JP6430966B2 - Breathing synchronized gas supply device - Google Patents

Breathing synchronized gas supply device Download PDF

Info

Publication number
JP6430966B2
JP6430966B2 JP2015553636A JP2015553636A JP6430966B2 JP 6430966 B2 JP6430966 B2 JP 6430966B2 JP 2015553636 A JP2015553636 A JP 2015553636A JP 2015553636 A JP2015553636 A JP 2015553636A JP 6430966 B2 JP6430966 B2 JP 6430966B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
valve
gas supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015553636A
Other languages
Japanese (ja)
Other versions
JPWO2015093626A1 (en
Inventor
百合香 穂谷
百合香 穂谷
内山 暢
暢 内山
勝志 藤本
勝志 藤本
幸司 善岡
幸司 善岡
秀男 縄田
秀男 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Publication of JPWO2015093626A1 publication Critical patent/JPWO2015093626A1/en
Application granted granted Critical
Publication of JP6430966B2 publication Critical patent/JP6430966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature

Description

本発明は、呼吸用気体を使用者に供給する呼吸用気体供給装置に関する。   The present invention relates to a breathing gas supply device that supplies breathing gas to a user.

肺気腫、慢性気管支炎等の呼吸器系疾患の患者が増える中、その治療法として最も効果的なものの1つに酸素吸入療法がある。この治療法のために使用する酸素供給源として、酸素濃縮装置、酸素ボンベ、あるいは液体酸素等が使用されている。使用時の便利さや保守管理の容易さから、在宅では酸素濃縮装置を使用し、病院、ショッピング、コンサートホール、映画館などへ外出する場合には、患者が持ち運びできる小型軽量の酸素ボンベが主流で用いられている。酸素ボンベには酸素切れに問題が有るので、小型軽量のポータブル酸素濃縮機も開発されているが、供給能力及び性能、価格面から普及には更なる技術革新を要する。
このような酸素ボンベや酸素濃縮装置を用いて行う酸素吸入療法は、事前に患者の動脈血酸素飽和度の測定など様々な検査、および、運動負荷テストなどの結果を踏まえ、医師が使用者の酸素吸入量を処方する。酸素吸入量は0.25LPM〜7LPMで処方されることが多く、例えば、安静時の酸素吸入量は1LPM、労作時は2LPMといった具合に、患者に指示される。
酸素ボンベは、酸素濃縮装置とは異なり、ボンベに充填された酸素を消費してしまうと新たに生成することはできないため、ボンベ交換が必要となる。その為、なるべく長く酸素を吸入するためには、無駄な酸素消費を抑える手段が必要となる。そこで、酸素ボンベの使用し得る時間を可能な限り延長するために、患者の呼吸パターンに同調して、吸気時にのみ酸素を供給する呼吸同調気体供給装置(以下、デマンドレギュレーターという)を使用して、酸素の消費を節約することが行なわれている。
酸素ボンベの元弁に接続した減圧弁により高圧酸素の圧力を例えば1.5kg/cm2に減圧したのち、流量設定器で0.5LPM〜7LPMといった所定流量に整流して使用者に供給される。デマンドレギュレーターを併用し、使用者の呼吸を検知し、吸気時にのみ酸素を供給することにより、酸素使用量を連続供給する場合の1/3〜1/6に節約することが出来、その分、外出使用時間を延長することが可能となっている。
例えば、特開平9−24098号公報(特許文献1)に記載の装置では、酸素供給流量を流量設定器で最大値に調整し、患者の呼吸圧を検知して電磁弁を開閉することで、酸素を患者の吸気期間に投与し、呼気期間には投与しない制御を行っている。患者の吸気時間と呼気時間の比率は、一般に1:2であることから、各社のデマンドレギュレーターの酸素節約率は1/3〜1/7程度に設定されていることが多い。またこの呼吸パターンに同調して酸素を供給するモードを、同調モード、デマンドモード等と呼称することが多い。
一方、特開2002−143306号公報(特許文献2)に記載のように、デマンドレギュレーターには、非常時に電磁弁をバイパスし、連続的に酸素を供給するために流路切換弁を備えるものも提案されている。かかる非常時とは、例えばデマンドレギュレーターを動作させるための電池が消耗した場合や、センサなどのデマンドレギュレーターの部品が故障した場合などである。患者自身が連続的に酸素を吸入したいと思った時にも対応することが出来る。
緊急時に酸素を供給する時の流量は、流量設定器のオリフィスにて調整される。緊急時の流量は1設定で固定といったものもあるが、処方に合わせて設定できるように、径の異なる複数のオリフィスから選択して供給できるものもある(実用新案登録2502812号公報(特許文献3)に記載)。このような連続的に酸素を供給するモードを、連続モード、非常モード等と呼称する。
特許文献2に記載のデマンドレギュレーターの構成は、非常モードの連続流路に設けられた流量設定ダイヤルで同調時の所望の流量を制御するために、設定流量値の電気的信号を、例えばロータリースイッチなどで設定・認識する必要があり、電池切れなどの場合には流路切換弁の手動変更が必要となる。
特表平1−501999号公報(特許文献4)のFig.19には、高流量、低流量の2つの流量同時制御が可能なデュアル流量設定器を備え、BCDエンコーダーにより設定値を出力する端子を備えたデマンドレギュレーターが記載され、同調モードと連続モードの流量を1つの設定器で同時に制御する装置が記載されている。
As the number of patients with respiratory diseases such as emphysema and chronic bronchitis increases, one of the most effective treatments is oxygen inhalation therapy. As an oxygen supply source used for this treatment method, an oxygen concentrator, an oxygen cylinder, liquid oxygen, or the like is used. Because of convenience during use and ease of maintenance, when using oxygen concentrators at home and going out to hospitals, shopping, concert halls, movie theaters, etc., small and light oxygen cylinders that can be carried by patients are the mainstream. It is used. Oxygen cylinders have a problem of running out of oxygen, so a small and lightweight portable oxygen concentrator has also been developed. However, further technological innovation is required for its spread in terms of supply capacity, performance, and price.
Oxygen inhalation therapy using such oxygen cylinders and oxygen concentrators is based on the results of various tests such as measuring the arterial blood oxygen saturation of the patient and exercise load tests in advance. Prescribe inhalation amount. The oxygen inhalation amount is often prescribed at 0.25 LPM to 7 LPM. For example, the oxygen inhalation amount at rest is 1 LPM, and 2 LPM at the time of exertion is instructed to the patient.
Unlike the oxygen concentrator, the oxygen cylinder cannot be newly generated when the oxygen filled in the cylinder is consumed, so that the cylinder needs to be replaced. Therefore, in order to inhale oxygen as long as possible, a means for suppressing wasteful oxygen consumption is required. Therefore, in order to extend the usable time of the oxygen cylinder as much as possible, using a breath synchronization gas supply device (hereinafter referred to as a demand regulator) that supplies oxygen only during inspiration in synchronization with the patient's breathing pattern. It is done to save oxygen consumption.
After the pressure of the high-pressure oxygen is reduced to, for example, 1.5 kg / cm 2 by a pressure reducing valve connected to the original valve of the oxygen cylinder, it is rectified to a predetermined flow rate of 0.5 LPM to 7 LPM by a flow rate setting device and supplied to the user. By using a demand regulator together, detecting the user's breathing, and supplying oxygen only during inspiration, it is possible to save 1/3 to 1/6 of the amount of oxygen used continuously, It is possible to extend the usage time of going out.
For example, in the apparatus described in Japanese Patent Laid-Open No. 9-24098 (Patent Document 1), the oxygen supply flow rate is adjusted to the maximum value with a flow rate setting device, the patient's respiratory pressure is detected, and the electromagnetic valve is opened and closed. Oxygen is administered during the patient's inspiratory period and is not administered during the exhaled period. Since the ratio between the inspiratory time and the expiratory time of the patient is generally 1: 2, the oxygen saving rate of each company's demand regulator is often set to about 1/3 to 1/7. A mode in which oxygen is supplied in synchronization with the breathing pattern is often referred to as a tuning mode, a demand mode, or the like.
On the other hand, as described in Japanese Patent Application Laid-Open No. 2002-143306 (Patent Document 2), some demand regulators include a flow path switching valve to bypass the solenoid valve and continuously supply oxygen in an emergency. Proposed. Such an emergency is, for example, when the battery for operating the demand regulator is exhausted, or when a part of the demand regulator such as a sensor breaks down. It can also be used when the patient himself wants to continuously inhale oxygen.
The flow rate when oxygen is supplied in an emergency is adjusted by the orifice of the flow rate setting device. The emergency flow rate may be fixed at one setting, but may be selected and supplied from a plurality of orifices having different diameters so that it can be set according to the prescription (utility model registration No. 2502812 (Patent Document 3). )). Such a mode in which oxygen is continuously supplied is referred to as a continuous mode, an emergency mode, or the like.
In the configuration of the demand regulator described in Patent Document 2, an electric signal of a set flow rate value, for example, a rotary switch is used to control a desired flow rate at the time of tuning with a flow rate setting dial provided in a continuous flow path in an emergency mode. It is necessary to set / recognize in such a case, and in the case of running out of battery, manual change of the flow path switching valve is required.
Fig. 1 of JP-T-1-501999 (Patent Document 4). 19 describes a demand regulator having a dual flow rate setting device capable of simultaneous control of two flow rates, a high flow rate and a low flow rate, and a terminal for outputting a set value by a BCD encoder. A device is described that simultaneously controls a single setter.

特開平9−24098号公報Japanese Patent Laid-Open No. 9-24098 特開2002−143306号公報JP 2002-143306 A 実用新案登録2502812号公報Utility Model Registration No. 2502812 特表平1−501999号公報Japanese translation of PCT publication No. 1-501999

連続流と同調流を同一の流量設定器で制御する場合には、特許文献4の同調流及び連続流用のオリフィスを各々同軸円周上に配置した回転バルブを採用することが出来る。
呼吸に同調にして呼吸用気体を供給する場合、特許文献1の記載の装置のように、装置の最大流量で供給し、同調弁の開閉時間のみで供給量を制御しようとした場合、弁開時間を制御するためにすべての流量設定を検知する必要がある。設定流量ポイントが多くなると設定値の誤検知のリスクが増え、また検知装置もロータリーエンコーダー、ポテンショメーターなどを使用することになり、高コストになる。
一方、同調弁の弁開時間を一定とし呼吸同調制御を行う場合には、流量設定値および弁開時間に応じた呼吸用気体を供給できるように、同調流側のガス供給量および流量切替用のオリフィス径を制御する必要がある。装置の最大設定流量のガスを供給できるように設計されるため、低流量側での供給量の誤差が大きくなる。
When the continuous flow and the tuned flow are controlled by the same flow rate setting device, it is possible to adopt a rotary valve in which the orifices for the tuned flow and the continuous flow of Patent Document 4 are arranged on the same circumference.
When supplying the breathing gas in synchronization with respiration, as in the device described in Patent Document 1, when supplying the maximum flow rate of the device and controlling the supply amount only by the opening / closing time of the tuning valve, the valve is opened. All flow settings need to be sensed to control time. If the set flow point increases, the risk of false detection of the set value increases, and the detection device also uses a rotary encoder, potentiometer, etc., resulting in high costs.
On the other hand, when performing respiration synchronization control with the valve opening time of the tuning valve constant, the gas supply amount and flow rate switching on the tuning flow side can be supplied so that breathing gas can be supplied according to the flow rate setting value and valve opening time. It is necessary to control the orifice diameter. Since the gas is designed so as to supply the gas with the maximum set flow rate of the apparatus, the error in the supply amount on the low flow rate side becomes large.

かかる問題の解決方法として、以下の発明を見出した。
1)呼吸用気体を使用者の呼吸に同調して供給する呼吸同調気体供給装置において、使用者が所望の流量に調整する流量調整手段、使用者の呼吸を検知する圧力検出手段、該圧力検出手段の呼吸検知結果に基づいて呼吸に同調して呼吸用気体を供給する自動開放弁、及び、使用者の呼吸には同調せず連続して供給するための流路切換弁を備え、該流量調整手段が、設定流量値毎に一定角度で位置決め可能な回転軸を有し、該回転軸に取り付けられたディスク上の同心円上に、該流量設定手段の流量設定値に応じた口径のオリフィスを備えたディスクを備えた回転バルブであり、該流量設定手段の設定流量値に対応する同調流側のオリフィスを流れる呼吸用気体の流量が設定流量に対して一定比率となる複数群の流量に区分され、同一区分内では同一の開時間で該自動開閉弁の開閉を制御する制御手段を備えた、呼吸同調気体供給装置。
2)該流量調整手段が、設定流量値毎に一定角度で位置決め可能な回転軸を有し、該回転軸に取り付けられたディスク上の複数径の同心円上に、該流量設定手段の流量設定値に応じた口径のオリフィスを備えたディスクを備えた回転バルブであり、一方の同心円上に配置されたオリフィスの流路が連続流を供給する流量切換弁に、他方の同心円上に配置されたオリフィスの流路が同調流を供給する自動開閉弁に流路接続する導管を備えたことを特徴とする上記1)記載の呼吸同調気体供給装置。
3)1呼吸当りに同調流で供給される呼吸用気体の流量が連続流の1/3〜1/5の流量であり、吸気時間の前半3/4以内に供給される、上記1)記載の呼吸同調気体供給装置。
4)1呼吸当りに同調流で供給される呼吸用気体の流量が連続流の1/3〜1/5の流量であり、吸気時間の前半1/2以内に供給される、上記1)記載の呼吸同調気体供給装置。
5)該一定比率となる複数群の区分が4区分であり、該流量調整手段の流量設定値の検出手段として、流量調整手段の回転軸上に取り付けられた2つのリミットスイッチを備える、上記1)記載の呼吸同調気体供給装置。
6)該一定比率が設定流量に対して2〜10倍の範囲である上記1)〜5)に記載の呼吸同調気体供給装置。
また、本願発明者は、以下に示すように、流量設定器の流量設定つまみと一体のカム、あるいは連動したカムを介して、円周上、あるいは回転軸線と並行に2個以上配置されたスイッチを作動させ、接点信号を2進数化し、簡便な構成で流量設定の位置認識させる機構を見出した。
7)呼吸用気体を所定流量で使用者に供給する装置であり、流量設定つまみ、および、流量設定つまみによって切り替え可能な流量調整手段、流量設定つまみの回転軸と一体あるいは連動したカム、カムの円周上あるいは回転軸線と平行に2個以上配置されたスイッチを備え、流量設定つまみの回転に伴う位置をカム機構によるスイッチのON/OFFにより流量設定値の判断手段を備えた流量設定器である、呼吸用気体供給装置。
8)該判断手段が該スイッチの接点信号を2進数化し、信号の組み合わせに流量設定値を判断する手段である、上記7)記載の呼吸用気体供給装置。
9)該流量調整手段が、一定角度毎に位置決め可能な回転軸を有し、該回転軸と同軸上に取り付けられる円盤状の板であるオリフィスプレート、該オリフィスプレートには流量を整流するための穿孔(オリフィス)を備えると共に、該回転軸が該流量設定つまみの回転軸と一体あるいは連動している、上記7)記載の呼吸用気体供給装置。
10)流量設定つまみ、流量設定つまみの回転軸と一体あるいは連動したカム、カムの円周上あるいは回転軸線と平行に2個以上配置されたスイッチを備え、流量設定つまみの回転に伴う位置をカム機構によるスイッチのON/OFFにより流量設定値を判断する判断手段を備えた流量設定器。
11)該判断手段が該スイッチの接点信号を2進数化し、信号の組み合わせに流量設定値を判断する手段である、上記10)記載の流量設定器。
As a solution to this problem, the following invention has been found.
1) In a breath-synchronized gas supply device that supplies breathing gas in synchronization with a user's breath, a flow rate adjusting unit that adjusts the user's desired flow rate, a pressure detecting unit that detects the user's breath, and the pressure detection An automatic opening valve for supplying a breathing gas in synchronization with respiration based on a respiration detection result of the means, and a flow path switching valve for continuously supplying the respiration gas without synchronizing with the respiration of the user, The adjusting means has a rotary shaft that can be positioned at a fixed angle for each set flow rate value, and an orifice having a diameter corresponding to the flow rate set value of the flow rate setting means is provided on a concentric circle on a disk attached to the rotary shaft. A rotary valve provided with a disk, and is divided into a plurality of groups of flow rates in which the flow rate of breathing gas flowing through the orifice on the tuned flow side corresponding to the set flow rate value of the flow rate setting means is a constant ratio to the set flow rate Within the same category In the same open time with a control means for controlling the opening and closing of the automatic opening and closing valves, respiratory tuning gas supply device.
2) The flow rate adjusting means has a rotary shaft that can be positioned at a fixed angle for each set flow rate value, and the flow rate setting value of the flow rate setting means is arranged on a plurality of concentric circles on a disk attached to the rotary shaft. Is a rotary valve having a disk with an orifice having a diameter corresponding to the flow rate switching valve in which the flow path of the orifice arranged on one concentric circle supplies a continuous flow, and the orifice arranged on the other concentric circle The respiratory tuned gas supply device according to 1) above, further comprising a conduit connected to the automatic opening / closing valve for supplying a synchronized flow.
3) The above description 1), wherein the flow rate of the breathing gas supplied in synchronized flow per breath is 1/3 to 1/5 of the continuous flow, and is supplied within the first 3/4 of the inhalation time. Respiratory synchronized gas supply device.
4) The above description 1), wherein the flow rate of the breathing gas supplied in synchronized flow per breath is 1/3 to 1/5 of the continuous flow, and is supplied within the first half of the inspiration time. Respiratory synchronized gas supply device.
5) The group of the plurality of groups having the constant ratio is 4 sections, and includes two limit switches mounted on the rotation shaft of the flow rate adjusting unit as the flow rate setting value detection unit of the flow rate adjusting unit. ) Breathing synchronized gas supply device.
6) The respiratory tuned gas supply device according to 1) to 5) above, wherein the constant ratio is in a range of 2 to 10 times the set flow rate.
In addition, as shown below, the inventor of the present application uses two or more switches arranged on the circumference or in parallel with the rotation axis via a cam integrated with the flow rate setting knob of the flow rate setting device or a cam linked thereto. The mechanism for recognizing the position of the flow rate setting with a simple configuration was found.
7) A device that supplies a breathing gas to a user at a predetermined flow rate, a flow rate setting knob, a flow rate adjusting means that can be switched by the flow rate setting knob, a cam that is integrated with or interlocked with the rotary shaft of the flow rate setting knob, A flow rate setting device with two or more switches arranged on the circumference or parallel to the rotation axis, and a position for determining the flow rate setting value by turning the flow setting knob on and off with a cam mechanism. A breathing gas supply device.
8) The respiratory gas supply device according to 7), wherein the determination means is a means for converting the contact signal of the switch into a binary number and determining a flow rate setting value based on a combination of the signals.
9) An orifice plate, which is a disc-shaped plate that has a rotation shaft that can be positioned at a predetermined angle and is mounted coaxially with the rotation shaft, and the orifice plate for rectifying the flow rate. The breathing gas supply device according to 7) above, which is provided with perforations (orifices) and whose rotating shaft is integral with or interlocked with the rotating shaft of the flow rate setting knob.
10) A flow setting knob, a cam integrated with or linked to the rotation axis of the flow setting knob, and two or more switches arranged on the circumference of the cam or in parallel with the rotation axis, and the position associated with the rotation of the flow setting knob. A flow rate setting device comprising a determination means for determining a flow rate setting value by turning on / off a switch by a mechanism.
11) The flow rate setting device according to 10) above, wherein the determination unit is a unit that binarizes a contact signal of the switch and determines a flow rate set value based on a combination of signals.

本発明の呼吸同調気体供給装置によると、全ての流量設定ポイントの位置検出は必要が無く、設定ポイントが多くてもリミットスイッチを用いた簡易検出手段により安価で誤検知が少なく、同一区分内での同一開時間の制御で流量制御が可能となる。
また、本発明の呼吸同調気体供給装置において流量設定つまみと一体、あるいは連動したカムを介して円周上、あるいは回転軸線と並行にスイッチを2個以上配置することで、例えばスイッチ2個の場合4ポジション、スイッチ3個の場合は8ポジションの位置認識が可能である。これにより流量設定に対し適切な電磁弁開閉時間の設定が可能となり、より適切な酸素供給を行うことで一層の酸素ボンベの節約が可能となる。また安価で少ないスイッチ配置で機能を得られることから、よりコストの安い小型の呼吸同調気体供給装置が構成できる。
According to the respiratory tuned gas supply device of the present invention, it is not necessary to detect the position of all flow rate setting points, and even if there are many setting points, the simple detection means using the limit switch is inexpensive and has few false detections. The flow rate can be controlled by controlling the same opening time.
Further, in the respiratory tuned gas supply device of the present invention, by arranging two or more switches on the circumference or in parallel with the rotation axis via a cam integrated or linked with the flow rate setting knob, for example, in the case of two switches In the case of 4 positions and 3 switches, the position of 8 positions can be recognized. Accordingly, it is possible to set an appropriate solenoid valve opening / closing time for the flow rate setting, and it is possible to further save oxygen cylinders by supplying oxygen more appropriately. In addition, since the function can be obtained with a low cost and a small number of switch arrangements, it is possible to configure a small-sized respiratory-tuned gas supply device at a lower cost.

図1は、本発明の実施態様例である呼吸同調気体供給装置の模式図を示す。図2は、本発明の実施態様例に搭載される流量調整手段の断面模式図を示す。図3は、本発明の実施態様例に搭載される流量調整手段の流量設定検出機構を示す模式図を示す。図4はその流量検出手段における流量設定つまみの回転に伴うカム機構の回転、リミットスイッチのON/OFFの状態を模式的に示す。
図5は、本発明の実施態様例に搭載される切替手段の同調モードの状態の模式図を、図6は電源OFFの状態の模式図を、図7は連続モードの状態の模式図を示す。図8は、本発明の実施態様例に搭載される警報フローチャートを示す。
FIG. 1 shows a schematic diagram of a breath-tuned gas supply apparatus which is an embodiment of the present invention. FIG. 2 shows a schematic cross-sectional view of the flow rate adjusting means mounted in the embodiment of the present invention. FIG. 3 is a schematic diagram showing a flow rate setting detection mechanism of the flow rate adjusting means mounted in the embodiment of the present invention. FIG. 4 schematically shows the cam mechanism rotating with the rotation of the flow rate setting knob in the flow rate detecting means, and the ON / OFF state of the limit switch.
FIG. 5 is a schematic diagram of the tuning mode state of the switching means mounted in the embodiment of the present invention, FIG. 6 is a schematic diagram of the power-off state, and FIG. 7 is a schematic diagram of the continuous mode state. . FIG. 8 shows a warning flowchart installed in the embodiment of the present invention.

本発明の呼吸同調気体供給装置の実施態様例を、図面を用いて説明する。
図1は、本発明の一実施形態である呼吸同調気体供給装置を例示した概略装置構成図である。本発明の呼吸同調気体供給装置は、酸素ボンベ1に高圧に充填された呼吸用気体を一定の低圧力に調圧する圧力調整手段である調圧弁3により調圧された気体を流量設定つまみ5によって患者所望の流量に整流する流量調整手段である同軸可変オリフィス4、患者の呼吸を検知する圧力検出手段である圧力センサ8、圧力の検知結果に基づいて呼吸に同調して整流された気体を供給する自動開放弁である電磁弁6、緊急時には使用者の呼吸には同調せず連続して供給するための流路切換弁である手動弁7、カニューラ9などの気体供給手段から構成されている。
まず、圧力調整手段は酸素ボンベ1から元弁2を介して供給される高圧(1次圧力)の呼吸用気体の圧力を患者へ供給するのに適した低圧力(2次圧力)まで調圧する減圧弁と、酸素ボンベ内に充填された気体の残量を確認するための圧力計など(図示せず)を少なくとも含んで構成される。
低圧に調整された気体は流量調整手段、自動開放弁、流路切換弁によって患者所望の流量に調整される。自動開放弁は呼吸同調弁として使用者の呼吸に同調して開閉し、例えば、直動型の2ポート2位置切替電磁弁が用いられる。一方流路切換弁は、患者自身の呼吸異常などの緊急事態や、機器の圧力センサ異常や電池切れなどに連続流を供給するために流路を切り替える弁であり、例としては、メカニカルバルブを用いるのが好ましい。
圧力センサ8は、使用者の呼吸圧を検知するために、自動開閉弁や流路切換弁の下流に設置され、呼吸に伴うカニューラ口の圧力変動を検知するものであり、例えば、レンジ±50Pa、−0.5〜1Pa/10ms程度の圧力を測定可能な微差圧センサや、微圧によって作動する圧力スイッチなどを用いることが出来る。
流量調整手段としては回転バルブが採用され、設定流量に応じた穿孔が同心円上に配置された同軸可変オリフィスを用い、流量設定つまみを回転させることで所定流量に調整する。流量設定つまみを用いて回転軸を動作すると円盤状の板に設けられた2つのオリフィスが選択される。圧力調整手段から供給された気体はこの2つのオリフィスを通過することで2つの流量に整流される。それぞれ別の流路を通過し同調用、連続用として、自動開放弁、流路切換弁に接続される。
呼吸同調流、すなわち使用者の呼吸を検知し、吸気時にのみ自動開閉弁を開いて酸素を供給し、呼気時には酸素供給をストップする制御は、装置下流に設けられた呼吸センサである圧力センサ8により、使用者の吸気および呼気の圧力変動を検知し、制御部10により電磁弁6の開閉制御を行う。呼吸センサには、かかる圧力センサの他、温度センサ、流量センサなども使用可能である。
自動開放弁、流路切換弁の下流側で2つの流路は合流し、圧力検出手段であることの圧力センサ、カニューラなどの気体供給手段を経て患者へ気体を供給する。
連続、同調の切替えは、下流に設けた手動の切換弁で行い、同調流を供給する自動開閉弁である電磁弁の電源をOFFにすることで閉じ、連続流の供給流路である手動弁を開くことで連続流の供給が可能となる。患者の健康状態の悪化による供給量アップ、装置の異常、同調器の電池消耗などが生じたとしても、手動で酸素の連続供給が可能となる。
図2に更に詳しく流量調整手段の断面模式図を用いて説明する。流量調整手段は、流量設定つまみ5に接続し一定角度毎に位置決め可能な回転軸21を有し、該回転軸と同軸上に取り付けられる円盤状の板であるオリフィスプレート22、流量目盛を具備した流量設定つまみを有し、オリフィスプレート22には流量を整流するための穿孔(オリフィス)を備える。例えば45度の角度でプレートを回転させオリフィスを介した流路を切り替えた場合は8ポイント、30度の回転角度で切り替えた場合、12ポイントの流量値を設定できる。
オリフィスプレート22は、緊急用に連続流を供給する流量と同調用の流量に整流するため2枚備えることができる。図2に示すように、1枚のディスクを用い、回転軸を中心に異なる円の直径上に緊急用のオリフィス23と同調用のオリフィス24を備えることが好ましい。装置内に残圧が残る流路容積を出来るだけ少なくするため、流量調整手段は調圧弁3と一体化することが好ましい。
流路筐体20に設けられ、調圧弁に接続するノズル25から供給された酸素は、オリフィスプレート22に設けられ、回転軸21を中心に各々異なる同心円状に設けられた同調用のオリフィス24および連続用(緊急用)のオリフィス23の選択により流量制御される。更に、同調用の流路は同調流側ノズル出口27を介して電磁弁7に接続され、連続用の流路は連続流側ノズル出口26を介して手動弁6に接続される。
酸素ボンベを使用する場合、如何に消費量を節約するかがボンベの使用時間を決定する上で重要な因子となり、デマンドレギュレーターを用いて使用者の呼吸に同調して吸気時にのみ酸素を供給している。一般に、1呼吸における吸気時間と呼気時間の割合は1:2と言われており、吸気時間のみの酸素供給することで1/3に節約が可能となる。一方、吸気時間に酸素を供給する場合であっても、吸気の後半は、投与された酸素は酸素吸収部位である肺胞には届かず、実質的に肺胞から吸入されるのは吸気前半に投与された酸素のみである。従って、吸気前半の投与酸素量を換算すると、連続流に対して更に1/2の節約を行い、連続流の1/6の投与も可能とされている。
一方、連続流で酸素を供給する場合には、呼気中も酸素が供給され、投与された酸素は呼気と共に排気されてしまう。しかし呼気終末の気流が弱まった時に投与された酸素は鼻腔内にとどまり、次の吸気開始時に吸入されることから、呼気終末部に投与された酸素も、肺胞から吸収、血液の酸素化に有効に働いている。また、酸素化に寄与する吸気時間の前半(1/2)以内に酸素投与が完了するのが望ましいが、短時間に高流量の酸素を投与した場合には、使用者の鼻腔への刺激、違和感を考慮する必要がある。従って、本願発明の装置では、連続流に対して1/3〜1/5の流量の酸素を吸気時間の前半3/4以内の時間に投与を完了し、好ましくは吸気時間の前半1/2以内の時間に投与を完了する。
酸素吸入療法では、事前に患者の動脈血酸素飽和度の測定など様々な検査、および、運動負荷テストなどの結果を踏まえ、医師が使用者の酸素吸入量を処方する。酸素吸入量は0.25LPM〜7LPMで処方されることが多く、酸素ボンベを用いる場合は、デマンドレギュレーターもかかる低流量から高流量までの広域の投与領域をカバーする必要がある。
高流量に関しては、吸気前半投与が出来るようにベース流量を高めに設定し、低流量側は、ベース流量を低めにして、弁開時間を少なくとも30msec以上を確保するなど、流量制御可能な範囲に収める必要がある。更に、最も多くの人が使用する3LPMなど中流量域では、酸素投与時の刺激を抑え、できるだけ不快にならないようにする必要もある。
さらに本願発明では、同調流のベース流量に関して、流量設定手段の設定流量値に対応する同調流側のオリフィスを流れる呼吸用気体の流量が設定流量に対して一定比率となる複数群の流量に区分され、同一区分内では同一の開時間で該自動開閉弁の開閉を制御する制御手段を備える。
例えば一般に酸素吸入療法に使用される0.25〜7LPMの領域では1LPM以下、1〜3LPM、3LPM以上といった3区分、1LPM以下、1〜2LPM、2〜4LPM、4LPM以上といった4区分に分類し、同一区分内では自動開閉弁の開時間が同じになるように区分内での設定流量値に対応する同調流側のオリフィスを流れる呼吸用気体の流量が一定比率となるようにオリフィス口径を設定する。
本願発明の流量区分での同調制御では、設定流量に対して一定比率となる複数群の流量に区分しているため、どの設定流量域かを検知すればよく、全ての流量設定値を検知する必要はなく、ロータリーエンコーダーやポテンショメーターなどの高価な検知手段が必要なくなると共に、誤検知リスクの低減を図ることが出来る。
本願発明の流量調整手段の流量設定値の検出手段として、図3に示すような、流量調整手段の回転軸21上に取り付けられたカム30および2つのリミットスイッチSW1,SW2を備える装置を採用することが出来る。
使用者が流量設定つまみを操作すると回転バルブが回転して所望の流量が流れるオリフィスが選択される。同時に回転バルブと同期するカムによってリミットスイッチが操作され、流量区分を電気信号で認識することが出来る。カムは流量設定つまみないし回転バルブに備えることができる。
図3に示すような2つのリミットスイッチを用いる場合、そのON/OFF信号により、00,01,10,11の4信号を得ることができ、表1のように4つの領域の流量設定信号の検知に利用することが出来る。尚、リミットスイッチ1(SW1)はB接点仕様、スイッチ2(SW2)はA接点仕様としている。

Figure 0006430966
リミットスイッチを3つ用いた場合には、同様に原理で、″000″から″111″の組み合わせの8ポジションの流量設定信号を検知することが出来る。
本発明の呼吸同調器の流量設定つまみの位置検出機構は、図3に示す配置図で明らかなように、流量設定つまみの中心を基準に検出スイッチが流量設定つまみのカム部分に沿うように配置されている。このとき個々の検出スイッチの配置をずらすことにより、設定流量に対する検出範囲を限定することが可能となる。
図4に流量設定つまみの回転に伴うカム機構の回転、リミットスイッチのON/OFFの状態を模式的に示す。カムが回転し、リミットスイッチを順次、ON/OFFすることで、4ポジションの設定流量の信号を得ることが出来る。このように流量設定つまみに連動するカムおよびリミットスイッチという簡便かつ安価な手段により流量設定値を検知することが出来る。
上記実施態様例で説明した流量調整手段を備えた呼吸同調気体供給装置を用い、4流量区分による同調制御について、表2を用いて説明する。
流量設定値としては6ポイントとし、連続流の最小設定流量0.5LPM、最大設定流量7LPMの間で、0.5、1、2、3、5、7LPMの6ポイントの流量設定が可能な装置とする。低流量域の領域1として0.5LPM、中流量域の領域2として1〜2LPM、領域3として3LPM、高流量域の領域4として5〜7LPMの設定流量に区分する。
同調流のベース流量は、連続流の定数倍とし、領域1では連続流の10倍、領域2では連続流の5倍、領域3では連続流の3倍、領域4では連続流の2倍となるように、同調流のオリフィス径を設定した。ベース流量比率は呼吸の吸気時の前半3/4の時間内、特に1/2の時間内に酸素投与が完了可能なように流量比率を決定する。低流量域では高倍率、高流量域では鼻孔への風圧刺激を抑えるために2〜3倍程度に抑えるのが好ましい。
図3のカム機構およびリミットスイッチを備えた流量調整手段の設定検出機構により領域1、領域2、領域3、領域4の各領域区分を検出し、自動開閉弁の弁開時間を制御する。これにより節約率が4倍(連続流量の1/4)の酸素を、領域1〜3では吸気時間の前半1/2以内、領域4は前半3/4以内に投与することが可能となる。
Figure 0006430966
前述のように、非常モードの連続流路に設けられた流量設定ダイヤルで同調時の所望の流量を制御するために、設定流量値の電気的信号を、例えばロータリースイッチなどで設定・認識する必要があり、電池切れなどの非常モードの場合には電磁弁が作動しない事から流路切換切替弁の手動変更が必要となる。
酸素が非常に高い支燃性を持ったガスであることから、安全に配慮し、デマンドレギュレーターを使い終わった際には、酸素ボンベの元栓を閉じて、さらにデマンドレギュレーター内に残留した高圧ガス酸素を開放することが望ましい。そこで、デンマンドレギュレーターの電源をOFFした場合に、電磁弁を開放することで残留した高圧ガス酸素を開放し、該電磁弁の下流に設置された圧力センサで酸素ボンベの元栓が開放状態であること検知した場合には警報を発することのできるデマンドレギュレーターも提案されている(特開2000−262620号公報に記載)。非常時に電磁弁をバイパスし、同調モードから連続モードに切り替える場合には、流路切替弁を切り替える方法があるが、切替手段が電源ON/OFFスイッチと独立して設けられる場合が一般的である(特許文献2)。連続モードが選択された場合には、同調モードの制御(電磁弁の開閉等)が必要無くなるため、電源をOFFすることが好ましいが、切替手段が電源ON/OFFスイッチと独立している場合には、其々にリミットスイッチ等、電気的な検出手段を使用する必要があり、かつ、スイッチの操作部(レバー等)をそれぞれに設ける必要があるため、高コストであり、機器に求められる小型・軽量化の障害にもなる。特に非常時に連続モードに切替える場合には、使用者の分かり易い位置に切替手段があることが好ましく、さらには電源ON/OFFスイッチと一体化されることが好ましい。
多くのデンマンドレギュレーターには、装置電源をOFFにした時に酸素ボンベの元弁の閉め忘れを防止するために、電磁弁の下流に設置された圧力センサで酸素ボンベの元栓が開放状態であること検知し、警報を発する機能を備えており、かかる装置においては以下の問題も発生する。すなわち、連続モードを選択する場合には同調モードで使用する呼吸検知や電磁弁の開閉などの制御が不要であり、電池の消耗を防ぐために、あるいはデマンドレギュレーターに一般的に備えられている無呼吸警報(同調モードで呼吸が検知しない場合に発する警報。連続的な酸素の流れがあるときには呼吸の検知が出来ないために発報される。)を止めるために、デマンドレギュレーターの電源をOFFにするが、その場合には、該圧力センサで酸素ボンベの元栓が開放状態であることが検知され、不要にもかかわらず、警報が発報され使用者に混乱を招く。
かかる問題は、以下の12)〜18)に記載の解決方法で解消可能である。
12)呼吸用気体を使用者の呼吸に同調して供給する呼吸同調気体供給装置において、使用者の呼吸を検知する手段、呼吸検知結果に基づき、呼吸に同調して呼吸用気体を供給する自動開放弁、緊急時には使用者の呼吸には同調せず連続して供給するための流路切替弁を備え、使用者の呼吸に同調して呼吸用気体を供給する同調モードと緊急時に連続して供給する連続モード及び電源ON/OFFの切替えを一体で行う一つの切替手段を備えたことを特徴とする呼吸同調気体供給装置。
13)該切替手段がカム機構、同調モード選択を検出するリミットスイッチを備え、電源ON動作と同調モードへの切替え電源ON、電源OFFへの切替え、及び、流路切替弁の作動である連続モードへ切替弁の切替えを行うことを特徴とした、上記12)に記載の呼吸同調気体供給装置。
14)使用者の呼吸を検知する手段が圧力センサであり、該自動開閉弁が圧力センサの検知結果に基づいて呼吸に同調して開閉する電磁弁であり、該流路切替弁が該切替手段で作動するメカニカル弁である上記13)に記載の呼吸同調気体供給装置。
15)該切替手段で電源OFFが選択された場合に、該自動開放弁を開放し、圧力センサで圧力が検知された場合には警報を出すことを特徴とした、上記14)に記載の呼吸同調気体供給装置。
16)切替手段が連続モード選択を検出するリミットスイッチを備え、電源OFFの選択に続けて連続モードを選択された場合には、上記15)記載の警報を止めることを特徴とした呼吸同調気体供給装置。
17)呼吸用気体を使用者の呼吸に同調して供給する呼吸同調気体供給装置において、使用者の呼吸を検知する圧力センサ、使用者の呼吸に同調して呼吸用気体を供給する自動開放弁、緊急時には使用者の呼吸には同調せず連続して供給するための流路切替弁、電源ON/OFFを行うためのスイッチ、使用者の呼吸に同調して呼吸用気体を供給する同調モードと緊急時に連続して供給する連続モードの切替えを行う切替手段を備え、電源OFFにされた場合に、該自動開放弁を開放し、圧力センサで圧力が検知された場合には警報を出し、電源OFFの選択に続けて連続モードを選択された場合には該警報を止める制御手段を備えることを特徴とする呼吸同調気体供給装置。
18)該切替手段が、カム機構および連続モード選択を検出するリミットスイッチを備えることを特徴とする上記17)に記載の呼吸同調気体供給装置。
かかる呼吸同調気体供給装置によると、同調モードと緊急時に連続して供給する連続モード及び電源ON/OFFの切替が一つの切替手段で行うことが可能となり、また、連続モード切替時の不要な警報の発報も防ぐことが可能となり、安価で小型・軽量、非常時にも使いやすく、分かり易い警報を搭載した呼吸同調気体供給装置が可能となる。
図5〜図7に更に詳しく切替手段を例示する。切替手段は回転式の操作レバー50を備え、操作レバー回転軸に連動したカム51、同調モードに対応したリミットスイッチ52、連続モードに対応したリミットスイッチ53を有し、手動弁である流路切替弁54を操作可能である範囲に設置される。
図5は、回転式の操作レバーで同調モードを選択した場合の図であり、操作レバー50に連動したカム機構51が同調モード側のリミットスイッチ52をONにする。このリミットスイッチのONを制御部10(図1)が検出して、電源11をONにし、圧力センサ8によって使用者の呼吸を検知し、呼吸に同調して吸気時に酸素を供給するように自動開閉弁である電磁弁7の開閉する同調モードの制御を行う。
図7は回転式の操作レバーで連続モードが選択され場合の図であり、カム機構51が連続モード側のリミットスイッチ53をONするとともに、メカニカル弁である流路切替弁54を連続側に切替える。
このように、図5〜図7に図示したようなカム機構を備えることで、同調モードと緊急時に連続して供給する連続モード及び電源ON/OFFの切替えが一つの切替手段で行うことが可能となる。このことにより、安価で小型・軽量、非常時にも使いやすいデマンドレギュレーターを構成することが可能となる。
リミットスイッチのON/OFFと警報動作の関係を図5にフローチャートで示す。
電源OFFが選択された際に(図6)、同調モード側のリミットスイッチがOFFとなり、制御部にその信号が到達すると、自動開閉弁(電磁弁)を一時的に開放し圧抜き動作を行う。その際に圧力センサが圧力を検知し続けた場合には、酸素ボンベの元栓が開いていると判断して警報を発することができる。警報発報の後、一定時間経過後は警報を停止し電磁弁を閉じた状態で電源をOFFとする。これにより使用者に対して酸素ボンベの元栓を閉じるように促すともに、酸素放出を強制的にストップし酸素ボンベが空になるのを防ぐことが出来る。
また、連続モードに対応したリミットスイッチを備えることで(図7、ただし、図7の通り、電源スイッチと一体化されている必要は無い)、酸素ボンベの元栓が開いていると判断して警報を発報した状態においても、続けて連続モードが選択された場合は、連続側のリミットスイッチがカム機構によりONされていることを制御部にて検出して、警報の発報を停止することができる。このことにより、連続モード切替え時の不要な警報の発報が無い、分かり易い警報を搭載した呼吸同調気体供給装置が可能となる。The example of the embodiment of the breath tuned gas supply device of the present invention is described using a drawing.
FIG. 1 is a schematic device configuration diagram illustrating a breath-tuned gas supply device according to an embodiment of the present invention. The respiratory tuned gas supply apparatus of the present invention uses a flow rate setting knob 5 to adjust the gas regulated by a pressure regulating valve 3 which is a pressure regulating means for regulating the breathing gas filled in the oxygen cylinder 1 at a high pressure to a constant low pressure. Coaxial variable orifice 4 that is a flow rate adjusting means for rectifying the patient to a desired flow rate, pressure sensor 8 that is a pressure detecting means for detecting patient respiration, and a gas rectified in synchronism with respiration based on the pressure detection result It is composed of a gas supply means such as an electromagnetic valve 6 which is an automatic opening valve, a manual valve 7 which is a flow path switching valve for supplying continuously without being synchronized with a user's breathing in an emergency, and a cannula 9. .
First, the pressure adjusting means regulates the pressure of the high-pressure (primary pressure) breathing gas supplied from the oxygen cylinder 1 via the main valve 2 to a low pressure (secondary pressure) suitable for supplying to the patient. It comprises at least a pressure reducing valve and a pressure gauge (not shown) for checking the remaining amount of gas filled in the oxygen cylinder.
The gas adjusted to a low pressure is adjusted to a flow rate desired by the patient by a flow rate adjusting means, an automatic opening valve, and a flow path switching valve. The automatic opening valve opens and closes in synchronization with the user's breathing as a breathing synchronization valve. For example, a direct-acting two-port two-position switching electromagnetic valve is used. On the other hand, the flow path switching valve is a valve that switches the flow path in order to supply a continuous flow to emergency situations such as abnormal breathing of the patient itself, abnormal pressure sensor of the device, battery exhaustion, etc. It is preferable to use it.
The pressure sensor 8 is installed downstream of the automatic open / close valve and the flow path switching valve in order to detect the user's breathing pressure, and detects the pressure fluctuation of the cannula port accompanying breathing. For example, the range ± 50 Pa , A differential pressure sensor capable of measuring a pressure of about −0.5 to 1 Pa / 10 ms, a pressure switch operated by the fine pressure, and the like can be used.
A rotary valve is employed as the flow rate adjusting means, and a coaxial variable orifice in which perforations corresponding to the set flow rate are arranged concentrically is used, and the flow rate setting knob is rotated to adjust the flow rate to a predetermined flow rate. When the rotary shaft is operated using the flow rate setting knob, two orifices provided on the disk-shaped plate are selected. The gas supplied from the pressure adjusting means passes through the two orifices and is rectified into two flow rates. Each passes through a different flow path and is connected to an automatic opening valve and a flow path switching valve for tuning and continuous use.
The pressure sensor 8 is a respiration sensor provided downstream of the apparatus, which detects synchronized breathing, that is, breathing of the user, opens the automatic open / close valve only during inspiration and supplies oxygen, and stops oxygen supply during expiration. Thus, the pressure fluctuations of the user's inspiration and expiration are detected, and the controller 10 controls the opening and closing of the electromagnetic valve 6. In addition to the pressure sensor, a temperature sensor, a flow rate sensor, and the like can be used as the respiration sensor.
The two flow paths merge on the downstream side of the automatic opening valve and the flow path switching valve, and the gas is supplied to the patient through a gas supply means such as a pressure sensor that is a pressure detection means and a cannula.
Switching between continuous and synchronous is performed by a manual switching valve provided downstream, and is closed by turning off the electromagnetic valve, which is an automatic on-off valve that supplies synchronous flow, and is a manual valve that is a continuous flow supply channel By opening the, continuous flow can be supplied. Even if the supply amount is increased due to the deterioration of the patient's health, the apparatus is abnormal, the battery of the tuner is consumed, etc., the oxygen can be continuously supplied manually.
2 will be described in more detail with reference to a schematic cross-sectional view of the flow rate adjusting means. The flow rate adjusting means includes a rotary shaft 21 that is connected to the flow rate setting knob 5 and can be positioned at a predetermined angle, and includes an orifice plate 22 that is a disk-like plate that is mounted coaxially with the rotary shaft, and a flow rate scale. It has a flow rate setting knob, and the orifice plate 22 is provided with perforations (orifices) for rectifying the flow rate. For example, a flow rate value of 8 points can be set when the plate is rotated at an angle of 45 degrees and the flow path through the orifice is switched, and a flow rate value of 12 points can be set when the plate is switched at a rotation angle of 30 degrees.
Two orifice plates 22 can be provided to rectify the flow rate for supplying a continuous flow for emergency and the flow rate for tuning. As shown in FIG. 2, it is preferable to use a single disk and to have an emergency orifice 23 and a tuning orifice 24 on different circle diameters around the rotation axis. The flow rate adjusting means is preferably integrated with the pressure regulating valve 3 in order to reduce the flow path volume in which the residual pressure remains in the apparatus as much as possible.
Oxygen supplied from a nozzle 25 provided in the flow path housing 20 and connected to the pressure regulating valve is provided in an orifice plate 22, and is provided with tuning orifices 24 provided in different concentric circles around the rotation shaft 21. The flow rate is controlled by selecting the orifice 23 for continuous use (emergency). Further, the tuning flow path is connected to the electromagnetic valve 7 via the tuning flow side nozzle outlet 27, and the continuous flow path is connected to the manual valve 6 via the continuous flow side nozzle outlet 26.
When using an oxygen cylinder, how to save consumption is an important factor in determining the usage time of the cylinder, and oxygen is supplied only during inspiration in synchronization with the user's breath using a demand regulator. ing. In general, the ratio of the inspiratory time to the expiratory time in one breath is said to be 1: 2, and it becomes possible to save 1/3 by supplying oxygen only during the inspiratory time. On the other hand, even when oxygen is supplied during the inspiration time, the administered oxygen does not reach the alveoli, which is the site of oxygen absorption, during the second half of inspiration, and is substantially inhaled from the alveoli. Only oxygen administered. Therefore, when the administration oxygen amount in the first half of the inspiration is converted, it is possible to further reduce 1/2 of the continuous flow and to administer 1/6 of the continuous flow.
On the other hand, when oxygen is supplied in a continuous flow, oxygen is supplied even during exhalation, and the administered oxygen is exhausted together with exhalation. However, the oxygen administered when the air flow at the end of exhalation weakens stays in the nasal cavity and is inhaled at the start of the next inspiration, so oxygen administered at the end of exhalation is also absorbed from the alveoli and becomes oxygenated blood Working effectively. In addition, it is desirable to complete the oxygen administration within the first half (1/2) of the inspiratory time that contributes to oxygenation, but when a high flow of oxygen is administered in a short time, irritation to the nasal cavity of the user, It is necessary to consider discomfort. Therefore, in the device of the present invention, administration of oxygen at a flow rate of 1/3 to 1/5 of the continuous flow is completed within the first half of the inhalation time, preferably within the first half of the inhalation time. Complete dosing within time.
In oxygen inhalation therapy, the doctor prescribes the oxygen inhalation amount of the user based on the results of various tests such as measurement of arterial blood oxygen saturation and the exercise load test in advance. The oxygen inhalation amount is often prescribed at 0.25 LPM to 7 LPM, and when an oxygen cylinder is used, the demand regulator needs to cover a wide administration region from such a low flow rate to a high flow rate.
For high flow rate, the base flow rate is set high so that the first half of inhalation can be administered, and the low flow rate side makes the base flow rate low and the valve opening time is secured at least 30 msec. Need to fit. Furthermore, in the medium flow rate range such as 3 LPM used by most people, it is necessary to suppress the stimulation at the time of oxygen administration so as not to be uncomfortable as much as possible.
Further, in the present invention, the base flow rate of the tuned flow is divided into a plurality of groups of flow rates in which the flow rate of the breathing gas flowing through the tuned flow side orifice corresponding to the set flow rate value of the flow rate setting means is a constant ratio to the set flow rate. In the same section, control means for controlling the opening / closing of the automatic opening / closing valve with the same opening time is provided.
For example, in the region of 0.25-7 LPM generally used for oxygen inhalation therapy, it is classified into 4 categories such as 1 LPM or less, 1 to 3 LPM, 3 LPM or more, 3 divisions, 1 LPM or less, 1 to 2 LPM, 2 to 4 LPM, 4 LPM or more, Set the orifice diameter so that the flow rate of the breathing gas flowing through the orifice on the tuned flow side corresponding to the set flow rate value in the section is a constant ratio so that the opening time of the automatic open / close valve is the same in the same section .
In the synchronous control in the flow rate classification of the present invention, since it is divided into a plurality of groups of flow rates having a constant ratio with respect to the set flow rate, it suffices to detect which set flow rate range and detect all flow rate set values. This eliminates the need for expensive detection means such as a rotary encoder and a potentiometer, and reduces the risk of false detection.
As a means for detecting the flow rate setting value of the flow rate adjusting means of the present invention, an apparatus having a cam 30 and two limit switches SW1, SW2 mounted on the rotating shaft 21 of the flow rate adjusting means as shown in FIG. 3 is adopted. I can do it.
When the user operates the flow rate setting knob, the rotary valve rotates to select an orifice through which a desired flow rate flows. At the same time, a limit switch is operated by a cam synchronized with the rotary valve, and the flow rate classification can be recognized by an electric signal. The cam can be provided in a flow rate setting knob or a rotary valve.
When two limit switches as shown in FIG. 3 are used, four signals 00, 01, 10, and 11 can be obtained by the ON / OFF signal, and the flow rate setting signals of the four regions as shown in Table 1 can be obtained. Can be used for detection. The limit switch 1 (SW1) has a B contact specification, and the switch 2 (SW2) has an A contact specification.
Figure 0006430966
When three limit switches are used, an eight-position flow rate setting signal of a combination of “000” to “111” can be detected based on the same principle.
The position detection mechanism of the flow rate setting knob of the breathing synchronizer according to the present invention is arranged so that the detection switch follows the cam portion of the flow rate setting knob with reference to the center of the flow rate setting knob, as is apparent from the layout shown in FIG. Has been. At this time, it is possible to limit the detection range for the set flow rate by shifting the arrangement of the individual detection switches.
FIG. 4 schematically shows the rotation of the cam mechanism accompanying the rotation of the flow rate setting knob and the ON / OFF state of the limit switch. The cam rotates, and the limit switch is turned ON / OFF sequentially, so that a signal for the set flow rate at 4 positions can be obtained. As described above, the flow rate set value can be detected by a simple and inexpensive means such as a cam and a limit switch linked to the flow rate setting knob.
Using the respiratory tuned gas supply apparatus provided with the flow rate adjusting means described in the above embodiment, the tuned control by the four flow rate classification will be described with reference to Table 2.
The flow rate setting value is 6 points, and the device can set 6 point flow rate of 0.5, 1, 2, 3, 5, 7 LPM between the minimum flow rate of 0.5 LPM and the maximum flow rate of 7 LPM. And The flow rate is divided into 0.5 LPM as the low flow region 1, 1 to 2 LPM as the medium flow region 2, 3 LPM as the region 3, and 5 to 7 LPM as the high flow region 4.
The base flow rate of the tuned flow is a constant multiple of the continuous flow, 10 times the continuous flow in region 1, 5 times the continuous flow in region 2, 3 times the continuous flow in region 3, and 2 times the continuous flow in region 4. Thus, the orifice diameter of the tuned flow was set. The base flow rate ratio determines the flow rate ratio so that the oxygen administration can be completed within the first 3/4 of the time of inhalation of breathing, particularly within the time of 1/2. In order to suppress wind pressure stimulation to the nostrils in the low flow rate region, it is preferable to suppress the magnification to about 2 to 3 times.
The region detection region of region 1, region 2, region 3, and region 4 is detected by the setting detection mechanism of the flow rate adjusting means including the cam mechanism and limit switch shown in FIG. 3, and the valve opening time of the automatic opening / closing valve is controlled. As a result, it becomes possible to administer oxygen with a saving rate of 4 times (1/4 of the continuous flow rate) within the first half of the inhalation time in the regions 1 to 3 and within 3/4 of the first half of the region 4.
Figure 0006430966
As described above, in order to control the desired flow rate at the time of tuning with the flow rate setting dial provided in the emergency mode continuous flow path, it is necessary to set and recognize the electrical signal of the set flow rate value, for example, with a rotary switch etc. In an emergency mode such as battery exhaustion, the solenoid valve does not operate, so the flow path switching valve must be manually changed.
Since oxygen is a gas with a very high flame retardant property, safety is taken into consideration.When the demand regulator is used, the main valve of the oxygen cylinder is closed and the high-pressure gas oxygen remaining in the demand regulator It is desirable to open Therefore, when the power supply of the denmand regulator is turned off, the high pressure gas oxygen remaining is opened by opening the solenoid valve, and the main plug of the oxygen cylinder is opened by the pressure sensor installed downstream of the solenoid valve. There has also been proposed a demand regulator capable of issuing an alarm when detected (described in Japanese Patent Application Laid-Open No. 2000-262620). When switching from the tuning mode to the continuous mode by bypassing the solenoid valve in an emergency, there is a method of switching the flow path switching valve, but the switching means is generally provided independently of the power ON / OFF switch. (Patent Document 2). When the continuous mode is selected, it is preferable to turn off the power because it is not necessary to control the tuning mode (opening / closing of the solenoid valve, etc.), but when the switching means is independent of the power ON / OFF switch. Each requires an electrical detection means such as a limit switch, and a switch operation part (lever, etc.) must be provided for each, which is expensive and small in size required for equipment.・ It also becomes an obstacle to weight reduction. In particular, when switching to the continuous mode in an emergency, it is preferable that there is a switching means at a position that is easy for the user to understand, and it is preferable that it is integrated with a power ON / OFF switch.
Many denmand regulators have a pressure sensor installed downstream of the solenoid valve with the oxygen cylinder main valve open to prevent forgetting to close the oxygen cylinder main valve when the device power is turned off. It has a function of detecting and issuing an alarm, and such a device also has the following problems. That is, when the continuous mode is selected, there is no need to control breathing detection or opening / closing of the solenoid valve used in the tuning mode, and the apnea that is generally provided in demand regulators to prevent battery consumption. Turn off the demand regulator to stop the alarm (alarm that is triggered when breathing is not detected in tuned mode. It is triggered when there is continuous oxygen flow because breathing cannot be detected.) In this case, however, it is detected by the pressure sensor that the main valve of the oxygen cylinder is in an open state, and although it is not necessary, an alarm is issued and the user is confused.
Such a problem can be solved by the solutions described in the following 12) to 18).
12) In a breath-synchronized gas supply device that supplies breathing gas in synchronization with the user's breathing, a means for detecting the breathing of the user, and an automatic supply of breathing gas in synchronization with breathing based on the breathing detection result Opening valve, equipped with a flow path switching valve for continuous supply without being synchronized with the user's breathing in the event of an emergency. A breathing tuned gas supply apparatus comprising one switching means for integrally switching a continuous mode to be supplied and power ON / OFF.
13) A continuous mode in which the switching means includes a cam mechanism and a limit switch for detecting tuning mode selection, and is a power ON operation, switching to a tuning mode, power ON, switching to power OFF, and operation of a flow path switching valve. The respiratory tuned gas supply device as described in 12) above, wherein the switching valve is switched.
14) The means for detecting the user's breath is a pressure sensor, the automatic opening / closing valve is an electromagnetic valve that opens and closes in synchronization with the breath based on the detection result of the pressure sensor, and the flow path switching valve is the switching means. The respiratory tuned gas supply device as described in 13) above, which is a mechanical valve operated by
15) The respiration according to 14) above, wherein when the power supply OFF is selected by the switching means, the automatic opening valve is opened, and an alarm is issued when the pressure is detected by the pressure sensor. Tuned gas supply device.
16) The breathing tuned gas supply characterized in that the switching means includes a limit switch for detecting the continuous mode selection, and the alarm described in 15) is stopped when the continuous mode is selected following the selection of the power OFF. apparatus.
17) In a breath-synchronized gas supply device that supplies a breathing gas in synchronization with the user's breathing, a pressure sensor that detects the breathing of the user, and an automatic release valve that supplies the breathing gas in synchronism with the user's breathing In emergency, a flow path switching valve for supplying continuously without synchronizing with the user's breathing, a switch for turning on / off the power, a tuning mode for supplying breathing gas in synchronization with the user's breathing And a switching means for switching the continuous mode to be continuously supplied in an emergency, when the power is turned off, the automatic opening valve is opened, and a warning is issued when pressure is detected by the pressure sensor, A breathing tuned gas supply apparatus comprising a control means for stopping the alarm when a continuous mode is selected following selection of power OFF.
18) The breathing tuned gas supply apparatus according to 17) above, wherein the switching means includes a cam mechanism and a limit switch for detecting continuous mode selection.
According to such a breath tuned gas supply device, it is possible to switch between the tuned mode, the continuous mode continuously supplied in an emergency, and the power ON / OFF with one switching means, and an unnecessary alarm at the time of continuous mode switching. This makes it possible to prevent breathing, and it is possible to provide a breath-tuned gas supply device equipped with an easy-to-understand alarm that is inexpensive, compact and lightweight, easy to use in an emergency.
The switching means is illustrated in more detail in FIGS. The switching means includes a rotary operation lever 50, and includes a cam 51 interlocking with the operation lever rotating shaft, a limit switch 52 corresponding to the tuning mode, and a limit switch 53 corresponding to the continuous mode, and a flow path switching which is a manual valve. The valve 54 is installed in a range where it can be operated.
FIG. 5 is a diagram when the tuning mode is selected with the rotary operation lever, and the cam mechanism 51 interlocked with the operation lever 50 turns on the limit switch 52 on the tuning mode side. The control unit 10 (FIG. 1) detects that the limit switch is turned on, turns on the power supply 11, detects the user's respiration with the pressure sensor 8, and automatically supplies oxygen during inspiration in synchronization with respiration. The tuning mode for opening and closing the solenoid valve 7 which is an on-off valve is controlled.
FIG. 7 is a diagram when the continuous mode is selected with the rotary operation lever. The cam mechanism 51 turns on the limit switch 53 on the continuous mode side and switches the flow path switching valve 54, which is a mechanical valve, to the continuous side. .
As described above, by providing the cam mechanism as shown in FIGS. 5 to 7, it is possible to switch between the tuning mode, the continuous mode continuously supplied in an emergency, and the power ON / OFF with one switching means. It becomes. This makes it possible to configure a demand regulator that is inexpensive, small and lightweight, and easy to use in an emergency.
FIG. 5 is a flowchart showing the relationship between limit switch ON / OFF and alarm operation.
When the power OFF is selected (FIG. 6), when the limit switch on the tuning mode side is turned OFF and the signal reaches the control unit, the automatic open / close valve (solenoid valve) is temporarily opened to perform the pressure release operation. . At this time, if the pressure sensor continues to detect pressure, it can be determined that the main valve of the oxygen cylinder is open and an alarm can be issued. After the alarm is issued, the alarm is stopped after a certain period of time, and the power is turned off with the solenoid valve closed. This prompts the user to close the main plug of the oxygen cylinder and forcibly stops the release of oxygen to prevent the oxygen cylinder from becoming empty.
Moreover, by providing a limit switch corresponding to the continuous mode (FIG. 7, however, it is not necessary to be integrated with the power switch as shown in FIG. 7), it is judged that the main valve of the oxygen cylinder is open and an alarm is issued. If the continuous mode is selected even in the state where the alarm is issued, the control unit detects that the limit switch on the continuous side is turned on by the cam mechanism, and the alarm is stopped. Can do. This makes it possible to provide a breath-tuned gas supply device equipped with an easy-to-understand alarm that does not generate an unnecessary alarm when the continuous mode is switched.

本願発明の呼吸同調気体供給装置は、喘息、肺気腫症、慢性気管支炎等の呼吸器系器官疾患に苦しむ患者に対する酸素吸入療法において使用される酸素ボンベの使用し得る時間を可能な限り延長するために患者の呼吸パターンに同調して供給する呼吸同調気体供給装置(デマンドレギュレーター)として使用される。   The respiratory tuned gas supply device of the present invention extends the usable time of an oxygen cylinder used in oxygen inhalation therapy for patients suffering from respiratory organ diseases such as asthma, emphysema, and chronic bronchitis as much as possible. It is used as a breath-synchronized gas supply device (demand regulator) that supplies the patient in synchronism with the patient's breathing pattern.

1.酸素ボンベ、2.元弁、3.調圧弁、4.同軸可変オリフィス、5.流量設定つまみ、6.電磁弁、7.手動弁、8.圧力センサ、9.カニューラ、10.制御部、11.運転スイッチ、20.流路筐体、21.回転軸(流量設定つまみに接続)、22.オリフィスプレート、23.オリフィス(連続流)、24.オリフィス(同調流)、25.ノズル(調圧弁に接続)、26.ノズル(連続流側出口、手動弁に接続)、27.ノズル(同調流側出口、電磁弁に接続)、30.カム、SW1.リミットスイッチ1、SW2.リミットスイッチ2、50.操作レバー、51.カム機構、52.リミットスイッチ(同調モード側)、53.リミットスイッチ(連続モード側)、54.流路切替弁 1. Oxygen cylinder, 2. Original valve, 3. 3. Pressure regulating valve, 4. Coaxial variable orifice, 5. Flow rate setting knob, 6. solenoid valve; Manual valve, 8. Pressure sensor, 9. Cannula, 10. Control unit, 11. Operation switch, 20. Channel housing, 21. Rotating shaft (connected to the flow setting knob), 22. Orifice plate, 23. Orifice (continuous flow), 24. Orifice (tuned flow), 25. Nozzle (connected to pressure regulating valve), 26. Nozzle (continuous flow side outlet, connected to manual valve), 27. Nozzle (tuned flow side outlet, connected to solenoid valve), 30. Cam, SW1. Limit switch 1, SW2. Limit switch 2, 50. Operation lever, 51. Cam mechanism, 52. Limit switch (tuned mode side), 53. Limit switch (continuous mode side), 54. Flow path switching valve

Claims (6)

呼吸用気体を使用者の呼吸に同調して供給する呼吸同調気体供給装置において、使用者が所望の流量に調整する流量調整手段、使用者の呼吸を検知する圧力検出手段、該圧力検出手段の呼吸検知結果に基づいて呼吸に同調して呼吸用気体を供給する自動開閉弁、及び、使用者の呼吸には同調せず連続して供給するための流路切換弁を備え、
該流量調整手段が、設定流量値毎に一定角度で位置決め可能な回転軸を有し、該回転軸に取り付けられたディスク上の同心円上に、流量設定手段の流量設定値に応じた口径のオリフィスを備えたディスクを備えた回転バルブであり、
該流量設定手段の設定流量値に対応する同調流側のオリフィスを流れる呼吸用気体の流量が設定流量に対して一定比率となる複数群の流量に区分され、同一区分内では同一の開時間で該自動開閉弁の開閉を制御する制御手段を備えた、呼吸同調気体供給装置。
In a breath tuned gas supply device that supplies breathing gas in synchronization with a user's breath, a flow rate adjusting means for adjusting the flow rate to a desired flow rate by the user, a pressure detecting means for detecting the user's breath, An automatic opening / closing valve for supplying a breathing gas in synchronization with respiration based on a respiration detection result, and a flow path switching valve for continuously supplying the respiration gas without being synchronized with the user's respiration,
The flow rate adjusting means has a rotary shaft that can be positioned at a fixed angle for each set flow rate value, and an orifice having a diameter corresponding to the flow rate set value of the flow rate setting means on a concentric circle on a disk attached to the rotary shaft A rotary valve with a disc with
The flow rate of the breathing gas flowing through the orifice on the tuned flow side corresponding to the set flow rate value of the flow rate setting means is divided into a plurality of groups of flow rates having a constant ratio with respect to the set flow rate. A respiratory tuned gas supply device comprising control means for controlling opening and closing of the automatic opening and closing valve.
該流量調整手段が、設定流量値毎に一定角度で位置決め可能な回転軸を有し、該回転軸に取り付けられたディスク上の複数径の同心円上に、該流量設定手段の流量設定値に応じた口径のオリフィスを備えたディスクを備えた回転バルブであり、一方の同心円上に配置されたオリフィスの流路が連続流を供給する流量切換弁に、他方の同心円上に配置されたオリフィスの流路が同調流を供給する自動開閉弁に流路接続する導管を備えたことを特徴とする請求項1記載の呼吸同調気体供給装置。   The flow rate adjusting means has a rotary shaft that can be positioned at a fixed angle for each set flow rate value, and a plurality of concentric circles on a disk attached to the rotary shaft, according to the flow rate set value of the flow rate setting means. A rotary valve having a disk with an orifice of a different diameter, the flow path of the orifice arranged on one concentric circle to the flow rate switching valve supplying a continuous flow, and the flow of the orifice arranged on the other concentric circle 2. The respiratory tuned gas supply device according to claim 1, wherein the passage includes a conduit connected to the automatic opening / closing valve for supplying the tuned flow. 1呼吸当りに同調流で供給される呼吸用気体の流量が連続流の1/3〜1/5の流量であり、吸気時間の前半3/4以内に供給される、請求項1記載の呼吸同調気体供給装置。   The respiration according to claim 1, wherein the flow rate of the breathing gas supplied in synchronized flow per breath is 1/3 to 1/5 of the continuous flow, and is supplied within the first half of the inhalation time. Tuned gas supply device. 1呼吸当りに同調流で供給される呼吸用気体の流量が連続流の1/3〜1/5の流量であり、吸気時間の前半1/2以内に供給される、請求項1記載の呼吸同調気体供給装置。   The respiration according to claim 1, wherein the flow rate of the breathing gas supplied in synchronized flow per breath is 1/3 to 1/5 of the continuous flow and is supplied within the first half of the inspiration time. Tuned gas supply device. 該一定比率となる複数群の区分が4区分であり、該流量調整手段の流量設定値の検出手段として、流量調整手段の回転軸上に取り付けられた2つのリミットスイッチを備える、請求項1記載の呼吸同調気体供給装置。   The group of the plurality of groups having the constant ratio is four sections, and two limit switches mounted on a rotating shaft of the flow rate adjusting unit are provided as a flow rate setting value detection unit of the flow rate adjusting unit. Respiratory synchronized gas supply device. 該一定比率が設定流量に対して2〜10倍の範囲である請求項1〜5記載の呼吸同調気体供給装置。   The respiratory tuned gas supply device according to claim 1, wherein the constant ratio is in a range of 2 to 10 times the set flow rate.
JP2015553636A 2013-12-20 2014-12-22 Breathing synchronized gas supply device Active JP6430966B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2013263926 2013-12-20
JP2013263927 2013-12-20
JP2013263927 2013-12-20
JP2013263926 2013-12-20
JP2013269454 2013-12-26
JP2013269454 2013-12-26
PCT/JP2014/084740 WO2015093626A1 (en) 2013-12-20 2014-12-22 Breathing-synchronized gas supply device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2017198383A Division JP6510607B2 (en) 2013-12-20 2017-10-12 Respiratory tune gas supply device
JP2018098119A Division JP6524310B2 (en) 2013-12-20 2018-05-22 Respiratory tune gas supply device

Publications (2)

Publication Number Publication Date
JPWO2015093626A1 JPWO2015093626A1 (en) 2017-03-23
JP6430966B2 true JP6430966B2 (en) 2018-11-28

Family

ID=53402960

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015553636A Active JP6430966B2 (en) 2013-12-20 2014-12-22 Breathing synchronized gas supply device
JP2017198383A Active JP6510607B2 (en) 2013-12-20 2017-10-12 Respiratory tune gas supply device
JP2018098119A Active JP6524310B2 (en) 2013-12-20 2018-05-22 Respiratory tune gas supply device

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017198383A Active JP6510607B2 (en) 2013-12-20 2017-10-12 Respiratory tune gas supply device
JP2018098119A Active JP6524310B2 (en) 2013-12-20 2018-05-22 Respiratory tune gas supply device

Country Status (4)

Country Link
JP (3) JP6430966B2 (en)
CN (3) CN107158535B (en)
HK (1) HK1243363A1 (en)
WO (1) WO2015093626A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223920A (en) * 2015-09-24 2016-01-06 安徽泓瑞医用设备工程股份有限公司 Medical decompression alarming integrated box system
JP6786096B2 (en) * 2016-07-28 2020-11-18 株式会社フジキン Pressure type flow control device
JP7206473B2 (en) * 2018-06-12 2023-01-18 ダイキン工業株式会社 Respiratory tuner
CN110833415A (en) * 2018-08-15 2020-02-25 深圳市美好创亿医疗科技有限公司 Expiratory NO detection system
CN110077559A (en) * 2019-06-03 2019-08-02 深圳市赛邦连接电子有限公司 A kind of portable water lung respirator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142219A (en) * 1982-02-17 1983-08-24 Nippon Denso Co Ltd Airflow rate measuring device
CN87106097A (en) * 1987-08-31 1988-04-27 江西医学院第一附属医院 Pulmonary respiration apparatus with automatic switching and blowing for nasopharyngeal oxygenation by sound control
US5865174A (en) * 1996-10-29 1999-02-02 The Scott Fetzer Company Supplemental oxygen delivery apparatus and method
JP3930595B2 (en) * 1997-01-16 2007-06-13 株式会社群馬コイケ Breathing synchronization device for piping terminals
JP2002143306A (en) * 2000-11-14 2002-05-21 Gunma Koike:Kk Respiration synchronization-type oxygen supplying device
JP4598357B2 (en) * 2002-12-17 2010-12-15 帝人株式会社 Oxygen supply equipment
JP2005176879A (en) * 2003-12-16 2005-07-07 Gunma Koike:Kk Respiration-tuning oxygen feeder
JP4356734B2 (en) * 2006-11-13 2009-11-04 ソニー株式会社 Playback device
US8123349B2 (en) * 2007-01-31 2012-02-28 Hewlett-Packard Development Company, L.P. Automatic image color and contrast optimization system based on cartridge identification
US8061353B2 (en) * 2007-03-09 2011-11-22 Global Medical Holdings LLC Method and apparatus for delivering a dose of a gaseous drug to a patient
JP5112897B2 (en) * 2008-02-06 2013-01-09 日本特殊陶業株式会社 Oxygen concentrator
EP2379144B1 (en) * 2008-12-16 2014-03-12 Koninklijke Philips N.V. Device for variable flow oxygen therapy
CN101766857B (en) * 2008-12-29 2013-08-14 北京谊安医疗系统股份有限公司 Pneumatic and electric coupled switch
JP5969242B2 (en) * 2012-03-29 2016-08-17 帝人ファーマ株式会社 Oxygen concentrator

Also Published As

Publication number Publication date
CN105813676B (en) 2018-03-23
CN107115583A (en) 2017-09-01
CN107158535A (en) 2017-09-15
JP2018033976A (en) 2018-03-08
JP2018161484A (en) 2018-10-18
WO2015093626A1 (en) 2015-06-25
JPWO2015093626A1 (en) 2017-03-23
CN107158535B (en) 2019-12-10
CN107115583B (en) 2020-02-07
JP6510607B2 (en) 2019-05-08
JP6524310B2 (en) 2019-06-05
HK1243363A1 (en) 2018-07-13
CN105813676A (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP6524310B2 (en) Respiratory tune gas supply device
US20230125539A1 (en) Combination cpap and resuscitation systems and methods
US7066175B2 (en) Portable gas powered positive pressure breathing apparatus and method
US20050103342A1 (en) Remote control gas regulation system
JPH0417065B2 (en)
JPH11137690A (en) Inhalation tube
JPH11137689A (en) Ventilator
WO2002062284A2 (en) Tracheal pressure ventilation respiratory system
CN112370623B (en) Intelligent adjusting system of breathing machine and application thereof
JP2018079325A (en) System for ventilating patients
JPH08187289A (en) Supplying system of gas for respiration
CN112245731B (en) Aerator for breathing machine and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181101

R150 Certificate of patent or registration of utility model

Ref document number: 6430966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350