JP6429354B2 - Glass substrate polishing method, polishing liquid, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method - Google Patents

Glass substrate polishing method, polishing liquid, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method Download PDF

Info

Publication number
JP6429354B2
JP6429354B2 JP2017519424A JP2017519424A JP6429354B2 JP 6429354 B2 JP6429354 B2 JP 6429354B2 JP 2017519424 A JP2017519424 A JP 2017519424A JP 2017519424 A JP2017519424 A JP 2017519424A JP 6429354 B2 JP6429354 B2 JP 6429354B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
magnetic disk
polishing liquid
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017519424A
Other languages
Japanese (ja)
Other versions
JPWO2016186214A1 (en
Inventor
裕樹 中川
裕樹 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JPWO2016186214A1 publication Critical patent/JPWO2016186214A1/en
Application granted granted Critical
Publication of JP6429354B2 publication Critical patent/JP6429354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される磁気ディスクの製造に好適なガラス基板の研磨方法、研磨液、ガラス基板の製造方法、磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法に関する。   The present invention relates to a method for polishing a glass substrate, a polishing liquid, a method for manufacturing a glass substrate, a method for manufacturing a glass substrate for a magnetic disk, and a magnetism suitable for manufacturing a magnetic disk mounted on a magnetic disk device such as a hard disk drive (HDD). The present invention relates to a disc manufacturing method.

ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板としてアルミ合金基板やガラス基板が用いられてきた。最近では、高記録密度化の追求に呼応して、アルミ合金基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、磁気ディスク用基板の表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化の要求は増すばかりであり、これを実現するためには、磁気ディスク用基板においても更なる高品質化が必要になってきており、より平滑でより清浄な基板表面であることが求められている。   There is a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD). A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum alloy substrate or a glass substrate has been used as the substrate. Recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum alloy substrate is gradually increasing. Further, the surface of the magnetic disk substrate is polished with high accuracy so that the flying height of the magnetic head can be lowered as much as possible to achieve high recording density. In recent years, the demand for further increase in recording capacity of HDDs has only increased, and in order to realize this, it has become necessary to further improve the quality of the magnetic disk substrate, which is smoother and cleaner. It is required that the substrate surface be a proper surface.

上述したように高記録密度化にとって必要な低フライングハイト(浮上量)化のために磁気ディスク表面の高い平滑性は必要不可欠である。磁気ディスク表面の高い平滑性を得るためには、結局、高い平滑性の基板表面が求められるため、高精度にガラス基板表面を研磨する必要がある。   As described above, high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density. In order to obtain a high smoothness on the surface of the magnetic disk, a substrate surface with a high smoothness is required in the end. Therefore, it is necessary to polish the glass substrate surface with high accuracy.

従来の方法としては、研磨に関しては、たとえば特許文献1には、酸化アルミニウム等の砥粒、水溶性無機アルミニウム塩、ニッケル塩より選ばれる無機塩、水溶性キレート剤を含有する研磨剤スラリーで、アルミニウム等の磁気ディスク用基板を研磨する際に、上記キレート剤と反応して生成した難溶性のキレート塩を予め除去してから使用することで、スクラッチを低減する発明が開示されている。
また、特許文献2には、フェノール類やレダクトン類の有機還元剤を含む研磨液で磁気ディスク用基板を研磨することで、研磨速度(特に研磨速度の持続性)及び研磨後の表面品質(清浄性)を向上させる発明が開示されている。
As a conventional method, for polishing, for example, Patent Document 1 discloses an abrasive slurry containing an abrasive such as aluminum oxide, a water-soluble inorganic aluminum salt, an inorganic salt selected from nickel salts, and a water-soluble chelating agent. An invention has been disclosed in which scratches are reduced by removing a sparingly soluble chelate salt generated by reacting with the chelating agent in advance when polishing a magnetic disk substrate such as aluminum.
Patent Document 2 discloses that a magnetic disk substrate is polished with a polishing liquid containing an organic reducing agent such as phenols or reductones, so that the polishing speed (especially the persistence of the polishing speed) and the surface quality after polishing (cleanness). The invention which improves the property) is disclosed.

特開2000−63806号公報JP 2000-63806 A 特開2013−32502号公報JP 2013-32502 A

従来、磁気ディスク用基板の主表面の研磨処理は複数段階で行われ、通常最初の第1研磨処理は、酸化セリウムを研磨砥粒に用いて行われていたが、本発明者の検討によると、この酸化セリウム砥粒を用いた研磨処理においては、研磨速度が低く、また連続研磨処理時の研磨速度の低下が大きいことがわかっており、このことが表面品質をより向上させた基板の大量生産を実現する上で障害となっていた。また、本発明者は、上述の酸化セリウム砥粒を用いた研磨処理に、上記特許文献に開示された方法をはじめとする従来の様々な研磨技術を適用して検討してみたが、研磨速度を向上させることは困難であった。また、連続研磨処理時の研磨速度の低下を十分に低減させることも困難であった。最初の第1研磨処理は、通常、複数の研磨処理の中でも最も取代量が多いため、研磨速度がとりわけ重要である。   Conventionally, the polishing process of the main surface of the magnetic disk substrate has been performed in a plurality of stages, and usually the first first polishing process has been performed using cerium oxide as the abrasive grains. In the polishing process using this cerium oxide abrasive, it has been found that the polishing rate is low and the reduction in the polishing rate during the continuous polishing process is large, and this is a large amount of substrates with improved surface quality. It was an obstacle to realizing production. In addition, the present inventor has tried to apply various conventional polishing techniques including the method disclosed in the above patent document to the polishing process using the cerium oxide abrasive described above. It was difficult to improve. In addition, it is difficult to sufficiently reduce the reduction in the polishing rate during the continuous polishing process. Since the first first polishing process usually has the largest machining allowance among a plurality of polishing processes, the polishing rate is particularly important.

本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、酸化セリウムを研磨砥粒とするガラス基板主表面の研磨処理において、研磨速度を向上できるガラス基板の研磨方法を提供することである。また、このような研磨速度向上の効果が長期間に渡って維持できるガラス基板の研磨方法を提供することも目的とする。特に磁気ディスク用ガラス基板に好適な研磨方法を提供することも目的とする。
また、このような本発明のガラス基板の研磨方法に好適に用いられる研磨液を提供することも目的とする。
The present invention has been made to solve such conventional problems, and its purpose is to polish a glass substrate capable of improving the polishing rate in the polishing treatment of the main surface of the glass substrate using cerium oxide as abrasive grains. Is to provide a method. It is another object of the present invention to provide a glass substrate polishing method capable of maintaining such an effect of improving the polishing rate over a long period of time. Another object of the present invention is to provide a polishing method particularly suitable for a glass substrate for a magnetic disk.
It is another object of the present invention to provide a polishing liquid suitably used in the method for polishing a glass substrate of the present invention.

そこで、本発明者は、上記従来の課題を解決するための手段を模索した結果、酸化セリウムを研磨砥粒とする研磨処理に用いる研磨液中に、無機還元剤を含むとともに、研磨液がアルカリ性であることにより、研磨速度が向上することを見出した。また、このような研磨速度向上の効果が長期間に渡って維持できることも見出した。
本発明者は、得られた知見に基づき、更に鋭意研究の結果、本発明を完成させた。すなわち、本発明は以下の構成を有する。
Therefore, as a result of searching for means for solving the above-described conventional problems, the present inventor includes an inorganic reducing agent in the polishing liquid used for the polishing process using cerium oxide as abrasive grains, and the polishing liquid is alkaline. It has been found that the polishing rate is improved. It has also been found that the effect of improving the polishing rate can be maintained over a long period of time.
The present inventor has completed the present invention as a result of intensive studies based on the obtained knowledge. That is, the present invention has the following configuration.

(構成1)
酸化セリウムを研磨砥粒として含む研磨液でガラス基板の表面を研磨処理するガラス基板の研磨方法であって、前記研磨液は、無機還元剤を含むとともに、アルカリ性であることを特徴とするガラス基板の研磨方法。
(Configuration 1)
A glass substrate polishing method for polishing a surface of a glass substrate with a polishing liquid containing cerium oxide as abrasive grains, wherein the polishing liquid contains an inorganic reducing agent and is alkaline. Polishing method.

(構成2)
前記無機還元剤は、アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、亜ジチオン酸塩、もしくは亜硫酸塩から選ばれる少なくとも1種であることを特徴とする構成1に記載のガラス基板の研磨方法。
(Configuration 2)
The glass according to Configuration 1, wherein the inorganic reducing agent is at least one selected from thiosulfates, phosphinates, dithionites, or sulfites with alkali metals or alkaline earth metals. A method for polishing a substrate.

(構成3)
前記研磨液のpHは、8〜12の範囲内であることを特徴とする構成1又は2に記載のガラス基板の研磨方法。
(構成4)
前記酸化セリウム砥粒はランタン(La)を含むことを特徴とする構成1乃至3のいずれかに記載のガラス基板の研磨方法。
(Configuration 3)
The polishing method for a glass substrate according to Configuration 1 or 2, wherein the pH of the polishing liquid is in the range of 8 to 12.
(Configuration 4)
4. The method for polishing a glass substrate according to any one of configurations 1 to 3, wherein the cerium oxide abrasive grains contain lanthanum (La).

(構成5)
構成1乃至4のいずれかに記載のガラス基板の研磨方法を適用した研磨処理を含むことを特徴とするガラス基板の製造方法。
(Configuration 5)
A method for producing a glass substrate, comprising a polishing treatment to which the glass substrate polishing method according to any one of Configurations 1 to 4 is applied.

(構成6)
構成5に記載のガラス基板の製造方法を適用し、前記ガラス基板は、磁気ディスク用ガラス基板であることを特徴とする磁気ディスク用ガラス基板の製造方法。
(Configuration 6)
A method for producing a glass substrate for a magnetic disk, wherein the method for producing a glass substrate according to Configuration 5 is applied, and the glass substrate is a glass substrate for a magnetic disk.

(構成7)
構成6に記載の磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板上に、少なくとも磁性膜を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 7)
A magnetic disk manufacturing method comprising forming at least a magnetic film on a magnetic disk glass substrate manufactured by the magnetic disk glass substrate manufacturing method according to Configuration 6.

(構成8)
ガラス基板の表面の研磨処理に用いる研磨液であって、前記研磨液は、酸化セリウムを研磨砥粒として含み、さらに無機還元剤を含むとともに、アルカリ性であることを特徴とする研磨液。
(Configuration 8)
A polishing liquid used for polishing a surface of a glass substrate, wherein the polishing liquid contains cerium oxide as abrasive grains, further contains an inorganic reducing agent, and is alkaline.

本発明によれば、酸化セリウムを研磨砥粒とするガラス基板主表面の研磨処理において、研磨速度を向上できるガラス基板の研磨方法を提供することができる。また、このような研磨速度向上の効果が長期間に渡って維持できるガラス基板の研磨方法を提供することができる。そして、本発明のガラス基板の研磨方法は、特に磁気ディスク用ガラス基板の研磨処理に好適である。
また、本発明によれば、このような本発明のガラス基板の研磨方法に好適に用いられる研磨液を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the grinding | polishing method of the glass substrate which can improve a grinding | polishing speed in the grinding | polishing process of the glass substrate main surface which uses cerium oxide as an abrasive grain can be provided. In addition, it is possible to provide a glass substrate polishing method capable of maintaining the effect of improving the polishing rate over a long period of time. The glass substrate polishing method of the present invention is particularly suitable for polishing a glass substrate for a magnetic disk.
Moreover, according to this invention, the polishing liquid used suitably for the grinding | polishing method of such a glass substrate of this invention can be provided.

そして、本発明によって得られる例えば磁気ディスク用ガラス基板は、生産性が高く、特に基板表面品質への要求が現行よりもさらに厳しいものとなっている次世代用の基板として好適に使用することが可能である。また、本発明によって得られる磁気ディスク用ガラス基板を利用し、たとえばDFH機能を搭載した低浮上量設計の磁気ヘッドと組み合わせた場合においても長期に安定した動作が可能な信頼性の高い磁気ディスクを得ることができる。   And, for example, the glass substrate for magnetic disk obtained by the present invention has high productivity, and can be suitably used as a next-generation substrate in which the demand for the substrate surface quality is particularly severer than the current one. Is possible. Further, a highly reliable magnetic disk capable of long-term stable operation even when combined with a magnetic head of a low flying height design equipped with a DFH function, for example, using a glass substrate for a magnetic disk obtained by the present invention. Can be obtained.

磁気ディスク用ガラス基板の断面図である。It is sectional drawing of the glass substrate for magnetic discs. 磁気ディスク用ガラス基板の全体斜視図である。It is a whole perspective view of the glass substrate for magnetic discs. 両面研磨装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of a double-side polish apparatus.

以下、本発明の実施の形態を詳述する。本実施の形態では、主に、磁気ディスク用基板として好適な磁気ディスク用ガラス基板について説明する。   Hereinafter, embodiments of the present invention will be described in detail. In the present embodiment, a magnetic disk glass substrate suitable as a magnetic disk substrate will be mainly described.

磁気ディスク用ガラス基板は、通常、ガラス基板成型、穴あけ処理、面取処理、研削処理、端面研磨処理、主表面研磨処理、等の処理を経て製造される。なお、処理の順序は上記に限定されるものではない。   A glass substrate for a magnetic disk is usually manufactured through glass substrate molding, drilling processing, chamfering processing, grinding processing, end surface polishing processing, main surface polishing processing, and the like. Note that the order of processing is not limited to the above.

この磁気ディスク用ガラス基板の製造は、まず、溶融ガラスからダイレクトプレスにより円板状のガラス基板(ガラスディスク)を成型する。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板(ガラスディスク)を得てもよい。その後、適宜、穴あけ処理や面取処理を行い、中心部に円孔を有する円板状ガラス基板(ガラスディスク)とする。   In manufacturing the magnetic disk glass substrate, first, a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing. In addition to such a direct press, a glass substrate (glass disk) may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. Thereafter, a drilling process and a chamfering process are performed as appropriate to obtain a disk-shaped glass substrate (glass disk) having a circular hole in the center.

次に、上記円板状ガラス基板(ガラスディスク)に寸法精度及び形状精度を向上させるための研削処理を行う。この研削処理は、通常両面研削装置を用い、ガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。   Next, a grinding process for improving dimensional accuracy and shape accuracy is performed on the disk-shaped glass substrate (glass disk). This grinding process usually uses a double-side grinding machine to grind the main surface of the glass substrate. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.

この研削処理の終了後は、ブラシ研磨等による端面研磨処理を経て、高精度な主表面(鏡面)を得るための主表面研磨処理を行う。
本発明においては、ガラス基板の表面(端面および主表面)の研磨方法としては、酸化セリウムを研磨砥粒として含有する研磨液を供給しながら、ポリウレタン等の研磨パッドを用いて行うのが好適である。
After the end of this grinding process, a main surface polishing process for obtaining a highly accurate main surface (mirror surface) is performed through an end surface polishing process such as brush polishing.
In the present invention, as a method for polishing the surface (end surface and main surface) of the glass substrate, it is preferable to use a polishing pad such as polyurethane while supplying a polishing liquid containing cerium oxide as polishing abrasive grains. is there.

本発明は、上記のとおり、酸化セリウムを研磨砥粒として含む研磨液でガラス基板の表面を研磨処理するガラス基板の研磨方法において、上記研磨液は、無機還元剤を含むとともに、アルカリ性であることを特徴とするものである。   As described above, the present invention provides a glass substrate polishing method in which the surface of a glass substrate is polished with a polishing liquid containing cerium oxide as abrasive grains. The polishing liquid contains an inorganic reducing agent and is alkaline. It is characterized by.

このような研磨処理に用いられる上記研磨液は、研磨砥粒と溶媒である水の組合せであり、本発明では無機還元剤が含まれ、その他の添加剤が必要に応じて含有されている。
酸化セリウム砥粒を含む研磨液を組成するには、例えば純水を用い、さらに無機還元剤、その他の添加剤を必要に応じて添加して研磨液とすればよい。
The polishing liquid used for such a polishing treatment is a combination of abrasive grains and water as a solvent. In the present invention, an inorganic reducing agent is included, and other additives are included as necessary.
In order to compose a polishing liquid containing cerium oxide abrasive grains, for example, pure water is used, and an inorganic reducing agent and other additives may be added as necessary to obtain a polishing liquid.

本発明において、研磨液に含有される酸化セリウム砥粒は、平均粒径が0.1〜2.0μm程度のものを使用するのが研磨効率の点からは好ましい。特に、平均粒径が0.8〜1.3μm程度のものを使用するのが好ましい。
なお、本発明において、上記平均粒径とは、光散乱法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(以下、「累積平均粒子径(50%径)」と呼ぶ。)を言う。本発明において、累積平均粒子径(50%径)は、具体的には、粒子径・粒度分布測定装置を用いて測定することができる。
In the present invention, the cerium oxide abrasive particles contained in the polishing liquid are preferably those having an average particle diameter of about 0.1 to 2.0 μm from the viewpoint of polishing efficiency. In particular, it is preferable to use those having an average particle size of about 0.8 to 1.3 μm.
In the present invention, the average particle size is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”). In the present invention, the cumulative average particle diameter (50% diameter) can be specifically measured using a particle diameter / particle size distribution measuring apparatus.

また、上記酸化セリウム砥粒としては、基本的には不純物を含まない高純度酸化セリウムを使用することができるが、本発明においてはランタン(La)を含むことも好適である。ランタン(La)を含む酸化セリウム砥粒は、研磨速度の向上効果がより大きくなる。ランタンの含有量は、TREO(total rare-earth oxides:研磨剤中の全希土類酸化物の量)に対する酸化ランタン(La)の含有量として表す。Further, as the cerium oxide abrasive grains, high-purity cerium oxide that does not contain impurities can be basically used, but in the present invention, it is also preferable to contain lanthanum (La). Cerium oxide abrasive grains containing lanthanum (La) have a greater effect of improving the polishing rate. The content of lanthanum is expressed as the content of lanthanum oxide (La 2 O 3 ) relative to TREO (total rare-earth oxides).

このように酸化セリウム砥粒がランタン(La)を含む場合のランタンの含有量は、TREOに対する酸化ランタン(La)としての含有量が、例えば1〜50%の範囲であることが好ましい。酸化ランタン(La)の含有量が1%未満であると、ランタン(La)を含むことによる効果があまり得られない。また、酸化ランタン(La)の含有量が50%よりも多いと、酸化セリウム成分が相対的に少なくなり、研磨速度が低下してしまうことがある。Thus, when the cerium oxide abrasive grains contain lanthanum (La), the content of lanthanum oxide with respect to TREO (La 2 O 3 ) is preferably in the range of, for example, 1 to 50%. . When the content of lanthanum oxide (La 2 O 3 ) is less than 1%, the effect of including lanthanum (La) is not obtained so much. When the content of lanthanum oxide (La 2 O 3) is greater than 50%, a cerium oxide component is relatively small, the polishing rate may be decreased.

上記酸化セリウム砥粒の研磨液中の含有量は特に制約される必要はなく、適宜含有量を調整して用いることができるが、研磨速度とコストの観点から、例えば1〜20重量%とすることが好ましい。   The content of the cerium oxide abrasive grains in the polishing liquid is not particularly limited and can be appropriately adjusted and used. From the viewpoint of polishing rate and cost, for example, 1 to 20% by weight. It is preferable.

本発明においては、上記研磨処理に適用する研磨液に、無機還元剤を含有させることを特徴とするものである。
本発明において、上記無機還元剤としては、例えば、アルカリ金属(Li,Na,K,Rb,Cs,Fr)又はアルカリ土類金属(Be,Mg,Ca,Sr,Ba,Ra)とのチオ硫酸塩、ホスフィン酸塩、亜ジチオン酸塩、もしくは亜硫酸塩から選ばれる少なくとも1種であることが好ましい。
In the present invention, an inorganic reducing agent is contained in the polishing liquid applied to the polishing treatment.
In the present invention, examples of the inorganic reducing agent include thiosulfuric acid with an alkali metal (Li, Na, K, Rb, Cs, Fr) or an alkaline earth metal (Be, Mg, Ca, Sr, Ba, Ra). It is preferably at least one selected from a salt, a phosphinate, a dithionite, or a sulfite.

酸化セリウムを研磨砥粒として含む研磨液に無機還元剤を含むことにより、研磨速度を向上できる理由は、以下のように推察される。
無機還元剤、例えば上記チオ硫酸塩は還元性をもち、セリウム(4価)を3価に還元する。3価のセリウムはガラスのSi−Oへ電子を与えることでその結合を弱めるため、研磨速度が向上する。
The reason why the polishing rate can be improved by including an inorganic reducing agent in the polishing liquid containing cerium oxide as abrasive grains is presumed as follows.
An inorganic reducing agent, for example, the above thiosulfate has reducibility and reduces cerium (tetravalent) to trivalent. Since trivalent cerium weakens the bond by giving electrons to Si-O of glass, the polishing rate is improved.

また、無機還元剤の中でも上述の無機還元剤はアルカリ性条件下において酸化されにくく安定で、還元効果が長持ちすると考えられる。中でもチオ硫酸塩は、酸素(強力な酸化剤)との反応性が極めて低いため、研磨液中の溶存酸素や、空気中の酸素と酸化還元反応を起こしにくい。そのため、長時間研磨処理した場合においても、研磨液中の無機還元剤の還元性が損なわれにくい。したがって、研磨液に本発明の無機還元剤を含むことにより、連続研磨時の研磨速度の低下も抑制することができる。
なお、前出の従来の特許文献2に記載されているような有機還元剤では、すぐに研磨液中の溶存酸素や、空気中の酸素と反応して還元効果が消失するため、研磨速度の向上効果や、その効果が長持ちする効果は得られない。また、アルカリ性環境下で分解してしまう場合がある。
Among the inorganic reducing agents, the above-mentioned inorganic reducing agents are considered to be stable and resistant to oxidation under alkaline conditions and have a long reducing effect. In particular, thiosulfate has a very low reactivity with oxygen (a powerful oxidant), and thus hardly causes an oxidation-reduction reaction with dissolved oxygen in the polishing liquid and oxygen in the air. Therefore, even when the polishing treatment is performed for a long time, the reducing property of the inorganic reducing agent in the polishing liquid is not easily impaired. Therefore, by including the inorganic reducing agent of the present invention in the polishing liquid, it is possible to suppress a decrease in the polishing rate during continuous polishing.
In addition, in the organic reducing agent as described in the above-mentioned conventional Patent Document 2, the reduction effect disappears immediately by reacting with dissolved oxygen in the polishing liquid or oxygen in the air, so that the polishing rate is reduced. The improvement effect and the effect that the effect lasts long cannot be obtained. Moreover, it may decompose in an alkaline environment.

本発明においては、上記無機還元剤の中でも、特に酸素と反応しにくく、得られる作用効果が大きい点で、特にチオ硫酸塩が好ましい。更に好ましくは、Na、K、Mg、又はCaとのチオ硫酸塩である。   In the present invention, among the inorganic reducing agents, thiosulfate is particularly preferable in that it hardly reacts with oxygen and has a large effect. More preferred is thiosulfate with Na, K, Mg, or Ca.

上記無機還元剤の研磨液中の含有量(添加量)は、0.5重量%〜10重量%の範囲内であることが好適である。含有量が0.5重量%未満であると、本発明の作用効果が十分に得られない場合がある。一方、含有量が10重量%よりも多いと、研磨液が分離しやすくなってしまい、研磨速度がかえって低下してしまう場合がある。上記無機還元剤の研磨液中の含有量は、より好ましくは、1重量%〜5重量%の範囲内である。   The content (addition amount) of the inorganic reducing agent in the polishing liquid is preferably in the range of 0.5 wt% to 10 wt%. If the content is less than 0.5% by weight, the effects of the present invention may not be sufficiently obtained. On the other hand, when the content is more than 10% by weight, the polishing liquid is easily separated, and the polishing rate may be lowered instead. The content of the inorganic reducing agent in the polishing liquid is more preferably in the range of 1% by weight to 5% by weight.

また、本発明の酸化セリウム砥粒と無機還元剤を含む研磨液はアルカリ性で用いることが重要である。本発明の研磨液をアルカリ性で用いることにより、研磨砥粒である酸化セリウム微粒子の凝集や沈降を防止して研磨速度を高くするとともに研磨キズを低減することができる。また、上記無機還元剤の分解反応を抑制でき、また酸化されにくく安定で、上記無機還元剤の添加効果がより持続する。   In addition, it is important that the polishing liquid containing the cerium oxide abrasive grains and the inorganic reducing agent of the present invention is alkaline. By using the polishing liquid of the present invention in an alkaline state, it is possible to prevent the cerium oxide fine particles, which are polishing abrasive grains, from agglomerating and settling, thereby increasing the polishing rate and reducing polishing scratches. In addition, the decomposition reaction of the inorganic reducing agent can be suppressed, and it is difficult to be oxidized and stable, and the effect of adding the inorganic reducing agent is further sustained.

本発明において、研磨液のpHは、研磨砥粒の凝集や沈降の防止や、無機還元剤の分解反応抑制の観点から、8〜12の範囲内であることが好ましい。さらに好ましくは、9〜11の範囲内である。上記無機還元剤を含む研磨液は、上記範囲内のpHを有することが多いが、場合によっては、適当なアルカリ剤や酸を適宜添加して調整してもよい。   In the present invention, the pH of the polishing liquid is preferably in the range of 8 to 12 from the viewpoint of preventing aggregation and settling of abrasive grains and suppressing the decomposition reaction of the inorganic reducing agent. More preferably, it exists in the range of 9-11. The polishing liquid containing the inorganic reducing agent often has a pH within the above range, but in some cases, it may be adjusted by appropriately adding an appropriate alkali agent or acid.

本発明では、研磨処理における研磨方法は特に限定されるものではないが、例えば、基板の主表面の研磨処理においては、ガラス基板と研磨パッドとを接触させ、上記酸化セリウム砥粒、無機還元剤を含む研磨液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の主表面を研磨すればよい。
例えば図3は、ガラス基板の研磨処理に用いることができる遊星歯車方式の両面研磨装置の概略構成を示す縦断面図である。図3に示す両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア4と、このキャリア4に保持された被研磨加工物1を挟持可能な研磨パッド7がそれぞれ貼着された上定盤5及び下定盤6と、上定盤5と下定盤6との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。
In the present invention, the polishing method in the polishing treatment is not particularly limited. For example, in the polishing treatment of the main surface of the substrate, the glass substrate and the polishing pad are brought into contact with each other, and the cerium oxide abrasive grains and the inorganic reducing agent are contacted. The main surface of the glass substrate may be polished by relatively moving the polishing pad and the glass substrate while supplying the polishing liquid containing.
For example, FIG. 3 is a longitudinal sectional view showing a schematic configuration of a double-side polishing apparatus of a planetary gear system that can be used for a glass substrate polishing process. The double-side polishing apparatus shown in FIG. 3 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3. An upper surface plate 5 and a lower surface plate 6 on which a carrier 4 that revolves and rotates according to rotation, and a polishing pad 7 that can hold the workpiece 1 held by the carrier 4 are attached, and an upper surface plate A polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between 5 and the lower surface plate 6.

このような両面研磨装置によって、研磨処理時には、キャリア4に保持された被研磨加工物1、即ちガラス基板を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じてキャリア4が公転及び自転しながら、被研磨加工物1の上下両面(主表面)が研磨される。上記研磨パッドとしては樹脂ポリシャ(発泡ウレタン製または発泡ポリウレタン製)を用いることが好適である。なお、研磨速度の高速化の観点から、アスカーC硬度が75〜90の研磨パッドを用いることが好ましい。また、研磨による微小な傷の抑制の観点から、スウェードタイプの研磨パッドを用いることが好ましい。   With such a double-side polishing apparatus, the workpiece 1 held on the carrier 4, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6 and the upper and lower surface plates 5 and 6 are polished during the polishing process. While supplying the polishing liquid between the pad 7 and the workpiece 1, while the carrier 4 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, the upper and lower surfaces of the workpiece 1 ( The main surface) is polished. As the polishing pad, it is preferable to use a resin polisher (made of urethane foam or polyurethane foam). From the viewpoint of increasing the polishing rate, it is preferable to use a polishing pad having an Asker C hardness of 75 to 90. In addition, it is preferable to use a suede type polishing pad from the viewpoint of suppressing minute scratches due to polishing.

また、研磨時に基板にかける荷重は、研磨速度と研磨品質の観点から50〜200g/cmであることが好ましい。
また、本発明においては、キャリアに複数の基板を同時に保持させ、遊星歯車運動をさせて、複数の基板の両面を同時に研磨することが好ましい。特に、1回の研磨処理(1バッチ)では50枚以上の基板を同時に研磨処理することが好ましい。
Moreover, it is preferable that the load applied to a board | substrate at the time of grinding | polishing is 50-200 g / cm < 2 > from a viewpoint of grinding | polishing speed | rate and grinding | polishing quality.
Moreover, in this invention, it is preferable to hold | maintain several board | substrates simultaneously on a carrier and to make planetary gear motion and grind | polish both surfaces of several board | substrates simultaneously. In particular, it is preferable to polish 50 or more substrates simultaneously in one polishing process (1 batch).

なお、通常、基板主表面の研磨処理は、研削処理で残留した傷や歪みを除去し所定の平滑面にするための第1研磨処理と、ガラス基板主表面の表面粗さをより平滑な鏡面に仕上げる第2研磨処理の2段階を経て行われることが一般的である(但し、3段階以上の多段階研磨を行うこともある)が、この場合、少なくとも前段の第1研磨処理において本発明を適用することが好ましい。第1研磨処理は、通常、複数の研磨処理の中でも最も取代量が多いため、研磨速度がとりわけ重要である。なお、できるだけ取代を少なくして生産性を向上させる観点から、第1研磨処理を行うガラス基板の主表面の表面粗さは、Raで100nm以下であることが好ましい。同様に、第2研磨処理の取代を少なくする観点から、第1研磨処理は、主表面の表面粗さがRaで1.5nm以下となるように行うことが好ましい。   Normally, the polishing process of the main surface of the substrate includes a first polishing process for removing scratches and distortions remaining in the grinding process to obtain a predetermined smooth surface, and a mirror surface with a smoother surface roughness of the main surface of the glass substrate. In general, it is performed through two stages of the second polishing process that finishes (however, multistage polishing of three or more stages may be performed). In this case, at least the first polishing process in the previous stage is used in the present invention. Is preferably applied. Since the first polishing process usually has the largest machining allowance among a plurality of polishing processes, the polishing rate is particularly important. In addition, from the viewpoint of improving productivity by reducing the machining allowance as much as possible, the surface roughness of the main surface of the glass substrate on which the first polishing treatment is performed is preferably 100 nm or less in terms of Ra. Similarly, from the viewpoint of reducing the allowance for the second polishing treatment, the first polishing treatment is preferably performed so that the surface roughness of the main surface is 1.5 nm or less.

また、この場合、後段の仕上げ(精密)研磨処理(第2研磨処理)は、例えば、平均粒径が10〜100nm程度のコロイダルシリカ砥粒を含む研磨液を用いて行うことが好ましい。この場合の研磨液は、研磨速度向上の観点から酸性域に調整されたものが用いられることが好適である。例えば、pHは5以下であることが好ましく、より好ましくは4以下である。また、最終洗浄での表面粗さの増加を低減する観点から、pHは1以上であることが好ましく、より好ましくは2以上である。また、この仕上げ研磨用の研磨パッドとしては、軟質ポリッシャの研磨パッド(スウェードパッド)であることが好ましい。研磨方法は前記と同様である。   In this case, it is preferable that the subsequent finishing (precision) polishing process (second polishing process) is performed using a polishing liquid containing colloidal silica abrasive grains having an average particle diameter of about 10 to 100 nm, for example. In this case, it is preferable to use a polishing liquid adjusted to an acidic range from the viewpoint of improving the polishing rate. For example, the pH is preferably 5 or less, more preferably 4 or less. Further, from the viewpoint of reducing the increase in surface roughness at the final cleaning, the pH is preferably 1 or more, more preferably 2 or more. Further, the polishing pad for final polishing is preferably a polishing pad (suede pad) of a soft polisher. The polishing method is the same as described above.

本発明の研磨方法は、ガラス基板の主表面の研磨処理だけでなく、ガラス基板の端面の研磨処理においても好ましく適用することができる。
次に、ガラス基板の端面研磨処理について説明する。
The polishing method of the present invention can be preferably applied not only to the polishing treatment of the main surface of the glass substrate but also to the polishing treatment of the end face of the glass substrate.
Next, the end surface polishing treatment of the glass substrate will be described.

端面研磨処理では、回転ブラシ(研磨ブラシとも呼ばれる。)でガラス基板1の例えば外周端面12(図1、図2参照)を研磨する。なお、ガラス基板1の内周端面13に形成される面取面や側壁面を研磨する方法は同様であるので、説明を省略する。   In the end surface polishing treatment, for example, the outer peripheral end surface 12 (see FIGS. 1 and 2) of the glass substrate 1 is polished with a rotating brush (also referred to as a polishing brush). In addition, since the method of grind | polishing the chamfering surface and side wall surface which are formed in the inner peripheral end surface 13 of the glass substrate 1 is the same, description is abbreviate | omitted.

上記回転ブラシは、ガラス基板1の表裏の主表面11,11に対して垂直な回転軸と、該回転軸の外周に取り付けられるブラシ毛とを有する。回転ブラシは、上記回転軸を中心に回転しながら、上記ブラシ毛でガラス基板1の外周端面12の2つの面取面12b、12bおよび側壁面12aを研磨する。   The rotating brush has a rotating shaft perpendicular to the main surfaces 11 and 11 of the front and back surfaces of the glass substrate 1 and brush hairs attached to the outer periphery of the rotating shaft. The rotating brush polishes the two chamfered surfaces 12b and 12b and the side wall surface 12a of the outer peripheral end surface 12 of the glass substrate 1 with the brush bristles while rotating around the rotation axis.

上記回転ブラシによるガラス基板1の研磨部位には、ノズルから研磨液が供給される。研磨液は研磨材を含み、本発明を適用する場合、研磨材としては酸化セリウム砥粒が用いられる。そして、この研磨液は、上記無機還元剤を含むとともに、アルカリ性である。   A polishing liquid is supplied from a nozzle to the polishing portion of the glass substrate 1 by the rotating brush. The polishing liquid contains an abrasive, and when the present invention is applied, cerium oxide abrasive grains are used as the abrasive. The polishing liquid contains the inorganic reducing agent and is alkaline.

端面研磨処理では、複数のガラス基板1が積層され、まとめて研磨されてもよい。この場合、ガラス基板1同士の間にはスペーサが配設されてよい。また、上記回転ブラシは、回転軸を中心に回転しながら、ガラス基板1の積層方向(回転軸の中心線と平行な方向)に揺動させるようにしてもよい。   In the end surface polishing treatment, a plurality of glass substrates 1 may be laminated and polished together. In this case, a spacer may be disposed between the glass substrates 1. The rotating brush may be swung in the stacking direction of the glass substrate 1 (a direction parallel to the center line of the rotating shaft) while rotating around the rotating shaft.

被研磨部への研磨液供給量は、例えば5〜20リットル/分、回転ブラシの回転速度は、例えば100〜500rpm、回転ブラシの回転軸方向の揺動速度は、例えば3〜10rpm(1分間に3〜10往復する)、ガラス基板(積層体)の回転速度は、例えば50〜100rpmの範囲で適宜設定することができる。   The amount of polishing liquid supplied to the part to be polished is, for example, 5 to 20 liters / minute, the rotation speed of the rotating brush is, for example, 100 to 500 rpm, and the rocking speed of the rotating brush in the rotation axis direction is, for example, 3 to 10 rpm (1 minute) The rotation speed of the glass substrate (laminated body) can be appropriately set within a range of 50 to 100 rpm, for example.

ガラス基板の端面の研磨処理においても本発明を適用することにより、研磨速度を向上でき、また、このような研磨速度向上の効果が長期間に渡って維持することができる。つまり、効果が長持ちする。   By applying the present invention also to the polishing treatment of the end face of the glass substrate, the polishing rate can be improved and the effect of improving the polishing rate can be maintained for a long period of time. In other words, the effect lasts longer.

本発明においては、ガラス基板を構成するガラスの硝種は、アルミノシリケートガラスとすることが好ましい。また、アモルファスのアルミノシリケートガラスとするとさらに好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、SiO2が58重量%以上75重量%以下、Al23が5重量%以上23重量%以下、Li2Oが3重量%以上10重量%以下、Na2Oが4重量%以上13重量%以下を主成分として含有するアルミノシリケートガラスを用いることができる。In the present invention, the glass type constituting the glass substrate is preferably aluminosilicate glass. Amorphous aluminosilicate glass is more preferable. Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. As such an aluminosilicate glass, SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2 An aluminosilicate glass containing O as a main component of 4 wt% or more and 13 wt% or less can be used.

さらに、例えば、SiO2 を62重量%以上75重量%以下、Al23を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2 Oを4重量%以上12重量%以下、ZrO2を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2 の重量比が0.5以上2.0以下、Al23 /ZrO2 の重量比が0.4以上2.5以下であるアモルファスのアルミノシリケートガラスとすることができる。Further, for example, SiO 2 is 62 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 15 wt%, Li 2 O is 4 wt% to 10 wt%, and Na 2 O is 4 wt%. above 12 wt% or less, the ZrO 2 5.5 wt% to 15 wt% or less, while containing as the main component, the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, Al 2 O 3 An amorphous aluminosilicate glass having a weight ratio of / ZrO 2 of 0.4 to 2.5 can be obtained.

また、次世代基板の特性として耐熱性を求められる場合もある。このようなガラス基板は、ガラス転移点(Tg)が例えば600℃以上と高い。そして、例えばガラス成分中のアルミナ(Al)量が8モル%以下のガラス組成を有する。例えば、モル%表示にて、SiOを50〜75%、Alを0〜6%、BaOを0〜2%、LiOを0〜3%、ZnOを0〜5%、NaOおよびKOを合計で3〜15%、MgO、CaO、SrOおよびBaOを合計で14〜35%、ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2〜9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85〜1の範囲であり、且つモル比[Al/(MgO+CaO)]が0〜0.30の範囲であるガラスを好ましく用いることができる。In addition, heat resistance may be required as a characteristic of next-generation substrates. Such a glass substrate has a high glass transition point (Tg) of, for example, 600 ° C. or higher. For example, the glass composition has a glass composition having an alumina (Al 2 O 3 ) amount of 8 mol% or less. For example, in terms of mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 0 to 6%, BaO is 0 to 2%, Li 2 O is 0 to 3%, ZnO is 0 to 5%, Na 2 O and K 2 O in total 3 to 15%, MgO, CaO, SrO and BaO in total 14 to 35%, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 are included in a total amount of 2 to 9%, the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1, and the molar ratio [Al 2 A glass in which O 3 / (MgO + CaO)] is in the range of 0 to 0.30 can be preferably used.

本発明は、このようなガラス転移温度(Tg)の高い耐熱性ガラス基板の研磨処理に特に好適である。このような組成の耐熱性ガラス基板は、Si−O結合が相対的に多く、本発明の酸化セリウム砥粒、無機還元剤を含む研磨液を適用する研磨処理を行うことにより、とくに連続研磨処理時の研磨速度の低下を抑制する効果が、例えば上記のアルミノシリケートガラスの場合よりも大きい。   The present invention is particularly suitable for polishing treatment of such a heat-resistant glass substrate having a high glass transition temperature (Tg). The heat-resistant glass substrate having such a composition has a relatively large number of Si—O bonds, and in particular, by performing a polishing process using a polishing liquid containing a cerium oxide abrasive grain and an inorganic reducing agent of the present invention, a continuous polishing process is performed. The effect of suppressing a decrease in the polishing rate is greater than, for example, the case of the aluminosilicate glass.

なお、本発明は、特に磁気ディスク用ガラス基板の研磨処理に好適であるが、磁気ディスク用以外の例えば光学レンズ、マスクブランクス用基板、液晶パネルにも適用することが可能である。   The present invention is particularly suitable for polishing a glass substrate for a magnetic disk, but can also be applied to, for example, optical lenses, mask blank substrates, and liquid crystal panels other than those for magnetic disks.

本発明においては、最終研磨処理後のガラス基板の表面は、算術平均表面粗さRaが0.20nm以下、特に0.15nm以下、更に好ましくは0.10nm以下であることが好ましい。更に、最大粗さRmaxが2.0nm以下、特に1.5nm以下、更に好ましくは1.0nm以下であることが好ましい。なお、本発明においてRa、Rmaxというときは、日本工業規格(JIS)B0601:1982に準拠して算出される粗さのことである。Raは算術平均粗さ、Rmaxは最大高さである。これらの表面は、鏡面であることが好ましい。
また、本発明において上記表面粗さは、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を256×256ピクセルの解像度で測定したときに得られる表面形状の表面粗さとすることが実用上好ましい。ただし、Raが50nmを超える場合、触針式粗さ計を用いて表面粗さを測定することが好ましい。
In the present invention, the surface of the glass substrate after the final polishing treatment preferably has an arithmetic average surface roughness Ra of 0.20 nm or less, particularly 0.15 nm or less, more preferably 0.10 nm or less. Further, the maximum roughness Rmax is 2.0 nm or less, particularly 1.5 nm or less, more preferably 1.0 nm or less. In the present invention, Ra and Rmax are roughnesses calculated in accordance with Japanese Industrial Standard (JIS) B0601: 1982. Ra is the arithmetic average roughness, and Rmax is the maximum height. These surfaces are preferably mirror surfaces.
In the present invention, the surface roughness is practically the surface roughness of the surface shape obtained when measuring the range of 1 μm × 1 μm with a resolution of 256 × 256 pixels using an atomic force microscope (AFM). Preferred above. However, when Ra exceeds 50 nm, it is preferable to measure the surface roughness using a stylus roughness meter.

本発明においては、基板主表面の研磨処理の前または後に、化学強化処理を施すことができる。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸塩を好ましく用いることができる。   In the present invention, chemical strengthening treatment can be performed before or after the substrate main surface polishing treatment. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example. As the chemical strengthening salt, alkali metal nitrates such as potassium nitrate and sodium nitrate can be preferably used.

本発明のガラス基板の研磨方法を適用した研磨処理を含む磁気ディスク用ガラス基板の製造によって、図1および図2に示すように、両主表面11,11と、その間に外周側端面12、内周側端面13を有する円板状のガラス基板1が得られる。外周側端面12は、側壁面12aと、その両側の主表面との間にある面取面12b、12bによりなる。内周側端面13についても同様の形状である。   By manufacturing a glass substrate for a magnetic disk including a polishing process to which the glass substrate polishing method of the present invention is applied, as shown in FIGS. 1 and 2, both main surfaces 11 and 11 and an outer peripheral side end surface 12 between them are provided. A disk-shaped glass substrate 1 having a peripheral end face 13 is obtained. The outer peripheral side end surface 12 includes chamfered surfaces 12b and 12b between the side wall surface 12a and the main surfaces on both sides thereof. The inner peripheral side end face 13 has the same shape.

以上説明したように、本発明によれば、酸化セリウムを研磨砥粒とするガラス基板の表面の研磨処理において、研磨速度を向上することができる。また、このことに加えて、研磨速度の向上効果が長持ちし、連続研磨処理時の研磨速度の低下も効果的に抑制することができる。本発明のガラス基板の研磨方法は、特に磁気ディスク用ガラス基板の研磨処理に好適である。
そして、本発明によって得られる例えば磁気ディスク用ガラス基板は、生産性が高く、特に基板表面品質への要求が現行よりもさらに厳しいものとなっている次世代用の基板として好適に使用することが可能である。
As described above, according to the present invention, the polishing rate can be improved in the polishing treatment of the surface of the glass substrate using cerium oxide as abrasive grains. In addition to this, the effect of improving the polishing rate lasts for a long time, and the reduction of the polishing rate during the continuous polishing process can be effectively suppressed. The glass substrate polishing method of the present invention is particularly suitable for polishing a glass substrate for a magnetic disk.
And, for example, the glass substrate for magnetic disk obtained by the present invention has high productivity, and can be suitably used as a next-generation substrate in which the demand for the substrate surface quality is particularly severer than the current one. Is possible.

また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。
磁気ディスクは、本発明により得られる磁気ディスク用ガラス基板の上に少なくとも磁性膜を形成して製造される。磁性膜の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性膜の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法を用いることが好適である。
The present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk.
The magnetic disk is manufactured by forming at least a magnetic film on the magnetic disk glass substrate obtained by the present invention. As the material for the magnetic film, a CoCrPt-based or CoPt-based ferromagnetic alloy that is a hexagonal crystal system having a large anisotropic magnetic field can be used. As a method for forming the magnetic film, it is preferable to use a sputtering method, for example, a DC magnetron sputtering method.

また、磁性膜の上に、保護層、潤滑層をこの順に形成することが好ましい。保護層としてはアモルファスの水素化炭素系保護層が好適である。また、潤滑層としては、パーフルオロポリエーテル系化合物の潤滑剤を用いることができる。
本発明によって得られる磁気ディスク用ガラス基板を用いることにより、たとえばDFH機能を搭載した低浮上量設計の磁気ヘッドと組み合わせた場合においても長期に安定した動作が可能な信頼性の高い磁気ディスクを得ることができる。
Moreover, it is preferable to form a protective layer and a lubricating layer in this order on the magnetic film. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. In addition, a lubricant of a perfluoropolyether compound can be used for the lubricating layer.
By using the glass substrate for a magnetic disk obtained by the present invention, a highly reliable magnetic disk capable of long-term stable operation even when combined with a magnetic head of a low flying height design equipped with a DFH function is obtained. be able to.

以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
以下の(1)粗研削処理、(2)形状加工処理、(3)精研削処理、(4)端面研磨処理、(5)主表面第1研磨処理、(6)化学強化処理、(7)主表面第2研磨処理、を経て本実施例の磁気ディスク用ガラス基板を製造した。
(Example 1)
The following (1) rough grinding process, (2) shape processing process, (3) fine grinding process, (4) end face polishing process, (5) main surface first polishing process, (6) chemical strengthening process, (7) The glass substrate for a magnetic disk of this example was manufactured through the main surface second polishing treatment.

(1)粗研削処理
まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円板状のアルミノシリゲートガラスからなるガラス基板を得た。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。このアルミノシリケートガラスとしては、SiO:58〜75重量%、Al:5〜23重量%、LiO:3〜10重量%、NaO:4〜13重量%を含有する化学強化可能なガラスを使用した。なお、Alの含有量は、モル%換算で8.5モル%とした。以下、この硝材を硝材1と呼ぶ。
(1) Coarse grinding treatment First, a glass substrate made of a disc-shaped aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper mold, a lower mold, and a body mold. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. As the aluminosilicate glass, SiO 2: 58 to 75 wt%, Al 2 O 3: 5~23 wt%, Li 2 O: 3~10 wt%, Na 2 O: 4~13 chemical containing wt% Temperable glass was used. Note that the content of Al 2 O 3 was 8.5 mol% in terms of mol%. Hereinafter, this glass material is referred to as glass material 1.

次いで、このガラス基板に寸法精度及び形状精度の向上させるためアルミナ系の遊離砥粒を用いて粗研削処理を行った。この粗研削処理は両面研削装置を用いて行った。   Next, in order to improve the dimensional accuracy and shape accuracy of this glass substrate, rough grinding treatment was performed using alumina-based loose abrasive grains. This rough grinding process was performed using a double-side grinding machine.

(2)形状加工処理
次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面の研削をして直径を65mmφとした後、外周端面および内周端面に所定の面取り加工を施した。一般に、2.5インチ型HDD(ハードディスクドライブ)では、外径が65mmの磁気ディスクを用いる。
(2) Shape processing treatment Next, a cylindrical grindstone is used to make a hole in the central portion of the glass substrate, and the outer peripheral end face is ground to a diameter of 65 mmφ. Chamfered. In general, a 2.5-inch HDD (hard disk drive) uses a magnetic disk having an outer diameter of 65 mm.

(3)精研削処理
この精研削処理は両面研削装置を用い、ダイヤモンド砥粒を樹脂で固定したペレットが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板を密着させてクーラントを供給しつつ行なった。精研削処理後の基板主表面の粗さは、Raで100nm以下であった。ただし、精研削処理後の表面粗さは、触針式粗さ計を用いて測定した。
上記精研削処理を終えたガラス基板を洗浄した。
(3) Precision grinding process This precision grinding process uses a double-sided grinding machine to supply the coolant by bringing the glass substrate held by the carrier into close contact between the upper and lower surface plates to which the pellets with diamond abrasive grains fixed are attached. While doing so. The roughness of the main surface of the substrate after the fine grinding treatment was 100 nm or less in terms of Ra. However, the surface roughness after the precision grinding treatment was measured using a stylus type roughness meter.
The glass substrate after the fine grinding process was washed.

(4)端面研磨処理
次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)を研磨した。端面研磨処理後の基板端面の粗さは、Raで100nm以下であった。そして、上記端面研磨を終えたガラス基板を洗浄した。
(4) End surface polishing treatment Next, the end surface (inner periphery, outer periphery) of the glass substrate was polished by brush polishing while rotating the glass substrate. The roughness of the end face of the substrate after the end face polishing treatment was 100 nm or less in terms of Ra. And the glass substrate which finished the said end surface grinding | polishing was wash | cleaned.

(5)主表面第1研磨処理
次に、上述した研削処理で残留した傷や歪みを除去し所定の平滑面にするための第1研磨処理を前述の図3に示す両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッド7が貼り付けられた上下研磨定盤5,6の間にキャリア4により保持したガラス基板を密着させ、このキャリア4を太陽歯車2と内歯歯車3とに噛合させ、上記ガラス基板を上下定盤5,6によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して各歯車と上下定盤をそれぞれ回転させることによって、ガラス基板が定盤5,6上で自転しながら公転して遊星歯車機構により両面を同時に研磨加工するものである。具体的には、ポリシャ(研磨パッド)としてアスカーC硬度が80のスウェードタイプのポリシャ(発泡ポリウレタン製)を用い、第1研磨処理を実施した。
(5) Main surface first polishing process Next, the first polishing process for removing scratches and distortions remaining in the above-described grinding process to obtain a predetermined smooth surface is performed using the above-described double-side polishing apparatus shown in FIG. I did it. In the double-side polishing apparatus, the glass substrate held by the carrier 4 is closely attached between the upper and lower polishing surface plates 5 and 6 to which the polishing pad 7 is attached, and the carrier 4 is engaged with the sun gear 2 and the internal gear 3. The glass substrate is sandwiched between upper and lower surface plates 5 and 6. After that, by supplying a polishing liquid between the polishing pad and the polishing surface of the glass substrate and rotating the gears and the upper and lower surface plates, the glass substrate revolves while rotating on the surface plates 5 and 6, and the planets. Both sides are simultaneously polished by a gear mechanism. Specifically, a first polishing process was performed using a suede type polisher (made of polyurethane foam) having an Asker C hardness of 80 as a polisher (polishing pad).

研磨液としては、10重量%の酸化セリウム(平均粒径1μm)を研磨砥粒として含み、無機還元剤としてチオ硫酸ナトリウムを5重量%含み、pH=10のアルカリ性のものを使用した。また、研磨荷重は120g/cm、取代は板厚換算で30μmとした。研磨後の基板表面の粗さはRaで1.5nm以下であった。
上記第1研磨処理は、研磨液を交換せずに連続20バッチ(1バッチ100枚)を処理した。上記第1研磨処理を終えたガラス基板を洗浄した。
As the polishing liquid, 10% by weight of cerium oxide (average particle size 1 μm) was used as abrasive grains, 5% by weight of sodium thiosulfate was used as an inorganic reducing agent, and an alkaline solution having a pH of 10 was used. The polishing load was 120 g / cm 2 and the machining allowance was 30 μm in terms of plate thickness. The roughness of the substrate surface after polishing was 1.5 nm or less in terms of Ra.
In the first polishing process, 20 batches (100 batches) were processed without changing the polishing liquid. The glass substrate after the first polishing treatment was washed.

(6)化学強化処理
次に、上記洗浄を終えたガラス基板に化学強化を施した。硝酸カリウムと硝酸ナトリウムの混合した溶融塩である化学強化液中に上記洗浄・乾燥済みのガラス基板を浸漬して化学強化処理を行なった。化学強化を終えたガラス基板を洗浄した。
(6) Chemical reinforcement | strengthening process Next, the chemical strengthening was performed to the glass substrate which finished the said washing | cleaning. The cleaned and dried glass substrate was immersed in a chemical strengthening liquid, which is a molten salt mixed with potassium nitrate and sodium nitrate, to perform chemical strengthening treatment. The glass substrate after chemical strengthening was cleaned.

(7)主表面第2研磨処理
次いで上記の第1研磨処理で使用したものと同様の両面研磨装置を用い、ポリシャをアスカーC硬度が70の軟質ポリシャ(スウェードタイプ)の研磨パッド(発泡ポリウレタン製)に替えて第2研磨処理を実施した。この第2研磨処理は、ガラス基板主表面の表面粗さをより平滑な鏡面に仕上げる、例えばガラス基板主表面の表面粗さをRaで0.2nm以下、Rmaxで2nm以下の平滑な鏡面に仕上げるための鏡面研磨処理である。研磨液としては、10重量%のコロイダルシリカ(平均粒径15nm)を研磨砥粒として含む研磨液を使用した。なお、研磨液のpHは、予め硫酸を添加して酸性(pH=2)に調整した。また、研磨荷重は100g/cm、取代は板厚換算で3μmとした。
(7) Main surface second polishing process Next, using a double-side polishing apparatus similar to that used in the first polishing process, the polisher is a soft polisher (suede type) polishing pad (made of polyurethane foam) with an Asker C hardness of 70 ) And the second polishing process was performed. This second polishing process finishes the surface roughness of the glass substrate main surface to a smoother mirror surface, for example, the surface roughness of the glass substrate main surface is finished to a smooth mirror surface with Ra of 0.2 nm or less and Rmax of 2 nm or less. For the mirror polishing. As the polishing liquid, a polishing liquid containing 10% by weight of colloidal silica (average particle diameter of 15 nm) as polishing abrasive grains was used. The pH of the polishing liquid was adjusted to be acidic (pH = 2) by adding sulfuric acid in advance. The polishing load was 100 g / cm 2 and the machining allowance was 3 μm in terms of plate thickness.

次に、上記第2研磨処理を終えたガラス基板を洗浄処理(最終洗浄処理)した。具体的には、アルカリ性洗剤を純水に添加した洗浄槽に浸漬して、超音波洗浄を行った。その後、ガラス基板を純水で十分にリンスした後、乾燥させた。   Next, the glass substrate after the second polishing process was cleaned (final cleaning process). Specifically, it was immersed in a cleaning tank in which an alkaline detergent was added to pure water, and ultrasonic cleaning was performed. Thereafter, the glass substrate was sufficiently rinsed with pure water and then dried.

上記各処理を経て得られたガラス基板について、上記最終洗浄処理後のガラス基板主表面の表面粗さ(Ra)を原子間力顕微鏡(AFM)にて測定したところ、Raで0.2nm以下、Rmaxで2nm以下の平滑な鏡面に仕上がっていた。   About the glass substrate obtained through each said process, when the surface roughness (Ra) of the glass substrate main surface after the said last washing process was measured with the atomic force microscope (AFM), Ra is 0.2 nm or less, It was finished to a smooth mirror surface with an Rmax of 2 nm or less.

(実施例2〜4)
上記実施例1における主表面第1研磨処理に用いる研磨液に含有させた無機還元剤を、ホスフィン酸ナトリウム、亜ジチオン酸ナトリウム、亜硫酸ナトリウムにそれぞれ替えた研磨液を用いたこと以外は、実施例1と同様にして、実施例2〜4のガラス基板を作製した。
(Examples 2 to 4)
Except that the inorganic reducing agent contained in the polishing liquid used for the first main surface polishing process in Example 1 was replaced with sodium phosphinate, sodium dithionite, and sodium sulfite, respectively. In the same manner as in Example 1, glass substrates of Examples 2 to 4 were produced.

(比較例1)
上記実施例1における主表面第1研磨処理に用いる研磨液に無機還元剤を含有していない研磨液を用いたこと以外は、実施例1と同様にして、比較例1のガラス基板を作製した。
(Comparative Example 1)
A glass substrate of Comparative Example 1 was produced in the same manner as in Example 1 except that a polishing liquid containing no inorganic reducing agent was used as the polishing liquid used in the first main surface polishing process in Example 1 above. .

上記実施例1〜4及び比較例1の上記主表面第1研磨処理における研磨速度をそれぞれ1バッチ目と10バッチ目で測定し、比較例1における研磨速度に対する各実施例における研磨速度の向上率を以下の基準で判定し、その結果を纏めて以下の表1に示した。ここで、比較例1において、1バッチ目に対する10バッチ目の研磨速度の比(10バッチ目の研磨速度/1バッチ目の研磨速度)を算出したところ、0.9であった。
なお、実施例1における無機還元剤を、有機還元剤であるアスコルビン酸に変更した他は実施例1と同様にしてガラス基板を作製したところ、1バッチ目と10バッチ目の研磨速度は比較例1と同等であった。
[判断基準]
同じバッチ目の比較例の研磨速度に対して、
●(レベル5) 115%より大きい
◎(レベル4) 110%より大きく115%以下
○(レベル3) 105%より大きく110%以下
△(レベル2) 100%より大きく105%以下
×(レベル1) 100%以下
The polishing rate in the first main surface polishing process of Examples 1 to 4 and Comparative Example 1 was measured in the first batch and the 10th batch, respectively, and the improvement rate of the polishing rate in each Example with respect to the polishing rate in Comparative Example 1 Were determined according to the following criteria, and the results are summarized in Table 1 below. Here, in Comparative Example 1, the ratio of the polishing rate of the 10th batch to the 1st batch (the polishing rate of the 10th batch / the polishing rate of the 1st batch) was calculated to be 0.9.
In addition, when the glass substrate was produced like Example 1 except having changed the inorganic reducing agent in Example 1 to ascorbic acid which is an organic reducing agent, the polishing rate of the 1st batch and the 10th batch was a comparative example. It was equivalent to 1.
[Judgment criteria]
For the polishing rate of the comparative example of the same batch,
● (Level 5) Greater than 115% ◎ (Level 4) Greater than 110% and 115% or less ○ (Level 3) Greater than 105% and 110% or less △ (Level 2) Greater than 100% and 105% or less × (Level 1) 100% or less

Figure 0006429354
Figure 0006429354

上記表1の結果から以下のことがわかる。
1.本発明の実施例によれば、酸化セリウム砥粒を含む研磨液にアルカリ性下で本発明の無機還元剤を含有させることにより、無機還元剤を含まない比較例に対して研磨速度を向上させることができる。
また、無機還元剤の中でも、特にチオ硫酸塩は研磨速度の向上効果が大きく好ましい。
2.また、本発明の実施例によれば、このような傾向は、1バッチ目だけではなく、10バッチ目においても持続しており、連続研磨処理によって大量の基板を研磨処理する場合においても、還元剤の添加による研磨速度向上の効果が長持ちすることがわかる。よって、連続研磨処理時の研磨速度の低下を効果的に抑制することができる。
The following can be seen from the results in Table 1 above.
1. According to the examples of the present invention, the polishing liquid containing cerium oxide abrasive grains contains the inorganic reducing agent of the present invention under alkalinity, thereby improving the polishing rate relative to the comparative example not containing the inorganic reducing agent. Can do.
Of the inorganic reducing agents, thiosulfate is particularly preferable because of its great effect of improving the polishing rate.
2. In addition, according to the embodiment of the present invention, such a tendency is maintained not only in the first batch but also in the tenth batch, and even when a large amount of substrates are polished by a continuous polishing process, the tendency is reduced. It can be seen that the effect of improving the polishing rate by adding the agent lasts long. Therefore, it is possible to effectively suppress a decrease in the polishing rate during the continuous polishing process.

(実施例5〜8)
上記実施例1〜4における主表面第1研磨処理に用いる各研磨液に含有させた研磨砥粒を、それぞれLaをTREOに対するLaの割合として20%含む酸化セリウム砥粒に替えた研磨液を用いたこと以外は、実施例1〜4と同様にして、実施例5〜8のガラス基板を作製した。
(Examples 5 to 8)
Polishing abrasive grains contained in each of the polishing liquids used for the first main surface polishing treatment in Examples 1 to 4 were replaced with cerium oxide abrasive grains containing 20% La as a ratio of La 2 O 3 to TREO. Except having used the liquid, it carried out similarly to Examples 1-4, and produced the glass substrate of Examples 5-8.

(比較例2)
上記比較例1における主表面第1研磨処理に用いる研磨液に含有させた研磨砥粒を、LaをTREOに対するLaの割合として20%含む酸化セリウム砥粒に替えた研磨液を用いたこと以外は、比較例1と同様にして、比較例2のガラス基板を作製した。
(Comparative Example 2)
The polishing liquid contained in the polishing liquid used for the main surface first polishing treatment in Comparative Example 1 was replaced with cerium oxide abrasive containing 20% La as a ratio of La 2 O 3 to TREO. Except for this, a glass substrate of Comparative Example 2 was produced in the same manner as Comparative Example 1.

上記実施例5〜8及び比較例2の上記主表面第1研磨処理における研磨速度をそれぞれ1バッチ目と10バッチ目で測定し、比較例2における研磨速度に対する各実施例における研磨速度の向上率を上記と同じ判断基準で判定し、その結果を纏めて以下の表2に示した。ここで、比較例2において、1バッチ目に対する10バッチ目の研磨速度の比(10バッチ目の研磨速度/1バッチ目の研磨速度)を算出したところ、0.9であった。
なお、実施例5における無機還元剤を、有機還元剤であるアスコルビン酸に変更した他は実施例5と同様にしてガラス基板を作製したところ、1バッチ目と10バッチ目の研磨速度は比較例2と同等であった。
The polishing rate in the main surface first polishing treatment of Examples 5 to 8 and Comparative Example 2 was measured in the first batch and the 10th batch, respectively, and the improvement rate of the polishing rate in each Example with respect to the polishing rate in Comparative Example 2 Were determined according to the same criteria as described above, and the results are summarized in Table 2 below. Here, in Comparative Example 2, the ratio of the polishing rate of the 10th batch to the first batch (the polishing rate of the 10th batch / the polishing rate of the 1st batch) was calculated to be 0.9.
In addition, when the glass substrate was produced like Example 5 except having changed the inorganic reducing agent in Example 5 to ascorbic acid which is an organic reducing agent, the polishing rate of the 1st batch and the 10th batch was a comparative example. It was equivalent to 2.

Figure 0006429354
Figure 0006429354

上記表2の結果から以下のことがわかる。
1.Laを添加した酸化セリウム砥粒を用いる場合においても、研磨液に本発明の無機還元剤を含有させることにより、無機還元剤を含まない比較例に対して研磨速度を向上させることができる。
また、無機還元剤の中でも、特にチオ硫酸塩は研磨速度の向上効果が大きく好ましい。また、前出の表1の結果との対比から、Laを添加した酸化セリウム砥粒を用いることにより、研磨速度の向上率が大きくなることがわかる。
2.また、本発明の実施例によれば、このような傾向は、1バッチ目だけではなく、10バッチ目においても持続しており、連続研磨処理時の研磨速度の低下を効果的に抑制することができる。特にチオ硫酸塩は、10バッチ目においても比較例2の1バッチ目と同等以上の研磨速度となり、とりわけ高い効果を示している。
The following can be seen from the results in Table 2 above.
1. Even in the case of using La-added cerium oxide abrasive, the polishing rate can be improved as compared with the comparative example not containing the inorganic reducing agent by containing the inorganic reducing agent of the present invention in the polishing liquid.
Of the inorganic reducing agents, thiosulfate is particularly preferable because of its great effect of improving the polishing rate. Moreover, it turns out that the improvement rate of polishing rate becomes large by using the cerium oxide abrasive grain which added La from the comparison with the result of above-mentioned Table 1.
2. Moreover, according to the Example of this invention, such a tendency is maintained not only in the 1st batch but also in the 10th batch, and effectively suppresses a decrease in the polishing rate during the continuous polishing process. Can do. In particular, thiosulfate has a polishing rate equal to or higher than that of the first batch of Comparative Example 2 even in the 10th batch, and shows a particularly high effect.

(実施例A)
上記実施例1と同様にして、(1)粗研削処理、(2)形状加工処理、(3)精研削処理、(4)端面研磨処理、(5)主表面第1研磨処理を順次行った。
ただし、ガラス基板は、上記の硝材1においてAlの含有量を10モル%としたものを用いた。この硝材を硝材Aと呼ぶ。
(Example A)
In the same manner as in Example 1, (1) rough grinding treatment, (2) shape processing treatment, (3) fine grinding treatment, (4) end surface polishing treatment, and (5) main surface first polishing treatment were sequentially performed. .
However, the glass substrate was used the content of Al 2 O 3 in the glass material 1 of the above 10 mol%. This glass material is called glass material A.

また、上記主表面第1研磨処理の研磨液としては、LaをTREOに対するLaの割合として20%含む酸化セリウム(平均粒径1μm)を研磨砥粒として含み(含有量 10重量%)、無機還元剤としてチオ硫酸ナトリウムを5重量%含み、pH=10のアルカリ性のものを使用した。その他の研磨処理条件は実施例1と同様にした。Further, as the polishing liquid for the first main surface polishing treatment, cerium oxide (average particle diameter: 1 μm) containing 20% La as a ratio of La 2 O 3 to TREO is contained as abrasive grains (content: 10% by weight). As the inorganic reducing agent, an alkaline reducing agent containing 5% by weight of sodium thiosulfate and having pH = 10 was used. The other polishing conditions were the same as in Example 1.

(実施例B)
上記実施例Aに使用した硝材Aに替えて下記の硝材Bを用いたこと以外は上記実施例Aと同様の加工処理を行った。
硝材B モル%表示にて、SiOを50〜75%、Alを0〜6%、BaOを0〜2%、LiOを0〜3%、ZnOを0〜5%、NaOおよびKOを合計で3〜15%、MgO、CaO、SrOおよびBaOを合計で14〜35%、ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2〜9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85〜1の範囲であり、且つモル比[Al/(MgO+CaO)]が0〜0.30の範囲である耐熱性ガラス。
(Example B)
The same processing as in Example A was performed except that the following glass material B was used instead of the glass material A used in Example A.
Glass material B In terms of mol%, SiO 2 is 50 to 75%, Al 2 O 3 is 0 to 6%, BaO is 0 to 2%, Li 2 O is 0 to 3%, ZnO is 0 to 5%, Na 2 O and K 2 O in total 3 to 15%, MgO, CaO, SrO and BaO in total 14 to 35%, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 are included in a total amount of 2 to 9%, the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1, and the molar ratio [Al 2 O 3 / (MgO + CaO)] is a heat resistant glass in the range of 0 to 0.30.

上記実施例A、Bの上記主表面第1研磨処理における研磨速度をそれぞれ1バッチ目と20バッチ目で測定し、1バッチ目における研磨速度を1としたときの20バッチ目の研磨速度の比を求め、その結果を纏めて以下の表3に示した。   The ratio of the polishing rate of the 20th batch when the polishing rate in the first polishing treatment of the main surface of Examples A and B is measured in the first batch and the 20th batch, respectively, and the polishing rate in the first batch is 1. The results are summarized in Table 3 below.

Figure 0006429354
Figure 0006429354

上記表3の結果からわかるように、本発明は、ガラス転移温度(Tg)の高い耐熱性ガラス基板(硝材B)の研磨処理に特に好適である。本発明の酸化セリウム砥粒、無機還元剤を含む研磨液を適用する研磨処理を行うことにより、とくに連続研磨処理時の研磨速度の低下を抑制する効果が、例えば上記のアルミノシリケートガラス(硝材A)の場合よりも大きい。   As can be seen from the results in Table 3, the present invention is particularly suitable for polishing treatment of a heat-resistant glass substrate (glass material B) having a high glass transition temperature (Tg). By carrying out the polishing treatment using the polishing liquid containing the cerium oxide abrasive grains and the inorganic reducing agent of the present invention, the effect of suppressing the decrease in the polishing rate particularly during the continuous polishing treatment is, for example, the above-mentioned aluminosilicate glass (glass material A ) Is greater than

(実施例9〜12、比較例3)
上記実施例1と同様にして、(1)粗研削処理、(2)形状加工処理、(3)精研削処理を順次行い、次いで、以下の端面研磨処理を行った。なお、ガラス基板は、上記硝材1を用いた。
上記研削処理後のガラス基板を、支持治具を用いて積層し、ガラス基板積層体を形成した。この時、ガラス基板とガラス基板との間には樹脂製スペーサを挿入し、合計200枚のガラス板を重ね合わせ、ガラス基板積層体とした。
(Examples 9 to 12, Comparative Example 3)
In the same manner as in Example 1, (1) rough grinding treatment, (2) shape processing treatment, and (3) fine grinding treatment were sequentially performed, and then the following end face polishing treatment was performed. In addition, the said glass material 1 was used for the glass substrate.
The glass substrate after the grinding treatment was laminated using a supporting jig to form a glass substrate laminate. At this time, resin spacers were inserted between the glass substrates and a total of 200 glass plates were stacked to form a glass substrate laminate.

上記のようにして形成したガラス基板積層体を、外周端面研磨用の治具に挿入し、ガラス基板積層体の上下方向から締め付けて固定した。このガラス基板積層体を、外周端面研磨装置の所定位置に設置した。端面研磨用の回転ブラシをガラス基板積層体の外周側端面に当接させ、さらに所定量押し当てた。
研磨液をガラス基板積層体の外周端面部に供給し、回転ブラシとガラス基板積層体を反対方向に回転させ、さらに、回転ブラシをガラス基板積層体の積層方向に揺動させながら研磨した。
The glass substrate laminate formed as described above was inserted into an outer peripheral end surface polishing jig, and was clamped and fixed from above and below the glass substrate laminate. This glass substrate laminate was placed at a predetermined position of the outer peripheral end surface polishing apparatus. A rotating brush for end face polishing was brought into contact with the end face on the outer peripheral side of the glass substrate laminate, and further pressed by a predetermined amount.
Polishing liquid was supplied to the outer peripheral end surface portion of the glass substrate laminate, the rotating brush and the glass substrate laminate were rotated in opposite directions, and further, the polishing was performed while the rotating brush was swung in the laminating direction of the glass substrate laminate.

研磨液としては、上記実施例5〜8および比較例2においてそれぞれ使用したものと同じ研磨液(すなわち、LaをTREOに対するLaの割合として20%含む酸化セリウム(平均粒径1μm)を研磨砥粒として含み(含有量 10重量%)、表4の無機還元剤を5重量%含み、pH=10のアルカリ性のもの)を使用した。As the polishing liquid, the same polishing liquid as that used in each of Examples 5 to 8 and Comparative Example 2 (that is, cerium oxide (average particle diameter: 1 μm) containing 20% La as a ratio of La 2 O 3 to TREO). Including abrasive grains (content 10% by weight), containing 5% by weight of inorganic reducing agent in Table 4 and having an alkaline pH = 10).

なお、本実施例及び比較例では、研磨液供給量を10〜15リットル/分、回転ブラシの回転速度を300rpm、回転ブラシの支持軸方向の揺動速度を3〜5rpm(1分間に3〜5往復する)、ガラス基板積層体の回転速度を80〜90rpmに設定した。取代は板厚換算で40μmとした。
なお、各実施例や比較例においては研磨液の交換は行わず、研磨液を回収して循環させながら連続20バッチ処理した。
In this example and comparative example, the polishing liquid supply rate was 10 to 15 liters / minute, the rotation speed of the rotating brush was 300 rpm, and the swinging speed of the rotating brush in the support shaft direction was 3 to 5 rpm (3 to 3 minutes per minute). 5 times), the rotation speed of the glass substrate laminate was set to 80 to 90 rpm. The machining allowance was 40 μm in terms of plate thickness.
In each of the examples and comparative examples, the polishing liquid was not replaced, and 20 batches were continuously processed while the polishing liquid was collected and circulated.

上記実施例9〜12及び比較例3の上記端面研磨処理における研磨速度をそれぞれ1バッチ目と10バッチ目で測定し、無機還元剤を含まない研磨液を用いた比較例3における研磨速度に対する各実施例における研磨速度の向上率を上記と同じ判断基準で判定し、その結果を纏めて以下の表4に示した。ここで、比較例3において、1バッチ目に対する10バッチ目の研磨速度の比(10バッチ目の研磨速度/1バッチ目の研磨速度)を算出したところ、0.80であった。   The polishing rates in the end face polishing treatment of Examples 9 to 12 and Comparative Example 3 were measured in the first batch and the 10th batch, respectively, and the polishing rates in Comparative Example 3 using a polishing liquid containing no inorganic reducing agent were measured. The rate of improvement of the polishing rate in the examples was determined based on the same criteria as described above, and the results are summarized in Table 4 below. Here, in Comparative Example 3, the ratio of the 10th batch polishing rate to the 1st batch (10th polishing rate / 1st polishing rate) was calculated to be 0.80.

Figure 0006429354
Figure 0006429354

上記表4の結果から以下のことがわかる。
ガラス基板の端面研磨処理においても、研磨液に本発明の無機還元剤を含有させることにより、無機還元剤を含まない比較例に対して研磨速度を向上させることができる。
また、無機還元剤の中でも、特にチオ硫酸塩は研磨速度の向上効果が大きく好ましい。また、本発明の実施例によれば、このような傾向は、1バッチ目だけではなく、10バッチ目においても持続しており、連続研磨処理時の研磨速度の低下を効果的に抑制することができる。しかも、10バッチ目では、比較例の落ち込みが大きいため、相対的に無機還元剤の効果が高まり、研磨速度の向上率が1バッチ目よりも大きくなった。端面研磨処理は、主表面研磨処理よりも研磨速度が低下しやすいので、本発明がとりわけ有効である。
The following can be seen from the results in Table 4 above.
Also in the end surface polishing treatment of the glass substrate, the polishing rate can be improved with respect to the comparative example not containing the inorganic reducing agent by containing the inorganic reducing agent of the present invention in the polishing liquid.
Of the inorganic reducing agents, thiosulfate is particularly preferable because of its great effect of improving the polishing rate. Moreover, according to the Example of this invention, such a tendency is maintained not only in the 1st batch but also in the 10th batch, and effectively suppresses a decrease in the polishing rate during the continuous polishing process. Can do. In addition, in the 10th batch, since the drop of the comparative example was large, the effect of the inorganic reducing agent was relatively increased, and the improvement rate of the polishing rate was larger than that in the 1st batch. The end surface polishing process is particularly effective because the polishing rate tends to be lower than that of the main surface polishing process.

(実施例13〜16)
実施例5で使用した研磨液(LaをTREOに対するLaの割合として20%含む酸化セリウム(平均粒径1μm)を研磨砥粒として含み、無機還元剤としてチオ硫酸ナトリウムを5重量%含み、pH=10のアルカリ性)のpHを、8、9、11、12にそれぞれ変更した研磨液を用いたこと以外は、実施例5と同様にして、実施例13〜16のガラス基板を作製した。
(Examples 13 to 16)
Polishing liquid used in Example 5 (containing 20% cerium oxide (average particle diameter: 1 μm) as La 2 O 3 ratio relative to TREO) 5% by weight sodium thiosulfate as an inorganic reducing agent The glass substrates of Examples 13 to 16 were produced in the same manner as in Example 5 except that the polishing liquid was used in which the pH was changed to 8, 9, 11, and 12, respectively. .

上記実施例13〜16及び上記実施例5の上記主表面第1研磨処理における研磨速度をそれぞれ20バッチ目で測定し、pH10(実施例5)における研磨速度を1としたときの各実施例における研磨速度の比を求め、その結果を纏めて以下の表5に示した。   The polishing rate in the main surface first polishing treatment of Examples 13 to 16 and Example 5 is measured at the 20th batch, and the polishing rate at pH 10 (Example 5) is 1 in each Example. The ratios of the polishing rates were determined and the results are summarized in Table 5 below.

Figure 0006429354
Figure 0006429354

上記表5の結果から、本発明において、研磨液のpHは、9〜11の範囲であることが取り分け好ましい。この範囲のpHでは、無機還元剤の分解が良好に抑制されるためと推定される。   From the results in Table 5 above, in the present invention, the pH of the polishing liquid is particularly preferably in the range of 9-11. It is presumed that at a pH in this range, the decomposition of the inorganic reducing agent is favorably suppressed.

(磁気ディスクの製造)
上記実施例1で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、CrTi系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、NiWからなるシード層、Ru薄膜からなる下地層、CoCrPt系合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
(Manufacture of magnetic disk)
The following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording.
That is, on the glass substrate, an adhesion layer made of a CrTi alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, a seed layer made of NiW, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, carbon A protective layer and a lubricating layer were sequentially formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.

得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。なお、他の実施例で得られた磁気ディスク用ガラス基板を用いた場合も同様の結果が得られた。   The obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained. Similar results were obtained when the magnetic disk glass substrates obtained in other examples were used.

1 ガラス基板
2 太陽歯車
3 内歯歯車
4 キャリア
5 上定盤
6 下定盤
7 研磨パッド
11 基板の主表面
12,13 基板の端面
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Sun gear 3 Internal gear 4 Carrier 5 Upper surface plate 6 Lower surface plate 7 Polishing pad 11 Main surface 12, 13 End surface of substrate

Claims (15)

酸化セリウムを研磨砥粒として含む研磨液でガラス基板の表面を研磨処理するガラス基板の研磨方法であって、
前記研磨液は、亜硫酸塩を除く、セリウム(4価)を3価に還元する無機還元剤を含むとともに、アルカリ性であることを特徴とするガラス基板の研磨方法。
A glass substrate polishing method for polishing a surface of a glass substrate with a polishing liquid containing cerium oxide as abrasive grains,
A polishing method for a glass substrate, wherein the polishing liquid contains an inorganic reducing agent that reduces cerium (tetravalent) to trivalent , excluding sulfite, and is alkaline.
酸化セリウムを研磨砥粒として含む研磨液でガラス基板の表面を研磨処理するガラス基板の研磨方法であって、
前記研磨液は、アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種を含むとともに、アルカリ性であることを特徴とするガラス基板の研磨方法。
A glass substrate polishing method for polishing a surface of a glass substrate with a polishing liquid containing cerium oxide as abrasive grains,
The polishing liquid contains at least one selected from a thiosulfate, a phosphinate, or a dithionite with an alkali metal or an alkaline earth metal and is alkaline, and is a method for polishing a glass substrate .
前記無機還元剤は、アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種であることを特徴とする請求項1に記載のガラス基板の研磨方法。   2. The glass substrate according to claim 1, wherein the inorganic reducing agent is at least one selected from a thiosulfate, a phosphinate, or a dithionite with an alkali metal or an alkaline earth metal. Polishing method. 前記無機還元剤の含有量は、0.5重量%〜10重量%の範囲であることを特徴とする請求項1又は3に記載のガラス基板の研磨方法。   The glass substrate polishing method according to claim 1 or 3, wherein the content of the inorganic reducing agent is in the range of 0.5 wt% to 10 wt%. 前記アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種の含有量は、0.5重量%〜10重量%の範囲であることを特徴とする請求項2に記載のガラス基板の研磨方法。 The content of at least one selected from thiosulfate, phosphinate, or dithionite with the alkali metal or alkaline earth metal is in the range of 0.5 wt% to 10 wt%. The method for polishing a glass substrate according to claim 2. 前記研磨液のpHは、8〜12の範囲内であることを特徴とする請求項1乃至5のいずれかに記載のガラス基板の研磨方法。   The glass substrate polishing method according to any one of claims 1 to 5, wherein the pH of the polishing liquid is in a range of 8 to 12. 前記酸化セリウム砥粒はランタン(La)を含むことを特徴とする請求項1乃至6のいずれかに記載のガラス基板の研磨方法。   The method for polishing a glass substrate according to claim 1, wherein the cerium oxide abrasive grains contain lanthanum (La). 請求項1乃至7のいずれかに記載のガラス基板の研磨方法を適用した研磨処理を含むことを特徴とするガラス基板の製造方法。   A method for producing a glass substrate, comprising a polishing treatment to which the glass substrate polishing method according to claim 1 is applied. 請求項8に記載のガラス基板の製造方法を適用し、前記ガラス基板は、磁気ディスク用ガラス基板であることを特徴とする磁気ディスク用ガラス基板の製造方法。   A method for producing a glass substrate for a magnetic disk, wherein the method for producing a glass substrate according to claim 8 is applied, and the glass substrate is a glass substrate for a magnetic disk. 請求項9に記載の磁気ディスク用ガラス基板の製造方法によって製造された磁気ディスク用ガラス基板上に、少なくとも磁性膜を形成することを特徴とする磁気ディスクの製造方法。   A method for producing a magnetic disk, comprising forming at least a magnetic film on the glass substrate for a magnetic disk produced by the method for producing a glass substrate for a magnetic disk according to claim 9. ガラス基板の表面の研磨処理に用いる研磨液であって、
前記研磨液は、酸化セリウムを研磨砥粒として含み、さらに亜硫酸塩を除く、セリウム(4価)を3価に還元する無機還元剤を含むとともに、アルカリ性であることを特徴とする研磨液。
A polishing liquid used for polishing the surface of a glass substrate,
The polishing liquid is characterized in that it contains cerium oxide as abrasive grains, further contains an inorganic reducing agent that reduces cerium (tetravalent) to trivalent , excluding sulfite, and is alkaline.
ガラス基板の表面の研磨処理に用いる研磨液であって、
前記研磨液は、酸化セリウムを研磨砥粒として含み、さらにアルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種を含むとともに、アルカリ性であることを特徴とする研磨液。
A polishing liquid used for polishing the surface of a glass substrate,
The polishing liquid contains cerium oxide as abrasive grains, and further contains at least one selected from thiosulfates, phosphinates, or dithionites with alkali metals or alkaline earth metals, and is alkaline. A polishing liquid characterized by that.
前記無機還元剤は、アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種であることを特徴とする請求項11に記載の研磨液。   The polishing liquid according to claim 11, wherein the inorganic reducing agent is at least one selected from thiosulfates, phosphinates, and dithionites with alkali metals or alkaline earth metals. 前記無機還元剤の含有量は、0.5重量%〜10重量%の範囲であることを特徴とする請求項11又は13に記載の研磨液。   The polishing liquid according to claim 11 or 13, wherein the content of the inorganic reducing agent is in the range of 0.5 wt% to 10 wt%. 前記アルカリ金属又はアルカリ土類金属とのチオ硫酸塩、ホスフィン酸塩、もしくは亜ジチオン酸塩から選ばれる少なくとも1種の含有量は、0.5重量%〜10重量%の範囲であることを特徴とする請求項12に記載の研磨液。 The content of at least one selected from thiosulfate, phosphinate, or dithionite with the alkali metal or alkaline earth metal is in the range of 0.5 wt% to 10 wt%. The polishing liquid according to claim 12.
JP2017519424A 2015-05-20 2016-05-20 Glass substrate polishing method, polishing liquid, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method Active JP6429354B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015102786 2015-05-20
JP2015102786 2015-05-20
PCT/JP2016/065103 WO2016186214A1 (en) 2015-05-20 2016-05-20 Method for polishing glass substrate, polishing liquid, method for manufacturing glass substrate, method for manufacturing glass substrate for magnetic disc, and method for manufacturing magnetic disc

Publications (2)

Publication Number Publication Date
JPWO2016186214A1 JPWO2016186214A1 (en) 2018-04-12
JP6429354B2 true JP6429354B2 (en) 2018-11-28

Family

ID=57320350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017519424A Active JP6429354B2 (en) 2015-05-20 2016-05-20 Glass substrate polishing method, polishing liquid, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method

Country Status (5)

Country Link
JP (1) JP6429354B2 (en)
CN (1) CN107615380B (en)
MY (1) MY186390A (en)
SG (1) SG11201708814QA (en)
WO (1) WO2016186214A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019099655A1 (en) 2017-11-15 2019-05-23 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137155A (en) * 1995-11-16 1997-05-27 Tokyo Ohka Kogyo Co Ltd Polishing composition and polishing method
JP4713064B2 (en) * 2002-06-05 2011-06-29 Hoya株式会社 Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium manufactured by the manufacturing method
US6641630B1 (en) * 2002-06-06 2003-11-04 Cabot Microelectronics Corp. CMP compositions containing iodine and an iodine vapor-trapping agent
JP2006100570A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Polishing composition and polishing method using the same
CN101081485A (en) * 2006-05-31 2007-12-05 住友电气工业株式会社 Surface treatment method, nitride crystal substrate, semiconductor device, and method of manufacturing and semiconductor device
CN101417861A (en) * 2007-10-26 2009-04-29 旭硝子株式会社 Glass for information recording media substrate, glass substrate for magnetic disk and magnetic disk
JP5459466B2 (en) * 2008-06-05 2014-04-02 Jsr株式会社 Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board
JPWO2013118648A1 (en) * 2012-02-06 2015-05-11 旭硝子株式会社 Manufacturing method of glass product and manufacturing method of magnetic disk
JP2016055352A (en) * 2013-02-05 2016-04-21 コニカミノルタ株式会社 Abrasive slurry
JP2015008212A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Polishing liquid and substrate polishing method using the same
JP2015066656A (en) * 2013-09-30 2015-04-13 Hoya株式会社 Regeneration method for used polishing agent and manufacturing method for glass substrate

Also Published As

Publication number Publication date
CN107615380B (en) 2020-09-11
CN107615380A (en) 2018-01-19
MY186390A (en) 2021-07-22
WO2016186214A1 (en) 2016-11-24
SG11201708814QA (en) 2017-12-28
JPWO2016186214A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP2018092697A (en) Grinding tool, method of manufacturing glass substrate, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP6141636B2 (en) Substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP5744159B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
CN104011795B (en) Manufacturing method for magnetic-disk glass substrate
JP6429354B2 (en) Glass substrate polishing method, polishing liquid, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP5977520B2 (en) Method for manufacturing glass substrate for magnetic disk and glass substrate for magnetic disk
JP6420260B2 (en) Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP6480611B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP6034580B2 (en) Manufacturing method of glass substrate for HDD
JP2012079365A (en) Method for manufacturing glass substrate for information recording medium
JP5636243B2 (en) Manufacturing method of glass substrate for information recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP5667403B2 (en) Manufacturing method of glass substrate for information recording medium
WO2023189233A1 (en) Magnetic disk and substrate for magnetic disk
WO2012042735A1 (en) Manufacturing method for glass substrate for information recording medium
CN105580077B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2013140650A (en) Method for manufacturing glass substrate for magnetic disk and glass substrate for magnetic disk
JP2013080530A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP2013012282A (en) Method for manufacturing glass substrate for hdd
JP2012142071A (en) Method for manufacturing glass substrate for magnetic disk
WO2014156114A1 (en) Method for manufacturing glass substrate for information recording medium
JP2012079368A (en) Method for manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181028

R150 Certificate of patent or registration of utility model

Ref document number: 6429354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250