JP6431724B2 - Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery - Google Patents

Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery Download PDF

Info

Publication number
JP6431724B2
JP6431724B2 JP2014168260A JP2014168260A JP6431724B2 JP 6431724 B2 JP6431724 B2 JP 6431724B2 JP 2014168260 A JP2014168260 A JP 2014168260A JP 2014168260 A JP2014168260 A JP 2014168260A JP 6431724 B2 JP6431724 B2 JP 6431724B2
Authority
JP
Japan
Prior art keywords
lithium
lithium primary
primary battery
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014168260A
Other languages
Japanese (ja)
Other versions
JP2016046027A (en
Inventor
春彦 佐竹
春彦 佐竹
藤井 信三
信三 藤井
彰彦 加藤
彰彦 加藤
佳恵 藤田
佳恵 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2014168260A priority Critical patent/JP6431724B2/en
Publication of JP2016046027A publication Critical patent/JP2016046027A/en
Application granted granted Critical
Publication of JP6431724B2 publication Critical patent/JP6431724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はリチウム一次電池用の非水系有機電解液、およびリチウム一次電池に関する。具体的には二酸化マンガンを正極活物質とし、リチウム金属またはリチウム合金を負極活物質としたリチウム一次電池を構成する非水系有機電解液の改良技術、および改良された電解液を備えたリチウム一次電池に関する。   The present invention relates to a non-aqueous organic electrolyte for a lithium primary battery, and a lithium primary battery. Specifically, improved technology for non-aqueous organic electrolyte constituting a lithium primary battery using manganese dioxide as a positive electrode active material and lithium metal or lithium alloy as a negative electrode active material, and a lithium primary battery provided with an improved electrolyte solution About.

リチウム金属やリチウム合金からなる負極活物質を含む負極を備えたリチウム一次電池は、密閉された電池缶内に、セパレータを介して配置された正極と負極が非水系の有機電解液とともに収納されてなる。リチウム一次電池において、とくに二酸化マンガンを正極活物質としたものは、高いエネルギー密度を有するとともに、長期間にわたる放電が可能で、放電末期までほぼ一定の出力電圧を維持するという特性を有している。そのため火災やガス漏れの報知器、定置型のガスメーターや水道メーターなど、長期に亘ってメンテナンスフリーの状態で動作し続ける機器の電源として広く用いられている。またリチウム一次電池は使用されていない状態で長期間保存しても内部抵抗が大きく上昇せず、放電性能が劣化し難いという特性も有している。   A lithium primary battery having a negative electrode containing a negative electrode active material made of lithium metal or a lithium alloy has a positive electrode and a negative electrode arranged together with a non-aqueous organic electrolyte in a sealed battery can. Become. Lithium primary batteries, especially those using manganese dioxide as the positive electrode active material, have a high energy density and can be discharged over a long period of time, and maintain a substantially constant output voltage until the end of discharge. . Therefore, it is widely used as a power source for devices that continue to operate in a maintenance-free state for a long time, such as fire and gas leak alarms, stationary gas meters, and water meters. The lithium primary battery also has a characteristic that the internal resistance does not increase greatly even when stored for a long period of time without being used, and the discharge performance is hardly deteriorated.

なお本発明に関連して、例えば以下の特許文献1には、リチウム一次電池の非水系有機電解液に使用される溶媒や支持塩の種類について詳しく記載されている。以下の特許文献2には非水系有機電解液に添加する添加剤について記載されている。また非特許文献1には構造や外観が異なる各種リチウム一次電池について記載されている。   In connection with the present invention, for example, the following Patent Document 1 describes in detail the types of solvents and supporting salts used in the non-aqueous organic electrolyte solution of a lithium primary battery. Patent Document 2 below describes additives to be added to the non-aqueous organic electrolyte solution. Non-Patent Document 1 describes various lithium primary batteries having different structures and appearances.

国際公開第2013/065290号公報International Publication No. 2013/065290 特開2007−258103号公報JP 2007-258103 A

FDK株式会社、”リチウム電池”、[online]、[平成26年8月4日検索]、インターネット<URL:http://www.fdk.co.jp/battery/lithium/index.html>FDK Corporation, “Lithium Battery”, [online], [Search August 4, 2014], Internet <URL: http://www.fdk.co.jp/battery/lithium/index.html>

リチウム一次電池には、氷点下などの低温環境下で使用すると内部抵抗が上昇し出力電圧値自体が低下するという問題がある。そのため、リチウム一次電池を電源とした火災報知器やガス漏れ警報器などの機器が極寒地や低温貯蔵施設内などに設置されていると、それらの機器を動作させるための電圧値を確保できず、緊急時にそれらの機器が動作しない可能性がある。したがって低温環境下ではリチウム一次電池を使用しづらい。リチウム一次電池以外の他の電池で代用することも考えられるが、火災報知器などは長期に亘ってメンテナンスフリーの状態で動作し続ける機器であり、他の電池では放電に従って徐々に電圧が降下していくことから、はやり使用しづらい。したがって低温環境下でも電圧が降下し難いリチウム一次電池が必要となる。もちろん低温環境下での電圧降下を抑制することでリチウム一次電池の他の特性が劣化しないことも重要である。一般的には低温環境下での特性を改善すると、その対極にある高温環境下での特性、例えば高温環境下での保存特性などが劣化し易い。   Lithium primary batteries have a problem that the internal resistance increases and the output voltage value itself decreases when used in a low temperature environment such as below freezing point. For this reason, if devices such as fire alarms and gas leak alarms powered by lithium primary batteries are installed in extremely cold regions or cold storage facilities, voltage values for operating these devices cannot be secured. In an emergency, those devices may not work. Therefore, it is difficult to use a lithium primary battery in a low temperature environment. Although it is conceivable to use a battery other than the lithium primary battery, a fire alarm or the like is a device that continues to operate in a maintenance-free state for a long period of time. In other batteries, the voltage gradually drops as the battery discharges. It's hard to use because it goes. Therefore, a lithium primary battery that is unlikely to drop voltage even in a low temperature environment is required. Of course, it is also important that other characteristics of the lithium primary battery are not deteriorated by suppressing the voltage drop in a low temperature environment. In general, when characteristics in a low temperature environment are improved, characteristics in a high temperature environment, for example, storage characteristics in a high temperature environment, which are at the opposite electrode, are likely to deteriorate.

したがって本発明は、リチウム一次電池における高温環境下での保存特性を維持しつつ、低温環境下での電圧降下を抑制できる非水系有機電解液、およびその電解液を備えたリチウム一次電池を提供することを目的としている。   Therefore, the present invention provides a non-aqueous organic electrolytic solution capable of suppressing a voltage drop in a low temperature environment while maintaining the storage characteristics of the lithium primary battery in a high temperature environment, and a lithium primary battery including the electrolyte. The purpose is that.

上記目的を達成するための本発明は、二酸化マンガンを正極活物質とし、リチウム金属またはリチウム合金を負極活物質としたリチウム一次電池用の非水系有機電解液であって、有機溶媒および支持塩からなる基本電解液に添加剤として、鎖状構造を有するジカルボン酸エステルであるグルタル酸ジメチルおよびピメリン酸ジエチルから選ばれる1種類以上の有機化合物が添加されていることを特徴とするリチウム一次電池用非水系有機電解液としている。前記添加剤の添加量を前記基本電解液に対して0.001wt%以上、5.0wt%以下とすればより好ましい。 The present invention for achieving the above object is a non-aqueous organic electrolyte for a lithium primary battery using manganese dioxide as a positive electrode active material and lithium metal or a lithium alloy as a negative electrode active material, comprising an organic solvent and a supporting salt. 1 or more organic compounds selected from dimethyl glutarate and diethyl pimelate, which are dicarboxylic acid esters having a chain structure, are added as additives to the basic electrolyte solution. A water-based organic electrolyte is used. More preferably, the additive is added in an amount of 0.001 wt% to 5.0 wt% with respect to the basic electrolyte.

また本発明は、二酸化マンガンを正極活物質とし、リチウム金属またはリチウム合金を負極活物質としたリチウム一次電池にも及んでおり、当該リチウム一次電池は上記いずれかに記載の前記リチウム一次電池用非水系有機電解液を備えたことを特徴としている。   The present invention also extends to a lithium primary battery using manganese dioxide as a positive electrode active material and lithium metal or a lithium alloy as a negative electrode active material, and the lithium primary battery is a non-lithium primary battery according to any one of the above. It features an aqueous organic electrolyte.

本発明の非水系有機電解液によれば、従来と同様の高温環境下での保存特性を有しつつ、低温環境下でも電圧が降下し難いリチウム一次電池を提供することができる。   According to the non-aqueous organic electrolytic solution of the present invention, it is possible to provide a lithium primary battery that has the same storage characteristics under a high temperature environment as that of the prior art, and that does not easily drop the voltage even under a low temperature environment.

スパイラル型リチウム一次電池の構造を示す図である。It is a figure which shows the structure of a spiral type lithium primary battery. 添加剤の種類と添加量が異なる各種非水系有機電解液を用いたスパイラル型リチウム一次電池を−40℃の環境下に置いたときの電圧降下率を示す図である。It is a figure which shows the voltage drop rate when the spiral type lithium primary battery using the various non-aqueous organic electrolyte solution from which the kind and addition amount of an additive differ is set | placed in -40 degreeC environment. 添加剤の種類と添加量が異なる各種非水系有機電解液を用いたスパイラル型リチウム一次電池を設計容量に対して80%放電させた状態にして80℃の環境下に置いたときの内部抵抗の変化を示す図である。Spiral type lithium primary batteries using various non-aqueous organic electrolytes with different types and amounts of additives were discharged at 80% of the design capacity and the internal resistance when placed in an environment of 80 ° C. It is a figure which shows a change.

===本発明に想到する過程===
本発明の実施例に係る非水系有機電解液を用いたリチウム一次電池は、正極に粉体状の正極活物質を導電材やバインダーとともに混練することで作製される合剤を用い、負極にリチウム金属やリチウム合金(便宜上、総称して「負極リチウム」とも称する)そのものを用いたものである。この種のリチウム一次電池では、正極活物質が粉体状であるのに対し、負極活物質である負極リチウムそのものであるため、正極活物質に対して負極活物質の表面積が相対的に小さい。
=== The process of conceiving the present invention ===
A lithium primary battery using a nonaqueous organic electrolyte solution according to an embodiment of the present invention uses a mixture prepared by kneading a powdered positive electrode active material together with a conductive material and a binder in a positive electrode, and lithium in a negative electrode. A metal or a lithium alloy (generally referred to as “negative electrode lithium” for convenience) itself is used. In this type of lithium primary battery, the positive electrode active material is in the form of powder, whereas the negative electrode lithium itself, which is the negative electrode active material, has a relatively small surface area relative to the positive electrode active material.

ここで本発明者が、リチウム一次電池が低温環境下で電圧が降下とするという問題の原因について考察したところ、負極リチウムが正極活物質よりも表面積が小さいため、放電や保存時に発生するわずかな副生成物による影響が負極全体におよび易く、その影響が負極自身の抵抗上昇、引いては電池の内部抵抗を上昇させて低温環境下での電圧降下として顕在化すると考えた。そして負極活物質の表面に副生成物が生成したり付着したりすることを阻害するイオン導電性被膜を形成すれば、低温環境下での電圧降下を効果的に抑制できるのではないかと考えた。より具体的には、負極リチウムに接する非水系有機電解液(以下、電解液とも言う)を改質し、電解液に上述した被膜を形成するための性質を付与すればよいと考えた。   Here, the present inventor considered the cause of the problem that the voltage of the lithium primary battery drops in a low temperature environment, and the negative electrode lithium has a smaller surface area than the positive electrode active material, so that the slight amount generated during discharge and storage is small. It was thought that the influence of the by-product was easily exerted on the whole negative electrode, and that the influence increased the resistance of the negative electrode itself, and thus increased the internal resistance of the battery, and became apparent as a voltage drop in a low temperature environment. And I thought that the voltage drop in a low-temperature environment could be effectively suppressed by forming an ion conductive film that inhibits the formation and adhesion of by-products on the surface of the negative electrode active material. . More specifically, it was thought that the non-aqueous organic electrolyte solution (hereinafter also referred to as electrolyte solution) in contact with the negative electrode lithium may be modified to impart the above-described properties for forming the coating film.

もちろん電解液を改質することで電解液自体のイオン伝導性が大きく劣化したり、低温での電圧降下を抑制する代わりに高温環境下での保存特性が劣化したりすれば本末転倒である。改質された電解液をコストアップを伴わずに安定して製造できるようにすることも重要な条件となる。そして以上の条件などを勘案すれば、一般的、あるいは代表的な従来のリチウム一次電池用の電解液に、上述した被膜の起源となる物質(添加剤)を添加することで電解液を改質するのが現実的である。そして本発明は上記考察や研究開発の過程で得たさまざまな実験結果などを検証しながら鋭意研究を重ねた結果想到したものである。   Of course, if the ionic conductivity of the electrolytic solution itself is greatly deteriorated by modifying the electrolytic solution, or if the storage characteristics in a high temperature environment are deteriorated instead of suppressing the voltage drop at a low temperature, the tipping is over. It is also an important condition that the modified electrolyte can be manufactured stably without increasing the cost. If the above conditions are taken into consideration, the electrolyte solution is modified by adding the above-mentioned substances (additives) that are the origin of the coating to the electrolyte solution for general or typical conventional lithium primary batteries. It is realistic to do. The present invention has been conceived as a result of intensive research while verifying various experimental results obtained in the course of the above discussion and research and development.

===実施例=== === Example ===

<添加剤>
上記特許文献2に記載されているように電解液の添加剤には多種多様な有機化合物が存在する。そして本発明者がリチウム一次電池における高温環境下での保存特性を維持しつつ、低温環境下での電圧降下を抑制するための最適な添加剤について検討した結果、特許文献2にも記載されていなかったジカルボン酸エステルに属する有機化合物に着目した。そこで本発明の実施例にかかる電解液を評価するために、ジカルボン酸エステルに属するいくつかの有機化合物を添加剤として、一般的な電解液に各添加剤の種類と添加量を変えて各種電解液を調合した。そして各種電解液を用いたリチウム一次電池をサンプルとして作製し、各サンプルにおける低温環境下での放電特性や高温環境下での保存特性を調べた。
<Additives>
As described in Patent Document 2, a wide variety of organic compounds exist in the additive of the electrolytic solution. And as a result of examining the optimal additive for suppressing the voltage drop in a low temperature environment, while this inventor maintained the storage characteristic in the high temperature environment in a lithium primary battery, it describes also in patent document 2 Attention was paid to organic compounds belonging to dicarboxylic acid esters that were not present. Therefore, in order to evaluate the electrolytic solution according to the example of the present invention, various organic compounds belonging to dicarboxylic acid esters were used as additives, and various types of electrolytic agents were added to general electrolytic solutions by changing the types and amounts of the additives. The liquid was prepared. Then, lithium primary batteries using various electrolytic solutions were produced as samples, and the discharge characteristics under low temperature environment and the storage characteristics under high temperature environment in each sample were examined.

<サンプル>
図1はサンプルとして作製したリチウム一次電池1の概略構造である。図示したリチウム一次電池1はスパイラル型のリチウム一次電池(以下、電池1とも言う)である。作製した電池1は外径17mm、高さ45mmの円筒状であり、図1では円筒軸50の延長方向を上下(縦)方向としたときの電池1の縦断面図を示している。電池1は、負極缶となる有底円筒状の金属製電池缶(以下、電池缶2とも言う)内に、正極3、負極4、セパレータ5、および電解液20が発電要素として収納されているとともに、電池缶2の開口が封口板6、正極端子7、金属製ワッシャ8、封口ガスケット9を含んで構成される封口体10によって封止された基本構造を有する。
<Sample>
FIG. 1 shows a schematic structure of a lithium primary battery 1 manufactured as a sample. The illustrated lithium primary battery 1 is a spiral lithium primary battery (hereinafter also referred to as battery 1). The produced battery 1 has a cylindrical shape with an outer diameter of 17 mm and a height of 45 mm, and FIG. 1 shows a longitudinal sectional view of the battery 1 when the extending direction of the cylindrical shaft 50 is the vertical (vertical) direction. In the battery 1, a positive electrode 3, a negative electrode 4, a separator 5, and an electrolytic solution 20 are housed as power generation elements in a bottomed cylindrical metal battery can (hereinafter also referred to as a battery can 2) serving as a negative electrode can. In addition, the battery can 2 has a basic structure in which the opening of the battery can 2 is sealed by a sealing body 10 including a sealing plate 6, a positive electrode terminal 7, a metal washer 8, and a sealing gasket 9.

正極3は、スラリー状の正極材料をステンレス製ラス板に塗布したものを所定の大きさに切断した後に乾燥させたものである。ここでは正極材料として、正極活物質となる電解二酸化マンガン(EMD)と導電材となる黒鉛をバインダー(フッ素系バインダーなど)とともに所定の割合(例えば、EMD:黒鉛:バインダー=93wt%:3wt%:4wt%)で混合したものを用いることができる。そして、この正極材料を純水によりスラリー状にしてステンレス製ラス板に塗布している。負極4は板状の負極リチウムであり、ここではリチウム金属を使用している。そして負極4と正極3はポリオレフィン製微多孔膜からなるセパレータ5を介して対向配置された上で巻回されてなり、その巻回状態にある正極3と負極4が電池缶2内に挿入されている。   The positive electrode 3 is obtained by cutting a slurry-like positive electrode material applied to a stainless lath plate into a predetermined size and then drying it. Here, as a positive electrode material, electrolytic manganese dioxide (EMD) serving as a positive electrode active material and graphite serving as a conductive material together with a binder (fluorine binder, etc.) and a predetermined ratio (for example, EMD: graphite: binder = 93 wt%: 3 wt%: 4 wt%) can be used. The positive electrode material is made into a slurry form with pure water and applied to a stainless steel lath plate. The negative electrode 4 is a plate-shaped negative electrode lithium, and here, lithium metal is used. The negative electrode 4 and the positive electrode 3 are wound with the separator 5 made of a polyolefin microporous film facing each other and wound, and the positive electrode 3 and the negative electrode 4 in the wound state are inserted into the battery can 2. ing.

封口体10を構成する封口板6は中央に開口を有する円盤状で、電池缶2の開口端側を上方とすると、その円盤の縁が上方に向かって屈曲している。封口板6の中央開口には金属製の正極端子7と金属製ワッシャ8とが樹脂製の封口ガスケット9を介してかしめられている。そして封口板6の縁端と電池缶2の上部縁端とが(図中、符号30の位置で)レーザー溶接されている。また正極3(のラス板)と正極端子7の下面、および負極4と電池缶の2内面が、それぞれリードタブ(11、12)を介して接続されている。そして密封された電池缶2内には、サンプルに応じて添加剤の種類と添加量が異なる電解液20が充填されている。   The sealing plate 6 constituting the sealing body 10 has a disk shape having an opening in the center. When the opening end side of the battery can 2 is set upward, the edge of the disk is bent upward. A metal positive terminal 7 and a metal washer 8 are caulked through a resin sealing gasket 9 in the central opening of the sealing plate 6. The edge of the sealing plate 6 and the upper edge of the battery can 2 are laser welded (at the position indicated by reference numeral 30 in the figure). Further, the positive electrode 3 (the lath plate thereof) and the lower surface of the positive electrode terminal 7, and the negative electrode 4 and the two inner surfaces of the battery can are connected via lead tabs (11, 12), respectively. The sealed battery can 2 is filled with an electrolytic solution 20 having different types and amounts of additives depending on the sample.

電解液20はリチウム一次電池に用いられている一般的な電解液を基本電解液として、その基本電解液に添加剤を添加したものである。ここではプロピレンカーボネート(PC)、エチレンカーボネート(EC)、および1,2−ジメトキシエタン(DME)が、体積比でそれぞれ20vol%、20vol%、および60vol%の割合となる3成分系の非水溶液を溶媒として用い、この溶媒中に支持塩としてリチウムトリフレート(LiCFSO)を0.8mol/lの濃度となるように溶解させたものを基本電解液としている。 The electrolytic solution 20 is obtained by adding a general electrolytic solution used in a lithium primary battery as a basic electrolytic solution and adding an additive to the basic electrolytic solution. Here, propylene carbonate (PC), ethylene carbonate (EC), and 1,2-dimethoxyethane (DME) are ternary non-aqueous solutions having a volume ratio of 20 vol%, 20 vol%, and 60 vol%, respectively. A basic electrolyte is used as a solvent, and lithium triflate (LiCF 3 SO 3 ) dissolved as a supporting salt in the solvent so as to have a concentration of 0.8 mol / l.

添加剤は、グルタル酸ジメチル、ピメリン酸ジエチル、フタル酸ジメチル、およびテレフタル酸ジメチルのいずれかのジカルボン酸エステルである。また添加剤の添加量は、サンプルに応じ、基本電解液に対して0.001wt%、0.01wt%、0.1wt%、1.0wt%、2.5wt%、5.0wt%、および6.0wt%とした。なお比較例に係るサンプルとして基本電解液のみを電解液とした電池1も作製した。   The additive is a dicarboxylic acid ester of any of dimethyl glutarate, diethyl pimelate, dimethyl phthalate, and dimethyl terephthalate. Further, the additive amount is 0.001 wt%, 0.01 wt%, 0.1 wt%, 1.0 wt%, 2.5 wt%, 5.0 wt%, and 6 depending on the sample. 0.0 wt%. As a sample according to the comparative example, a battery 1 using only a basic electrolyte as an electrolyte was also produced.

<低温環境下での放電性能>
まず電解液に含まれる添加剤の種類とその添加量が異なる各種サンプルおよび比較例に係るサンプルを低温環境下に置いてパルス放電させる放電試験を行い、各サンプルにおける電圧降下の抑制効果について評価した。具体的には、各サンプルを−40℃の温度下に置いた状態で負荷を掛けて100mAの電流を1秒間流して放電させ、このときの電圧(閉回路電圧V1)と、負荷を掛ける前の開路電圧V2とを測定した。そして閉回路電圧V1と開回路電圧V2との電圧差ΔV(=V2−V1)と開路電圧V2との割合である電圧降下率ΔVr(=ΔV/V2)を求めた。
<Discharge performance under low temperature environment>
First, various samples with different types and amounts of additives contained in the electrolyte solution and samples according to comparative examples were subjected to a discharge test in which a pulse discharge was performed under a low temperature environment, and the effect of suppressing the voltage drop in each sample was evaluated. . Specifically, each sample was placed under a temperature of −40 ° C. and a load was applied, and a current of 100 mA was applied for 1 second to discharge, and the voltage (closed circuit voltage V1) at this time and before the load was applied The open circuit voltage V2 was measured. Then, a voltage drop rate ΔVr (= ΔV / V2) that is a ratio between the voltage difference ΔV (= V2−V1) between the closed circuit voltage V1 and the open circuit voltage V2 and the open circuit voltage V2 was obtained.

図2に低温環境下での放電試験の結果を示した。図2は添加物を添加した電解液を用いた各種サンプルについて、添加物の添加量と電圧降下率との関係を示している。なお電圧降下率ΔVrは、比較例に係るサンプルにおける電圧降下率を100%としたときの相対値である。図2に示したようにどのサンプルも電圧降下率が100%以下となった。すなわち基本電解液にジカルボン酸エステルに属する化合物を添加することによって低温環境下での電圧降下を抑止できる効果が確認できた。しかも同じジカルボン酸エステルであっても、鎖状構造を有するグルタル酸ジメチルおよびピメリン酸ジエチルは、環状構造を有するフタル酸ジメチルおよびテレフタル酸ジメチルよりも電圧降下の抑止効果が顕著であった。また鎖状構造を有するジカルボン酸エステルでは、0.001wt%の極めて微量の添加量であっても、電圧降下率ΔVrが比較例に対して5%程度低く、最大で10%程度減少させることができた。そして添加量が5.0wt%以下であれば比較例に対して電圧降下率を少なくとも5%程度は減少させることができることが確認できた。   FIG. 2 shows the results of a discharge test under a low temperature environment. FIG. 2 shows the relationship between the amount of additive added and the voltage drop rate for various samples using the electrolytic solution to which the additive was added. The voltage drop rate ΔVr is a relative value when the voltage drop rate in the sample according to the comparative example is 100%. As shown in FIG. 2, the voltage drop rate of all samples was 100% or less. That is, it was confirmed that a voltage drop under a low temperature environment can be suppressed by adding a compound belonging to the dicarboxylic acid ester to the basic electrolyte. Moreover, even with the same dicarboxylic acid ester, dimethyl glutarate and diethyl pimelate having a chain structure had a more remarkable effect of suppressing voltage drop than dimethyl phthalate and dimethyl terephthalate having a cyclic structure. In addition, in the case of a dicarboxylic acid ester having a chain structure, the voltage drop rate ΔVr is about 5% lower than that of the comparative example and can be reduced by about 10% at the maximum even with a very small addition amount of 0.001 wt%. did it. It was confirmed that the voltage drop rate can be reduced by at least about 5% with respect to the comparative example if the addition amount is 5.0 wt% or less.

<高温環境下での保存性能>
図2に示した低温環境下での放電試験結果から、どの添加剤においても基本電解液に1.0wt%の割合で添加した電解液を用いたサンプルがもっとも電圧降下率が低かった。そこで低温環境下とは対極にある高温環境下での保存特性について評価するために、グルタル酸ジメチル、ピメリン酸ジエチル、フタル酸ジメチル、およびテレフタル酸ジメチルのいずれかを基本電解液に対して1.0wt%添加した4種類の電解液を用いて4種類のサンプルを作製した。そして当該4種類のサンプルと比較例に係るサンプルに対し高温環境下での保存特性を評価した。
<Storage performance in high temperature environment>
From the results of the discharge test under a low temperature environment shown in FIG. 2, the sample using the electrolytic solution added at a ratio of 1.0 wt% to the basic electrolytic solution had the lowest voltage drop rate in any additive. Therefore, in order to evaluate the storage characteristics in a high temperature environment opposite to that in a low temperature environment, one of dimethyl glutarate, diethyl pimelate, dimethyl phthalate, and dimethyl terephthalate is 1. Four types of samples were prepared using four types of electrolytes added with 0 wt%. And the preservation | save characteristic in a high temperature environment was evaluated with respect to the said 4 types of sample and the sample concerning a comparative example.

具体的には各サンプルに200Ωの負荷を掛け、残存容量が設計容量の20%(放電深度80%)になるまで事前放電させ、高温環境下での保存特性が最も劣化しやすい放電末期の状態を再現した。その上でこの放電後のサンプルを80℃の環境下で保存する保存試験を行い、保存経過日数と内部抵抗との関係を調べた。   Specifically, a 200Ω load is applied to each sample and pre-discharged until the remaining capacity reaches 20% of the design capacity (discharge depth 80%), and the end-of-discharge state where the storage characteristics under the high temperature environment are most likely to deteriorate. Was reproduced. Then, a storage test was performed in which the sample after discharge was stored in an environment at 80 ° C., and the relationship between the storage days and the internal resistance was examined.

図3に保存試験の結果を示した。図3では保存開始時点での内部抵抗を100%としている。この図3に示したように添加剤を添加したサンプルと比較例に係るサンプルは、ほぼ同様に内部抵抗が推移した。すなわち添加剤を添加することによって高温環境下での保存特性が劣化することがなかった。   FIG. 3 shows the results of the storage test. In FIG. 3, the internal resistance at the start of storage is 100%. As shown in FIG. 3, the internal resistance of the sample to which the additive was added and the sample according to the comparative example changed in a similar manner. That is, the storage characteristics under a high temperature environment were not deteriorated by adding the additive.

<性能評価>
以上より低温環境下での電圧降下を抑制するためには、鎖状構造を有するジカルボン酸エステルを基本電解液に添加することで高温環境下での保存特性を維持しつつ低温環境下での電圧降下を抑制できることが確認できた。そして鎖状構造を有するジカルボン酸エステルの添加量を基本電解液に対して5.0wt%以下とすればその電圧降下の抑制効果がより顕著になる。
<Performance evaluation>
In order to suppress the voltage drop in the low temperature environment, the voltage in the low temperature environment is maintained while maintaining the storage characteristics in the high temperature environment by adding a dicarboxylic acid ester having a chain structure to the basic electrolyte. It was confirmed that the descent could be suppressed. If the addition amount of the dicarboxylic acid ester having a chain structure is 5.0 wt% or less with respect to the basic electrolyte, the effect of suppressing the voltage drop becomes more remarkable.

なお以上の効果については、ジカルボン酸エステルが基本電解液よりも還元分解されやすく、分解したジカルボン酸エステルによって負極リチウムの界面に何らかの被膜が形成されたことによるものと考えることができる。そして鎖状構造を有するジカルボン酸エステルによって形成される被膜はイオン導電性に優れ、低温環境化でもそのイオン導電性が十分に維持されて電圧降下が抑制されたものと思われる。もちろん、負極リチウム界面の被膜は発電反応に伴って正極から溶出したマンガンが負極リチウムにて還元されて金属マンガンとして析出するのを阻害することができ、結果として電池を極めて長い期間に亘って保存したとき、とくに放電末期の状態で保存したときの内部抵抗上昇を抑制する効果にも寄与することが期待できる。   In addition, it can be considered that the above effect is due to the fact that the dicarboxylic acid ester is more easily reduced and decomposed than the basic electrolytic solution, and that a film is formed at the interface of the negative electrode lithium by the decomposed dicarboxylic acid ester. And the film formed of the dicarboxylic acid ester having a chain structure is excellent in ionic conductivity, and it is considered that the ionic conductivity is sufficiently maintained even in a low temperature environment and the voltage drop is suppressed. Of course, the coating on the negative electrode lithium interface can inhibit manganese eluted from the positive electrode during the power generation reaction from being reduced by the negative electrode lithium and deposited as metallic manganese, resulting in storage of the battery for an extremely long period of time. In particular, it can be expected to contribute to the effect of suppressing the increase in internal resistance when stored in the final discharge state.

ところで、電解液に添加剤を添加することによって電池の性能を向上させる場合、とくに低温と高温など対極にある環境下での性能を両立させる場合では、それぞれの環境での特性を個別に向上させる複数種類の添加剤を電解液に添加するのが一般的である。一方、上記実施例に係る電解液では、添加剤は鎖状構造を有するジカルボン酸エステルという一種類のエステルのみを添加し、しかもそのエステルに属するグルタル酸ジメチルあるいはピメリン酸ジエチルのいずれか1種類の有機化合物のみを添加していた。そのため上記実施例では、用途や使用環境、あるいは目標とする電池の性能に応じて電解液を調合する場合でも、その調合作業が極めて容易となり製造コストを削減することができる。1種類の有機化合物を添加剤としているので原料コストも削減できる。   By the way, when improving the performance of the battery by adding an additive to the electrolyte, especially when both the performance in the opposite environment such as low temperature and high temperature is achieved, the characteristics in each environment are individually improved. In general, a plurality of types of additives are added to the electrolytic solution. On the other hand, in the electrolyte solution according to the above example, only one type of ester called a dicarboxylic acid ester having a chain structure is added, and any one of dimethyl glutarate and diethyl pimelate belonging to the ester is added. Only organic compounds were added. Therefore, in the above-described embodiment, even when the electrolyte solution is prepared according to the application, use environment, or target battery performance, the preparation work becomes extremely easy and the manufacturing cost can be reduced. Since one kind of organic compound is used as an additive, raw material costs can be reduced.

===その他の実施例===
本発明は一般に使用されている様々なリチウム一次用電解液に鎖状構造を有するジカルボン酸エステルが添加されていることに特徴がある。したがって本発明に係る電解液が適用される電池はスパイラル型に限らず、周知のインサイドアウト型(ボビン型とも言う)やコイン型などであってもよい。もちろんラミネートフィルムの外装体内に発電要素を収納したラミネート型であってもよい。
=== Other Embodiments ===
The present invention is characterized in that a dicarboxylic acid ester having a chain structure is added to various lithium primary electrolytes that are generally used. Therefore, the battery to which the electrolytic solution according to the present invention is applied is not limited to a spiral type, and may be a known inside-out type (also referred to as a bobbin type) or a coin type. Of course, a laminate type in which the power generation element is housed in the exterior of the laminate film may be used.

添加剤であるジカルボン酸エステルについては、環状構造と鎖状構造とで低温環境下での電圧降下抑制効果に明確な差異が認められたことから、グルタル酸ジメチルやピメリン酸ジエチルに限らず、鎖状構造を有するジカルボン酸エステルに属する有機化合物であればよいと考えられる。もちろん、基本電解液に添加剤として添加する有機化合物は1種類でなくてもよい。鎖状構造を有するジカルボン酸エステルに属する有機化合物を二種類以上添加してもよい。   As for dicarboxylic acid ester, which is an additive, a clear difference was observed in the voltage drop suppression effect in a low-temperature environment between the cyclic structure and the chain structure. Therefore, the chain is not limited to dimethyl glutarate and diethyl pimelate. Any organic compound belonging to a dicarboxylic acid ester having a structure is considered. Of course, the organic compound added as an additive to the basic electrolyte may not be one kind. Two or more organic compounds belonging to a dicarboxylic acid ester having a chain structure may be added.

基本電解液については、例えば、溶媒における上記の3成分(DME、PC、EC)の割合が異なっていてもよい。もちろん3成分系でなくてもよい。成分としては、ブチレンカーボネート(BC)、ジオキソラン(DOXL)、ガンマ−ブチルラクトン(γ−BL)、テトラヒドロフラン(THF)など、リチウム一次電池に一般的に使用されている電解液であればどのようなものであってもよい。支持塩についても同様であり、例えば、上記実施例にて用いたLiCFSOに限らず、LiN(CFSO、LiN(CSO、LiN(CFSO)、(CSO)などのフッ素含有酸イミドのリチウム塩、LiPF、LiBFなどのフッ素含有酸のリチウム塩、LiC(CFSOなどのフッ素含有酸メチドのリチウム塩、LiClOなどの塩素含有酸のリチウム塩を用いることができる。 For the basic electrolyte, for example, the ratio of the above three components (DME, PC, EC) in the solvent may be different. Of course, it does not have to be a three-component system. As the component, any electrolyte solution generally used in lithium primary batteries, such as butylene carbonate (BC), dioxolane (DOXL), gamma-butyllactone (γ-BL), tetrahydrofuran (THF), etc. It may be a thing. The same applies to the supporting salt. For example, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 3 ) is not limited to LiCF 3 SO 3 used in the above examples. 2 ), lithium salts of fluorine-containing acid imides such as (C 4 F 9 SO 2 ), lithium salts of fluorine-containing acids such as LiPF 6 and LiBF 4, and fluorine-containing acid methides such as LiC (CF 3 SO 2 ) 3 Lithium salts and lithium salts of chlorine-containing acids such as LiClO 4 can be used.

1 スパイラル型リチウム一次電池、2 電池缶、3 正極、4 負極、
5 セパレータ、6 封口板、7 正極端子、8 ワッシャ、9 封口ガスケット、
10 封口体、20 非水系有機電解液、
1 spiral lithium primary battery, 2 battery can, 3 positive electrode, 4 negative electrode,
5 Separator, 6 Sealing plate, 7 Positive terminal, 8 Washer, 9 Sealing gasket,
10 sealing body, 20 non-aqueous organic electrolyte,

Claims (3)

二酸化マンガンを正極活物質とし、リチウム金属またはリチウム合金を負極活物質としたリチウム一次電池用の非水系有機電解液であって、有機溶媒および支持塩からなる基本電解液に添加剤として、鎖状構造を有するジカルボン酸エステルであるグルタル酸ジメチルおよびピメリン酸ジエチルから選ばれる1種類以上の有機化合物が添加されていることを特徴とするリチウム一次電池用非水系有機電解液。 A non-aqueous organic electrolyte for lithium primary batteries using manganese dioxide as the positive electrode active material and lithium metal or lithium alloy as the negative electrode active material, in the form of a chain as an additive to the basic electrolyte consisting of an organic solvent and a supporting salt A non-aqueous organic electrolyte for a lithium primary battery, wherein one or more organic compounds selected from dimethyl glutarate and diethyl pimelate, which are dicarboxylic acid esters having a structure, are added . 請求項1において、前記添加剤の添加量は、前記基本電解液に対して0.001wt%以上、5.0wt%以下であることを特徴とするリチウム一次電池用非水系有機電解液。   The non-aqueous organic electrolyte for a lithium primary battery according to claim 1, wherein the additive is added in an amount of 0.001 wt% or more and 5.0 wt% or less with respect to the basic electrolyte. 二酸化マンガンを正極活物質とし、リチウム金属またはリチウム合金を負極活物質としたリチウム一次電池であって、請求項1または2に記載の前記リチウム一次電池用非水系有機電解液を備えたことを特徴とするリチウム一次電池。 A lithium primary battery using manganese dioxide as a positive electrode active material and lithium metal or a lithium alloy as a negative electrode active material, wherein the nonaqueous organic electrolyte for a lithium primary battery according to claim 1 or 2 is provided. Lithium primary battery.
JP2014168260A 2014-08-21 2014-08-21 Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery Active JP6431724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168260A JP6431724B2 (en) 2014-08-21 2014-08-21 Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168260A JP6431724B2 (en) 2014-08-21 2014-08-21 Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery

Publications (2)

Publication Number Publication Date
JP2016046027A JP2016046027A (en) 2016-04-04
JP6431724B2 true JP6431724B2 (en) 2018-11-28

Family

ID=55636419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168260A Active JP6431724B2 (en) 2014-08-21 2014-08-21 Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery

Country Status (1)

Country Link
JP (1) JP6431724B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393620B2 (en) * 1994-04-11 2003-04-07 旭電化工業株式会社 Non-aqueous electrolyte battery
JP3583193B2 (en) * 1995-06-19 2004-10-27 旭電化工業株式会社 Non-aqueous battery
JP4934912B2 (en) * 2001-06-06 2012-05-23 三菱化学株式会社 Electrolyte and secondary battery
ES2434824T3 (en) * 2008-03-13 2013-12-17 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery using said electrolyte and hydroxy acid derivative for use in said electrolyte
WO2011034067A1 (en) * 2009-09-15 2011-03-24 宇部興産株式会社 Nonaqueous electrolyte solution and electrochemical element using same

Also Published As

Publication number Publication date
JP2016046027A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
US10629958B2 (en) Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
WO2017122597A1 (en) Aqueous electrolytic solution for electrical storage device, and electrical storage device including said aqueous electrolytic solution
JP2008507111A (en) Non-aqueous electrochemical cell
JP6789215B2 (en) Electrolytes for lithium-based energy storage devices
JP2005141998A (en) Lithium / iron disulfide primary battery
CN101978533B (en) Lithium battery
ES2946916T3 (en) Mixture of lithium salts and their uses as battery electrolyte
FR2873497A1 (en) LITHIUM ELECTROCHEMICAL ACCUMULATOR OPERATING AT HIGH TEMPERATURE
US9484585B2 (en) Non-aqueous organic electrolytic solution for lithium primary battery, and lithium primary battery
JP2008537632A (en) Non-aqueous electrochemical cell
JP5526491B2 (en) Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same
JP2011060655A (en) Lithium battery
JP5672508B2 (en) Nonaqueous electrolyte secondary battery
JP6504507B2 (en) Lithium battery
JP2010250969A (en) Lithium battery
JP4472352B2 (en) Non-aqueous electrochemical battery
JP2009123549A (en) Lithium primary battery
WO2017022731A1 (en) Lithium ion secondary battery
JP6431724B2 (en) Non-aqueous organic electrolyte for lithium primary battery and lithium primary battery
JP6681597B2 (en) Lithium battery
KR100597143B1 (en) Electrolyte Additive, Non-aqueous Electrolyte Comprising the Additive, And Secondary Battery Comprising the Electrolyte
JP2009129638A (en) Lithium battery
JP2017216309A (en) Lithium ion capacitor
JP2006024407A (en) Organic electrolyte battery
JP2015022985A (en) Nonaqueous organic electrolytic solution, and lithium primary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6431724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250