JP6429501B2 - Water supply control device and water supply device - Google Patents

Water supply control device and water supply device Download PDF

Info

Publication number
JP6429501B2
JP6429501B2 JP2014116233A JP2014116233A JP6429501B2 JP 6429501 B2 JP6429501 B2 JP 6429501B2 JP 2014116233 A JP2014116233 A JP 2014116233A JP 2014116233 A JP2014116233 A JP 2014116233A JP 6429501 B2 JP6429501 B2 JP 6429501B2
Authority
JP
Japan
Prior art keywords
valve
water supply
bypass
opening
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014116233A
Other languages
Japanese (ja)
Other versions
JP2015230125A (en
Inventor
健太 清水
健太 清水
明裕 柴田
明裕 柴田
昇 松井
昇 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014116233A priority Critical patent/JP6429501B2/en
Publication of JP2015230125A publication Critical patent/JP2015230125A/en
Application granted granted Critical
Publication of JP6429501B2 publication Critical patent/JP6429501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Flow Control (AREA)

Description

本発明は、原子力施設に設けられた蒸気発生器へ向けて冷却材を供給するための給水制御装置および給水装置に関する。   The present invention relates to a water supply control device and a water supply device for supplying a coolant to a steam generator provided in a nuclear facility.

従来、例えば、特許文献1に記載の給水装置は、原子力施設に設けられた蒸気発生器へ向けて冷却材を供給するため、蒸気発生器に接続された給水管と、給水管に設けられて定格容量の大きな給水弁と、給水弁の上流側と下流側とで給水管に接続されるバイパス管と、バイパス管に設けられて給水弁に比して定格容量の小さなバイパス弁と、給水流量制御装置と、を備えている。給水流量制御装置は、給水弁、給水弁に主給水弁制御信号切換器を介して連絡した主給水弁給水流量制御器、バイパス弁、バイパス弁にバイパス給水弁制御信号切換器を介して連絡したバイパス給水弁給水流量制御器、および両給水流量制御器と双方の切換器とに連絡し、給水流量信号を受けるようになっている給水弁自動切換制御装置を有している。そして、給水弁自動切換制御装置は、給水弁とバイパス弁の一方の流量を一定の割合で減少する弁閉制御信号と他方の流量を一定の割合で増加する弁開制御信号とを時間的に並行して発生し、給水弁とバイパス弁を合計給水流量の変動が最小になるように同時に制御するように構成されている。   Conventionally, for example, a water supply device described in Patent Document 1 is provided in a water supply pipe connected to a steam generator and a water supply pipe in order to supply a coolant to a steam generator provided in a nuclear facility. A water supply valve with a large rated capacity, a bypass pipe connected to the water supply pipe on the upstream side and downstream side of the water supply valve, a bypass valve provided in the bypass pipe and having a smaller rated capacity than the water supply valve, and a water supply flow rate And a control device. The feed water flow control device communicated to the feed water valve, the feed water valve via the main feed valve control signal selector, and the main feed valve feed water flow controller, bypass valve, bypass valve, communicated via the bypass feed valve control signal switch A bypass water supply valve water supply flow rate controller, and both water supply flow rate controllers and a switch for both, and a water supply valve automatic switching control device adapted to receive a water supply flow rate signal are provided. The water supply valve automatic switching control device temporally generates a valve closing control signal for decreasing the flow rate of one of the water supply valve and the bypass valve at a constant rate and a valve opening control signal for increasing the other flow rate at a constant rate. It is generated in parallel, and is configured to control the water supply valve and the bypass valve at the same time so as to minimize the fluctuation of the total water supply flow rate.

上述した従来の給水流量制御装置は、給水弁からバイパス弁に切り換える場合、先ず切り換え指令信号が出て、主給水弁制御信号切換器およびバイパス給水弁制御信号切換器に入力され、自動切換制御装置からの弁開度調整信号が給水弁およびバイパス弁にそれぞれ入力されるようにその内部接続状態が切り換えられる。そして、バイパス弁用の弁開度調節信号が、0%(全閉)から、自動制御状態の主給水弁制御信号から算出された目標値まで、予め調整された変化率で上昇する。弁開度調節信号がバイパス弁に印加されると、所定の遅れを有して弁が開き始め、弁リフトは弁開度調節信号に追随して増大する。バイパス弁の実際の開放開始が弁リフトからバイパス給水弁開度検出信号として検出されると、予め調節された変化率で0%(全閉)まで弁開度を減少する弁開度調整信号が出力されて主給水弁制御信号切換器を経由して給水弁に印加される。給水弁の弁リフトは、遅れをもって弁開度調整信号に追随する。弁開度調節信号は、目標値に達してから、実際の弁開度が追いつくまで所定時間、目標値を保つ。そして、切り換え開始時に記憶された給水流量信号と目標値を保つ時点での給水流量信号との偏差に応じて、弁開度調節信号は、上昇し或いは下降し、切り換え状態が終了したら、通常の自動制御状態に切り換えられる。   In the conventional water supply flow rate control device described above, when switching from a water supply valve to a bypass valve, a switching command signal is first output and input to a main water supply valve control signal switch and a bypass water supply valve control signal switch, and an automatic switching control device The internal connection state is switched so that the valve opening degree adjustment signal from is input to the water supply valve and the bypass valve, respectively. Then, the valve opening degree adjustment signal for the bypass valve rises from 0% (fully closed) to a target value calculated from the main water supply valve control signal in the automatic control state at a previously adjusted rate of change. When the valve opening adjustment signal is applied to the bypass valve, the valve starts to open with a predetermined delay, and the valve lift increases following the valve opening adjustment signal. When the actual opening start of the bypass valve is detected from the valve lift as a bypass feed valve opening detection signal, a valve opening adjustment signal for decreasing the valve opening to 0% (fully closed) at a pre-adjusted rate of change. It is output and applied to the water supply valve via the main water supply valve control signal switching unit. The valve lift of the water supply valve follows the valve opening adjustment signal with a delay. The valve opening adjustment signal keeps the target value for a predetermined time after reaching the target value until the actual valve opening catches up. Then, the valve opening adjustment signal rises or falls according to the deviation between the feed water flow signal stored at the start of switching and the feed water flow signal at the time when the target value is maintained. Switch to automatic control state.

特開平10−253007号公報JP-A-10-253007

給水弁とバイパス弁は、同時に用いられず、一方の弁が閉状態とされ他方の弁が開状態とされる。そして、これらの弁を切り換える場合、閉状態の一方の弁を開状態に移行させ、開状態の他方の弁を閉状態に移行させる。開状態に移行される一方の弁は、他方の弁における冷却材の流量と同等の流量とする目標弁開度に向けて開作動する。また、開状態に移行される一方の弁が閉状態で閉固着しているおそれがあるため、一方の弁の開作動を確認した後に他方の弁を閉作動する。そして、各弁は、冷却材の流量の変動を抑制するように互いに並行して流量の一時的な増減が最小となるように開作動と閉作動とを行う。   The water supply valve and the bypass valve are not used at the same time, and one valve is closed and the other valve is opened. When switching these valves, one valve in the closed state is shifted to the open state, and the other valve in the open state is shifted to the closed state. One valve that is shifted to the open state opens to a target valve opening degree that is equal to the flow rate of the coolant in the other valve. In addition, since one valve that is shifted to the open state may be closed and stuck, the other valve is closed after confirming the opening operation of one valve. Each valve performs an opening operation and a closing operation in parallel with each other so as to minimize a temporary increase / decrease in the flow rate so as to suppress fluctuations in the flow rate of the coolant.

このような各弁の切り換えにおいて、弁体を弁座に押し付けるトルクの変化や、空気式制御弁の場合にダイヤフラムの変位速度の変化などにより、一方の弁に対して開作動の作動信号が出力されてから開作動を開始するまでの追従時間に変化が生じる場合がある。この場合、追従時間が長ければ目標弁開度に達するまで出力信号に追いつくように一方の弁の開作動速度が速くなる。これに対して、追従時間が短ければ弁の開作動速度は遅くなる。その一方で、閉状態に移行する他方の弁は、一方の弁の開作動が開始した時点で閉作動の作動信号が出力され、この作動信号に従って一定速度で閉状態になる。この結果、追従時間が長くなると、一方の弁が開作動したときの給水流量が切り換え前と比較して過渡的に増加傾向となるオーバーシュートとなり、給水流量の偏差が過大となって警報が発信される原因となる。   When switching between these valves, an opening operation signal is output to one of the valves due to changes in torque that presses the valve against the valve seat, or changes in the displacement speed of the diaphragm in the case of pneumatic control valves. There may be a change in the follow-up time from the start to the opening operation. In this case, if the follow-up time is long, the opening speed of one of the valves increases so as to catch up with the output signal until the target valve opening is reached. On the other hand, if the follow-up time is short, the valve opening operation speed becomes slow. On the other hand, the other valve that shifts to the closed state outputs a closing operation signal when the opening operation of one of the valves starts, and closes at a constant speed according to this operation signal. As a result, if the follow-up time becomes longer, the overflow that the water supply flow rate when one of the valves is opened will tend to increase transiently compared to before switching, the deviation of the supply water flow rate becomes excessive, and an alarm is issued. Cause.

本発明は上述した課題を解決するものであり、弁の切り換え時における給水流量の変動を抑制することのできる給水制御装置および給水装置を提供することを目的とする。   This invention solves the subject mentioned above, and aims at providing the water supply control apparatus and water supply apparatus which can suppress the fluctuation | variation of the water supply flow volume at the time of switching of a valve.

上述の目的を達成するために、第1の発明の給水制御装置は、流体を供給する給水管と、前記給水管に設けられた給水弁と、前記給水弁の上流側と下流側とで前記給水管に接続されるバイパス管と、前記バイパス管に設けられて前記給水弁に比して定格容量が異なるバイパス弁と、を備える給水装置について、前記給水弁と前記バイパス弁とを切換制御する給水制御装置であって、閉状態の一方の弁に所定の目標弁開度とする開作動信号を出力したときから前記一方の弁が開作動を開始した旨の作動開始信号を入力するときまでの追従時間を取得する一方、前記作動開始信号に基づいて開状態の他方の弁に閉作動信号を出力すると共に閉作動信号を出力してから前記他方の弁が閉状態になるまでの閉作動時間を前記追従時間に応じて設定することを特徴とする。   In order to achieve the above-described object, a water supply control device according to a first aspect of the present invention includes a water supply pipe for supplying fluid, a water supply valve provided in the water supply pipe, and an upstream side and a downstream side of the water supply valve. For a water supply apparatus comprising a bypass pipe connected to a water supply pipe and a bypass valve provided in the bypass pipe and having a rated capacity different from that of the water supply valve, the water supply valve and the bypass valve are switched and controlled. From the time when an opening operation signal with a predetermined target valve opening is output to one valve in the closed state until the time when the operation start signal indicating that the one valve has started opening is input The following operation time is obtained, and on the basis of the operation start signal, the closing operation signal is output to the other valve in the open state and the closing operation signal is output until the other valve is closed. Set the time according to the follow-up time And wherein the door.

この給水制御装置によれば、閉状態の一方の弁に開作動信号を出力したときから一方の弁が開作動を開始するまでの追従時間に応じ、開状態の他方の弁に閉作動信号を出力してから他方の弁が閉状態になるまでの閉作動時間を設定することから、一方の弁が開作動を開始するまでの追従時間に変化があっても、これに応じた他方の弁の閉作動時間を得ることにより、弁の切り換え時における給水流量の変動を抑制する制御を行うことができる。   According to this water supply control device, the closing operation signal is sent to the other valve in the open state according to the follow-up time from when the opening operation signal is output to the one valve in the closing state until the one valve starts the opening operation. Since the closing operation time until the other valve is closed after output is set, even if there is a change in the follow-up time until one valve starts to open, the other valve corresponding to this changes. By obtaining this closing operation time, it is possible to perform control for suppressing fluctuations in the feed water flow rate when the valve is switched.

また、第2の発明の給水制御装置は、第1の発明において、前記他方の弁の開状態における弁開度に基づいて前記一方の弁における前記目標弁開度を求めることを特徴とする。   Further, the water supply control device of the second invention is characterized in that, in the first invention, the target valve opening of the one valve is obtained based on the valve opening of the other valve in the open state.

この給水制御装置によれば、切り換えた後の一方の弁における目標弁開度を、切り換える元である他方の弁の弁開度に基づいて求めることにより、切り換え前と切り換え後との給水流量を同様にすることができる。   According to this water supply control device, by obtaining the target valve opening degree of one valve after switching based on the valve opening degree of the other valve that is the switching source, the water supply flow rate before and after switching is obtained. The same can be done.

また、第3の発明の給水制御装置は、第1または第2の発明において、前記追従時間に基づいて、前記開作動信号を出力してから前記一方の弁が前記目標弁開度となるまでの開作動時間を求め、当該開作動時間に基づいて前記他方の弁の前記閉作動時間を設定することを特徴とする。   The water supply control device according to a third aspect of the present invention is the first or second aspect of the invention, from the output of the opening operation signal based on the follow-up time until the one valve reaches the target valve opening. The opening operation time is obtained, and the closing operation time of the other valve is set based on the opening operation time.

この給水制御装置によれば、一方の弁に開作動信号を出力したときから当該一方の弁が開作動を開始するまでの追従時間に基づいて、開作動信号を出力してから一方の弁が目標弁開度となるまでの開作動時間を差し引いて求め、この開作動時間から他方の弁の閉作動時間を設定する。この結果、弁の切り換え時における給水流量の変動を抑制する制御を行うための他方の弁の閉作動時間を適宜設定することができる。   According to this water supply control device, based on the follow-up time from when the opening operation signal is output to one valve to when the one valve starts the opening operation, the one valve The opening operation time until the target valve opening is reached is subtracted, and the closing operation time of the other valve is set from this opening operation time. As a result, it is possible to appropriately set the closing operation time of the other valve for performing the control for suppressing the fluctuation of the feed water flow rate when the valve is switched.

また、第4の発明の給水制御装置は、第1〜第3のいずれか一つの発明において、前記給水装置の前記給水弁および前記バイパス弁が、空気式制御弁であることを特徴とする。   The water supply control device according to a fourth aspect of the present invention is the water supply control device according to any one of the first to third aspects, wherein the water supply valve and the bypass valve of the water supply device are pneumatic control valves.

空気式制御弁は、ダイヤフラムの変位などにより、開作動信号が出力されてから開作動開始までの追従時間に変化が生じ易い傾向にある。このため、この給水制御装置によれば、当該空気式制御弁に対応し、弁の切り換え時における給水流量の変動を抑制する制御を行うことができる。   Pneumatic control valves tend to easily change in the follow-up time from when an opening operation signal is output to when the opening operation starts due to diaphragm displacement or the like. For this reason, according to this water supply control apparatus, control corresponding to the pneumatic control valve can be performed to suppress fluctuations in the water supply flow rate when the valve is switched.

上述の目的を達成するために、第5の発明の給水装置は、流体を供給する給水管と、前記給水管に設けられた給水弁と、前記給水弁の上流側と下流側とで前記給水管に接続されるバイパス管と、前記バイパス管に設けられて前記給水弁に比して定格容量が異なるバイパス弁と、を備える給水装置において、前記給水弁と前記バイパス弁とを切換制御する請求項1〜4のいずれか一つに記載の前記給水制御装置を備えることを特徴とする。   In order to achieve the above object, a water supply apparatus according to a fifth aspect of the present invention includes a water supply pipe for supplying fluid, a water supply valve provided in the water supply pipe, and an upstream side and a downstream side of the water supply valve. In a water supply apparatus comprising a bypass pipe connected to a pipe and a bypass valve provided in the bypass pipe and having a rated capacity different from that of the water supply valve, the water supply valve and the bypass valve are switched and controlled. The said water supply control apparatus as described in any one of claim | item 1 -4 is provided.

この給水装置によれば、閉状態の一方の弁に開作動信号を出力したときから一方の弁が開作動を開始するまでの追従時間に応じ、開状態の他方の弁に閉作動信号を出力してから他方の弁が閉状態になるまでの閉作動時間を設定することから、一方の弁が開作動を開始するまでの追従時間に変化があっても、これに応じた他方の弁の閉作動時間を得ることにより、弁の切り換え時における給水流量の変動を抑制することができる。   According to this water supply device, the closing operation signal is output to the other valve in the open state in accordance with the follow-up time from when the opening operation signal is output to the one valve in the closing state until the one valve starts the opening operation. Since the closing operation time from when the other valve is closed to the other valve is set, even if there is a change in the follow-up time until one of the valves starts to open, the other valve will respond accordingly. By obtaining the closing operation time, it is possible to suppress fluctuations in the feed water flow rate when the valve is switched.

本発明によれば、弁の切り換え時における給水流量の変動を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluctuation | variation of the feed water flow rate at the time of switching of a valve can be suppressed.

図1は、本発明の実施形態に係る給水装置を備えた原子力施設の概略構成図である。FIG. 1 is a schematic configuration diagram of a nuclear facility provided with a water supply apparatus according to an embodiment of the present invention. 図2は、本発明の実施形態に係る給水制御装置における弁の切り換え動作を示すタイムチャートである。FIG. 2 is a time chart showing a valve switching operation in the water supply control device according to the embodiment of the present invention. 図3は、本発明の実施形態に係る給水制御装置に対比する従前における弁の切り換え動作を示すタイムチャートである。FIG. 3 is a time chart showing a conventional valve switching operation as compared with the water supply control device according to the embodiment of the present invention. 図4は、弁の切り換え時における給水流量の変動を示すタイムチャートである。FIG. 4 is a time chart showing fluctuations in the feed water flow rate when the valves are switched.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本実施形態に係る給水装置を備えた原子力施設の概略構成図である。原子力施設1は、原子炉2を有する。原子炉2は、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)が用いられる。この加圧水型の原子炉2を用いた原子力施設1は、原子炉2を含む原子炉冷却系(一次冷却系)100と、原子炉冷却系100と熱交換するタービン系(二次冷却系)200とで構成される。原子炉冷却系100は、一次冷却材が流通し、タービン系200は、二次冷却材(冷却材)が流通する。   FIG. 1 is a schematic configuration diagram of a nuclear facility provided with a water supply apparatus according to the present embodiment. The nuclear facility 1 has a nuclear reactor 2. As the nuclear reactor 2, for example, a pressurized water reactor (PWR) is used. A nuclear facility 1 using this pressurized water reactor 2 includes a reactor cooling system (primary cooling system) 100 including the reactor 2 and a turbine system (secondary cooling system) 200 that exchanges heat with the reactor cooling system 100. It consists of. In the reactor cooling system 100, a primary coolant flows, and in the turbine system 200, a secondary coolant (coolant) flows.

原子炉冷却系100は、コールドレグ3aおよびホットレグ3bを介して原子炉2に接続された蒸気発生器4を有する。ホットレグ3bは、加圧器5が設けられ、コールドレグ3aは、一次冷却材ポンプ6が設けられている。そして、原子炉2、コールドレグ3a、ホットレグ3b、蒸気発生器4、加圧器5および一次冷却材ポンプ6は、原子炉格納容器7に収容されている。   The reactor cooling system 100 has a steam generator 4 connected to the reactor 2 via a cold leg 3a and a hot leg 3b. The hot leg 3b is provided with a pressurizer 5, and the cold leg 3a is provided with a primary coolant pump 6. The reactor 2, the cold leg 3 a, the hot leg 3 b, the steam generator 4, the pressurizer 5, and the primary coolant pump 6 are accommodated in the reactor containment vessel 7.

原子炉2は、上記したように加圧水型原子炉であり、その内部は一次冷却材で満たされる。一次冷却材は、中性子減速材として用いられるホウ素が溶解した軽水である。また、原子炉2は、その内部に、多数の燃料集合体8が収容され、この各燃料集合体8に対し、燃料集合体8の核分裂を制御する多数の制御棒9が抜差し可能に設けられている。   The nuclear reactor 2 is a pressurized water nuclear reactor as described above, and the inside is filled with the primary coolant. The primary coolant is light water in which boron used as a neutron moderator is dissolved. The nuclear reactor 2 contains a large number of fuel assemblies 8 therein, and a large number of control rods 9 for controlling the nuclear fission of the fuel assemblies 8 are removably provided in the fuel assemblies 8. ing.

原子力施設1の原子炉冷却系100における一連の動作について説明する。原子炉2内において、制御棒9により核分裂反応を制御しながら燃料集合体8を核分裂させると、核分裂により熱エネルギーが発生する。この熱エネルギーにより、原子炉2内の一次冷却材が加熱されると、加熱された一次冷却材は、一次冷却材ポンプ6によりホットレグ3bを介して蒸気発生器4に送られる。ホットレグ3bを通過する高温の一次冷却材は、加圧器5により加圧されることで沸騰が抑制され、高温高圧となった状態で、蒸気発生器4に流入する。蒸気発生器4に流入した高温高圧の一次冷却材は、二次冷却材と熱交換を行うことにより冷却され、冷却された一次冷却材は、一次冷却材ポンプ6によりコールドレグ3aを介して原子炉2に送られる。そして、冷却された一次冷却材が原子炉2に流入することで、原子炉2が冷却される。このように、一次冷却材は、原子炉2と蒸気発生器4とを循環している。   A series of operations in the reactor cooling system 100 of the nuclear facility 1 will be described. When the fuel assembly 8 is fissioned in the nuclear reactor 2 while controlling the fission reaction by the control rod 9, thermal energy is generated by the fission. When the primary coolant in the nuclear reactor 2 is heated by this thermal energy, the heated primary coolant is sent to the steam generator 4 through the hot leg 3b by the primary coolant pump 6. The high temperature primary coolant passing through the hot leg 3b is pressurized by the pressurizer 5 to suppress boiling, and flows into the steam generator 4 in a state of high temperature and pressure. The high-temperature and high-pressure primary coolant flowing into the steam generator 4 is cooled by exchanging heat with the secondary coolant, and the cooled primary coolant is passed through the cold leg 3a by the primary coolant pump 6 to the nuclear reactor. Sent to 2. Then, the cooled primary coolant flows into the reactor 2, so that the reactor 2 is cooled. Thus, the primary coolant circulates between the nuclear reactor 2 and the steam generator 4.

タービン系200は、蒸気管11を介して蒸気発生器4に接続されたタービン12、タービン12に接続された復水器13、および復水器13と蒸気発生器4とを接続する給水管14に介設された給水ポンプ15、を有している。そして、タービン12は、発電機16が接続されている。   The turbine system 200 includes a turbine 12 connected to the steam generator 4 via the steam pipe 11, a condenser 13 connected to the turbine 12, and a water supply pipe 14 connecting the condenser 13 and the steam generator 4. A water supply pump 15 interposed between the two. The turbine 12 is connected to a generator 16.

原子力施設1のタービン系200における一連の動作について説明する。蒸気管11を介して蒸気発生器4から蒸気がタービン12に流入すると、タービン12は回転を行う。タービン12が回転すると、タービン12に接続された発電機16は、発電を行う。この後、タービン12から流出した蒸気は復水器13に流入する。復水器13は、その内部に冷却管17が配設されており、冷却管17の一方には冷却水(例えば、海水)を供給するための取水管18が接続され、冷却管17の他方には冷却水を排水するための排水管19が接続されている。この復水器13は、タービン12から流入した蒸気を冷却管17により冷却することで、蒸気を液体に戻す。液体となった二次冷却材は、給水ポンプ15により給水管14を介して蒸気発生器4に送られる。蒸気発生器4に送られた二次冷却材は、蒸気発生器4において一次冷却材と熱交換を行うことにより再び蒸気となる。   A series of operations in the turbine system 200 of the nuclear facility 1 will be described. When steam flows from the steam generator 4 into the turbine 12 via the steam pipe 11, the turbine 12 rotates. When the turbine 12 rotates, the generator 16 connected to the turbine 12 generates power. Thereafter, the steam flowing out of the turbine 12 flows into the condenser 13. The condenser 13 has a cooling pipe 17 disposed therein, and one of the cooling pipes 17 is connected to a water intake pipe 18 for supplying cooling water (for example, seawater). A drain pipe 19 for draining the cooling water is connected to. The condenser 13 cools the steam flowing in from the turbine 12 by the cooling pipe 17, thereby returning the steam to a liquid. The secondary coolant that has become liquid is sent to the steam generator 4 via the water supply pipe 14 by the water supply pump 15. The secondary coolant sent to the steam generator 4 becomes steam again by exchanging heat with the primary coolant in the steam generator 4.

上記した原子力施設1において、二次冷却材は、上記の給水管14および給水ポンプ15を含む給水装置40により、その流量が制御されながら、蒸気発生器4へ向けて供給される。   In the nuclear facility 1 described above, the secondary coolant is supplied toward the steam generator 4 while the flow rate is controlled by the water supply device 40 including the water supply pipe 14 and the water supply pump 15.

給水装置40は、図1に示すように、上記の給水管14と、上記の給水ポンプ15と、給水管14に設けられた給水弁42と、給水弁42を迂回して給水管14に接続されたバイパス管43と、バイパス管43に設けられたバイパス弁44と、給水弁42の作動を検出する給水弁作動検出器45と、バイパス弁44の作動を検出するバイパス弁作動検出器46と、を備える。この給水装置40は、給水制御装置51により制御される。   As shown in FIG. 1, the water supply device 40 is connected to the water supply pipe 14 by bypassing the water supply pipe 14, the water supply pump 15, the water supply valve 42 provided in the water supply pipe 14, and the water supply valve 42. Bypass pipe 43, bypass valve 44 provided in bypass pipe 43, water supply valve operation detector 45 that detects the operation of water supply valve 42, and bypass valve operation detector 46 that detects the operation of bypass valve 44. . The water supply device 40 is controlled by a water supply control device 51.

給水弁42は、給水管14において給水ポンプ15の下流側に設けられている。給水弁42は、空気式の制御弁であり、バイパス弁44に比して、定格容量の大きな構成となっている。バイパス管43は、その一端が給水弁42の上流側で給水管14に接続され、その他端が給水弁42の下流側で給水管14に接続されている。バイパス弁44は、バイパス管43に設けられている。バイパス弁44は、給水弁42と同様に空気式の制御弁であるが、給水弁42に比して、定格容量の小さな構成となっている。なお、給水弁42およびバイパス弁44は、空気式の制御弁に限らず電動式や油圧式であってもよい。   The water supply valve 42 is provided on the downstream side of the water supply pump 15 in the water supply pipe 14. The water supply valve 42 is a pneumatic control valve and has a larger rated capacity than the bypass valve 44. One end of the bypass pipe 43 is connected to the water supply pipe 14 on the upstream side of the water supply valve 42, and the other end is connected to the water supply pipe 14 on the downstream side of the water supply valve 42. The bypass valve 44 is provided in the bypass pipe 43. The bypass valve 44 is a pneumatic control valve similar to the water supply valve 42, but has a smaller rated capacity than the water supply valve 42. The water supply valve 42 and the bypass valve 44 are not limited to pneumatic control valves, and may be electric or hydraulic.

給水弁作動検出器45は、例えば、給水弁42における弁体を作動させる作動軸に設けられたリミットスイッチであり、当該作動軸が動いたことにより弁体が動いて給水弁42が作動したことを検出する。バイパス弁作動検出器46は、例えば、バイパス弁44における弁体を作動させる作動軸に設けられたリミットスイッチであり、当該作動軸が動いたことにより弁体が動いてバイパス弁44が作動したことを検出する。   The water supply valve operation detector 45 is, for example, a limit switch provided on an operation shaft that operates the valve body in the water supply valve 42, and the valve body is moved by the movement of the operation shaft, and the water supply valve 42 is operated. Is detected. The bypass valve operation detector 46 is, for example, a limit switch provided on an operating shaft that operates the valve body in the bypass valve 44, and that the bypass body 44 is operated by moving the operating body due to the movement of the operating shaft. Is detected.

給水制御装置51は、給水装置40を統括的に制御する。給水制御装置51は、給水弁作動検出器45、およびバイパス弁作動検出器46に接続され、さらに、給水弁42およびバイパス弁44に接続されている。この給水制御装置51は、給水弁作動検出器45、およびバイパス弁作動検出器46からの入力に基づいて給水弁42およびバイパス弁44を制御することにより、給水弁42とバイパス弁44を切り換えて蒸気発生器4への給水制御を行う。   The water supply control device 51 comprehensively controls the water supply device 40. The water supply control device 51 is connected to the water supply valve operation detector 45 and the bypass valve operation detector 46, and is further connected to the water supply valve 42 and the bypass valve 44. The water supply control device 51 switches the water supply valve 42 and the bypass valve 44 by controlling the water supply valve 42 and the bypass valve 44 based on inputs from the water supply valve operation detector 45 and the bypass valve operation detector 46. Water supply control to the steam generator 4 is performed.

図2は、本実施形態に係る給水制御装置における弁の切り換え動作を示すタイムチャートである。また、図3は、本実施形態に係る給水制御装置に対比する従前における弁の切り換え動作を示すタイムチャートである。また、図4は、弁の切り換え時における給水流量の変動を示すタイムチャートである。   FIG. 2 is a time chart showing a valve switching operation in the water supply control device according to the present embodiment. FIG. 3 is a time chart showing a conventional valve switching operation compared with the water supply control device according to the present embodiment. FIG. 4 is a time chart showing fluctuations in the feed water flow rate when the valves are switched.

ここで、給水制御装置51においてバイパス弁44を開状態として制御し、給水弁42を閉状態として制御しない給水制御を給水バイパス系という。一方、給水制御装置51において給水弁42を開状態として制御し、バイパス弁44を閉状態として制御しない給水制御を給水系という。この給水バイパス系と給水系との切り換えは、オペレータの切換操作(切換スイッチの操作)による切換信号を入力した給水制御装置51が各弁の切り換えを制御する。また、給水バイパス系と給水系との切り換えのタイミングは、所望とする給水流量をそれぞれの弁の弁開度でまかなえる状態のときであって、すなわち設定給水流量以内である状態のときである。   Here, the water supply control in which the bypass valve 44 is controlled to be in the open state and the water supply valve 42 is not controlled to be closed in the water supply control device 51 is referred to as a water supply bypass system. On the other hand, the water supply control in which the water supply control device 51 controls the water supply valve 42 in the open state and does not control the bypass valve 44 in the closed state is referred to as a water supply system. In the switching between the water supply bypass system and the water supply system, the water supply control device 51 that receives a switching signal by an operator switching operation (switching switch operation) controls the switching of each valve. The timing of switching between the feed water bypass system and the feed water system is when the desired feed water flow rate is covered by the valve opening of each valve, that is, when the feed water flow rate is within the set feed water flow rate.

図2〜図4では、バイパス弁44が開状態とされ給水弁42が閉状態とされた給水バイパス系から、給水系に切り換える場合を示している。   2 to 4 show a case where the water supply bypass system in which the bypass valve 44 is opened and the water supply valve 42 is closed is switched to the water supply system.

本実施形態の給水制御装置51は、図2に示すように、切換信号を入力したT0のとき、このときのバイパス弁44の開状態における弁開度(例えば、60%弁開度)αに基づいて、閉状態の給水弁42の目標弁開度(例えば、30%弁開度)である目標値βを求める。そして、給水制御装置51は、給水弁42の開作動信号0から目標値βになるまでの時間T0−TEの間、一定速度で給水弁42を開作動させる。しかし、図2および図3に示すように、給水弁42において弁体を弁座に押し付けるトルクや、空気式制御弁の場合にダイヤフラムの変位などの変化により、給水弁42に対して開作動の作動信号が出力されてから給水弁作動検出器45の給水弁開作動開始検出時T1,T2,T3までの追従時間A1,A2,A3に変化が生じる場合がある。このような場合、図2および図3に示すように、給水弁42は、追従時間の変化により、各開作動開始時T1,T2,T3から目標弁開度βになるまでの開作動時間B1,B2,B3が異なることになる。   As shown in FIG. 2, the water supply control device 51 of the present embodiment has a valve opening (for example, 60% valve opening) α in the open state of the bypass valve 44 at this time when T0 is input as a switching signal. Based on the target valve opening (for example, 30% valve opening) of the water supply valve 42 in the closed state, the target value β is obtained. Then, the water supply control device 51 opens the water supply valve 42 at a constant speed during the time T0-TE from the opening operation signal 0 of the water supply valve 42 to the target value β. However, as shown in FIG. 2 and FIG. 3, the opening of the water supply valve 42 is caused by changes in the torque that presses the valve body against the valve seat in the water supply valve 42 or the displacement of the diaphragm in the case of a pneumatic control valve. There may be a change in the follow-up time A1, A2, A3 from the output of the operation signal to the time T1, T2, T3 when the feed valve opening detector 45 detects the start of the feed valve opening operation. In such a case, as shown in FIG. 2 and FIG. 3, the water supply valve 42 has an opening operation time B1 from the start of each opening operation T1, T2, T3 to the target valve opening β due to a change in the follow-up time. , B2 and B3 are different.

ここで、図3に示すように、本実施形態に係る給水制御装置51に対比する従前における弁の切り換え動作においては、給水弁作動検出器45から開作動開始信号を入力した各開作動開始時T1,T2,T3に基づく閉作動信号CS1’,CS2’,CS3’に従ってバイパス弁44が閉作動を開始する。この各閉作動信号CS1’,CS2’,CS3’は同じ信号であり、各開作動開始時T1,T2,T3から弁開度0になるまでのバイパス弁44の閉作動時間は同じである。このため、図4に示すように、給水弁作動検出器45から開作動開始信号を入力した開作動開始時T1,T2,T3から始まって、バイパス弁44から給水弁42に切り換わるまでの給水流量は、実線で示すように弁切り換え前の給水流量から変動しないことが好ましいが、開作動開始時が遅れたとしても閉作動開始時間は同じであるため、切り換え中の給水流量が増加傾向となるオーバーシュートとなる(図4に一点鎖線で示す)。   Here, as shown in FIG. 3, in the conventional valve switching operation compared with the water supply control device 51 according to the present embodiment, each opening operation start time when the opening operation start signal is input from the water supply valve operation detector 45. The bypass valve 44 starts closing operation according to the closing operation signals CS1 ′, CS2 ′, CS3 ′ based on T1, T2, T3. The closing operation signals CS1 ', CS2', and CS3 'are the same signal, and the closing operation time of the bypass valve 44 from the opening operation start time T1, T2, T3 to the valve opening 0 is the same. For this reason, as shown in FIG. 4, the water supply starts from the opening operation start time T1, T2, T3 when the opening operation start signal is input from the water supply valve operation detector 45 and is switched from the bypass valve 44 to the water supply valve 42. As shown by the solid line, it is preferable that the flow rate does not fluctuate from the feed water flow before switching the valve, but even if the opening operation start time is delayed, the closing operation start time is the same, so the feed water flow rate during switching tends to increase. Overshoot (indicated by a dashed line in FIG. 4).

そこで、本実施形態の給水制御装置51は、図2に示すように、給水弁42に目標弁開度βとする開作動信号を出力したときT0から、給水弁42が開作動を開始した旨の作動開始信号を給水弁作動検出器45から入力するときT1,T2,T3までの追従時間A1,A2,A3を取得する。   Therefore, as shown in FIG. 2, the water supply control device 51 of the present embodiment indicates that the water supply valve 42 has started to open from T0 when an opening operation signal for setting the target valve opening β is output to the water supply valve 42. When the operation start signal is input from the water supply valve operation detector 45, follow-up times A1, A2, A3 to T1, T2, T3 are acquired.

さらに、給水制御装置51は、追従時間A1,A2,A3から給水弁42が目標弁開度βとなるまでの開作動時間B1,B2,B3を求め、すなわち、給水弁42が弁開度0から目標弁開度βになるまでの時間T0−TEから追従時間A1,A2,A3を引いて開作動時間B1,B2,B3を求める。   Furthermore, the water supply control device 51 obtains the opening operation times B1, B2, B3 from the follow-up times A1, A2, A3 until the water supply valve 42 reaches the target valve opening β, that is, the water supply valve 42 has the valve opening 0. The follow-up times A1, A2, A3 are subtracted from the time T0-TE until the target valve opening β is reached to obtain the opening operation times B1, B2, B3.

さらに、給水制御装置51は、開作動時間B1,B2,B3に基づいてバイパス弁44の閉作動時間C1,C2,C3を設定する。そして、作動開始信号に基づいてバイパス弁44に閉作動時間C1,C2,C3に応じた閉作動信号CS1,CS2,CS3を出力してバイパス弁44を閉状態とする。   Furthermore, the water supply control device 51 sets the closing operation times C1, C2, and C3 of the bypass valve 44 based on the opening operation times B1, B2, and B3. Then, based on the operation start signal, the closing operation signals CS1, CS2, and CS3 corresponding to the closing operation times C1, C2, and C3 are output to the bypass valve 44 to close the bypass valve 44.

具体的に、閉作動信号CS1,CS2,CS3は、図4に示すように、給水弁作動検出器45から開作動開始信号を入力した開作動開始時T1,T2,T3から始まって、バイパス弁44から給水弁42に切り換わるまでの給水流量の変動が、実線で示すように給水流量の増減変動が小さくなるようにしたものである。つまり、従前の給水制御装置では、開作動開始時が遅くなればなるほど、閉作動時間は遅れるため、弁切り換え中の給水流量が弁切り換え前の給水流量に比べて増加していたが、比較的遅く開作動開始信号を入力したとしても(例えば、開作動開始時T3)では、閉作動信号CS3を出力して比較的短い閉作動時間C3でバイパス弁44を閉作動させ、図4に実線で示すように給水流量の変動を抑制する。   Specifically, as shown in FIG. 4, the closing operation signals CS1, CS2, and CS3 start from the opening operation start time T1, T2, T3 when the opening operation start signal is input from the water supply valve operation detector 45, and the bypass valve The fluctuation in the feed water flow rate from 44 to the feed valve 42 is such that the fluctuation in the feed water flow rate decreases as shown by the solid line. In other words, in the conventional water supply control device, as the opening operation start time is delayed, the closing operation time is delayed, so that the water supply flow rate during the valve switching increased compared to the water supply flow rate before the valve switching. Even if the opening operation start signal is input lately (for example, at the time of opening operation start T3), the closing operation signal CS3 is output, and the bypass valve 44 is closed during a relatively short closing operation time C3. As shown, the fluctuation of the feed water flow rate is suppressed.

なお、給水弁42が開状態とされバイパス弁44が閉状態とされた給水系から、給水バイパス系に切り換える場合は、給水弁42の作動とバイパス弁44の作動とを入れ換えて同様の切換制御を行えばよい。   When switching from a water supply system in which the water supply valve 42 is open and the bypass valve 44 is closed to the water supply bypass system, the same switching control is performed by switching the operation of the water supply valve 42 and the operation of the bypass valve 44. Can be done.

以上説明したように、本実施形態の給水制御装置51は、冷却材(流体)を供給する給水管14と、給水管14に設けられた給水弁42と、給水弁42の上流側と下流側とで給水管14に接続されるバイパス管43と、バイパス管43に設けられて給水弁42に比して定格容量が異なるバイパス弁44と、を備える給水装置40について、給水弁42とバイパス弁44とを切換制御するものであって、閉状態の一方の弁に所定の目標弁開度βとする開作動信号OS1を出力したときT0から一方の弁が開作動を開始した旨の作動開始信号を入力するときT1,T2,T3までの追従時間A1,A2,A3を取得する一方、作動開始信号に基づいて開状態の他方の弁に閉作動信号CS1,CS2,CS3を出力すると共に閉作動信号CS1,CS2,CS3を出力してから他方の弁が閉状態になるまでの閉作動時間C1,C2,C3を追従時間A1,A2,A3に応じて設定する。   As described above, the water supply control device 51 of the present embodiment includes the water supply pipe 14 that supplies the coolant (fluid), the water supply valve 42 provided in the water supply pipe 14, and the upstream side and the downstream side of the water supply valve 42. The water supply device 40 includes a bypass pipe 43 connected to the water supply pipe 14 and a bypass valve 44 provided in the bypass pipe 43 and having a rated capacity different from that of the water supply valve 42. 44, and when an open operation signal OS1 with a predetermined target valve opening β is output to one of the closed valves, the operation starts that one of the valves has started to open from T0. When inputting the signal, the follow-up times A1, A2, A3 to T1, T2, T3 are acquired, while the closing operation signals CS1, CS2, CS3 are output to the other valve in the open state based on the operation start signal and closed. Operation signal CS1, C 2, CS3 other valve from the output of the sets in response to the closing operation time C1, C2, C3 the following time A1, A2, A3 until closed.

この給水制御装置51によれば、閉状態の一方の弁に開作動信号OS1を出力したときから一方の弁が開作動を開始するまでの追従時間A1,A2,A3に応じ、開状態の他方の弁に閉作動信号CS1,CS2,CS3を出力してから他方の弁が閉状態になるまでの閉作動時間C1,C2,C3を設定することから、一方の弁が開作動を開始するまでの追従時間A1,A2,A3に変化があっても、これに応じた他方の弁の閉作動時間C1,C2,C3を得ることにより、弁の切り換え時における給水流量の変動を抑制する制御を行うことができる。   According to this water supply control device 51, the other in the open state depends on the follow-up times A1, A2, A3 from when the open operation signal OS1 is output to one valve in the closed state until the one valve starts to open. Since the closing operation time C1, C2, C3 from when the closing operation signal CS1, CS2, CS3 is output to the other valve until the other valve is closed is set, until one of the valves starts to open Even if there is a change in the follow-up times A1, A2, A3, the control for suppressing fluctuations in the feed water flow rate at the time of switching the valve is obtained by obtaining the closing operation times C1, C2, C3 of the other valve according to this change. It can be carried out.

また、本実施形態の給水制御装置51は、他方の弁の開状態における弁開度αに基づいて一方の弁における目標弁開度βを求める。   Moreover, the water supply control apparatus 51 of this embodiment calculates | requires the target valve opening degree (beta) in one valve based on the valve opening degree (alpha) in the open state of the other valve.

この給水制御装置51によれば、切り換えた後の一方の弁における目標弁開度βを、切り換える元である他方の弁の弁開度αに基づいて求めることにより、切り換え前と切り換え後との給水流量を同様にすることができる。   According to this water supply control device 51, the target valve opening β in one of the valves after switching is obtained based on the valve opening α of the other valve that is the switching source, so that before and after switching. The feed water flow rate can be made similar.

また、本実施形態の給水制御装置51は、追従時間A1,A2,A3に基づいて、開作動信号OS1を出力してから一方の弁が目標弁開度βとなるまでの開作動時間B1,B2,B3を求め、当該開作動時間B1,B2,B3に基づいて他方の弁の閉作動時間C1,C2,C3を設定する。   Further, the water supply control device 51 of the present embodiment is based on the follow-up times A1, A2, A3, and the opening operation time B1, from when the opening operation signal OS1 is output until the one valve reaches the target valve opening β. B2 and B3 are obtained, and the closing operation times C1, C2, and C3 of the other valve are set based on the opening operation times B1, B2, and B3.

この給水制御装置51によれば、一方の弁に開作動信号OS1を出力したときから当該一方の弁が開作動を開始するまでの追従時間A1,A2,A3に基づいて、開作動信号OS1を出力してから一方の弁が目標弁開度βとなるまでの開作動時間B1,B2,B3を差し引いて求め、この開作動時間B1,B2,B3から他方の弁の閉作動時間C1,C2,C3を設定する。この結果、弁の切り換え時における給水流量の変動を抑制する制御を行うための他方の弁の閉作動時間C1,C2,C3を適宜設定することができる。   According to this water supply control device 51, based on the follow-up times A1, A2, and A3 from when the opening operation signal OS1 is output to one valve until the one valve starts opening operation, the opening operation signal OS1 is set. It is obtained by subtracting the opening operation times B1, B2, B3 from when the output is made until the one valve reaches the target valve opening degree β, and the closing operation times C1, C2 of the other valve are obtained from the opening operation times B1, B2, B3. , C3. As a result, it is possible to appropriately set the closing operation time C1, C2, C3 of the other valve for performing the control for suppressing the fluctuation of the feed water flow rate when the valve is switched.

また、本実施形態の給水制御装置51は、給水装置40の給水弁42およびバイパス弁44が、空気式制御弁である。   In the water supply control device 51 of the present embodiment, the water supply valve 42 and the bypass valve 44 of the water supply device 40 are pneumatic control valves.

空気式制御弁は、ダイヤフラムの変位などにより、開作動信号OS1が出力されてから開作動開始時T1,T2,T3までの追従時間A1,A2,A3に変化が生じ易い傾向にある。このため、本実施形態の給水制御装置51によれば、当該空気式制御弁に対応し、弁の切り換え時における給水流量の変動を抑制する制御を行うことができる。   The pneumatic control valve tends to easily change in the follow-up times A1, A2, and A3 from when the opening operation signal OS1 is output to when the opening operation starts T1, T2, and T3 due to the displacement of the diaphragm. For this reason, according to the water supply control device 51 of the present embodiment, control corresponding to the pneumatic control valve can be performed to suppress fluctuations in the water supply flow rate when the valve is switched.

また、本実施形態の給水装置40は、冷却材(流体)を供給する給水管14と、給水管14に設けられた給水弁42と、給水弁42の上流側と下流側とで給水管14に接続されるバイパス管43と、バイパス管43に設けられて給水弁42に比して定格容量が異なるバイパス弁44と、給水弁42とバイパス弁44とを切換制御する上述した給水制御装置51と、を備える。   Further, the water supply device 40 of the present embodiment includes a water supply pipe 14 for supplying a coolant (fluid), a water supply valve 42 provided in the water supply pipe 14, and a water supply pipe 14 on the upstream side and the downstream side of the water supply valve 42. A bypass pipe 43 connected to the bypass pipe 43, a bypass valve 44 provided in the bypass pipe 43 and having a rated capacity different from that of the water supply valve 42, and the water supply control device 51 described above for switching and controlling the water supply valve 42 and the bypass valve 44. And comprising.

この給水装置40によれば、閉状態の一方の弁に開作動信号OS1を出力したときから一方の弁が開作動を開始するまでの追従時間A1,A2,A3に応じ、開状態の他方の弁に閉作動信号CS1,CS2,CS3を出力してから他方の弁が閉状態になるまでの閉作動時間C1,C2,C3を設定することから、一方の弁が開作動を開始するまでの追従時間A1,A2,A3に変化があっても、これに応じた他方の弁の閉作動時間C1,C2,C3を得ることにより、弁の切り換え時における給水流量の変動を抑制することができる。   According to the water supply device 40, the other open state is output according to the follow-up times A1, A2, and A3 from when the open operation signal OS1 is output to the one closed valve until the one valve starts to open. Since the closing operation time C1, C2, C3 from when the closing operation signals CS1, CS2, CS3 are output to the valve until the other valve is closed is set, the one valve starts to open. Even if the follow-up times A1, A2 and A3 change, by obtaining the closing operation times C1, C2 and C3 of the other valve according to this change, fluctuations in the feed water flow rate at the time of switching the valve can be suppressed. .

14 給水管
15 給水ポンプ
40 給水装置
42 給水弁
43 バイパス管
44 バイパス弁
45 給水弁作動検出器
46 バイパス弁作動検出器
51 給水制御装置
DESCRIPTION OF SYMBOLS 14 Water supply pipe 15 Water supply pump 40 Water supply apparatus 42 Water supply valve 43 Bypass pipe 44 Bypass valve 45 Water supply valve action | operation detector 46 Bypass valve action | operation detector 51 Water supply control apparatus

Claims (5)

流体を供給する給水管と、
前記給水管に設けられた給水弁と、
前記給水弁の上流側と下流側とで前記給水管に接続されるバイパス管と、
前記バイパス管に設けられて前記給水弁に比して定格容量が異なるバイパス弁と、
を備える給水装置について、前記給水弁と前記バイパス弁とを切換制御する給水制御装置であって、
閉状態の一方の弁に所定の目標弁開度とする開作動信号を出力したときから前記一方の弁が開作動を開始した旨の作動開始信号を入力するときまでの追従時間を取得する一方、前記作動開始信号に基づいて開状態の他方の弁に閉作動信号を出力すると共に閉作動信号を出力してから前記他方の弁が閉状態になるまでの閉作動時間を前記追従時間に応じて設定することを特徴とする給水制御装置。
A water supply pipe for supplying fluid;
A water supply valve provided in the water supply pipe;
A bypass pipe connected to the water supply pipe at an upstream side and a downstream side of the water supply valve;
A bypass valve provided in the bypass pipe and having a different rated capacity compared to the water supply valve;
A water supply control device for switching and controlling the water supply valve and the bypass valve,
One of acquiring a follow-up time from when an opening operation signal for setting a predetermined target valve opening is output to one valve in the closed state to when an operation start signal indicating that the one valve has started opening operation is input Based on the operation start signal, the closing operation signal is output to the other valve in the open state and the closing operation time from when the closing operation signal is output until the other valve is in the closed state is determined according to the follow-up time. The water supply control device characterized by setting.
前記他方の弁の開状態における弁開度に基づいて前記一方の弁における前記目標弁開度を求めることを特徴とする請求項1に記載の給水制御装置。   The water supply control device according to claim 1, wherein the target valve opening degree of the one valve is obtained based on a valve opening degree of the other valve in an open state. 前記追従時間に基づいて、前記作動開始信号を入力してから前記一方の弁が前記目標弁開度となるまでの開作動時間を求め、当該開作動時間に基づいて前記他方の弁の前記閉作動時間を設定することを特徴とする請求項1または2に記載の給水制御装置。 Based on the follow-up time, an opening operation time from when the operation start signal is input until the one valve reaches the target valve opening is obtained, and the closing of the other valve is performed based on the opening operation time. The water supply control device according to claim 1, wherein an operation time is set. 前記給水装置の前記給水弁および前記バイパス弁が、空気式制御弁であることを特徴とする請求項1〜3のいずれか一つに記載の給水制御装置。   The water supply control device according to any one of claims 1 to 3, wherein the water supply valve and the bypass valve of the water supply device are pneumatic control valves. 流体を供給する給水管と、
前記給水管に設けられた給水弁と、
前記給水弁の上流側と下流側とで前記給水管に接続されるバイパス管と、
前記バイパス管に設けられて前記給水弁に比して定格容量が異なるバイパス弁と、
を備える給水装置において、
前記給水弁と前記バイパス弁とを切換制御する請求項1〜4のいずれか一つに記載の前記給水制御装置を備えることを特徴とする給水装置。
A water supply pipe for supplying fluid;
A water supply valve provided in the water supply pipe;
A bypass pipe connected to the water supply pipe at an upstream side and a downstream side of the water supply valve;
A bypass valve provided in the bypass pipe and having a different rated capacity compared to the water supply valve;
In a water supply apparatus comprising:
A water supply apparatus comprising the water supply control apparatus according to any one of claims 1 to 4, wherein the water supply valve and the bypass valve are switched and controlled.
JP2014116233A 2014-06-04 2014-06-04 Water supply control device and water supply device Active JP6429501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014116233A JP6429501B2 (en) 2014-06-04 2014-06-04 Water supply control device and water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014116233A JP6429501B2 (en) 2014-06-04 2014-06-04 Water supply control device and water supply device

Publications (2)

Publication Number Publication Date
JP2015230125A JP2015230125A (en) 2015-12-21
JP6429501B2 true JP6429501B2 (en) 2018-11-28

Family

ID=54886993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014116233A Active JP6429501B2 (en) 2014-06-04 2014-06-04 Water supply control device and water supply device

Country Status (1)

Country Link
JP (1) JP6429501B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677604A (en) * 1979-11-30 1981-06-26 Mitsubishi Heavy Ind Ltd Controller for water level of heat exchange type steam generator
US4457266A (en) * 1983-08-02 1984-07-03 Phillips Petroleum Company Boiler control
JPS61195204A (en) * 1985-02-25 1986-08-29 三菱重工業株式会社 Controller for quantity of feed water of feed water system
JPH10253007A (en) * 1997-03-13 1998-09-25 Mitsubishi Heavy Ind Ltd Feedwater flow-rate controller of heat exchanger-type steam generator

Also Published As

Publication number Publication date
JP2015230125A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6122775B2 (en) Control device and activation method
CN113669717B (en) Method and device for automatically controlling water supply and storage medium
JP5675256B2 (en) Nuclear facility control system
JP6429501B2 (en) Water supply control device and water supply device
JP5964029B2 (en) Auxiliary feed valve control device for steam generator
JP5733929B2 (en) Water supply equipment
JP2017186952A (en) Steam turbine plant
JP6553847B2 (en) Water supply control device and water supply device
JP5606216B2 (en) Mixing equipment
GB2538567A (en) Method and system for controlling output of nuclear power plants
CA2972003A1 (en) Method for nuclear reactor core annealing and nuclear reactor
JP6604167B2 (en) Hot water storage water heater
JP6317652B2 (en) Plant control device and combined cycle power plant
JP2558700B2 (en) Plant warming controller
JP2020187061A (en) Control apparatus of nuclear power plant, nuclear power plant, and control method for nuclear power plant
JP2004150928A (en) Device and method for controlling output of nuclear reactor
JP6865186B2 (en) Load tracking device and nuclear power plant with it
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JP2009250923A (en) Feed water temperature control method for plant, power generation plant, and feed water temperature control device
Kai et al. Study of Application of Automatic Cooldown/Heatup Technology on CPR1000 Nuclear Power Plant
JP2017072315A (en) Control method for energy supply plant, control device for energy supply plant and computer program
JP3535087B2 (en) Reactor water supply control device
JP4504889B2 (en) Water supply control device
JP2007225461A (en) Output control method of nuclear reactor and nuclear reactor plant
JP2011174774A (en) Isolation cooling system in nuclear power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6429501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150