JP6426002B2 - Power supply for vehicles - Google Patents

Power supply for vehicles Download PDF

Info

Publication number
JP6426002B2
JP6426002B2 JP2014544253A JP2014544253A JP6426002B2 JP 6426002 B2 JP6426002 B2 JP 6426002B2 JP 2014544253 A JP2014544253 A JP 2014544253A JP 2014544253 A JP2014544253 A JP 2014544253A JP 6426002 B2 JP6426002 B2 JP 6426002B2
Authority
JP
Japan
Prior art keywords
battery
lead
vehicle
power supply
auxiliary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014544253A
Other languages
Japanese (ja)
Other versions
JPWO2014068900A1 (en
Inventor
坂田 英樹
英樹 坂田
大隅 信幸
信幸 大隅
中島 薫
薫 中島
昭伸 常定
昭伸 常定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2014068900A1 publication Critical patent/JPWO2014068900A1/en
Application granted granted Critical
Publication of JP6426002B2 publication Critical patent/JP6426002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、車両の減速時に回生制動して燃費効率を改善する車両用の電源装置に関し、とくに、鉛バッテリと並列に補助バッテリを接続して、回生発電電力の充電効率を改善して優れた燃費効率を実現する車両用の電源装置に関する。   The present invention relates to a power supply device for a vehicle that improves fuel efficiency by regenerative braking when the vehicle decelerates, and in particular, an auxiliary battery is connected in parallel with a lead battery to improve charging efficiency of regenerative power. The present invention relates to a power supply device for a vehicle that achieves fuel efficiency.

車両を回生制動してバッテリを充電して制動する車両は、走行している車両の運動のエネルギーをバッテリに蓄える。さらに、信号待ちなどでは、エンジンのアイドリングをストップすることで燃費効率をさらに改善できる。回生発電する車両は、具体的には、減速するときに車両の運動のエネルギーでオルタネータを駆動して発電し、オルタネータがバッテリを充電する。回生制動で充電されたバッテリは、信号待ちなどでアイドリングストップしているエンジンを再始動するとき、スターターモータに電力を供給する。このようなバッテリとして、定格電圧を12Vとする鉛バッテリを搭載する車両が知られており、鉛バッテリからスターターモータに電力を供給してエンジンを再始動し、また種々の電装機器に電力を供給できるようになっている。このように、回生制動時の発電電力をバッテリに充電し、回生制動で充電されたバッテリでアイドリングストップするエンジンを再始動する電源装置は、車両の燃費効率を改善できるが、鉛バッテリの劣化が甚だしく、回生制動やアイドリングストップしない方式に比較すると、鉛バッテリの寿命が数分の1と極めて短くなる問題点がある。車両を回生制動する度に、鉛バッテリが、頻繁に回生発電により急速充電され、さらに、エンジンの再始動時には大電流で放電されるからである。   A vehicle that regeneratively brakes a vehicle and charges a battery by charging the battery stores energy of motion of the traveling vehicle in the battery. Furthermore, when waiting for a signal, etc., fuel efficiency can be further improved by stopping idling of the engine. Specifically, when the vehicle decelerates, the energy of motion of the vehicle drives the alternator to generate electric power, and the alternator charges the battery. The battery charged by the regenerative braking supplies power to the starter motor when restarting the idling-stopped engine by waiting for a signal or the like. As such a battery, a vehicle equipped with a lead battery with a rated voltage of 12 V is known, and the lead battery supplies power to the starter motor to restart the engine, and also supplies power to various electrical devices. It can be done. As described above, the power supply device that charges the battery with electric power generated during regenerative braking and restarts the engine that performs idling stop with the battery charged by regenerative braking can improve the fuel efficiency of the vehicle, but lead battery deterioration There is a problem that the life of the lead battery is extremely short, which is a fraction of that of the system without regenerative braking or idling stop. This is because, every time the vehicle is regeneratively braked, the lead battery is frequently rapidly charged by regenerative power generation, and furthermore, it is discharged with a large current when the engine is restarted.

一方で、車両用の補助バッテリとして、鉛バッテリとリチウムイオン電池を並列に接続した電源装置が知られている(特許文献1参照)。鉛バッテリは、大電流による充放電により寿命が低下するが、この構成によると、回生発電電力で鉛バッテリとリチウムイオン電池の両方を充電する構成であるため、鉛バッテリの回生発電の充電電流を小さくすることができる。また、アイドリングストップしたエンジンの再始動時には、鉛バッテリとリチウムイオン二次電池の両方からスターターモータに電力を供給するので、鉛バッテリの寿命を長くできる特徴もある。   On the other hand, a power supply device in which a lead battery and a lithium ion battery are connected in parallel is known as an auxiliary battery for a vehicle (see Patent Document 1). Although the life of the lead battery is reduced by charging and discharging with a large current, according to this configuration, since both the lead battery and the lithium ion battery are charged by the regenerative power generation, the charging current of the lead battery is used. It can be made smaller. In addition, since the starter motor is supplied with power from both the lead battery and the lithium ion secondary battery at the time of restarting the idling stopped engine, there is also a feature that the life of the lead battery can be extended.

特開2011−208599号公報JP, 2011-208599, A

一方で近年、アイドリングストップ機能を有する車両など、比較的大きな電力で補助バッテリの充放電を行う構成の車両が知られており、補助バッテリの電力を積極的に使用する構成の車両が増えている。このような車両に搭載される補助バッテリは、頻繁に充放電されるため、補助バッテリの温度が上昇しやすいという問題がある。補助バッテリとして使用される鉛バッテリは、上述の大電流による充放電に加えて、高温状態での放電によっても寿命を低下する。そのため、アイドリングストップ機能を有する車両に搭載される補助バッテリは、補助バッテリの電力を積極的に使用する構成と相まって寿命が著しく低下し、回生制動しない鉛バッテリと比較して寿命が数分の1と極めて短くなる。   On the other hand, in recent years, vehicles having a configuration that performs charging and discharging of the auxiliary battery with relatively large power, such as vehicles having an idling stop function, are known, and vehicles having a configuration that actively uses the power of the auxiliary battery are increasing. . Since the auxiliary battery mounted on such a vehicle is frequently charged and discharged, there is a problem that the temperature of the auxiliary battery tends to rise. A lead battery used as an auxiliary battery has a reduced life due to high temperature discharge, in addition to the above-mentioned high current charging and discharging. Therefore, the life of the auxiliary battery mounted on a vehicle having an idling stop function is significantly reduced in combination with the configuration that uses the power of the auxiliary battery actively, and the life is several times smaller than a lead battery without regenerative braking. Extremely short.

特許文献1の電源装置は、補助バッテリを積極的に使用する構成であるため、鉛バッテリの温度上昇を抑制することができず、鉛バッテリの寿命が低下する問題がある。特に、補助バッテリの電力を積極的に使用する構成の車両に搭載される場合は、頻繁に充放電が行われるため、鉛バッテリの寿命が著しく低下する問題がある。   Since the power supply device of Patent Document 1 is configured to actively use the auxiliary battery, the temperature rise of the lead battery can not be suppressed, and there is a problem that the life of the lead battery is reduced. In particular, in the case of being mounted on a vehicle having a configuration that actively uses the power of the auxiliary battery, charging and discharging are frequently performed, so that there is a problem that the life of the lead battery is significantly reduced.

本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、回生制動する車両に搭載されて、鉛バッテリの劣化を有効に防止してその寿命を長くできる車両用の電源装置を提供することにある。   The present invention has been developed for the purpose of solving the above-mentioned drawbacks. An important object of the present invention is to provide a power supply device for a vehicle mounted on a vehicle that performs regenerative braking, which can effectively prevent deterioration of a lead battery and prolong its life.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の車両用の電源装置は、車両のエンジン21を始動するスターターモータ22と電装機器20とに電力を供給すると共に、車両の回生制動発電で充電される車両用の電源装置であって、鉛バッテリ1と、この鉛バッテリ1と並列に接続してなる補助バッテリ2とを備えており、補助バッテリ2は、鉛バッテリ1よりも温度上昇に対して放電抵抗が低下する割合が大きいバッテリであって、かつ、鉛バッテリ1の熱容量よりも熱容量が小さいバッテリとしている。   The power supply device for a vehicle according to the present invention is a power supply device for a vehicle which supplies electric power to the starter motor 22 for starting the engine 21 of the vehicle and the electrical equipment 20 and is charged by regenerative braking power generation of the vehicle. A lead battery 1 and an auxiliary battery 2 connected in parallel to the lead battery 1 are provided. The auxiliary battery 2 is a battery in which the rate of decrease in discharge resistance with respect to temperature rise is larger than that of the lead battery 1. In addition, the battery has a heat capacity smaller than that of the lead battery 1.

以上の電源装置は、回生制動し、またアイドリングストップする車両に搭載されながら、鉛バッテリの劣化を少なくして、寿命を相当に長くできる特徴がある。それは、アイドリングストップしたエンジンを再始動する大電流放電によって、補助バッテリの温度を速やかに上昇させると共に、温度上昇によって補助バッテリの放電抵抗を次第に小さくし、再始動する毎に、補助バッテリの温度を上昇させて放電抵抗をより小さくして、補助バッテリの放電電流を大きく、鉛バッテリの電流を次第に小さくできるからである。すなわち、補助バッテリの放電抵抗を、鉛バッテリよりも小さくすることで、鉛バッテリからの電力供給を抑制することができ、鉛バッテリが頻繁に充放電されることを抑制することができる。   The power supply apparatus described above is characterized in that the life of the lead battery can be considerably extended by reducing deterioration of the lead battery while being mounted on a vehicle that performs regenerative braking and idling stop. It rapidly raises the temperature of the auxiliary battery by a large current discharge that restarts the engine that has been idle-stopped, and gradually reduces the discharge resistance of the auxiliary battery by the temperature rise, and restarts each time the temperature of the auxiliary battery This is because the discharge resistance can be increased by increasing the discharge resistance, the discharge current of the auxiliary battery can be increased, and the current of the lead battery can be gradually decreased. That is, by making the discharge resistance of the auxiliary battery smaller than that of the lead battery, the power supply from the lead battery can be suppressed, and the lead battery can be suppressed from being frequently charged and discharged.

さらに、以上の電源装置は、補助バッテリの熱容量を鉛バッテリよりも小さくしているので、このことが発熱量の大きいことと相乗して、補助バッテリは、より速やかに温度が上昇し、温度が上昇することでますます放電抵抗が減少して、再始動時の放電電流を増加させる。補助バッテリの温度を上昇させるジュール熱による発熱量は、放電電流の二乗に比例して増加し、また放電抵抗に反比例して大きくなる。補助バッテリは温度上昇によって放電抵抗が低下する割合が鉛バッテリよりも大きく、温度が上昇するにしたがって、ジュール熱による発熱量を大きくできる。発熱量が大きくて熱容量の小さい補助バッテリは、エンジンを再始動する大電流放電によって速やかに温度が上昇する。補助バッテリは、温度が上昇するにしたがってますます内部抵抗が低下する。したがって、以上の電源装置は、アイドリングストップしたエンジンの再始動を繰り返すにしたがって、補助バッテリの温度が上昇し、放電抵抗が減少して、電流を増加させる。補助バッテリと鉛バッテリとは並列に接続されて、電流を互いに分流するので、補助バッテリの電流が増加すると鉛バッテリの電流は減少する。このため、以上の電源装置は、車両を走行させて頻繁にアイドリングストップと再始動とを繰り返すにしたがって、補助バッテリの電流を大きく、鉛バッテリの電流を小さくする。このため、以上の電源装置は、鉛バッテリの大電流放電による劣化を少なくして、寿命特性を改善できる特徴を実現する。とくに、以上の電源装置は、アイドリングストップするエンジンを再始動する毎に、補助バッテリの温度が上昇して、放電抵抗を低下させるので、鉛バッテリを劣化させる原因となる、頻繁なエンジンの再始動において、補助バッテリの放電電流はますます増加し、これによって鉛バッテリの放電電流は次第に減少するので、鉛バッテリが劣化しやすい使用条件において、補助バッテリは、ますます鉛バッテリの劣化を効果的に防止できる。   Furthermore, since the above power supply unit makes the heat capacity of the auxiliary battery smaller than that of the lead battery, this works in conjunction with the large amount of heat generation, and the temperature of the auxiliary battery rises more quickly and the temperature increases. Rising will increasingly reduce the discharge resistance and increase the discharge current at restart. The amount of heat generated by Joule heat that raises the temperature of the auxiliary battery increases in proportion to the square of the discharge current and also increases in inverse proportion to the discharge resistance. The rate of decrease in discharge resistance due to temperature rise is larger in the auxiliary battery than in the lead battery, and as the temperature rises, the amount of heat generation by Joule heat can be increased. The temperature of the auxiliary battery, which generates a large amount of heat and has a small heat capacity, rises quickly due to the large current discharge that restarts the engine. The auxiliary battery decreases its internal resistance as the temperature rises. Therefore, the above power supply device increases the temperature of the auxiliary battery, decreases the discharge resistance, and increases the current as the idling-stopped engine is repeatedly restarted. Since the auxiliary battery and the lead battery are connected in parallel to divide the current from each other, the current of the lead battery decreases when the current of the auxiliary battery increases. For this reason, the above power supply device increases the current of the auxiliary battery and reduces the current of the lead battery as the vehicle travels and the idling stop and restart are repeated frequently. For this reason, the above-mentioned power supply device realizes the feature which can reduce the deterioration by the large current discharge of a lead battery, and can improve the life characteristic. In particular, since the above power supply device causes the temperature of the auxiliary battery to rise and lower the discharge resistance each time the engine to be stopped by idling is restarted, frequent engine restarts causing deterioration of the lead battery Since the discharge current of the auxiliary battery is increasingly increased at this time, the discharge current of the lead battery is gradually decreased, the auxiliary battery effectively makes the deterioration of the lead battery more effective in the use condition in which the lead battery is easily deteriorated. It can prevent.

ところで、補助バッテリは、保存温度が高くなると劣化しやすい性質がある。ところが、以上の電源装置は、アイドリングストップ後の再始動におけるスターターモータへの放電によって補助バッテリの温度を上昇させて、鉛バッテリの劣化を防止する、すなわち車両を走行させる状態に限って補助バッテリの温度を上昇させるのであって、車両を停止させる状態では補助バッテリの温度を上昇させない。したがって、車両を走行させる状態では、鉛バッテリの劣化を防止できるが、車両を走行させない状態においては、補助バッテリの劣化をも防止できる特徴がある。   By the way, the auxiliary battery has the property of being easily deteriorated when the storage temperature becomes high. However, the above power supply device raises the temperature of the auxiliary battery by discharging to the starter motor at restart after idling stop to prevent the deterioration of the lead battery, that is, only when the vehicle is driven. The temperature is raised and the temperature of the auxiliary battery is not raised in the state of stopping the vehicle. Therefore, although the lead battery can be prevented from being deteriorated when the vehicle is driven, the auxiliary battery can be prevented from being deteriorated when the vehicle is not driven.

本発明の車両用の電源装置は、補助バッテリ2の充電抵抗を、鉛バッテリ1の充電抵抗よりも小さくすることができる。
以上の電源装置は、補助バッテリの充電時の抵抗値である充電抵抗を、鉛バッテリの充電抵抗よりも小さくしているので、回生制動時においては、補助バッテリの充電電流を鉛バッテリの充電電流よりも大きくできる。このため、回生制動時に、補助バッテリの発熱量を鉛バッテリよりも大きくできる。
The power supply device for a vehicle of the present invention can make the charging resistance of the auxiliary battery 2 smaller than the charging resistance of the lead battery 1.
The above power supply device makes the charging resistance which is the resistance value at the time of charging of the auxiliary battery smaller than the charging resistance of the lead battery. Therefore, at the time of regenerative braking, the charging current of the auxiliary battery is the charging current of the lead battery It can be bigger than that. For this reason, at the time of regenerative braking, the amount of heat generation of the auxiliary battery can be made larger than that of the lead battery.

本発明の回生制動する車両用の電源装置は、補助バッテリ2をニッケル水素電池2Aとすることができる。
ニッケル水素電池は、定格電圧を1.2Vとし、かつ定電圧特性に優れるので、これを10個直列に接続して、補助バッテリの定格電圧を12Vにできる。このため、この電源装置は、DC/DCコンバータなどの電圧調整回路を介することなく、鉛バッテリと補助バッテリとを並列に接続して、バランスよく充電し、また放電できる特徴がある。
In the power supply device for a vehicle performing regenerative braking according to the present invention, the auxiliary battery 2 can be a nickel hydrogen battery 2A.
Since the nickel hydrogen battery has a rated voltage of 1.2 V and is excellent in constant voltage characteristics, it can be connected in series to make the rated voltage of the auxiliary battery 12 V. For this reason, this power supply device is characterized in that a lead battery and an auxiliary battery can be connected in parallel to charge and discharge in a well-balanced manner without interposing a voltage adjustment circuit such as a DC / DC converter.

本発明の回生制動する車両用の電源装置は、補助バッテリ2をリチウムイオン二次電池とすることができる。   In the power supply device for a vehicle that performs regenerative braking according to the present invention, the auxiliary battery 2 can be a lithium ion secondary battery.

本発明の回生制動する車両用の電源装置は、鉛バッテリ1をスターターモータ22に接続するリード線3の電気抵抗を、補助バッテリ2をスターターモータ22に接続するリード線4の電気抵抗よりも大きくすることができる。
以上の電源装置は、鉛バッテリのリード線の電気抵抗を、補助バッテリのリード線の電気抵抗よりも大きくするので、リード線でもって、鉛バッテリの充電電流と放電電流を小さくして、補助バッテリの充電電流と放電電流を大きくできる。このため、鉛バッテリの劣化をより効果的に防止して、寿命特性をより改善できる特徴がある。
The power supply device for a vehicle performing regenerative braking according to the present invention has an electrical resistance of the lead wire 3 connecting the lead battery 1 to the starter motor 22 larger than that of the lead wire 4 connecting the auxiliary battery 2 to the starter motor 22 can do.
The above power supply device makes the lead battery of the lead battery larger in electrical resistance than the lead battery of the auxiliary battery, so the lead wire reduces the charge and discharge currents of the lead battery, thereby making the auxiliary battery Charge current and discharge current can be increased. For this reason, there is a feature that the deterioration of the lead battery can be prevented more effectively, and the life characteristics can be further improved.

本発明の回生制動する車両用の電源装置は、鉛バッテリ1をキャビン6内に配置して、補助バッテリ2をエンジンルーム5内に配置することができる。
以上の電源装置は、鉛バッテリを、たとえばトランクルームや客室などのキャビン内に配置するので、鉛バッテリの温度環境を改善しながらリード線を長くして電気抵抗を大きくできる。このため、鉛バッテリの劣化をさらに効果的に防止して、寿命特性をより改善できる特徴がある。
According to the power supply device for a regenerative braking vehicle of the present invention, the lead battery 1 can be disposed in the cabin 6 and the auxiliary battery 2 can be disposed in the engine compartment 5.
Since the above power supply device arranges a lead battery in a cabin such as a trunk room or a cabin, for example, the lead wire can be elongated to improve the electric resistance while improving the temperature environment of the lead battery. For this reason, there is a feature that the deterioration of the lead battery can be prevented more effectively, and the life characteristics can be further improved.

本発明の一実施例にかかる車載用の電源装置を回生制動する車両に搭載する状態を示すブロック図である。It is a block diagram showing the state where it mounts in the vehicle which carries out regenerative braking of the power supply device for vehicles concerning one example of the present invention. 補助バッテリと鉛バッテリの温度変化を示すグラフである。It is a graph which shows the temperature change of an auxiliary | assistant battery and a lead battery. 図1に示す車載用の電源装置を車両に搭載する一例を示す概略図である。It is the schematic which shows an example which mounts the vehicle-mounted power supply device shown in FIG. 1 in a vehicle.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は電源装置を以下のものには特定しない。さらに、この明細書は、請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。   Hereinafter, embodiments of the present invention will be described based on the drawings. However, the embodiment shown below is an example of a power supply device for a vehicle for embodying the technical concept of the present invention, and the present invention does not specify the power supply device as the following. Furthermore, this specification does not in any way specify the members recited in the claims to the members of the embodiment.

図1の電源装置は、好ましくは、回生制動とアイドリングストップする車両に搭載される。この電源装置は、鉛バッテリ1と補助バッテリ2とを備える。鉛バッテリ1と補助バッテリ2は、並列に接続されて、車両のオルタネータ23でもって、回生制動発電で充電される。回生発電電力は、鉛バッテリ1と補助バッテリ2の両方を充電する。さらに、並列に接続される鉛バッテリ1と補助バッテリ2は、車両のエンジン21を始動するスターターモータ22と電装機器20とに電力を供給する。アイドリングストップする車両に搭載される電源装置は、鉛バッテリ1と補助バッテリ2の両方からスターターモータ22に電力を供給する。   The power supply device of FIG. 1 is preferably mounted on a vehicle that performs regenerative braking and idling stop. The power supply apparatus includes a lead battery 1 and an auxiliary battery 2. The lead battery 1 and the auxiliary battery 2 are connected in parallel, and charged by regenerative braking power generation with the alternator 23 of the vehicle. The regenerative power generation charges both the lead battery 1 and the auxiliary battery 2. Further, the lead battery 1 and the auxiliary battery 2 connected in parallel supply power to the starter motor 22 and the electrical equipment 20 for starting the engine 21 of the vehicle. The power supply device mounted on the vehicle to be idle-stopped supplies power to the starter motor 22 from both the lead battery 1 and the auxiliary battery 2.

アイドリングストップする車両は、メインスイッチであるイグニッションスイッチをオンに保持する状態において、信号待ちなどではエンジン21を停止させて燃費効率を改善する。この車両は、信号が変わるとエンジン21を再始動して走行する。このため、アイドリングストップする毎にスターターモータ22に電力が供給される。なお、回生制動し、かつアイドリングストップする車両は、大きなオルタネータを備えている。このオルタネータは、エンジンを再始動するモータにも兼用される。したがって、エンジンの再始動は、スターターモータによらず、このオルタネータをモータとして使用することもできる。したがって、本明細書において、スターターモータとは、エンジンを再始動するモータに兼用されるオルタネータを含む広い意味で使用する。   In a state where an idling stop is performed while the ignition switch, which is the main switch, is kept on, the engine 21 is stopped to improve the fuel efficiency when waiting for a signal or the like. This vehicle restarts the engine 21 and travels when the signal changes. For this reason, power is supplied to the starter motor 22 each time idling is stopped. The vehicle that performs regenerative braking and idling stop is equipped with a large alternator. This alternator is also used as a motor for restarting the engine. Therefore, the engine can be restarted using the alternator as a motor regardless of the starter motor. Therefore, in the present specification, a starter motor is used in a broad sense including an alternator that doubles as a motor that restarts an engine.

回生制動する車両は、減速するときの運動のエネルギーでオルタネータ23を回転する。回生制動状態において、車輪24がエンジンを回転し、エンジン21がオルタネータ23を回転する。オルタネータ23の回転トルクは、エンジン21を介して車両を制動して減速する。オルタネータ23が回生制動して発電する電力は、車両の運動のエネルギーに比例して大きくなる。車両の運動のエネルギーは、車両の重量と速度の自乗の積に比例して大きくなる。たとえば、60Km/時で走行する1トンの車両は、約40Whの運動のエネルギーを有する。運動のエネルギーの50%の効率でバッテリを充電できると仮定すれば、60Km/時で走行している普通車は、1回の信号待ちで停止する毎に、20Whもの電力でバッテリを充電できる。したがって、仮に60Km/時で走行している車両が、たとえば、20秒で停止して、一定の電流で12Vのバッテリを充電するとすれば、回生制動時のオルタネータ23の出力電流は300Aと極めて大きくなる。   The vehicle that performs regenerative braking rotates the alternator 23 with the energy of motion when decelerating. In the regenerative braking state, the wheels 24 rotate the engine and the engine 21 rotates the alternator 23. The rotational torque of the alternator 23 brakes and decelerates the vehicle via the engine 21. The electric power generated by the alternator 23 by regenerative braking increases in proportion to the energy of motion of the vehicle. The energy of motion of the vehicle increases in proportion to the product of the weight of the vehicle and the square of the speed. For example, a ton of vehicles traveling at 60 Km / hr has a kinetic energy of about 40 Wh. Assuming that the battery can be charged at an efficiency of 50% of the energy of exercise, a normal car traveling at 60 km / h can charge the battery with as much as 20 Wh of power each time it stops waiting for one signal. Therefore, assuming that a vehicle traveling at 60 Km / hour, for example, stops at 20 seconds and charges a 12 V battery with a constant current, the output current of alternator 23 at regenerative braking is extremely large at 300 A. Become.

以上のように、回生制動は、車両が停止するまでの極めて短い時間において、オルタネータ23の出力電流が極めて大きな電流となることから、回生制動で発電するオルタネータ23の出力をいかに効率よく蓄電できるかが大切である。図1の電源装置は、回生発電電力効率よく蓄電するために、鉛バッテリ1と並列に補助バッテリ2を接続している。補助バッテリ2は、回生発電電力の大電流で効率よく充電されるように、鉛バッテリ1よりも充電抵抗の小さい二次電池である。この二次電池はニッケル水素電池2Aである。ニッケル水素電池2Aは、定格電圧を1.2Vとするので、これを10個直列に接続して、補助バッテリ2の定格電圧を12Vにできる。ニッケル水素電池2Aの補助バッテリ2は、定格電圧を鉛バッテリ1の定格電圧と同じにできるので、DC/DCコンバータなどの電圧を調整する回路を介在することなく、鉛バッテリ1と並列に接続できる。ただ、補助バッテリには、鉛バッテリよりも充電抵抗の小さいリチウムイオン二次電池やリチウムポリマー電池等の非水系電解液二次電池も使用できる。ニッケル水素電池2Aは、充電抵抗が極めて小さく、優れた大電流の充電特性を有し、リチウムイオン二次電池などの非水系電解液二次電池は、軽くて充放電容量を大きくできる。   As described above, in regenerative braking, since the output current of the alternator 23 becomes a very large current in an extremely short time until the vehicle stops, how efficiently can the output of the alternator 23 that generates electric power by regenerative braking be stored? Is important. In the power supply device of FIG. 1, an auxiliary battery 2 is connected in parallel with the lead battery 1 in order to store electricity with high regenerative power efficiency. The auxiliary battery 2 is a secondary battery having a charging resistance smaller than that of the lead battery 1 so as to be efficiently charged with a large current of regenerative power. This secondary battery is a nickel hydrogen battery 2A. The rated voltage of the nickel metal hydride battery 2A is 1.2 V, so ten batteries can be connected in series to set the rated voltage of the auxiliary battery 2 to 12 V. Since the auxiliary battery 2 of the nickel metal hydride battery 2A can have the same rated voltage as the rated voltage of the lead battery 1, it can be connected in parallel with the lead battery 1 without interposing a circuit for adjusting a voltage such as a DC / DC converter. . However, non-aqueous electrolyte secondary batteries, such as lithium ion secondary batteries and lithium polymer batteries, which have smaller charging resistance than lead batteries can also be used as the auxiliary battery. The nickel-metal hydride battery 2A has an extremely small charge resistance and has excellent large-current charge characteristics, and a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery can be light and can increase its charge and discharge capacity.

充電抵抗が鉛バッテリ1の充電抵抗よりも小さい補助バッテリ2は、鉛バッテリ1と並列に接続されて、回生発電時の充電電流を鉛バッテリ1よりも大きくする。この電源装置は、補助バッテリ2の充電抵抗を小さくして、回生制動時の補助バッテリ2の充電電流を大きくし、鉛バッテリ1の充電電流を小さくする。鉛バッテリ1の大電流充電による劣化は、補助バッテリ2の充電電流を大きくし、鉛バッテリ1の充電電流を小さくして少なくできるので、補助バッテリ2の充電抵抗を小さくすることで、鉛バッテリ1の劣化を少なくできる。   The auxiliary battery 2 whose charging resistance is smaller than the charging resistance of the lead battery 1 is connected in parallel with the lead battery 1 to make the charging current at the time of regenerative power generation larger than that of the lead battery 1. This power supply device reduces the charging resistance of the auxiliary battery 2, increases the charging current of the auxiliary battery 2 at the time of regenerative braking, and reduces the charging current of the lead battery 1. The deterioration due to the large current charging of the lead battery 1 can increase the charging current of the auxiliary battery 2 and reduce the charging current of the lead battery 1 so that the charging resistance of the auxiliary battery 2 can be reduced. Can be reduced.

さらに、補助バッテリ2は、鉛バッテリ1よりも温度上昇に対して放電抵抗が低下する割合を大きくしている。車両を走行させる状態で補助バッテリ2の放電抵抗を小さくして鉛バッテリ1からのスターターモータ22への大電流放電を抑制するためである。さらに、補助バッテリ2は、イグニッションスイッチをオン状態として、車両が回生制動とアイドリングストップを繰り返しながら走行する状態で、速やかに放電抵抗を小さくするために、熱容量を鉛バッテリ1の熱容量よりも小さくしている。熱容量は、補助バッテリ2の温度を1℃上昇させるのに必要な熱量で、比熱と重量の積で特定される。熱容量が鉛バッテリ1より小さい補助バッテリ2は、発熱量に対する温度上昇が鉛バッテリ1よりも大きく、回生制動や再始動の大電流の発熱によって温度上昇が大きくなる。   Further, the auxiliary battery 2 has a larger rate of decrease in discharge resistance with respect to temperature rise than the lead battery 1. This is to reduce the discharge resistance of the auxiliary battery 2 while the vehicle is traveling, and to suppress the large current discharge from the lead battery 1 to the starter motor 22. Furthermore, the auxiliary battery 2 makes the heat capacity smaller than the heat capacity of the lead battery 1 in order to reduce the discharge resistance quickly while the vehicle travels while repeating the regenerative braking and the idling stop with the ignition switch ON. ing. The heat capacity is the amount of heat required to raise the temperature of the auxiliary battery 2 by 1 ° C., and is specified by the product of specific heat and weight. The auxiliary battery 2 whose heat capacity is smaller than that of the lead battery 1 has a larger temperature rise with respect to the calorific value than the lead battery 1, and the temperature rise becomes large due to the generation of large current of regenerative braking and restart.

図2は、補助バッテリ2と鉛バッテリ1の温度変化を示すグラフである。この図に示すように、補助バッテリ2と鉛バッテリ1は、イグニッションスイッチをオン状態として、車両を回生制動やアイドリングストップさせながら走行させるとき、時間が経過するにしたがって、バッテリ温度が上昇する。この図で曲線Aは補助バッテリ2の温度変化を示し、曲線Bは鉛バッテリ1の温度変化を示している。補助バッテリ2は、アイドリングストップ後の再始動時や回生制動時に鉛バッテリ1よりも大電流が流れるので発熱量が大きく、また熱容量が小さいので、速やかに温度上昇して放電抵抗を小さくする。補助バッテリ2の温度上昇は、放電抵抗のみでなく、充電抵抗も小さくする。したがって、エンジン21の再始動時にあっては、時間が経過するにしたがって次第にスターターモータ22への放電電流を大きくし、車両の回生制動時にあっては、回生制動による充電電流を増加させる。車両を走行させるにしたがって、補助バッテリ2の温度は上昇するが、温度が高くなるにしたがって放電量も増加するので、温度上昇した特定の温度で一定温度となる。さらに、補助バッテリ2の温度は、イグニッションスイッチがオフに切り換えられて、発熱しなくなると、速やかに低下する。とくに、補助バッテリ2は熱容量を鉛バッテリ1よりも小さくしているので、温度が低下する勾配は鉛バッテリ1よりも大きく、速やかに外部の環境温度まで低下する。車両を走行させない状態において、補助バッテリ2の温度は環境温度に保持される。したがって、車両を走行させない状態において、補助バッテリ2の温度は低く保持される。補助バッテリ2は、保存温度が高くなると劣化が加速されるが、車両を走行させない状態では、環境温度まで低下されるので、この状態で温度による劣化は少なくなる。したがって、補助バッテリ2は、エンジン21の再始動時においては、温度上昇して放電抵抗を小さくしてスターターモータ22で速やかにエンジン21を再始動し、また、回生発電電力を充電する状態においても、充電抵抗を小さくして回生発電電力の蓄電効率を高くし、回生制動も再始動もしない、車両を走行させない状態では、温度上昇による劣化を防止できる。   FIG. 2 is a graph showing temperature changes of the auxiliary battery 2 and the lead battery 1. As shown in this figure, when the auxiliary battery 2 and the lead battery 1 are driven while the vehicle is in regenerative braking or idling stop with the ignition switch turned on, the battery temperature rises as time passes. In this figure, the curve A shows the temperature change of the auxiliary battery 2 and the curve B shows the temperature change of the lead battery 1. The auxiliary battery 2 generates a large amount of heat and a small heat capacity because a larger current flows than the lead battery 1 at the time of restart after idling stop or regenerative braking, and the temperature rise rapidly to reduce the discharge resistance. The temperature rise of the auxiliary battery 2 reduces not only the discharge resistance but also the charge resistance. Therefore, at the time of restart of engine 21, the discharge current to starter motor 22 is gradually increased as time passes, and at the time of regenerative braking of the vehicle, the charging current by regenerative braking is increased. As the vehicle travels, the temperature of the auxiliary battery 2 rises, but as the temperature rises, the amount of discharge also increases, so the temperature rises to a constant temperature at a specific temperature that has risen. Furthermore, the temperature of the auxiliary battery 2 is rapidly reduced when the ignition switch is switched off and no heat is generated. In particular, since the heat capacity of the auxiliary battery 2 is smaller than that of the lead battery 1, the gradient in which the temperature decreases is larger than that of the lead battery 1, and the temperature drops rapidly to the external environmental temperature. When the vehicle is not driven, the temperature of the auxiliary battery 2 is maintained at the ambient temperature. Therefore, the temperature of the auxiliary battery 2 is kept low when the vehicle is not driven. The deterioration of the auxiliary battery 2 is accelerated when the storage temperature rises, but is reduced to the environmental temperature when the vehicle is not driven, so the deterioration due to the temperature decreases in this state. Therefore, at the time of restart of engine 21, auxiliary battery 2 rises in temperature to reduce discharge resistance, and restarts engine 21 promptly by starter motor 22, and also in a state of charging regenerative power generation. In the state where the charging resistance is reduced to increase the storage efficiency of the regenerative power generation and neither the regenerative braking nor the restart is performed and the vehicle is not traveled, the deterioration due to the temperature rise can be prevented.

一方、鉛バッテリ1は、放電抵抗が補助バッテリ2よりも大きいために、アイドリングストップ後の再始動時や回生制動時における発熱量は補助バッテリ2よりも小さく、かつ熱容量を補助バッテリ2より大きくしているので、図2の曲線Bで示すように、イグニッションスイッチをオン状態に切り換えてから温度が上昇する勾配は補助バッテリ2よりも小さくなる。温度上昇の小さい鉛バッテリ1は、温度上昇勾配による放電抵抗の上昇率が小さく、車両を走行させる状態においては、放電抵抗が低下する割合は補助バッテリ2よりも小さくなる。このため、補助バッテリ2と鉛バッテリ1の放電電流の比率は、時間が経過するにしたがって変化し、鉛バッテリ1の放電電流が低下する。すなわち、鉛バッテリ1は、再始動状態における放電電流が次第に減少して、大電流放電による劣化が少なくなる。また、回生制動時においても、車両を走行させる時間が経過するにしたがって、補助バッテリ2の蓄電量がより多くなり、鉛バッテリ1の蓄電量が次第に小さくなる。すなわち、鉛バッテリ1は、回生発電において充電できる電流が減少して、大電流による劣化が防止される。イグニッションスイッチがオフ状態に切り換えられた後は、鉛バッテリ1の温度は緩やかに環境温度まで低下する。鉛バッテリ1は、熱容量が補助バッテリ2よりも大きいので、発熱しない状態において、鉛バッテリ1の温度は緩やかに低下する。   On the other hand, since the lead battery 1 has a discharge resistance larger than that of the auxiliary battery 2, the amount of heat generation during restart after idling stop and during regenerative braking is smaller than that of the auxiliary battery 2 and its heat capacity is larger than that of the auxiliary battery 2. Therefore, as shown by the curve B in FIG. 2, the gradient in which the temperature rises after the ignition switch is turned on becomes smaller than that of the auxiliary battery 2. In the lead battery 1 with a small temperature rise, the rate of increase of the discharge resistance due to the temperature rise gradient is small, and the rate of decrease of the discharge resistance is smaller than that of the auxiliary battery 2 in the state of running the vehicle. For this reason, the ratio of the discharge current of the auxiliary battery 2 and the lead battery 1 changes as time passes, and the discharge current of the lead battery 1 decreases. That is, in the lead battery 1, the discharge current in the restart state gradually decreases, and the deterioration due to the large current discharge is reduced. Further, even during regenerative braking, as the time for driving the vehicle elapses, the storage amount of the auxiliary battery 2 further increases, and the storage amount of the lead battery 1 gradually decreases. That is, in the lead battery 1, the current that can be charged in the regenerative power generation is reduced, and the deterioration due to the large current is prevented. After the ignition switch is switched to the off state, the temperature of the lead battery 1 gradually decreases to the ambient temperature. Since the heat capacity of the lead battery 1 is larger than that of the auxiliary battery 2, the temperature of the lead battery 1 gradually decreases in a state where heat is not generated.

さらに、図3の電源装置は、鉛バッテリ1をスターターモータ22に接続するリード線3を、補助バッテリ2をスターターモータ22に接続するリード線4よりも長くして、鉛バッテリ1のリード線3の電気抵抗を補助バッテリ2のリード線4の電気抵抗よりも大きくしている。この電源装置は、鉛バッテリ1を、たとえばトランクルーム6Aや客室などのキャビン6内に配置して、補助バッテリ2をエンジンルーム5内に配置することができる。図3の電源装置は、鉛バッテリ1をトランクルーム6A内に配置して、補助バッテリ2をエンジンルーム5に配置して、鉛バッテリ1をスターターモータ22に接続するリード線3を、補助バッテリ2をスターターモータ22に接続するリード線4よりも長くして電気抵抗を大きくしている。この電源装置は、鉛バッテリ1のリード線3の電気抵抗を補助バッテリ2のリード線4の電気抵抗よりも大きくしているので、リード線3の電気抵抗によって、鉛バッテリ1の大電流を制限することができる。また、この電源装置は、鉛バッテリ1をトランクルーム6Aに配置するので、鉛バッテリ1の熱による劣化も少なくできる。以上の電源装置は、リード線の長さで電気抵抗を調整しているが、リード線の材質や太さ等で電気抵抗を調整することもできる。   Furthermore, in the power supply device of FIG. 3, the lead wire 3 connecting the lead battery 1 to the starter motor 22 is longer than the lead wire 4 connecting the auxiliary battery 2 to the starter motor 22. The electrical resistance of the battery is greater than the electrical resistance of the lead 4 of the auxiliary battery 2. This power supply device can arrange the lead battery 1 in the cabin 6 such as the trunk room 6A or the cabin, and the auxiliary battery 2 in the engine room 5. In the power supply apparatus of FIG. 3, the lead battery 1 is disposed in the trunk room 6A, the auxiliary battery 2 is disposed in the engine room 5, and the lead wire 3 for connecting the lead battery 1 to the starter motor 22 is It is longer than the lead wire 4 connected to the starter motor 22 to increase the electrical resistance. In this power supply device, since the electrical resistance of the lead wire 3 of the lead battery 1 is larger than the electrical resistance of the lead wire 4 of the auxiliary battery 2, the electrical resistance of the lead wire 3 limits the large current of the lead battery 1 can do. In addition, since the power supply device arranges the lead battery 1 in the trunk room 6A, the heat deterioration of the lead battery 1 can also be reduced. Although the above power supply device adjusts the electrical resistance by the length of the lead wire, the electrical resistance can also be adjusted by the material and thickness of the lead wire.

鉛バッテリ1の定格電圧は12Vである。ただ、鉛バッテリは定格電圧を24V、36V、48Vとすることもできる。ニッケル水素電池2Aの補助バッテリ2は、DC/DCコンバータを介することなく鉛バッテリ1に接続できる。この補助バッテリ2は、直列に接続する個数を調整して、定格電圧を鉛バッテリ1に等しくし、あるいはほぼ等しくする。12Vの鉛バッテリ1に並列に接続されるニッケル水素電池2Aの補助バッテリ2は、10個のニッケル水素電池2Aを直列に接続して定格電圧を12Vとする。   The rated voltage of the lead battery 1 is 12V. However, lead batteries can also be rated at 24V, 36V, and 48V. The auxiliary battery 2 of the nickel hydrogen battery 2A can be connected to the lead battery 1 without the DC / DC converter. The number of the auxiliary batteries 2 connected in series is adjusted to make the rated voltage equal to or nearly equal to the lead battery 1. The auxiliary battery 2 of the nickel metal hydride battery 2A connected in parallel to the 12V lead battery 1 connects the ten nickel metal hydride batteries 2A in series to make the rated voltage 12V.

本発明の車両用の電源装置は、回生制動する車両に搭載されて、並列に接続された鉛バッテリと補助バッテリとを車両の回生制動で充電する電源装置に好適に使用できる。   The power supply device for vehicles of the present invention can be suitably used for a power supply device mounted on a vehicle that performs regenerative braking and charging a lead battery and an auxiliary battery connected in parallel by the regenerative braking of the vehicle.

1…鉛バッテリ
2…補助バッテリ 2A…ニッケル水素電池
3…リード線
4…リード線
5…エンジンルーム
6…キャビン 6A…トランクルーム
20…電装機器
21…エンジン
22…スターターモータ
23…オルタネータ
24…車輪
DESCRIPTION OF SYMBOLS 1 ... Lead battery 2 ... Auxiliary battery 2 A ... Nickel metal hydride battery 3 ... Lead wire 4 ... Lead wire 5 ... Engine room 6 ... Cabin 6A ... Trunk room 20 ... Electrical equipment 21 ... Engine 22 ... Starter motor 23 ... Alternator 24 ... Wheel

Claims (6)

車両のエンジンを始動するスターターモータと電装機器とに電力を供給すると共に、車両の回生制動発電で充電される車両用の電源装置であって、
鉛バッテリと、
この鉛バッテリと並列に接続してなる補助バッテリとを備え、
前記補助バッテリは、
前記鉛バッテリよりも、温度上昇に対して放電抵抗が低下する割合が大きいバッテリであって、かつ、
前記鉛バッテリよりも、それぞれの比熱と重量の積で特定される熱容量が小さいバッテリとすることを特徴とする車両用の電源装置。
A power supply device for a vehicle which supplies electric power to a starter motor for starting an engine of the vehicle and electrical equipment and is charged by regenerative braking power generation of the vehicle,
Lead battery,
And an auxiliary battery connected in parallel with the lead battery,
The auxiliary battery is
A battery having a larger rate of decrease in discharge resistance with respect to temperature rise than the lead battery, and
The lead battery by remote, each of the power supply device for a vehicle, characterized in that the battery capacity is small is identified by the specific heat and the weight of the product.
前記補助バッテリの充電抵抗が、前記鉛バッテリの充電抵抗よりも小さい請求項1に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1, wherein a charging resistance of the auxiliary battery is smaller than a charging resistance of the lead battery. 前記補助バッテリがニッケル水素電池である請求項1又は2に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1, wherein the auxiliary battery is a nickel hydrogen battery. 前記補助バッテリがリチウムイオン二次電池である請求項1又は2に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1, wherein the auxiliary battery is a lithium ion secondary battery. 前記鉛バッテリを前記スターターモータに接続するリード線の電気抵抗が、前記補助バッテリを前記スターターモータに接続するリード線の電気抵抗よりも大きい請求項1ないし4のいずれかに記載される車両用の電源装置。   The vehicle according to any one of claims 1 to 4, wherein the electrical resistance of a lead connecting the lead battery to the starter motor is greater than the electrical resistance of a lead connecting the auxiliary battery to the starter motor. Power supply. 前記鉛バッテリがキャビン内に配置されて、前記補助バッテリがエンジンルーム内に配置されてなる請求項1ないし5のいずれかに記載される車両用の電源装置。   The power supply device for a vehicle according to any one of claims 1 to 5, wherein the lead battery is disposed in a cabin and the auxiliary battery is disposed in an engine room.
JP2014544253A 2012-10-29 2013-10-22 Power supply for vehicles Active JP6426002B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012238122 2012-10-29
JP2012238122 2012-10-29
PCT/JP2013/006238 WO2014068900A1 (en) 2012-10-29 2013-10-22 Power supply device for vehicle

Publications (2)

Publication Number Publication Date
JPWO2014068900A1 JPWO2014068900A1 (en) 2016-09-08
JP6426002B2 true JP6426002B2 (en) 2018-11-21

Family

ID=50626851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544253A Active JP6426002B2 (en) 2012-10-29 2013-10-22 Power supply for vehicles

Country Status (2)

Country Link
JP (1) JP6426002B2 (en)
WO (1) WO2014068900A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624333B2 (en) * 1996-03-13 2005-03-02 富士重工業株式会社 Vehicle power supply device using electric double layer capacitor
JP3394484B2 (en) * 1999-12-07 2003-04-07 日本碍子株式会社 Lithium secondary battery and design method thereof
JP2003174734A (en) * 2001-12-06 2003-06-20 Shin Kobe Electric Mach Co Ltd Hybrid secondary battery
JP3812459B2 (en) * 2002-02-26 2006-08-23 トヨタ自動車株式会社 Vehicle power supply control device
JP2005132190A (en) * 2003-10-29 2005-05-26 Denso Corp Power supply system for vehicle
JP4425765B2 (en) * 2004-11-05 2010-03-03 鹿島建設株式会社 Construction method of the frame
JP2006281805A (en) * 2005-03-31 2006-10-19 Mazda Motor Corp Arrangement structure of vehicular engine auxiliary machine
JP4700644B2 (en) * 2007-03-22 2011-06-15 富士重工業株式会社 Lead battery charge control device
JP5046294B2 (en) * 2007-11-26 2012-10-10 本田技研工業株式会社 Power supply system and mobile device equipped with the power supply system
CZ2008169A3 (en) * 2008-03-14 2009-09-23 Ydun, S. R. O. Lead-free starting accumulator battery intended particularly for internal combustion engines and motor vehicles
JP5471083B2 (en) * 2009-07-01 2014-04-16 株式会社デンソー In-vehicle power supply
JP5799251B2 (en) * 2010-03-31 2015-10-21 パナソニックIpマネジメント株式会社 Vehicle power supply

Also Published As

Publication number Publication date
JPWO2014068900A1 (en) 2016-09-08
WO2014068900A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6111536B2 (en) Vehicle power supply control method and apparatus
JP6246729B2 (en) Vehicle that stops idling
US10099562B2 (en) Cooling strategy for battery systems
US10252623B2 (en) Charge/discharge system
JP6119725B2 (en) Charger
JP2015153719A (en) Power supply system, and vehicle
JP5211954B2 (en) Vehicle power supply
JP6073901B2 (en) Vehicle battery system and vehicle equipped with the same
CN109314399A (en) Vehicular power system
JP2015009654A (en) Power storage system
JP6305930B2 (en) Vehicle power supply for regenerative braking
CN105191057A (en) Charging system for vehicle and vehicle including same
JP2014138536A (en) Vehicle power supply device
JP2019017124A (en) Storage battery device and storage battery system
JP6131533B2 (en) Vehicle power supply control method and apparatus
JP5915390B2 (en) Vehicle power supply control method and apparatus
TWI750087B (en) Intelligent energy storage system
JP6560713B2 (en) Vehicle power supply
JP2011163282A (en) Power source device for vehicle
JP6426002B2 (en) Power supply for vehicles
WO2013031615A1 (en) Battery system for hybrid car and hybrid car equipped with this battery system
JP6165522B2 (en) Power storage system
WO2022228247A1 (en) Intelligent energy storage system
JP2015202772A (en) Regenerative device
JP2016137836A (en) Power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181024

R150 Certificate of patent or registration of utility model

Ref document number: 6426002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150