部材の間に設けられた仕切板と、を備え、前記仕切板は、前記蓄熱部材の主面と平行な平坦部と、前記平坦部から前記蓄熱部材側に突出した突起部とを有し、前記隣接する蓄熱部材の表面と前記仕切板の平坦部とは隙間なく接して積層されており、一方、前記蓄熱部材の表面に前記仕切板の前記突起部の先端が接して積層されていることで、その近傍に隙間が形成されており、かつ、前記隙間は前記蓄熱部材と熱交換する熱媒体の流路であることを特徴としたものである。 In order to solve the conventional problem, a heat storage device according to the present invention includes a housing and a plurality of heat storage members provided in the housing and encapsulating a latent heat storage material in a bag-like container, and facing each other. and a partition plate provided between the heat storage member, said partition plate, possess a plane parallel to the principal flat portion of the heat storage member, and a projection which projects the heat storage member side from the flat portion The surface of the adjacent heat storage member and the flat portion of the partition plate are stacked in contact with each other without a gap, while the tip of the protrusion of the partition plate is stacked in contact with the surface of the heat storage member. Thus, a gap is formed in the vicinity thereof, and the gap is a flow path of a heat medium that exchanges heat with the heat storage member .

これによって、潜熱蓄熱材を封入した袋状の容器の表面が仕切板の突起部によって部分的に押しのけられ、その近傍に熱媒体が通過する流路がつくられる。一方、仕切板の平坦部においては袋状の容器の表面は仕切板にすきまなく接し、熱媒体は通過させない。この構成によって蓄熱部材の表面全体にわたって任意の場所に熱媒体を通過させる流路を設計することができる。このため、潜熱蓄熱材と熱媒体との熱交換の効率を向上させることができる。   As a result, the surface of the bag-like container enclosing the latent heat storage material is partially pushed away by the projections of the partition plate, and a flow path through which the heat medium passes is created in the vicinity thereof. On the other hand, in the flat part of the partition plate, the surface of the bag-like container is in contact with the partition plate without any gap, and the heat medium is not allowed to pass therethrough. With this configuration, it is possible to design a flow path through which the heat medium passes at an arbitrary place over the entire surface of the heat storage member. For this reason, the efficiency of heat exchange between the latent heat storage material and the heat medium can be improved.

本発明の蓄熱装置は、潜熱蓄熱材の充填量を大きく確保しつつ、熱媒体の流れが偏在することがなく、有効に蓄熱材と熱媒体との熱交換がおこなわれる。   In the heat storage device of the present invention, a large amount of the latent heat storage material is ensured, and the flow of the heat medium is not unevenly distributed, so that heat exchange between the heat storage material and the heat medium is performed effectively.

本発明の実施の形態1における蓄熱装置の構成断面図Cross-sectional view of the configuration of the heat storage device in Embodiment 1 of the present invention 同蓄熱装置における仕切板の斜視図Perspective view of partition plate in the heat storage device 同蓄熱装置における仕切板の断面図Sectional drawing of the partition plate in the heat storage device 同蓄熱装置組立方法を説明する図The figure explaining the heat storage device assembly method 変形例における仕切板の断面図Sectional drawing of the partition plate in a modification 従来の蓄熱装置の構成断面図Cross-sectional view of a conventional heat storage device

第1の発明は、筐体と、前記筐体内に設けられ、袋状の容器に潜熱蓄熱材が封入された複数の蓄熱部材と、互いに対向する前記蓄熱部材の間に設けられた仕切板と、を備え、前記仕切板は、前記蓄熱部材の主面と平行な平坦部と、前記平坦部から前記蓄熱部材側に突出した突起部とを有し、前記隣接する蓄熱部材の表面と前記仕切板の平坦部とは隙間なく接して積層されており、一方、前記蓄熱部材の表面に前記仕切板の前記突起部の先端が接して積層されていることで、その近傍に隙間が形成されており、かつ、前記隙間は前記蓄熱部材と熱交換する熱媒体の流路であるものである。 The first invention includes a housing, a plurality of heat storage members provided in the housing, in which a latent heat storage material is sealed in a bag-like container, and a partition plate provided between the heat storage members facing each other. , wherein the partition plate includes a plane parallel to the principal flat portion of the heat storage member, said have a from the flat portion and a projection which projects the heat storage member, wherein the surface of the adjacent heat storage member partition The flat portion of the plate is laminated in contact with the gap without any gap, and on the other hand, the tip of the projection of the partition plate is laminated on the surface of the heat storage member, so that a gap is formed in the vicinity thereof In addition, the gap is a flow path of a heat medium that exchanges heat with the heat storage member .

これにより、潜熱蓄熱材を封入した袋状の容器の表面が前記仕切板の突起部によって部分的に押しのけられ、その近傍に熱媒体が通過する流路がつくられる。一方、前記仕切板の平坦部においては袋状の容器の表面は仕切板にすきまなく接し、熱媒体は通過させない。この構成によって蓄熱部材の表面全体にわたって任意の場所に熱媒体を通過させる流路を設計することができる。   As a result, the surface of the bag-like container enclosing the latent heat storage material is partially pushed away by the protrusion of the partition plate, and a flow path through which the heat medium passes is created in the vicinity thereof. On the other hand, in the flat part of the partition plate, the surface of the bag-like container is in contact with the partition plate without any gap, and the heat medium is not allowed to pass therethrough. With this configuration, it is possible to design a flow path through which the heat medium passes at an arbitrary place over the entire surface of the heat storage member.

第2の発明は、特に第1の発明の前記蓄熱部材の袋状の容器を、金属の薄膜、樹脂の薄膜、または、金属の薄膜と樹脂の薄膜を貼り合わせた積層フィルムのいずれか1つで構成することにより、薄く高強度でかつ適度な可撓性を有する容器となるため、突起部に押しのけられる際に熱媒体流路としての隙間を形成しつつ、平坦部では容器表面は仕切板に沿い、熱媒体を通過させない。   In the second invention, in particular, any one of the bag-like container of the heat storage member of the first invention is a metal thin film, a resin thin film, or a laminated film in which a metal thin film and a resin thin film are bonded together. By forming the container, the container surface is thin, high-strength, and has an appropriate flexibility. Do not allow the heating medium to pass along.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における蓄熱装置の構成を示す断面図である。図1は、熱媒体の流れ方向に垂直な面での断面図である。図2は、蓄熱装置に設けられた仕切板の斜視図であり、図3は、仕切板の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a heat storage device according to the first embodiment of the present invention. FIG. 1 is a cross-sectional view taken along a plane perpendicular to the flow direction of the heat medium. FIG. 2 is a perspective view of a partition plate provided in the heat storage device, and FIG. 3 is a cross-sectional view of the partition plate.

図1に示すように、筐体4は、金属または樹脂で構成された容器である。その内部には、複数の蓄熱部材1と仕切板2とが交互に積み重ねられて設けられている。また、筐体4は、内部に蓄熱部材1と熱交換する熱媒体(例えば、水や冷媒など)を流すことができる密閉容器であり、熱媒体を流入させる入口部(図示せず)と、熱媒体を流出させる出口部(図示せず)とを備えている。図1において、入口部から流入した熱媒体は、紙面に垂直な方向へ流れ、出口部から流出する。   As shown in FIG. 1, the housing | casing 4 is a container comprised with the metal or resin. In the interior, a plurality of heat storage members 1 and partition plates 2 are alternately stacked. The housing 4 is a sealed container in which a heat medium (for example, water or a refrigerant) that exchanges heat with the heat storage member 1 can flow, and an inlet portion (not shown) through which the heat medium flows; And an outlet (not shown) through which the heat medium flows out. In FIG. 1, the heat medium flowing in from the inlet portion flows in a direction perpendicular to the paper surface and flows out from the outlet portion.

蓄熱部材1は、金属の薄膜と樹脂の薄膜とを貼り合せた積層フィルムの袋(本発明のおける袋状の容器)1bに、潜熱蓄熱材1aが封入されている(図4参照)。   In the heat storage member 1, a latent heat storage material 1a is enclosed in a laminated film bag (bag-like container according to the present invention) 1b in which a metal thin film and a resin thin film are bonded together (see FIG. 4).

また、図2、図3に示すように、仕切板2は、金属等で構成された略平板状の板であり、蓄熱部材1の主面と平行な面である平坦部2bと、平坦部2bから蓄熱部材1の方向へ突出する複数の突起部2aとを交互に備えている。突起部2aは、仕切板2の熱媒体の流れ方向(図2の矢印方向)の全幅にわたって形成されている。   2 and 3, the partition plate 2 is a substantially flat plate made of metal or the like, and includes a flat portion 2b that is parallel to the main surface of the heat storage member 1, and a flat portion. A plurality of protrusions 2 a protruding in the direction of the heat storage member 1 from 2 b are alternately provided. The protrusion 2a is formed over the entire width of the partition plate 2 in the flow direction of the heat medium (the arrow direction in FIG. 2).

図3に示すように、突起部2aは、平坦部2bから一方(図3においては上方)へ突出する傾斜面を形成する第1傾斜面21と、平坦部2bから他方(図3においては下方)へ突出する傾斜面を形成する第2傾斜面22と、第1傾斜面21と第2傾斜面22とを接続する第3傾斜面23とから形成されている。   As shown in FIG. 3, the projecting portion 2a includes a first inclined surface 21 that forms an inclined surface that protrudes from the flat portion 2b to one side (upward in FIG. 3), and the other from the flat portion 2b (downward in FIG. 3). ) And the third inclined surface 23 connecting the first inclined surface 21 and the second inclined surface 22 to each other.

第1傾斜面21、第2傾斜面22が平坦部2bから突出する長さ(高さ)は、平坦部2bの熱媒体流れ方向に垂直な長さ(突起部2aどうしの間隔)より小さく、1/2以下であることが望ましい。また、第1傾斜面21と第2傾斜面22とは平行に形成されている。第3傾斜面23と平坦部2bとがなす角度は、第1傾斜面21、第2傾斜面22と平坦部2bとがなす角度より大きい。つまり、第3傾斜面23は、第1傾斜面21、第2傾斜面22より平坦部2bに対して急な斜面となっている。第3傾斜面23は平坦部2bに対して、略垂直であることが望ましい。   The length (height) at which the first inclined surface 21 and the second inclined surface 22 protrude from the flat portion 2b is smaller than the length perpendicular to the heat medium flow direction of the flat portion 2b (interval between the protruding portions 2a). It is desirable that it is 1/2 or less. The first inclined surface 21 and the second inclined surface 22 are formed in parallel. The angle formed between the third inclined surface 23 and the flat portion 2b is larger than the angle formed between the first inclined surface 21, the second inclined surface 22 and the flat portion 2b. That is, the third inclined surface 23 is steeper than the first inclined surface 21 and the second inclined surface 22 with respect to the flat portion 2b. The third inclined surface 23 is preferably substantially perpendicular to the flat portion 2b.

筐体4内に、蓄熱部材1と仕切板2とを交互に隣接して積み重ねることにより、仕切板2の突起部2aによって、隣接する蓄熱部材1の積層フィルムの袋1bの表面が互いに押しのけられ、それによって熱媒体が流れる熱媒体流路3が形成される。   By stacking the heat storage members 1 and the partition plates 2 alternately adjacent to each other in the housing 4, the surfaces of the laminated film bags 1 b of the adjacent heat storage members 1 are pushed away by the protrusions 2 a of the partition plates 2. Thereby, the heat medium flow path 3 through which the heat medium flows is formed.

次に、上に述べた構成の蓄熱装置の組立方法を、図4を用いて説明する。図4(a)は、蓄熱部材1と仕切板2を積層する前の状態を示す部分断面図であり、図4(b)は、蓄熱部材1と仕切板2を積層させた後の状態を示す部分断面図である。潜熱蓄熱材1aはその融点以下では固体、融点以上で液体となる蓄熱剤である。このため、蓄熱装置の組立にあたり、まず所定量の潜熱蓄熱材1aを積層フィルムの袋1bに封入して密封した蓄熱部材1を、融点以上に加熱する。融点以上に加熱された状態では、蓄熱部材1は液体となった潜熱蓄熱材1aによって自由な形状をとり、それによって積層フィルムの袋1bも接する物体の形状に沿うようになる。しかしながら積層フィルムの袋1bは、その可撓性の程度によって、完全に物体表面に沿うのではなく、急な形状変化のある部分では、緩やかに沿うこととなる。   Next, a method for assembling the heat storage device having the above-described configuration will be described with reference to FIG. FIG. 4A is a partial cross-sectional view showing a state before the heat storage member 1 and the partition plate 2 are stacked, and FIG. 4B shows a state after the heat storage member 1 and the partition plate 2 are stacked. It is a fragmentary sectional view shown. The latent heat storage material 1a is a heat storage agent that is solid below its melting point and liquid above the melting point. For this reason, in assembling the heat storage device, first, the heat storage member 1 in which a predetermined amount of the latent heat storage material 1a is sealed in the laminated film bag 1b and sealed is heated to the melting point or higher. In a state of being heated to the melting point or higher, the heat storage member 1 takes a free shape by the latent heat storage material 1a that has become a liquid, whereby the laminated film bag 1b follows the shape of the contacting object. However, the laminated film bag 1b does not completely follow the surface of the object depending on the degree of flexibility, but gently follows along the part where the shape changes suddenly.

次に、複数の蓄熱部材1と複数の仕切板2を交互にならべる(図4(a)参照)。その後、積層方向に力を加え、隣接する蓄熱部材1と仕切板2の平坦部2bとが接するように積層する(図4(b)参照)。このとき、蓄熱部材1の袋1bは、仕切板2の平坦部2bに沿うようになる。つまり、蓄熱部材1の表面と平坦部2bとの間には、隙間はできない。一方、突起部2aの先端に積層フィルムの袋1b表面が接するが、その近傍には沿うことができず、仕切板2と蓄熱部材1の表面との間に隙間ができる。この隙間が、熱媒体が流れる熱媒体流路3となる。   Next, the plurality of heat storage members 1 and the plurality of partition plates 2 are arranged alternately (see FIG. 4A). Then, it laminates | stacks so that force may be applied in the lamination direction and the adjacent heat storage member 1 and the flat part 2b of the partition plate 2 may contact | connect (refer FIG.4 (b)). At this time, the bag 1 b of the heat storage member 1 comes along the flat portion 2 b of the partition plate 2. That is, there is no gap between the surface of the heat storage member 1 and the flat portion 2b. On the other hand, the surface of the laminated film bag 1 b is in contact with the tip of the protrusion 2 a, but cannot follow the vicinity thereof, and a gap is formed between the partition plate 2 and the surface of the heat storage member 1. This gap becomes the heat medium flow path 3 through which the heat medium flows.

積層された蓄熱部材1と仕切板2とは、筐体4に収められて所定の構成となる。その後、潜熱蓄熱材1aが融点以下の温度にして、組立が終わる。   The laminated heat storage member 1 and the partition plate 2 are housed in the housing 4 and have a predetermined configuration. Thereafter, the latent heat storage material 1a is brought to a temperature below the melting point, and the assembly is completed.

以上のように構成された蓄熱装置について、以下その動作、作用を説明する。   About the thermal storage apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

蓄熱装置に熱をためる蓄熱運転、または、熱を取り出す放熱運転において、熱媒体流路3に熱媒体を流し、蓄熱部材1との熱交換をおこなう。突起部2aは仕切板2の熱媒体の流れ方向(図2の矢印方向)にわたって形成されているため、熱媒体流路3は突起部2aの近傍にできた管状のものとなり、この中に熱媒体をスムーズに流すことができる。この管状の熱媒体流路3の寸法やピッチは蓄熱部材1のサイズや熱媒体の流量に応じて、必要な伝熱面積を得るように設計することが可能である。   In the heat storage operation for accumulating heat in the heat storage device or the heat radiation operation for extracting heat, the heat medium is passed through the heat medium flow path 3 to exchange heat with the heat storage member 1. Since the protrusion 2a is formed over the flow direction of the heat medium of the partition plate 2 (the arrow direction in FIG. 2), the heat medium flow path 3 has a tubular shape in the vicinity of the protrusion 2a. The medium can flow smoothly. The dimensions and pitch of the tubular heat medium flow path 3 can be designed to obtain a necessary heat transfer area according to the size of the heat storage member 1 and the flow rate of the heat medium.

このことにより、積層フィルムの袋1bの寸法精度はそれほど正確ではないのであるが、比較的大きな熱媒体流路3の径をとりながら、潜熱蓄熱材1aの充填量を大きくすることが可能となる。   Accordingly, the dimensional accuracy of the laminated film bag 1b is not so accurate, but it is possible to increase the filling amount of the latent heat storage material 1a while taking a relatively large diameter of the heat medium passage 3. .

また、突起部2aの数とその高さ(突起部2aの大きさ)は、それぞれ独立に決めることができ、その結果として熱媒体流路3の断面積とその伝熱面積が任意に設計できる。管状の流路は熱媒体がスムーズに流れやすく、また物性や流量を考慮して蓄熱部材1の体積を最大化できる寸法を決めればよい。   Further, the number of protrusions 2a and the height thereof (the size of the protrusion 2a) can be determined independently, and as a result, the cross-sectional area of the heat medium passage 3 and its heat transfer area can be arbitrarily designed. . The tubular flow path may be determined so that the heat medium is easy to flow smoothly, and the dimension capable of maximizing the volume of the heat storage member 1 is determined in consideration of physical properties and flow rate.

また、蓄熱部材の表面全体にわたって任意の場所に熱媒体流路3を設計することができる。例えば、筐体4内において、入口部と出口部の位置関係から熱媒体が流れにくい部分に位置する場所には、突起部2aを密に設けることで、熱媒体の流れの偏在を低減できる。このため、潜熱蓄熱材と熱媒体との熱交換の効率を向上させることができる。   Moreover, the heat medium flow path 3 can be designed in arbitrary places over the whole surface of a thermal storage member. For example, the uneven distribution of the flow of the heat medium can be reduced by providing the projections 2a densely at locations where the heat medium does not easily flow in the housing 4 due to the positional relationship between the inlet portion and the outlet portion. For this reason, the efficiency of heat exchange between the latent heat storage material and the heat medium can be improved.

また、熱媒体流路3の断面積が小さいほど蓄熱部材の体積は大きくできる反面、伝熱面積は減少するのであるが、仕切板2の熱伝導による伝熱面積の拡大効果により、単に管状の熱媒体流路3の周長以上に伝熱量は大きくなるという効果もある。このことについては、従来のように薄い一様な隙間を形成する場合には、熱媒体をまんべんなく流すことが非常に困難になる上に、隙間の間隔の寸法で流路断面積と伝熱面積の関係が決まってしまうので、熱媒体の物性や流量を考慮した上でのそれぞれの最適設計ができないことに対して、本実施の形態の大きな長所となる。   Moreover, although the volume of the heat storage member can be increased as the cross-sectional area of the heat medium flow path 3 is smaller, the heat transfer area is reduced. However, due to the expansion effect of the heat transfer area due to the heat conduction of the partition plate 2, it is simply tubular. There is also an effect that the amount of heat transfer becomes larger than the circumference of the heat medium flow path 3. In this regard, when a thin uniform gap is formed as in the prior art, it is very difficult to flow the heat medium evenly, and the flow path cross-sectional area and the heat transfer area are determined by the gap interval dimension. This is a great advantage of the present embodiment in that each optimum design cannot be performed in consideration of the physical properties and flow rate of the heat medium.

また、本実施の形態では、第3傾斜面23は、第1傾斜面21、第2傾斜面22より平坦部2bに対して急な斜面となっているため、第1傾斜面21と第3傾斜面23の間の空間や、第2傾斜面22と第3傾斜面23の間の空間に、袋1bが入り込みにくくなるため、突起部2aの近傍に確実に隙間を設けることができる。   In the present embodiment, the third inclined surface 23 is steeper than the first inclined surface 21 and the second inclined surface 22 with respect to the flat portion 2b. Since the bag 1b is less likely to enter the space between the inclined surfaces 23 and the space between the second inclined surface 22 and the third inclined surface 23, a gap can be reliably provided in the vicinity of the protruding portion 2a.

また、本実施の形態では、第1傾斜面21、第2傾斜面22の平坦部2bからの高さは、突起部2aどうしの間隔より十分小さいので、隣接する熱媒体流路3が連通することを防止できる。つまり、独立した熱媒体流路3を複数、形成することができる。これによって、筐体4内における熱媒体の流れの偏在をさらに低減できる。   Moreover, in this Embodiment, since the height from the flat part 2b of the 1st inclined surface 21 and the 2nd inclined surface 22 is sufficiently smaller than the space | interval of the projection parts 2a, the adjacent heat carrier flow path 3 is connected. Can be prevented. That is, a plurality of independent heat medium flow paths 3 can be formed. Thereby, the uneven distribution of the flow of the heat medium in the housing 4 can be further reduced.

以上のように、本実施の形態においては、積層フィルムの袋1bの適当な可撓性を利用して、仕切板2の突起部2aと平坦部2bの配置を設計することにより、蓄熱部材1と熱媒体との良好な熱交換関係を実現する熱媒体流路3を形成することができ、無理なく蓄熱部材1全体の蓄熱を有効に利用することができる。   As described above, in the present embodiment, the heat storage member 1 is designed by designing the arrangement of the protruding portions 2a and the flat portions 2b of the partition plate 2 by utilizing the appropriate flexibility of the laminated film bag 1b. The heat medium flow path 3 that realizes a good heat exchange relationship between the heat storage medium and the heat medium can be formed, and the heat storage of the entire heat storage member 1 can be used effectively without difficulty.

また、潜熱蓄熱材の充填量を大きく確保しつつ、熱媒体の個々の流路の大きさやその配置を計画的におこなう自由度が高いので、熱媒体の流れが偏在することがなく、有効に蓄熱材と熱媒体との熱交換がおこなわれる。   In addition, while ensuring a large filling amount of the latent heat storage material, there is a high degree of freedom to systematically size and arrange the individual flow paths of the heat medium, so the heat medium flow is not unevenly distributed and effective. Heat exchange between the heat storage material and the heat medium is performed.

なお、本実施の形態では、第1傾斜面21と第2傾斜面22とは、平坦部2bからの高さが同じであるが、異なる高さにしても良い。さらに、仕切板2の変形例として、図5に示すように、仕切板が備える突起部は、第1傾斜面21と第3傾斜面23とで形成され第2傾斜面22を備えない突起部であってもよい(図5(a)参照)。また、第2傾斜面22と第3傾斜面23とで形成され第1傾斜面21を備えない突起部であってもよい(図5(b)参照)。   In the present embodiment, the first inclined surface 21 and the second inclined surface 22 have the same height from the flat portion 2b, but may have different heights. Further, as a modification of the partition plate 2, as shown in FIG. 5, the protrusion provided in the partition plate is formed of a first inclined surface 21 and a third inclined surface 23 and does not include the second inclined surface 22. (See FIG. 5A). Moreover, the protrusion part which is formed of the second inclined surface 22 and the third inclined surface 23 and does not include the first inclined surface 21 may be used (see FIG. 5B).

また、袋1bは、金属と樹脂の薄膜を貼り合せた積層フィルムであることが、潜熱蓄熱材1aを内部に保持する耐久性と、突起部2a近傍に隙間を生じる可撓性とを備える点で望ましいが、これに限ることなく、例えば、金属の薄膜や、樹脂の薄膜であってもよい。   Further, the bag 1b is a laminated film in which a thin film of metal and resin is bonded, and has the durability to hold the latent heat storage material 1a inside and the flexibility to create a gap near the protrusion 2a. However, the present invention is not limited to this. For example, a metal thin film or a resin thin film may be used.

以上のように、本発明にかかる蓄熱装置は、潜熱蓄熱材を有効に実装し、小さい体積で大きな蓄熱量を得ることができるので、家庭用、業務用の給湯装置、温水暖房装置に適用することができる。   As described above, since the heat storage device according to the present invention can effectively mount the latent heat storage material and obtain a large amount of heat storage with a small volume, it is applied to hot water heaters and hot water heaters for home use and business use. be able to.

1 蓄熱部材
1a 潜熱蓄熱材
1b 袋
2 仕切板
2a 突起部
2b 平坦部
3 熱媒体流路
4 筐体
21 第1傾斜面
22 第2傾斜面
23 第3傾斜面
DESCRIPTION OF SYMBOLS 1 Heat storage member 1a Latent heat storage material 1b Bag 2 Partition plate 2a Projection part 2b Flat part 3 Heat medium flow path 4 Housing | casing 21 1st inclined surface 22 2nd inclined surface 23 3rd inclined surface

Claims (2)

筐体と、前記筐体内に設けられ、袋状の容器に潜熱蓄熱材が封入された複数の蓄熱部材と、互いに対向する前記蓄熱部材の間に設けられた仕切板と、を備え、前記仕切板は、前記蓄熱部材の主面と平行な平坦部と、前記平坦部から前記蓄熱部材側に突出した突起部とを有し、前記隣接する蓄熱部材の表面と前記仕切板の平坦部とは隙間なく接して積層されており、一方、前記蓄熱部材の表面に前記仕切板の前記突起部の先端が接して積層されていることで、その近傍に隙間が形成されており、かつ、前記隙間は前記蓄熱部材と熱交換する熱媒体の流路であることを特徴とする蓄熱装置。 A housing, a plurality of heat storage members provided in the housing and encapsulating a latent heat storage material in a bag-like container, and a partition plate provided between the heat storage members facing each other, the partition plate, the major surface of the heat storage member and a parallel flat section, wherein possess a projection which projects the heat storage member side from the flat portion, the flat portion of the surface of the adjacent heat storage member and the partition plate On the other hand, the tip of the projection of the partition plate is in contact with and laminated on the surface of the heat storage member, so that a gap is formed in the vicinity thereof, and the gap Is a flow path of a heat medium that exchanges heat with the heat storage member . 前記蓄熱部材の袋状の容器を、金属の薄膜、樹脂の薄膜、または、金属の薄膜と樹脂の薄膜を貼り合わせた積層フィルムのいずれか1つで構成したことを特徴とする請求項1に記載の蓄熱装置。 The bag-shaped container of the heat storage member is formed of any one of a metal thin film, a resin thin film, or a laminated film in which a metal thin film and a resin thin film are bonded to each other. The heat storage device described.
JP2014255776A 2014-12-18 2014-12-18 Heat storage device Expired - Fee Related JP6432040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255776A JP6432040B2 (en) 2014-12-18 2014-12-18 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255776A JP6432040B2 (en) 2014-12-18 2014-12-18 Heat storage device

Publications (2)

Publication Number Publication Date
JP2016114337A JP2016114337A (en) 2016-06-23
JP6432040B2 true JP6432040B2 (en) 2018-12-05

Family

ID=56139978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255776A Expired - Fee Related JP6432040B2 (en) 2014-12-18 2014-12-18 Heat storage device

Country Status (1)

Country Link
JP (1) JP6432040B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231518B2 (en) * 2006-10-24 2009-03-04 トヨタ自動車株式会社 Heat exchanger
US10337805B2 (en) * 2013-04-10 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Heat storage device

Also Published As

Publication number Publication date
JP2016114337A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6255514B2 (en) Monolithic multi-module electronics enclosure with multi-planar with embedded fluid cooling channels
KR101644812B1 (en) Plate type heat exchanger with cutted plate
JP6567344B2 (en) Heat transfer plate
KR101655889B1 (en) Heat exchange reactor and method for producing the same
US20160341495A1 (en) Combining complex flow manifold with three dimensional woven lattices as a thermal management unit
JP2011035305A (en) Heat exchanger
JP5432838B2 (en) Plate laminated heat sink
JP2014142143A (en) Heat pipe
JP2017037750A5 (en)
JP5724710B2 (en) Plate stack type cooler
JP2016025354A (en) Heat transfer plate
JP4770973B2 (en) Heat exchanger
JP6432040B2 (en) Heat storage device
JP2018045919A (en) Battery pack
JP5393606B2 (en) Heat exchanger
JP6646859B2 (en) Thermoelectric generator and thermoelectric generator method
JP2011069552A (en) Heat exchanger
JP5226342B2 (en) Cold storage / heat storage type heat exchanger
JP2010117126A (en) Heat exchanger having integrated stacking structure
JP2016205718A (en) Heat exchanger
JP6310306B2 (en) Heat exchanger and heat exchanger manufacturing method
JP7028637B2 (en) Flat heat pipe
CN101466228A (en) Heat radiator
JP2011169526A (en) Laminated heat exchanger
CN105764299A (en) Heat dissipation structure and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181008

R151 Written notification of patent or utility model registration

Ref document number: 6432040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees