JP6429490B2 - Collagen fiber cross-linked porous body - Google Patents

Collagen fiber cross-linked porous body Download PDF

Info

Publication number
JP6429490B2
JP6429490B2 JP2014099087A JP2014099087A JP6429490B2 JP 6429490 B2 JP6429490 B2 JP 6429490B2 JP 2014099087 A JP2014099087 A JP 2014099087A JP 2014099087 A JP2014099087 A JP 2014099087A JP 6429490 B2 JP6429490 B2 JP 6429490B2
Authority
JP
Japan
Prior art keywords
collagen
porous body
cell culture
collagen fiber
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014099087A
Other languages
Japanese (ja)
Other versions
JP2015213676A (en
Inventor
貴宏 河上
貴宏 河上
竜 前田
竜 前田
山口 勇
勇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54751172&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6429490(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2014099087A priority Critical patent/JP6429490B2/en
Publication of JP2015213676A publication Critical patent/JP2015213676A/en
Application granted granted Critical
Publication of JP6429490B2 publication Critical patent/JP6429490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、架橋を施されたコラーゲン線維多孔体に関し、とりわけ細胞培養基材及び医療用材料(例えば、再生医療用の足場材料、移植用材料、美容整形材料、創傷被覆材、癒着防止材、薬物輸送担体等)に好適な材料である。   The present invention relates to a cross-linked collagen fiber porous body, and in particular, a cell culture substrate and a medical material (for example, a scaffold material for regenerative medicine, a transplant material, a cosmetic material, a wound dressing material, an adhesion prevention material, It is a material suitable for a drug transport carrier and the like.

コラーゲンは、生体内のタンパク質の30%を占め、骨格支持及び細胞接着などの機能を有する重要なタンパク質であり、例えば、骨・軟骨、靭帯・腱、角膜実質、皮膚、肝臓、筋肉などの組織は、コラーゲン線維からできている。このコラーゲンを用いた成形体(以下「コラーゲン成形体」という)は、細胞培養基材、再生医療用の足場材料(例えば、軟骨・骨・脊椎・髄核・靭帯・角膜実質・皮膚・血管・神経・肝臓組織の再生材料)、移植用材料(創傷被覆材料、骨補填剤、止血材料、癒着防止材など)又は薬物送達担体として有用であり、特に再生医療による大型組織再生、細胞の分散防止、及び細胞の分化誘導には必要不可欠である。   Collagen is an important protein that accounts for 30% of proteins in the body and has functions such as skeletal support and cell adhesion. For example, bone, cartilage, ligaments, tendons, corneal stroma, skin, liver, muscle and other tissues Is made of collagen fibers. A molded body using this collagen (hereinafter referred to as “collagen molded body”) is a cell culture substrate and a scaffold material for regenerative medicine (for example, cartilage, bone, spine, nucleus pulposus, ligament, corneal stroma, skin, blood vessel, Nerve / liver tissue regeneration material), transplantation material (wound dressing material, bone filling material, hemostatic material, anti-adhesion material, etc.) or drug delivery carrier, especially large tissue regeneration by regenerative medicine, prevention of cell dispersion And essential for inducing cell differentiation.

しかし、コラーゲン成形体は、力学特性が十分でないため、操作が難しく、臨床現場における使用は限定されていた。一般的に、コラーゲン成形体は、水や細胞培養液中で膨潤し易く、また、これを細胞培養基材として用いた場合には、培養期間が数日以上に渡ると形態が変化したり、あるいはコラーゲンが徐々に分解して溶出したりすることがあった。そのため、移植すると、播種した細胞が分散してしまい、所望の組織部位に留まることが困難であったりした。   However, since the collagen molded body has insufficient mechanical properties, it is difficult to operate, and its use in clinical settings is limited. In general, a collagen molded body is likely to swell in water or a cell culture medium, and when this is used as a cell culture substrate, the form changes when the culture period is over several days, Or collagen may decompose | disassemble gradually and may elute. Therefore, when transplanted, the seeded cells are dispersed and it is difficult to stay at a desired tissue site.

特許文献1には、コラーゲン濃度が50mg/ml以上であるコラーゲンの分散液、溶液あるいはその混合物から気泡を除去し、次に凍結乾燥の後、物理的架橋や化学的架橋による不溶化処理を行い、10%負荷時に10〜30kPaの応力を持ち、表面及び内部にポア構造を持つ細胞培養用担体に関する技術が開示されている。   In Patent Document 1, bubbles are removed from a collagen dispersion, solution or mixture thereof having a collagen concentration of 50 mg / ml or more, and then freeze-dried, followed by insolubilization treatment by physical crosslinking or chemical crosslinking, A technique relating to a carrier for cell culture having a stress of 10 to 30 kPa at 10% load and having a pore structure on the surface and inside is disclosed.

また、特許文献2には、平均直径が1〜5μmのコラーゲン線維で構成されたとするコラーゲン構造体に関する技術が開示されている。   Patent Document 2 discloses a technique relating to a collagen structure that is composed of collagen fibers having an average diameter of 1 to 5 μm.

特許第4915693号公報Japanese Patent No. 4915693 国際公開第2013/105665号パンフレットInternational Publication No. 2013/105665 Pamphlet

生体内ではコラーゲンが線維状で存在しているため、細胞培養において担体として用いるコラーゲンもアモルファス状ではなく線維状のものであることが好ましいと考えられている。   Since collagen is present in a fibrous form in the living body, it is considered that the collagen used as a carrier in cell culture is preferably in a fibrous form instead of an amorphous form.

一方、三次元の細胞培養を可能にするには、細胞が基材内部にまで進入できるように、細胞遊走が可能な孔径を備えた連続孔で構成された多孔体であることが必要である。   On the other hand, in order to enable three-dimensional cell culture, it is necessary to be a porous body composed of continuous pores having a pore size capable of cell migration so that cells can enter the substrate. .

しかしながら、従来の技術では、コラーゲン線維で構成され、且つ、三次元の細胞培養が可能な多孔質構造を有する多孔体(以下「線維マクロ多孔体」ともいう)を製造することは困難であった。ちなみに、三次元の細胞培養が可能な孔径の大きさについては諸説あり、少なくとも50μmあるいは70μmとも言われている。一方、100μmや150μmも提唱されているが、これは充分に円滑な細胞遊走を実現させるためと考えられる。   However, with the conventional technology, it has been difficult to produce a porous body (hereinafter also referred to as “fibrous macroporous body”) that is composed of collagen fibers and has a porous structure capable of three-dimensional cell culture. . By the way, there are various theories about the size of the pore diameter that enables three-dimensional cell culture, and it is said to be at least 50 μm or 70 μm. On the other hand, 100 μm and 150 μm are also proposed, but this is considered to realize sufficiently smooth cell migration.

コラーゲンを線維化させるためには、例えば特開2010−273847号公報に記載のように、中性の緩衝液を用いて、可溶化コラーゲン溶液のイオン強度を適度に高くしpHを中性近傍にすることが重要であることはよく知られており、当該公報には中性の緩衝液としてリン酸塩、酢酸塩、炭酸塩、クエン酸塩、Tris等の緩衝能を有する塩水溶液が例示され、リン酸緩衝液が好ましいものとして挙げられている。   In order to fibrillate collagen, for example, as described in JP-A-2010-273847, a neutral buffer solution is used, and the ionic strength of the solubilized collagen solution is appropriately increased so that the pH is close to neutral. It is well known that this is important, and in this publication, salt aqueous solutions having buffering capacity such as phosphate, acetate, carbonate, citrate and Tris are exemplified as neutral buffers. Phosphate buffer is mentioned as preferred.

本願出願人は、線維マクロ多孔体を得るための試みとして次の(a)〜(c)の方法を実施した。
(a) 可溶化コラーゲン溶液にリン酸緩衝生理食塩水(PBS)を添加してコラーゲンを線維化させた後、凍結乾燥する方法。
(b) 可溶化コラーゲン溶液にPBSを添加してコラーゲンを線維化させた後、線維化コラーゲンをエタノールシリーズ(エタノール濃度を段階的に高めたエタノールと水との混合液。エタノール濃度:50%、70%、90%、100%)で脱水・脱塩し、次に溶媒をt-ブタノールに置換し、凍結させた後、凍結乾燥する方法。
(c) 可溶化コラーゲン溶液を凍結乾燥した後、PBSでコラーゲンを線維化させる方法。
The present applicant performed the following methods (a) to (c) as an attempt to obtain a fibrous macroporous material.
(a) A method in which phosphate buffered saline (PBS) is added to a solubilized collagen solution to fibrillate collagen, and then freeze-dried.
(b) After PBS was added to the solubilized collagen solution to fibrillate the collagen, the fibrillated collagen was mixed with ethanol series (mixed solution of ethanol and water whose ethanol concentration was increased stepwise. Ethanol concentration: 50%, 70%, 90%, 100%), followed by dehydration and desalting, then replacing the solvent with t-butanol, freezing, and freeze-drying.
(c) A method of freeze-drying a solubilized collagen solution and then fibrillating the collagen with PBS.

しかしながら、上記(a)〜(c)のいずれの方法においても線維マクロ多孔体は得られなかった。   However, no fibrous macroporous material was obtained by any of the methods (a) to (c).

即ち、(a)の方法では、線維化したコラーゲンが凍結乾燥時に濃縮した高濃度の塩によって非線維化(脱線維化)してしまい、また孔径も小さいものであった。特許文献1に記載の細胞培養用担体も(a)の方法と同様の方法で製造するため、コラーゲンが線維状のものであるとは云い難かった。   That is, in the method (a), the fibrillated collagen becomes non-fibrotic (defibrinated) by a high concentration salt concentrated during freeze-drying, and the pore diameter is small. Since the cell culture carrier described in Patent Document 1 is also produced by the same method as the method (a), it is difficult to say that the collagen is fibrous.

また、(b)の方法では、コラーゲン線維からなる多孔体が得られたが、孔径が小さいために三次元の細胞培養には不適であった。これはt-ブタノールの凍結結晶が水の凍結結晶ほど大きくなかったためと考えられる。ちなみに、水溶媒の可溶化コラーゲン溶液をそのまま凍結乾燥すると、三次元の細胞培養が可能な大きさの孔径を有する多孔体が得られるが、非線維状(アモルファス状)で溶解しているコラーゲンがそのまま凍結乾燥されるため非線維状(アモルファス状)のものとなることが知られている。   In the method (b), a porous body composed of collagen fibers was obtained, but it was unsuitable for three-dimensional cell culture because of its small pore size. This is probably because the frozen crystals of t-butanol were not as large as the frozen crystals of water. By the way, when the solubilized collagen solution in an aqueous solvent is freeze-dried as it is, a porous body having a pore size that allows three-dimensional cell culture can be obtained, but non-fibrous (amorphous) dissolved collagen can be obtained. It is known that it is non-fibrous (amorphous) because it is freeze-dried as it is.

また、(c)の方法では、安定した形状のものが得られなかった。   Further, in the method (c), a stable shape could not be obtained.

特許文献2に記載のコラーゲン構造体については、その実施例1に係る電子顕微鏡像の図3及び図4から判断すると、孔径が50μmを十分に下回るほど小さいために、三次元の細胞培養に適したものとは云い難かった。   The collagen structure described in Patent Document 2 is suitable for three-dimensional cell culture because the pore diameter is small enough to be less than 50 μm as judged from FIGS. 3 and 4 of the electron microscope image according to Example 1. It was hard to say.

本発明は、コラーゲン線維で構成され、且つ、三次元の細胞培養が可能な多孔質構造を有するコラーゲン成形体の提供を課題とするものである。   An object of the present invention is to provide a collagen molded body composed of collagen fibers and having a porous structure capable of three-dimensional cell culture.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、意外にも、アルカリ金属重炭酸塩によって析出させた線維化コラーゲンを凍結乾燥し、これを架橋処理することによって、コラーゲンが線維構造を保ちながらも、細胞遊走が可能な孔径を備えた連続孔で構成された多孔構造を有し、細胞培養基材として有効に機能し得るコラーゲン成形体が得られることを見出し、本発明を完成させたものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have surprisingly found that fibrillar collagen precipitated by alkali metal bicarbonate is freeze-dried and cross-linked so that the collagen is fibrillated. It was found that a collagen molded body having a porous structure composed of continuous pores having a pore size capable of cell migration while maintaining the structure and capable of effectively functioning as a cell culture substrate can be obtained. It has been completed.

即ち、本発明は下記の通りである。
[1]コラーゲン線維で構成され、三次元の細胞培養が可能な多孔質構造を有し、且つ、架橋処理が施されたことを特徴とするコラーゲン線維架橋多孔体。
[2]前記コラーゲン線維架橋多孔体の電子顕微鏡像における、最表面に観察される孔の数が少なくとも30個である一定区画内において、当該孔の最大個数がnであるときに、平均孔径={Σ(孔iの最大幅+孔iの最小幅)/2}/n(但し、i=1〜n)の数式によって算出される平均孔径が、50〜300μmの範囲である上記[1]記載のコラーゲン線維架橋多孔体。
[3]前記多孔質構造の少なくとも一部において、D周期性の横縞を有するコラーゲン線維が観察される上記[1]又は[2]記載のコラーゲン線維架橋多孔体。
[4]前記コラーゲン線維架橋多孔体を細胞培養基材として用いて、マウス線維芽細胞株L929を10日間培養したときに、培養後の細胞培養基材が、金属製ピンセットによって保持できる強度を有するものである上記[1]〜[3]のいずれか1項記載のコラーゲン線維架橋多孔体。
[5]上記[1]〜[4]のいずれか1項記載のコラーゲン線維架橋多孔体を細胞培養基材として用い、細胞培養することによって形成された移植用材料。
[6]上記[1]〜[4]のいずれか1項記載のコラーゲン線維架橋多孔体を細胞培養基材として用いる細胞培養方法であって、乾燥または脱水状態の当該多孔体に、細胞懸濁液を吸収させることによって、細胞を当該多孔体内で三次元的に分布させることを特徴とする細胞培養方法。
[7]可溶化コラーゲン溶液とアルカリ金属重炭酸塩とを混合して線維化コラーゲンを析出させる第一工程、凍結乾燥する第二工程、架橋処理する第三工程を含むことを特徴とする、上記[1]〜[4]のいずれか1項記載のコラーゲン線維架橋多孔体の製造方法。
[8]前記第三工程の架橋処理が、下記(1)と(2)のいずれか一方又は(1)と(2)の組み合わせによる処理である、上記[7]記載のコラーゲン線維架橋多孔体の製造方法。(1)γ線照射、電子線照射、プラズマ照射、UV照射又は熱脱水によって物理的架橋する処理。(2)水溶性化学架橋剤又は気化能を有する化学架橋剤によって化学的架橋する処理。
[9]アルカリ金属重炭酸塩の適用量が、コラーゲンの分子量を30万としたときに、アルカリ金属重炭酸塩/可溶化コラーゲン溶液中のコラーゲン(モル比)=3×102〜3×104の範囲である上記[7]又は[8]記載のコラーゲン線維架橋多孔体の製造方法。
That is, the present invention is as follows.
[1] A collagen fiber crosslinked porous body comprising a collagen fiber, having a porous structure capable of three-dimensional cell culture, and subjected to a crosslinking treatment.
[2] In an electron microscope image of the collagen fiber cross-linked porous body, when the maximum number of the holes is n in a fixed section where the number of holes observed on the outermost surface is at least 30, the average pore diameter = [1] The average pore diameter calculated by the formula {Σ (maximum width of hole i + minimum width of hole i) / 2} / n (where i = 1 to n) is in the range of 50 to 300 μm [1] The collagen fiber cross-linked porous body described.
[3] The collagen fiber cross-linked porous body according to the above [1] or [2], wherein collagen fibers having D-periodic horizontal stripes are observed in at least a part of the porous structure.
[4] When the mouse fibroblast cell line L929 is cultured for 10 days using the collagen fiber cross-linked porous body as a cell culture substrate, the cultured cell culture substrate has a strength that can be held by metal tweezers. The collagen fiber cross-linked porous body according to any one of the above [1] to [3], which is a product.
[5] A transplant material formed by cell culture using the collagen fiber crosslinked porous material according to any one of the above [1] to [4] as a cell culture substrate.
[6] A cell culture method using the collagen fiber cross-linked porous body according to any one of [1] to [4] as a cell culture substrate, wherein a cell suspension is applied to the dried or dehydrated porous body. A cell culture method characterized in that cells are three-dimensionally distributed in the porous body by absorbing liquid.
[7] The method includes the first step of mixing the solubilized collagen solution and the alkali metal bicarbonate to precipitate fibrotic collagen, the second step of freeze-drying, and the third step of crosslinking treatment. The method for producing a collagen fiber crosslinked porous material according to any one of [1] to [4].
[8] The collagen fiber crosslinked porous material according to the above [7], wherein the crosslinking treatment in the third step is treatment by any one of the following (1) and (2) or a combination of (1) and (2) Manufacturing method. (1) A process of physical crosslinking by γ-ray irradiation, electron beam irradiation, plasma irradiation, UV irradiation or thermal dehydration. (2) A process of chemically crosslinking with a water-soluble chemical crosslinking agent or a chemical crosslinking agent having vaporization ability.
[9] Collage in alkali metal bicarbonate / solubilized collagen solution (molar ratio) = 3 × 10 2 to 3 × 10, when the amount of alkali metal bicarbonate applied is 300,000. The method for producing a crosslinked collagen fiber according to [7] or [8], which is in the range of 4 .

本発明のコラーゲン線維架橋多孔体は、コラーゲンが線維状であり、さらに架橋処理が施されているために、難水溶性即ち一定期間水と接触しても一定の強度を有し形状もほとんど変化しないという特性を有するものである。また、細胞親和性及び生体親和性に優れ、細胞が多孔体の表面だけでなく内部でも生存することができるという利点を有する。さらに好適な一形態では、細胞培養を行っても一定の強度が保持され、形状的にも収縮以外の点では比較的安定している。そのため、細胞培養基材としての使用だけでなく、再生医療用の足場材料、移植用材料、美容整形材料、創傷被覆材、癒着防止材、薬物輸送担体等の医療用材料としての生体内での使用にも適したものである。   The collagen fiber cross-linked porous body of the present invention has a fibrous structure and further undergoes a cross-linking treatment, so it is hardly water-soluble, that is, has a certain strength even when contacted with water for a certain period of time, and its shape changes almost It has the characteristic of not. In addition, it has excellent cell affinity and biocompatibility, and has the advantage that cells can survive not only on the surface of the porous body but also inside. In a more preferred embodiment, a certain strength is maintained even after cell culture, and the shape is relatively stable in terms other than contraction. Therefore, not only as a cell culture substrate, but also in vivo as a medical material such as scaffolding materials for regenerative medicine, transplant materials, cosmetic materials, wound dressings, anti-adhesion materials, drug transport carriers, etc. It is also suitable for use.

本発明の実施例1におけるコラーゲン線維架橋多孔体を、37℃の水に24時間浸漬した後に、湿潤状態のまま金属製ピンセットでつまんだときの写真である。It is a photograph when the collagen fiber cross-linked porous body in Example 1 of the present invention is pinched with metal tweezers in a wet state after being immersed in water at 37 ° C. for 24 hours. 本発明の実施例1におけるコラーゲン線維架橋多孔体の電子顕微鏡像(倍率:100倍)である。It is an electron microscopic image (magnification: 100 times) of the collagen fiber crosslinked porous material in Example 1 of the present invention. 本発明の実施例1におけるコラーゲン線維架橋多孔体の電子顕微鏡像(倍率:500倍)である。It is an electron microscopic image (magnification: 500 times) of the collagen fiber crosslinked porous material in Example 1 of the present invention. 本発明の実施例1におけるコラーゲン線維架橋多孔体の電子顕微鏡像(倍率:10,000倍)及びその拡大図(右図)である。It is an electron microscopic image (magnification: 10,000 times) of the collagen fiber cross-linked porous body in Example 1 of the present invention and an enlarged view thereof (right figure). 図2の最表層の孔だけを識別できるように最表層の孔の内側を塗りつぶしたものである。The inside of the outermost layer hole is filled so that only the outermost layer hole of FIG. 2 can be identified. 本発明の比較例1における非線維化コラーゲン多孔体を金属製ピンセットでつまんだときの写真である。It is a photograph when the non-fibrotic collagen porous body in Comparative Example 1 of the present invention is pinched with metal tweezers. 本発明の比較例2におけるコラーゲン線維多孔体を金属製ピンセットでつまんだときの写真である。It is a photograph when the collagen fiber porous body in the comparative example 2 of this invention is pinched with metal tweezers. 本発明の比較例2におけるコラーゲン線維多孔体の電子顕微鏡像(倍率:100倍)である。It is an electron microscopic image (magnification: 100 times) of the collagen fiber porous body in the comparative example 2 of this invention. 本発明の実施例1におけるコラーゲン線維架橋多孔体を細胞培養試験に供した後に、ギムザ染色した湿潤状態のまま金属製ピンセットでつまんだときの写真である。It is a photograph when the collagen fiber cross-linked porous body in Example 1 of the present invention is pinched with metal tweezers in a wet state stained with Giemsa after being subjected to a cell culture test.

以下、線維マクロ多孔体である本発明のコラーゲン線維架橋多孔体(以下、「本発明の多孔体」という)について詳細に説明する。
本発明の多孔体は、コラーゲン線維で構成され、三次元の細胞培養が可能な多孔質構造を有し、且つ、架橋処理が施されたことを特徴とするものである。
Hereinafter, the collagen fiber cross-linked porous body of the present invention which is a fiber macroporous body (hereinafter referred to as “the porous body of the present invention”) will be described in detail.
The porous body of the present invention is composed of collagen fibers, has a porous structure capable of three-dimensional cell culture, and is subjected to a crosslinking treatment.

コラーゲン線維の特徴は、D周期性の横縞を有することである。D周期性の横縞は、線維性のコラーゲンに特徴的に観察されるものであり、文献によっては64nmや70nmという記載もあるが、一般的には67nmの間隔で認められる周期性のある横縞のことである(「電子顕微鏡」vol.26, No.1, p.2-9, 1991等参照)。本発明の多孔体を電子顕微鏡で観察すると、低倍率では立体的な網目状構造が観察されるが、適切な倍率ではD周期性の横縞が観察される。但し、電子顕微鏡像においては、ピント位置などにより、像内すべての部分においてD周期性の横縞を観察することは困難である。しかし、複数箇所を撮影した電子顕微鏡像のそれぞれにおいて、少なくとも一部にD周期性の横縞を有するコラーゲン線維が観察されれば、多孔質構造の構成要素がコラーゲン線維であると推認することができる。   A feature of collagen fibers is that they have D-periodic horizontal stripes. D periodic horizontal stripes are characteristically observed in fibrous collagen, and there are descriptions of 64 nm and 70 nm depending on the literature, but in general there are periodic horizontal stripes that are recognized at intervals of 67 nm. (Refer to “Electron Microscope” vol.26, No.1, p.2-9, 1991, etc.) When the porous body of the present invention is observed with an electron microscope, a three-dimensional network structure is observed at a low magnification, but D periodic horizontal stripes are observed at an appropriate magnification. However, in an electron microscope image, it is difficult to observe D periodic horizontal stripes in all parts of the image due to the focus position and the like. However, if collagen fibers having D-periodic horizontal stripes are observed in at least a part of each of the electron microscopic images obtained by photographing a plurality of locations, it can be assumed that the constituent elements of the porous structure are collagen fibers. .

三次元の細胞培養が可能な多孔質構造としては、細胞が基材内部にまで進入できるように、円滑な細胞遊走に適した孔径の連続孔を有する海綿状(スポンジ状)構造であれば特に制限はない。孔径に関する好適な一形態は、本発明の多孔体の電子顕微鏡像において、最表面に観察される孔の数が少なくとも30個である一定区画内において、当該孔の最大個数がnであるときに、平均孔径={Σ(孔iの最大幅+孔iの最小幅)/2}/n(但し、i=1〜n)の数式によって算出される平均孔径が、50〜300μmの範囲となるものである。上記平均孔径のより好適な範囲は、70〜250μmである。尚、上記孔としては、完全孔が対象であり、区画境界線によって孔が分断された不完全孔は含まれない。   As a porous structure capable of three-dimensional cell culture, a sponge-like (sponge-like) structure having continuous pores having a pore size suitable for smooth cell migration so that cells can enter the inside of the substrate can be used. There is no limit. A preferred embodiment relating to the pore diameter is an electron microscopic image of the porous body of the present invention, wherein the maximum number of holes is n in a fixed section where the number of holes observed on the outermost surface is at least 30. Average pore diameter = {Σ (maximum width of hole i + minimum width of hole i) / 2} / n (where i = 1 to n), the average pore diameter is in the range of 50 to 300 μm. Is. A more preferable range of the average pore diameter is 70 to 250 μm. In addition, as said hole, a complete hole is object and the incomplete hole by which the hole was divided | segmented by the division boundary line is not included.

架橋処理は、コラーゲン分子間あるいはコラーゲン分子によって形成されたコラーゲン細線維間などにおいて架橋が施されれば特に限定されるものではない。具体的な架橋処理方法としては、例えば、(1)γ線照射、電子線照射、プラズマ照射、UV照射又は熱脱水によって物理的架橋する処理、(2)水溶性化学架橋剤又は気化能を有する化学架橋剤によって化学的架橋する処理が挙げられ、(1)と(2)のいずれか一方だけを用いてもよいし、(1)と(2)を組み合わせて用いてもよい。当然ながら、(1)と(2)の各架橋処理において複数の架橋処理を採用してもよく、例えばUV照射の後にγ線照射してもよい。また、目的に応じて、架橋度を適宜設定すればよい。   The crosslinking treatment is not particularly limited as long as crosslinking is performed between collagen molecules or between collagen fine fibers formed by collagen molecules. Specific crosslinking treatment methods include, for example, (1) physical crosslinking by γ-ray irradiation, electron beam irradiation, plasma irradiation, UV irradiation or thermal dehydration, and (2) a water-soluble chemical crosslinking agent or vaporization ability. Examples of the chemical cross-linking treatment include a chemical cross-linking agent. Either one of (1) and (2) may be used, or (1) and (2) may be used in combination. Of course, a plurality of cross-linking treatments may be adopted in each of the cross-linking treatments (1) and (2). For example, γ-ray irradiation may be performed after UV irradiation. Moreover, what is necessary is just to set a crosslinking degree suitably according to the objective.

本発明の多孔体は、架橋処理が施されているため、力学的特性に優れ、また、難溶性の傾向が大きい。本発明の多孔体の好適な一形態は、圧縮、伸張等の外力に対する抵抗力が大きく、金属製ピンセットで取り扱っても外観的にはほとんど損傷しないものであり、また、本発明の多孔体を細胞培養基材として供した場合に、細胞培養期間終了後においても多少の収縮などの形状変化があったとしてもある一定の力学的強度を保持し得るものである。好例としては、本発明の多孔体を細胞培養基材として用いて、マウス線維芽細胞株L929を10日間培養したときに、培養後の細胞培養基材が、金属製ピンセットによって保持できる強度を有するものである。   Since the porous body of the present invention has been subjected to a crosslinking treatment, it is excellent in mechanical properties and has a high tendency for poor solubility. A preferred embodiment of the porous body of the present invention has a large resistance to external forces such as compression and extension, and is hardly damaged in appearance even when handled with metal tweezers. When used as a cell culture substrate, a certain mechanical strength can be maintained even after the cell culture period ends even if there is some shape change such as contraction. As a good example, when the mouse fibroblast cell line L929 is cultured for 10 days using the porous body of the present invention as a cell culture substrate, the cultured cell culture substrate has a strength that can be held by metal tweezers. Is.

本発明の多孔体の用途としては、細胞培養基材の他に、医療用材料(例えば、再生医療用の足場材料、移植用材料、美容整形材料、創傷被覆材、癒着防止材、薬物輸送担体等)としての生体内での使用を例示することができるが、これらに限定されるものではない。移植用材料に関する態様としては、本発明の多孔体をそのまま用いる方法の他に、例えば、本発明の多孔体の力学的特性を活かして、本発明の多孔体を細胞培養基材として用いて細胞培養を行い、培養細胞を含む基材をそのまま移植用材料とする方法が挙げられる。尚、細胞の種類、培養条件等は、最適な移植用材料が得られるように、適宜選択、設計すればよい。   In addition to cell culture substrates, the porous body of the present invention can be used for medical materials (for example, scaffold materials for regenerative medicine, transplant materials, cosmetic materials, wound dressings, adhesion prevention materials, drug transport carriers). Etc.) can be exemplified, but is not limited thereto. As an aspect related to the transplant material, in addition to the method of using the porous body of the present invention as it is, for example, by utilizing the mechanical properties of the porous body of the present invention, cells using the porous body of the present invention as a cell culture substrate Examples include a method of culturing and using a substrate containing cultured cells as a transplant material as it is. The cell type, culture conditions, etc. may be appropriately selected and designed so as to obtain an optimal transplant material.

また、本発明の多孔体を細胞培養基材として用いる場合において、その力学的特性を活かして、三次元的に基材中に細胞を効率的に分布させる細胞培養方法は、以下の通りである。   In the case where the porous body of the present invention is used as a cell culture substrate, a cell culture method for efficiently distributing cells in the substrate three-dimensionally utilizing the mechanical properties is as follows. .

先ず、本発明の多孔体を乾燥または脱水状態にする。本発明の多孔体がすでに乾燥または脱水状態であれば、そのまま用いればよいが、液体中で保存されている等により湿潤状態の本発明の多孔体を用いるときは、一旦乾燥または脱水させる。乾燥または脱水させるときは、溶媒を水または培地(次の細胞培養工程で用いるのと同じ培地が好ましい)に置換した後、乾燥または脱水させる手法を用いることが好ましい。乾燥は、コラーゲンが変性しないように低温で乾燥させることが好ましく、低温通風により乾燥させればよい。また、脱水は、遠心脱水を行ってもよいが、力学的強度が十分ある場合には手指で圧縮して脱水する方法が簡便である。   First, the porous body of the present invention is dried or dehydrated. If the porous body of the present invention is already in a dry or dehydrated state, it may be used as it is. However, when the porous body of the present invention is wet because it is stored in a liquid, it is once dried or dehydrated. When drying or dehydrating, it is preferable to use a technique of replacing the solvent with water or a medium (preferably the same medium used in the next cell culture step) and then drying or dehydrating. The drying is preferably performed at a low temperature so that the collagen is not denatured, and may be dried by low temperature ventilation. In addition, centrifugal dehydration may be performed for dehydration. However, when mechanical strength is sufficient, a method of performing dehydration by compressing with fingers is simple.

次に、乾燥または脱水状態の本発明の多孔体に、細胞懸濁液を吸収させる。細胞懸濁液の吸収時に基材中へ細胞が培地と伴に進入し、基材中で細胞が三次元的に分布することが可能となる。尚、細胞懸濁液の吸収操作は複数回おこなってもよい。当該操作を行った後は、通常の細胞培養を行えばよい。   Next, the cell suspension is absorbed into the porous body of the present invention in a dry or dehydrated state. When the cell suspension is absorbed, the cells enter the substrate together with the medium, and the cells can be distributed three-dimensionally in the substrate. In addition, you may perform absorption operation of a cell suspension in multiple times. After performing this operation, normal cell culture may be performed.

次に、本発明の多孔体の製造方法について説明する。
本発明の多孔体の製造方法は、可溶化コラーゲン溶液とアルカリ金属重炭酸塩とを混合して線維化コラーゲンを析出させる第一工程、次に、凍結乾燥する第二工程、さらに、架橋処理する第三工程を含むことを特徴とするものである。尚、第一工程においてコラーゲン線維が析出した混合液はゲル状を呈するので、以下では当該混合液を「線維化コラーゲンゲル」と称する。
Next, the manufacturing method of the porous body of this invention is demonstrated.
The method for producing a porous body of the present invention comprises a first step of mixing a solubilized collagen solution and an alkali metal bicarbonate to precipitate fibrotic collagen, then a second step of freeze-drying, and further a crosslinking treatment. A third step is included. In addition, since the mixed liquid in which the collagen fibers are precipitated in the first step exhibits a gel shape, the mixed liquid is hereinafter referred to as “fibrotic collagen gel”.

可溶化コラーゲン溶液とは、コラーゲンが溶解した水溶液のことである。当該コラーゲンとしては、3重らせん構造を有する水溶性のコラーゲンであることが好ましい。尚、可溶化コラーゲン溶液には、一部にペプチド、アミノ酸、ゼラチン等が含まれていても構わないが、それらは極力排除されていることが好ましい。   A solubilized collagen solution is an aqueous solution in which collagen is dissolved. The collagen is preferably water-soluble collagen having a triple helical structure. The solubilized collagen solution may partially contain peptides, amino acids, gelatin, etc., but these are preferably excluded as much as possible.

3重らせん構造を有する水溶性のコラーゲンは、哺乳類、魚介類、鳥類、爬虫類等の生物原料のコラーゲン含有組織から公知の方法によって取得することができるものであり、例えば、[1]希酸により抽出する方法によって得られる酸可溶化コラーゲン、[2]酵素で可溶化処理する方法によって得られる酵素可溶化コラーゲン、[3]アルカリで可溶化処理する方法によって得られるアルカリ可溶化コラーゲン等が挙げられる。酸可溶化コラーゲン及び酵素可溶化コラーゲンは酸性条件では可溶性であり、アルカリ可溶化コラーゲンはアルカリ性条件では可溶性であるが、いずれのコラーゲンも可溶化コラーゲン溶液のイオン強度及びpHを適切な範囲に設定すると線維化することが知られている。   Water-soluble collagen having a triple helix structure can be obtained by known methods from collagen-containing tissues of biological materials such as mammals, seafood, birds and reptiles. For example, [1] dilute acid Examples include acid-solubilized collagen obtained by the extraction method, [2] enzyme-solubilized collagen obtained by a method of solubilizing with an enzyme, and [3] alkali-solubilized collagen obtained by a method of solubilizing with an alkali. . Acid-solubilized collagen and enzyme-solubilized collagen are soluble under acidic conditions, and alkali-solubilized collagen is soluble under alkaline conditions. It is known to fibrosis.

コラーゲンの種類としては、ヒトとの共通のウイルスを有さない魚類由来のコラーゲンが特に好適であり、各種用途への適用性の観点から変性温度が比較的高いものが好ましく、好例としてはオレオクロミス属由来のコラーゲンである。オレオクロミス属の中でも中国から東南アジアにかけて食用として主力に養殖されており入手が容易であるテラピアが特に好ましい。さらに、コラーゲンの抗原決定基であるテロペプタイドが除去されたアテロコラーゲンが好適である。コラーゲンのタイプについても特に制限は無いが、生物体内での存在量が多いI型が好ましい。   As the type of collagen, collagen derived from fish that does not have a virus common to humans is particularly suitable, and those having a relatively high denaturation temperature are preferable from the viewpoint of applicability to various uses. It is derived collagen. Of the genus Oreochromis, tilapia, which is cultivated mainly for food from China to Southeast Asia and is readily available, is particularly preferred. Furthermore, atelocollagen from which telopeptide which is an antigenic determinant of collagen is removed is preferable. There is no particular limitation on the type of collagen, but type I, which is abundant in living organisms, is preferred.

ここで、前記[2]の酵素可溶化コラーゲンの取得法について説明する。該取得法は、特に限定されることはなく、常法に従えばよい。例えば、特開2006−257014号公報又は特開2010−193808号公報等に記載の方法を挙げることができる。取得法の一態様を鱗の例で簡単に説明すると、酸によって脱灰した鱗をペプシン等のプロテアーゼを用いて処理することによりコラーゲンをアテロ化し、必要に応じて精製処理を行うことで、酵素可溶化コラーゲンを取得することができる。精製処理には、例えば、塩析、又は、特開2013−116875号公報に記載のpHが7以下の活性炭を用いる方法を適用することができる。   Here, the method for obtaining the enzyme-solubilized collagen of [2] will be described. The acquisition method is not particularly limited, and may be a conventional method. For example, the method described in JP 2006-257014 A or JP 2010-193808 A can be exemplified. One aspect of the acquisition method will be briefly explained with an example of scales. By treating scales decalcified with acid with a protease such as pepsin, the collagen is atelolated and purified as necessary to produce enzyme. Solubilized collagen can be obtained. For the purification treatment, for example, salting out or a method using activated carbon having a pH of 7 or less described in JP2013-116875A can be applied.

アルカリ金属重炭酸塩としては、重炭酸ナトリウム、重炭酸カリウムが好ましい。尚、本発明は、本発明の効果を損なわない範囲に限り、アルカリ金属炭酸塩の混入を排除するものではない。   As the alkali metal bicarbonate, sodium bicarbonate and potassium bicarbonate are preferable. The present invention does not exclude the mixing of alkali metal carbonates as long as the effects of the present invention are not impaired.

アルカリ金属重炭酸塩の適用量については、線維化コラーゲンを析出させ、本発明の多孔体が最終的に得られる範囲であれば特に限定はない。アルカリ金属重炭酸塩の量が少なすぎると、コラーゲンの線維化が不十分となり、一方、多すぎると、第二工程の凍結乾燥時にコラーゲンが非線維化(脱線維化)する恐れがある。したがって、本発明の多孔体が得られるようにアルカリ金属重炭酸塩の適用量を適宜設定することが望ましい。アルカリ金属重炭酸塩の適用量に関する好適な一形態を例示すると、コラーゲンの分子量を30万としたときに、アルカリ金属重炭酸塩/可溶化コラーゲン溶液中のコラーゲン(モル比)=3×102〜3×104の範囲となる量である。 The amount of alkali metal bicarbonate applied is not particularly limited as long as fibrotic collagen is precipitated and the porous body of the present invention is finally obtained. If the amount of alkali metal bicarbonate is too small, collagen fibrillation will be insufficient, while if too large, collagen may become non-fibrotic (defibrillated) during lyophilization in the second step. Therefore, it is desirable to appropriately set the amount of alkali metal bicarbonate so that the porous body of the present invention can be obtained. As an example of a preferred embodiment relating to the amount of alkali metal bicarbonate applied, collagen in the alkali metal bicarbonate / solubilized collagen solution (molar ratio) = 3 × 10 2 when the molecular weight of collagen is 300,000. The amount is in the range of ˜3 × 10 4 .

第一工程における可溶化コラーゲン溶液とアルカリ金属重炭酸塩との混合方法については特に制限は無いが、例えば、作業性の観点から、アルカリ金属重炭酸塩として、アルカリ金属重炭酸塩の水溶液を用いることが好ましい。   The method for mixing the solubilized collagen solution and the alkali metal bicarbonate in the first step is not particularly limited. For example, from the viewpoint of workability, an alkali metal bicarbonate aqueous solution is used as the alkali metal bicarbonate. It is preferable.

次に、第一工程で得られた線維化コラーゲンゲルを凍結乾燥する第二工程を行う。凍結乾燥方法は公知の方法を採用すればよい。また、凍結乾燥条件は、常法により多孔体が得られるように適宜設定すればよいが、例えば、凍結温度は-20〜-60℃の範囲が好ましく、凍結乾燥時間は1〜60時間が好ましい。   Next, the second step of freeze-drying the fibrillated collagen gel obtained in the first step is performed. A known method may be employed as the freeze-drying method. The lyophilization conditions may be appropriately set so that a porous material can be obtained by a conventional method. For example, the freezing temperature is preferably in the range of -20 to -60 ° C, and the lyophilization time is preferably 1 to 60 hours. .

本発明の多孔体を得るためには、線維状のコラーゲンが凍結乾燥時に非線維化(脱線維化)しないようにすることが肝要である。例えば、コラーゲンを線維化させるためにPBSを用いた場合、凍結乾燥時に濃縮されたPBSによってコラーゲンが非線維化(脱線維化)してしまう。そこで、凍結乾燥時に非線維化(脱線維化)しないようにコラーゲンの線維化におけるPBSの量を減少させると、今度は線維化が不十分となる。   In order to obtain the porous body of the present invention, it is important to prevent fibrous collagen from becoming non-fibrotic (defibrotic) during lyophilization. For example, when PBS is used for fibrosis of collagen, collagen is non-fibrotic (defibrotic) by PBS concentrated at the time of freeze-drying. Therefore, if the amount of PBS in collagen fibrillation is reduced so as not to be non-fibrotic (defibrotic) during lyophilization, fibrosis becomes insufficient.

一方、アルカリ金属重炭酸塩は水の凍結結晶(氷)の結晶成長を阻害しないと推定され、また、アルカリ金属重炭酸塩はPBSに比べると低濃度でもコラーゲンを線維化させることができるため、コラーゲン線維で構成され、且つ、三次元の細胞培養が可能な多孔質構造を有した多孔体を得ることができる。   On the other hand, alkali metal bicarbonate is presumed not to inhibit the crystal growth of frozen crystals (ice) of water, and alkali metal bicarbonate can fibrosis collagen even at a low concentration compared to PBS, A porous body having a porous structure composed of collagen fibers and capable of three-dimensional cell culture can be obtained.

次に、第二工程で得られた線維化コラーゲンの凍結乾燥多孔体(以下、「線維多孔体」という)を架橋処理する第三工程を行う。   Next, a third step is performed in which the freeze-dried porous body of fibrillated collagen obtained in the second step (hereinafter referred to as “fibrous porous body”) is subjected to a crosslinking treatment.

架橋処理としては、(1)γ線照射、電子線照射、プラズマ照射、UV照射又は熱脱水によって物理的架橋する処理、(2)水溶性化学架橋剤又は気化能を有する化学架橋剤によって化学的架橋する処理、が好例であり、(1)と(2)のいずれか一方だけを用いてもよいし、(1)と(2)を組み合わせて用いてもよい。当然ながら、(1)と(2)の各架橋処理において複数の架橋処理を採用してもよく、例えばUV照射の後にγ線照射してもよい。また、目的に応じて、架橋度を適宜設定すればよい。   As the crosslinking treatment, (1) physical crosslinking by γ-ray irradiation, electron beam irradiation, plasma irradiation, UV irradiation or thermal dehydration, (2) chemical crosslinking with a water-soluble chemical cross-linking agent or a chemical cross-linking agent having vaporization ability. A cross-linking treatment is a good example, and only one of (1) and (2) may be used, or (1) and (2) may be used in combination. Of course, a plurality of cross-linking treatments may be adopted in each of the cross-linking treatments (1) and (2). For example, γ-ray irradiation may be performed after UV irradiation. Moreover, what is necessary is just to set a crosslinking degree suitably according to the objective.

(1)の物理的架橋のうち、γ線照射、電子線照射、プラズマ照射及びUV照射の照射法による架橋処理は、照射条件を適宜設定すれば架橋処理と同時に滅菌も行うことができるため、架橋中及び架橋後の密封状態を保つように包装体を適宜選択すれば、滅菌済み製品として市場に流通させることもできる。上記照射法のうち、透過力が高く、均一に架橋させることができるγ線照射が特に好ましい。γ線照射では、線量率が固定の線源を用い、照射時間等の条件を適宜設定すれば、所定の照射線量を簡便に得ることができる。例えば、コバルト60線源を用いた場合、吸収線量5〜75kGyで架橋処理を行うことができるが、5〜50kGyが好ましく、10〜50kGyがより好ましく、15〜30kGyがさらに好ましい。   Among the physical cross-linking of (1), the cross-linking treatment by the irradiation method of γ-ray irradiation, electron beam irradiation, plasma irradiation and UV irradiation can be performed at the same time as the cross-linking treatment by appropriately setting the irradiation conditions. If a package is appropriately selected so as to maintain a sealed state during and after cross-linking, it can be distributed to the market as a sterilized product. Of the above irradiation methods, γ-ray irradiation is particularly preferable because of its high permeability and uniform crosslinking. In γ-ray irradiation, a predetermined irradiation dose can be easily obtained by using a radiation source with a fixed dose rate and appropriately setting conditions such as irradiation time. For example, when a cobalt 60 radiation source is used, the crosslinking treatment can be performed at an absorbed dose of 5 to 75 kGy, preferably 5 to 50 kGy, more preferably 10 to 50 kGy, and further preferably 15 to 30 kGy.

また、照射法による架橋処理は、液体の存在下で行ってもよい。ここで、液体の存在下とは、架橋処理中に線維多孔体の表面全体が液体によって覆われている状態を指し、例えば湿潤状態であってもよいが、好ましくは線維多孔体全体が液体中に浸漬した状態である。したがって、線維多孔体の表面全体が液体によって覆われている状態であれば液体の容量も限定されるものではないが、液体の容量が線維多孔体の容量に対して2〜100が好ましく、10〜50がより好ましい。液体としては、水を含んでいる限りにおいて限定されるものではなく、水又は緩衝液などの水性溶媒を例示することができる。さらに、水又は緩衝液に、有機溶媒を添加した水性溶媒を用いることもできる。緩衝液の具体例としては、リン酸緩衝液、トリス緩衝液、HEPES緩衝液、酢酸緩衝液、炭酸緩衝液、又はクエン酸緩衝液等を挙げることができ、また、それらの生理食塩水であるPBS、D-PBS、トリス緩衝生理食塩水、又はHEPES緩衝生理食塩水であってもよい。   Moreover, you may perform the crosslinking process by an irradiation method in presence of a liquid. Here, the presence of liquid refers to a state in which the entire surface of the fiber porous body is covered with the liquid during the cross-linking treatment, and may be in a wet state, for example, but preferably the entire fiber porous body is in the liquid. It is the state immersed in. Therefore, the volume of the liquid is not limited as long as the entire surface of the fiber porous body is covered with the liquid, but the volume of the liquid is preferably 2 to 100 with respect to the volume of the fiber porous body. ~ 50 is more preferred. The liquid is not limited as long as it contains water, and an aqueous solvent such as water or a buffer can be exemplified. Furthermore, an aqueous solvent obtained by adding an organic solvent to water or a buffer solution can also be used. Specific examples of the buffer solution include phosphate buffer solution, Tris buffer solution, HEPES buffer solution, acetate buffer solution, carbonate buffer solution, citrate buffer solution, and the like, and are physiological saline thereof. It may be PBS, D-PBS, Tris buffered saline, or HEPES buffered saline.

水溶性化学架橋剤又は気化能を有する化学架橋剤としては、公知のものを使用すればよく、例えば、グルタルアルデヒド、ポリエポキシ化合物(エチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル等)、カルボジイミド系化合物(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩等)、還元糖(リボース等)などが挙げられ、常法に従って架橋処理すればよい。   As the water-soluble chemical cross-linking agent or the chemical cross-linking agent having vaporization ability, a known one may be used. For example, glutaraldehyde, polyepoxy compounds (ethylene glycol diglycidyl ether, glycerol polyglycidyl ether, etc.), carbodiimide compounds (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide / hydrochloride, etc.), reducing sugar (ribose, etc.) and the like may be mentioned, and crosslinking may be performed according to a conventional method.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに制限されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。また、電子顕微鏡として、日本電子(株)製 分析走査電子顕微鏡 JSM-6010LAを用い、金属製ピンセットとして、無鈎・直型のステンレス製ピンセットを用いた。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In Examples, “%” means “% by mass” unless otherwise specified. In addition, an analytical scanning electron microscope JSM-6010LA manufactured by JEOL Ltd. was used as the electron microscope, and a solid and straight stainless steel tweezers were used as the metal tweezers.

〔実施例1〕
可溶化コラーゲン溶液として、テラピアの鱗から製造された多木化学(株)製「セルキャンパス FD-08G」スポンジ品をpH3のHCl溶液に溶解し、コラーゲン濃度を1.1%に調製した無色透明溶液(以下、「コラーゲン溶液A」という)を用いた。
[Example 1]
As a solubilized collagen solution, a colorless and transparent solution prepared by dissolving “Cell Campus FD-08G” sponge manufactured by Taki Kagaku Co., Ltd. in tilapia scales in an HCl solution of pH 3 and adjusting the collagen concentration to 1.1% ( Hereinafter, “collagen solution A”) was used.

コラーゲン溶液A 9容量部に対し、重炭酸ナトリウム水溶液 1容量部を、重炭酸ナトリウム/コラーゲン溶液A中のコラーゲン(モル比)=1.5×103となるように添加し、線維化コラーゲンを析出させた。次に、当該線維化コラーゲンを含有した線維化コラーゲンゲルを12wellプレートに2mlずつ分注した後、-35℃・3時間で凍結乾燥して、コラーゲン線維で構成されたコラーゲン多孔体(以下、「線維多孔体1」という)を得た。 Add 1 part by volume of sodium bicarbonate aqueous solution to 9 parts by volume of collagen solution A so that the collagen (molar ratio) in sodium bicarbonate / collagen solution A is 1.5 × 10 3 to precipitate fibrotic collagen. It was. Next, 2 ml each of the fibrillated collagen gel containing the fibrillated collagen was dispensed into a 12-well plate, and then freeze-dried at −35 ° C. for 3 hours to form a collagen porous body composed of collagen fibers (hereinafter, “ Fiber porous body 1 ") was obtained.

次に、線維多孔体1を0.05Mの重炭酸ナトリウム水溶液中に浸漬した状態で25kGyのγ線照射を行うことによって、本発明の多孔体であるγ線架橋線維多孔体を得た。   Next, by irradiating 25 kGy of γ-rays in a state where the fibrous porous body 1 was immersed in a 0.05 M aqueous sodium bicarbonate solution, a γ-ray crosslinked fibrous porous body, which is a porous body of the present invention, was obtained.

γ線架橋線維多孔体を、37℃の水に24時間浸漬した後に、湿潤状態のまま金属製ピンセットでつまんだときの写真を図1に示した。金属製ピンセットによる損傷は、外観的には認められなかった。また、γ線架橋線維多孔体を水に1週間浸漬しても外観的には形状が維持されていた。   FIG. 1 shows a photograph of the porous γ-ray fibrous body immersed in water at 37 ° C. for 24 hours and pinched with metal tweezers in a wet state. Damage due to metal tweezers was not observed in appearance. Further, even when the gamma-ray crosslinked fibrous porous material was immersed in water for 1 week, the shape was maintained in appearance.

γ線架橋線維多孔体の電子顕微鏡像を図2〜4に示した。倍率は、図2が100倍、図3が500倍、図4が10,000倍である。図4において、D周期性の横縞が随所に観察された。   Electron microscope images of the gamma-ray crosslinked fiber porous body are shown in FIGS. The magnification is 100 times in FIG. 2, 500 times in FIG. 3, and 10,000 times in FIG. In FIG. 4, D periodic horizontal stripes were observed everywhere.

また、図2の最表層の孔だけを識別できるように最表層の孔の内側を塗りつぶしたのが図5である。図5を用いて、完全孔(区画境界線により分断されていない孔)のすべてについて、最大幅と最小幅を計測し、前記数式より平均孔径を算出したところ、平均孔径は116.0μmであった。   FIG. 5 shows the inside of the outermost layer hole filled so that only the outermost layer hole of FIG. 2 can be identified. Using FIG. 5, the maximum width and the minimum width were measured for all the complete holes (holes not divided by the partition boundary line), and the average hole diameter was calculated from the above formula. As a result, the average hole diameter was 116.0 μm. .

〔実施例2〕
線維多孔体1を、減圧条件下で110℃・10時間で熱脱水架橋することによって、本発明の多孔体である熱架橋線維多孔体を得た。
[Example 2]
The fiber porous body 1 was thermally dehydrated and cross-linked at 110 ° C. for 10 hours under reduced pressure to obtain a heat-crosslinked fiber porous body that is a porous body of the present invention.

熱架橋線維多孔体を、37℃の水に24時間浸漬した後に、湿潤状態のまま金属製ピンセットでつまんでも、金属製ピンセットによる損傷は、外観的には認められなかった。また、熱架橋線維多孔体を水に1週間浸漬しても外観的には形状を維持していた。   Even if the thermally crosslinked fiber porous body was immersed in water at 37 ° C. for 24 hours and then pinched with metal tweezers in a wet state, damage due to the metal tweezers was not visually observed. In addition, even when the thermally crosslinked fibrous porous material was immersed in water for 1 week, the shape was maintained in appearance.

〔比較例1〕
コラーゲン溶液A 9容量部と10倍濃い濃度に作製したPBS 1容量部とを混合し、線維化コラーゲンを析出させた。次に、当該線維化コラーゲンを含有した線維化コラーゲンゲルを12wellプレートに2mlずつ分注した後、-35℃・3時間で凍結乾燥して多孔体を得た。
得られた多孔体は、図6に示したように、湾曲するなど形状に変形が認められたものであった。電子顕微鏡による観察では、結晶化した塩の付着が見られ、また、コラーゲンの線維化状態も判別できなかったことより、非線維化コラーゲン多孔体であることが分かった。
[Comparative Example 1]
9 parts by volume of collagen solution A and 1 part by volume of PBS prepared to a concentration 10 times higher were mixed to precipitate fibrotic collagen. Next, 2 ml of fibrillated collagen gel containing the fibrillated collagen was dispensed into a 12-well plate, and then lyophilized at −35 ° C. for 3 hours to obtain a porous body.
As shown in FIG. 6, the obtained porous body was deformed in a shape such as being curved. Observation with an electron microscope showed that the crystallized salt was attached and the fibrosis state of the collagen could not be discriminated, so that it was a non-fibrotic collagen porous body.

〔比較例2〕
コラーゲン溶液A 9容量部と10倍濃い濃度に作製したPBS 1容量部とを混合し、線維化コラーゲンを析出させた。次に、当該線維化コラーゲンを含有した線維化コラーゲンゲルの溶媒を、エタノールと水との混合によるエタノールシリーズ(エタノール濃度:50%、70%、90%、100%)で順次脱塩・脱水した後、溶媒をt-ブタノールに置換し、-35℃・3時間で凍結乾燥してコラーゲン線維多孔体を得た。
[Comparative Example 2]
9 parts by volume of collagen solution A and 1 part by volume of PBS prepared to a concentration 10 times higher were mixed to precipitate fibrotic collagen. Next, the solvent of the fibrillated collagen gel containing the fibrillated collagen was successively desalted and dehydrated with an ethanol series (ethanol concentration: 50%, 70%, 90%, 100%) by mixing ethanol and water. Thereafter, the solvent was replaced with t-butanol and freeze-dried at −35 ° C. for 3 hours to obtain a collagen fiber porous body.

図7は、コラーゲン線維多孔体を金属製ピンセットでつまんだときの写真である。コラーゲン線維多孔体は、電子顕微鏡による観察によってD周期性の横縞が随所に観察されたが、図8の電子顕微鏡像(倍率:100倍)に示したように、この倍率では孔の存在が明確に認められないほどの小さな孔で構成された多孔体であった。即ち、少なくとも50〜300μmの大きさの孔の存在が認められないものであったため、三次元の細胞培養に適したものではなかった。   FIG. 7 is a photograph when the collagen fiber porous body is pinched with metal tweezers. In the collagen fiber porous body, D periodic horizontal stripes were observed everywhere by observation with an electron microscope. As shown in the electron microscope image (magnification: 100 times) in FIG. It was a porous body composed of pores that were too small to be recognized. That is, since the presence of pores having a size of at least 50 to 300 μm was not observed, it was not suitable for three-dimensional cell culture.

〔細胞培養試験〕
細胞培養基材として、実施例1のγ線架橋線維多孔体を供試した。また、培地として、DMEM+10%FBSを用いた。
[Cell culture test]
As a cell culture substrate, the gamma-ray crosslinked fiber porous body of Example 1 was used. In addition, DMEM + 10% FBS was used as the medium.

浮遊細胞用培養12穴プレートに、マウス線維芽細胞株L929を1.0×106cells含有した細胞懸濁液150μlを注入した後、これに脱水状態にしたγ線架橋線維多孔体を戴置し、下面方向から細胞懸濁液を吸収させた。この操作をもう1回繰り返し、細胞懸濁液として300μlをγ線架橋線維多孔体に吸収させた。次に、γ線架橋線維多孔体を反転させて、37℃で一晩培養した。次いで、培地700μlを追加添加し、以降は通常の細胞培養方法に従って適宜培地交換を行いながら9日間培養した。このとき、培養期間は、一晩+9日間により、10日間である。 After injecting 150 μl of a cell suspension containing 1.0 × 10 6 cells of mouse fibroblast cell line L929 into a floating cell culture 12-well plate, this was placed with a dehydrated γ-ray cross-linked fiber porous body, The cell suspension was absorbed from the lower surface direction. This operation was repeated once more, and 300 μl of the cell suspension was absorbed by the γ-ray crosslinked fiber porous material. Next, the γ-ray crosslinked fiber porous body was inverted and cultured at 37 ° C. overnight. Subsequently, 700 μl of a medium was additionally added, and thereafter, the medium was cultured for 9 days while appropriately changing the medium according to a normal cell culture method. At this time, the culture period is 10 days by overnight +9 days.

培養終了後に、γ線架橋線維多孔体を湿潤状態のまま金属製ピンセットでつまみ上げたところ、ほぼそのままの形で持ち上げることができたことより、γ線架橋線維多孔体は金属製ピンセットによって保持できる強度を有していたことが分かった。尚、γ線架橋線維多孔体は、培養初期に多少の収縮が見られたことを除いてほとんど変形していなかった。   After culturing, when the γ-ray crosslinked fiber porous body was picked up with metal tweezers in a wet state, it could be lifted almost as it was, so that the γ-ray crosslinked fiber porous body could be held by metal tweezers. It was found to have strength. The gamma-ray crosslinked fibrous porous body was hardly deformed except that some contraction was observed at the initial stage of culture.

また、培養終了後のγ線架橋線維多孔体をPBSで洗浄し、10%ホルムアルデヒドに室温にて一晩浸漬して細胞を固定した。次に、PBSで洗浄し、PBSで20倍希釈したギムザ染色液で15分間染色した後、PBSで洗浄し、顕微鏡で細胞観察を行った。γ線架橋線維多孔体の上面から下面に至るまで顕微鏡の焦点を変えながら観察した結果、いずれの焦点位置においても細胞が均一に分布して存在していた。即ち、細胞がγ線架橋線維多孔体内において三次元的に均一に分布していたことが分かった。   In addition, the gamma-ray crosslinked fibrous porous material after completion of the culture was washed with PBS and immersed in 10% formaldehyde at room temperature overnight to fix the cells. Next, after washing with PBS and staining with Giemsa staining solution diluted 20 times with PBS for 15 minutes, the cells were washed with PBS and observed with a microscope. As a result of observing while changing the focus of the microscope from the upper surface to the lower surface of the gamma-ray crosslinked fiber porous body, the cells were uniformly distributed at any focal position. That is, it was found that the cells were uniformly distributed three-dimensionally within the gamma-ray crosslinked fiber porous body.

また、図9に示したように、γ線架橋線維多孔体は、ギムザ染色後の湿潤状態のままであっても、ほぼそのままの形で金属製ピンセットでつまむことができる程の高い強度を保持したものであった。   In addition, as shown in FIG. 9, the gamma-ray crosslinked fiber porous body retains a high strength that can be pinched with metal tweezers in an almost intact form even in a wet state after Giemsa staining. Was.

Claims (8)

コラーゲン線維で構成され、三次元の細胞培養が可能な多孔質海綿状構造を有し、且つ、架橋処理が施されたことを特徴とするコラーゲン線維架橋多孔体。
ただし、前記コラーゲン線維架橋多孔体の電子顕微鏡像における、最表面に観察される孔の数が少なくとも30個である一定区画内において、当該孔の最大個数がnであるときに、
平均孔径={Σ(孔iの最大幅+孔iの最小幅)/2}/n(但し、i=1〜n)
の数式によって算出される平均孔径が、50〜300μmの範囲である。
なお、前記多孔質海綿状構造の範疇からは、次の多孔質海綿状構造は除かれる。すなわち、50〜2000μmの範囲のコントロ−ルされた孔径を有し、且つ、該孔は一方の面より他方の面に真直で連通し、且つ実質的に各孔相互は独立的に存在している多孔質海綿状構造。
A collagen fiber cross-linked porous body comprising a porous spongy structure composed of collagen fibers and capable of three-dimensional cell culture, and subjected to a cross-linking treatment.
However, in the electron microscope image of the collagen fiber cross-linked porous body, in a fixed section where the number of holes observed on the outermost surface is at least 30, when the maximum number of the holes is n,
Average hole diameter = {Σ (maximum width of hole i + minimum width of hole i) / 2} / n (where i = 1 to n)
The average pore diameter calculated by the mathematical formula is in the range of 50 to 300 μm.
The following porous sponge-like structure is excluded from the category of the porous sponge-like structure. That is, it has a controlled pore diameter in the range of 50 to 2000 μm, and the pore communicates in a straight line from one surface to the other surface, and each pore exists substantially independently of each other. Has a porous spongy structure.
前記多孔質構造の少なくとも一部において、D周期性の横縞を有するコラーゲン線維が観察される請求項1記載のコラーゲン線維架橋多孔体。 The collagen fiber cross-linked porous body according to claim 1, wherein collagen fibers having D-periodic horizontal stripes are observed in at least a part of the porous structure. 前記コラーゲン線維架橋多孔体を細胞培養基材として用いて、マウス線維芽細胞株L929を10日間培養したときに、培養後の細胞培養基材が、金属製ピンセットによって保持できる強度を有するものである請求項1又は2記載のコラーゲン線維架橋多孔体。 When the collagen fiber cross-linked porous body is used as a cell culture substrate and the mouse fibroblast cell line L929 is cultured for 10 days, the cultured cell culture substrate has a strength that can be held by metal tweezers. The collagen fiber cross-linked porous body according to claim 1 or 2. 請求項1〜3のいずれか1項記載のコラーゲン線維架橋多孔体を細胞培養基材として用い、細胞培養することによって形成された移植用材料。 The transplant material formed by carrying out cell culture using the collagen fiber bridge | crosslinking porous body of any one of Claims 1-3 as a cell culture base material. 請求項1〜3のいずれか1項記載のコラーゲン線維架橋多孔体を細胞培養基材として用いる細胞培養方法であって、乾燥または脱水状態の当該多孔体に、細胞懸濁液を吸収させることによって、細胞を当該多孔体内で三次元的に分布させることを特徴とする細胞培養方法。 A cell culture method using the collagen fiber cross-linked porous body according to any one of claims 1 to 3 as a cell culture substrate, wherein the cell suspension is absorbed into the dried or dehydrated porous body. A cell culture method characterized by distributing cells three-dimensionally within the porous body. 可溶化コラーゲン溶液とアルカリ金属重炭酸塩とを混合して線維化コラーゲンを析出させる第一工程、
凍結乾燥する第二工程、
架橋処理する第三工程
を含むことを特徴とする、請求項1〜3のいずれか1項記載のコラーゲン線維架橋多孔体の製造方法。
A first step of mixing solubilized collagen solution and alkali metal bicarbonate to precipitate fibrotic collagen;
A second step of freeze-drying,
The method for producing a collagen fiber crosslinked porous material according to any one of claims 1 to 3, further comprising a third step of crosslinking treatment.
前記第三工程の架橋処理が、下記(1)と(2)のいずれか一方又は(1)と(2)の組み合わせによる処理である、請求項6記載のコラーゲン線維架橋多孔体の製造方法。
(1)γ線照射、電子線照射、プラズマ照射、UV照射又は熱脱水によって物理的架橋する処理。
(2)水溶性化学架橋剤又は気化能を有する化学架橋剤によって化学的架橋する処理。
The method for producing a collagen fiber crosslinked porous material according to claim 6, wherein the crosslinking treatment in the third step is treatment by any one of the following (1) and (2) or a combination of (1) and (2).
(1) A process of physical crosslinking by γ-ray irradiation, electron beam irradiation, plasma irradiation, UV irradiation or thermal dehydration.
(2) A process of chemically crosslinking with a water-soluble chemical crosslinking agent or a chemical crosslinking agent having vaporization ability.
アルカリ金属重炭酸塩の適用量が、コラーゲンの分子量を30万としたときに、アルカリ金属重炭酸塩/可溶化コラーゲン溶液中のコラーゲン(モル比)=3×102〜3×104の範囲である請求項6又は7記載のコラーゲン線維架橋多孔体の製造方法。 When the amount of alkali metal bicarbonate applied is 300,000, the collagen in the alkali metal bicarbonate / solubilized collagen solution (molar ratio) = 3 × 10 2 to 3 × 10 4 The method for producing a crosslinked collagen fiber according to claim 6 or 7.
JP2014099087A 2014-05-12 2014-05-12 Collagen fiber cross-linked porous body Active JP6429490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099087A JP6429490B2 (en) 2014-05-12 2014-05-12 Collagen fiber cross-linked porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099087A JP6429490B2 (en) 2014-05-12 2014-05-12 Collagen fiber cross-linked porous body

Publications (2)

Publication Number Publication Date
JP2015213676A JP2015213676A (en) 2015-12-03
JP6429490B2 true JP6429490B2 (en) 2018-11-28

Family

ID=54751172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099087A Active JP6429490B2 (en) 2014-05-12 2014-05-12 Collagen fiber cross-linked porous body

Country Status (1)

Country Link
JP (1) JP6429490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519039B2 (en) * 2014-05-16 2019-05-29 国立大学法人名古屋大学 Method for producing protein membrane
JP6873731B2 (en) * 2016-02-23 2021-05-19 多木化学株式会社 Sutureable fibrotic collagen cross-linked membrane
JP2019037303A (en) * 2017-08-22 2019-03-14 多木化学株式会社 Collagen tubular body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491272A (en) * 1990-08-04 1992-03-24 Kanegafuchi Chem Ind Co Ltd Regenerated collagen fiber and preparation thereof
US5206028A (en) * 1991-02-11 1993-04-27 Li Shu Tung Dense collagen membrane matrices for medical uses
JP3170693B2 (en) * 1992-07-09 2001-05-28 株式会社高研 Collagen carrier for cell culture and method for producing the same
JPH0770600A (en) * 1993-09-02 1995-03-14 Showa Denko Kk Collagen powder
JP2003325652A (en) * 2002-05-16 2003-11-18 Gunze Ltd Cell incorporated cultured skin
GB0415080D0 (en) * 2004-07-05 2004-08-04 Ucl Biomedica Plc Methods for preparing tissue equivalent implants and products thereof
JP5008284B2 (en) * 2005-09-09 2012-08-22 グンゼ株式会社 Tissue regeneration substrate
EP1902739A1 (en) * 2006-09-20 2008-03-26 Centre National De La Recherche Scientifique (Cnrs) Synthetic multi-layer structures comprising biopolymer fibres
JP2010273847A (en) * 2009-05-28 2010-12-09 Tokyo Institute Of Technology High-density porous composite
JP5875034B2 (en) * 2011-02-02 2016-03-02 学校法人日本大学 Porous three-dimensional structure and use thereof
WO2013105665A1 (en) * 2012-01-12 2013-07-18 株式会社ニッピ Collagen structure, and method for producing collagen structure

Also Published As

Publication number Publication date
JP2015213676A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
Delgado et al. Collagen cross-linking: biophysical, biochemical, and biological response analysis
CN104144715B (en) The manufacture method of collagen structure body and collagen structure body
Wang et al. Processing silk hydrogel and its applications in biomedical materials
JP4064435B2 (en) Collagen gel and method for producing the same
US10434216B2 (en) Ultra-thin film silk fibroin/collagen composite implant and manufacturing method therefor
US20150246163A1 (en) Method for Preparing Porous Scaffold for Tissue Engineering
RU2544367C2 (en) Agent for ear-drum or external auditory canal restoration
JP5789799B2 (en) Porous body manufacturing method, cell or tissue supply support manufacturing method, and tissue supply body manufacturing method
WO2010081408A1 (en) Bioactive tissue regeneration film and preparation method thereof
JP5633880B2 (en) Collagen molded body and method for producing the same
JP2002518319A (en) Granular cell-free tissue matrix
US20130337227A1 (en) Non-fibrogenesis collagen material and a manufacturing method thereof
KR20160110935A (en) Tissue scaffold materials for tissue regeneration and methods of making
Steiner et al. Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model
JP6399653B2 (en) Method for producing collagen fiber
Gholipour-Kanani et al. Effect of tissue-engineered chitosan-poly (vinyl alcohol) nanofibrous scaffolds on healing of burn wounds of rat skin
JP6429490B2 (en) Collagen fiber cross-linked porous body
Kumar et al. Microablation of collagen-based substrates for soft tissue engineering
KR20190024721A (en) Thermo-responsive biomaterial comprising thermo-responsive protein conjugated-mussel adhesive protein
JP6432967B2 (en) Soluble collagen fiber porous body
JP6856969B2 (en) Method for Producing Linear Collagen Crosslinked Porous
US20130230573A1 (en) Collagen structures and method of fabricating the same
KR20210122242A (en) Biological scaffolds and methods of making them
JP2003126236A (en) Porous support body prepared from biodegradable polymer for regeneration of damaged ocular tissue
JPWO2003094985A1 (en) Artificial extracellular matrix and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181030

R150 Certificate of patent or registration of utility model

Ref document number: 6429490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250