JP6422283B2 - Heat storage container and heat storage device provided with heat storage container - Google Patents

Heat storage container and heat storage device provided with heat storage container Download PDF

Info

Publication number
JP6422283B2
JP6422283B2 JP2014197928A JP2014197928A JP6422283B2 JP 6422283 B2 JP6422283 B2 JP 6422283B2 JP 2014197928 A JP2014197928 A JP 2014197928A JP 2014197928 A JP2014197928 A JP 2014197928A JP 6422283 B2 JP6422283 B2 JP 6422283B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
transport fluid
outer tube
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014197928A
Other languages
Japanese (ja)
Other versions
JP2016070542A (en
Inventor
島田 守
守 島田
敏明 中村
敏明 中村
池田 匡視
匡視 池田
志村 隆広
隆広 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014197928A priority Critical patent/JP6422283B2/en
Publication of JP2016070542A publication Critical patent/JP2016070542A/en
Application granted granted Critical
Publication of JP6422283B2 publication Critical patent/JP6422283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、反応ガスと化学蓄熱材との化学反応により反応熱を放出し、上記反応の逆反応により吸熱する可逆反応を利用して、発熱と蓄熱を繰り返すことができる化学蓄熱材を使用した蓄熱器、該蓄熱器を備えた蓄熱装置に関する。   The present invention uses a chemical heat storage material capable of repeating heat generation and heat storage using a reversible reaction that releases reaction heat by a chemical reaction between a reaction gas and a chemical heat storage material and absorbs heat by the reverse reaction of the above reaction. The present invention relates to a heat storage device and a heat storage device including the heat storage device.

化学蓄熱材は、体積あたりの蓄熱量が大きく、蓄熱された化学蓄熱材を長期貯蔵しても熱損失が極めて少ないことなどから、エンジンや工業プラント等からの排熱の貯蔵及び利用に、活用することが期待されている。   Chemical heat storage materials are used for storing and using exhaust heat from engines, industrial plants, etc., because they have a large amount of heat storage per volume and have very little heat loss even after long-term storage of stored chemical heat storage materials. Is expected to be.

そこで、図8に示すように、化学蓄熱材複合体53が内管51と外管52との間に収容され、化学蓄熱材複合体53の蓄熱・放熱に伴う反応物・反応生成物としての水蒸気が流通する反応流路54が、内管51内に構成され、化学蓄熱材複合体53との間で熱交換を行う熱交換媒体であるガス状の流体が流通する熱交換流路56が、外管52と外壁55との間に設けられた蓄熱装置50が、提案されている(特許文献1)。しかし、特許文献1の蓄熱装置50では、水蒸気を供給する反応流路54と熱交換媒体を供給する熱交換流路56を別個に設ける必要があるため、配管構成が複雑になるという問題があった。また、配管構成の複雑化により、蓄熱装置50に搭載できる化学蓄熱材複合体53の量が少なくなってしまうので、蓄熱装置50の単位体積当たりの利用熱量(蓄熱密度)が小さくなるという問題があった。   Therefore, as shown in FIG. 8, the chemical heat storage material complex 53 is accommodated between the inner tube 51 and the outer tube 52, and is used as a reactant / reaction product associated with heat storage / heat dissipation of the chemical heat storage material complex 53. A reaction flow channel 54 through which water vapor flows is configured in the inner pipe 51, and a heat exchange flow channel 56 through which a gaseous fluid that is a heat exchange medium for exchanging heat with the chemical heat storage material complex 53 flows. A heat storage device 50 provided between the outer tube 52 and the outer wall 55 has been proposed (Patent Document 1). However, in the heat storage device 50 of Patent Document 1, it is necessary to separately provide the reaction flow path 54 for supplying water vapor and the heat exchange flow path 56 for supplying the heat exchange medium. It was. Further, since the amount of the chemical heat storage material composite 53 that can be mounted on the heat storage device 50 is reduced due to the complexity of the piping configuration, there is a problem that the amount of heat used (heat storage density) per unit volume of the heat storage device 50 is reduced. there were.

加えて、特許文献1の蓄熱装置50では、熱交換媒体としてガス状の流体を使用すると、ガス状の流体に顕熱が供給できるのみとなるので、熱交換媒体の熱輸送量が制限されるという問題、さらに、ガス状の熱交換媒体を蓄熱装置50に供給するためには、気化熱による熱交換媒体貯蔵容器の温度低下を防止するために、熱交換媒体貯蔵容器にエネルギーを投入する必要があるという問題があった。   In addition, in the heat storage device 50 of Patent Document 1, when a gaseous fluid is used as the heat exchange medium, only sensible heat can be supplied to the gaseous fluid, so that the heat transport amount of the heat exchange medium is limited. Furthermore, in order to supply the gaseous heat exchange medium to the heat storage device 50, it is necessary to input energy to the heat exchange medium storage container in order to prevent a temperature drop of the heat exchange medium storage container due to heat of vaporization. There was a problem that there was.

また、反応ガスである水蒸気と、常温空気(熱輸送媒体に相当)を混合して、蓄熱材が収容された反応器に供給する蓄熱器が提案されている(特許文献2)。しかし、水蒸気が常温空気と混合された状態で蓄熱器に供給されると、空気が水蒸気の拡散を阻害して蓄熱材の反応速度が遅くなってしまうので、蓄熱材から供給される単位時間あたりの熱量が小さくなってしまうという問題があった。   Further, there has been proposed a heat accumulator that mixes water vapor as a reaction gas and normal temperature air (corresponding to a heat transport medium) and supplies the mixture to a reactor in which a heat accumulating material is accommodated (Patent Document 2). However, if steam is supplied to the regenerator in a state where it is mixed with room temperature air, the air will inhibit the diffusion of the water vapor and the reaction rate of the heat storage material will slow down. There was a problem that the amount of heat was reduced.

一方で、アルカリ土類金属酸化物を充填した反応器、水を貯蔵する水タンク、上記水タンクの水を上記反応器に供給する水供給管、及び反応器から水を水タンクに戻す還流管からなる密閉サイクルを備え、アルカリ土類金属酸化物の水和反応に伴い発生する熱を利用するようにした化学発熱装置が提案されている(特許文献3)。しかし、蓄熱材であるアルカリ土類金属酸化物を水と反応させると、蓄熱材中に浸透した水が、蓄熱材の発熱により気化した際に、急激に膨張して蓄熱材を破壊するという問題があった。   Meanwhile, a reactor filled with alkaline earth metal oxide, a water tank for storing water, a water supply pipe for supplying water from the water tank to the reactor, and a reflux pipe for returning water from the reactor to the water tank There has been proposed a chemical exothermic apparatus that includes a closed cycle consisting of the above and uses heat generated by the hydration reaction of an alkaline earth metal oxide (Patent Document 3). However, when alkaline earth metal oxide, which is a heat storage material, reacts with water, the water that penetrates into the heat storage material expands suddenly and destroys the heat storage material when it vaporizes due to the heat generated by the heat storage material. was there.

特開2009−228952号公報JP 2009-228952 A 特開昭62−216633号公報Japanese Patent Laid-Open No. 62-216633 特開平7−180539号公報JP-A-7-180539

本発明は上記した従来技術の問題に鑑みてなされたものであり、簡易な構成にて、吸熱及び発熱の効率と熱輸送量を向上でき、また、化学蓄熱材の破壊を防止できる蓄熱容器及び蓄熱容器を備えた蓄熱装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. With a simple configuration, the heat storage container capable of improving the efficiency of heat absorption and heat generation and the amount of heat transport, and preventing the destruction of the chemical heat storage material, and It aims at providing the thermal storage apparatus provided with the thermal storage container.

本発明の態様は、一方の端部が閉塞された閉塞側端部と他方の端部が開口した開口側端部とを有する筒状体からなる外管と、該外管の閉塞側端部から一方の開口端部が突出し、他方の開口端部が前記外管の開口側端部よりも前記外管の閉塞側端部側に位置するように、前記外管内に挿入された内管と、前記外管の内面と前記内管の外面との間に形成された第1の空間部に収容された化学蓄熱材を含有する蓄熱部構造体と、前記蓄熱部構造体を前記第1の空間部の長手方向に貫通する第1の流路と、を備えた蓄熱容器である。   An aspect of the present invention includes an outer tube having a cylindrical body having a closed side end portion closed at one end and an open end portion opened at the other end, and a closed side end portion of the outer tube An inner tube inserted into the outer tube such that one open end projects from the outer tube and the other open end is positioned closer to the closed end of the outer tube than the open end of the outer tube; The heat storage unit structure containing a chemical heat storage material housed in a first space formed between the inner surface of the outer tube and the outer surface of the inner tube, and the heat storage unit structure as the first And a first flow path penetrating in the longitudinal direction of the space portion.

上記態様では、第1の流路は、化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の気化物の流路となっている。従って、第1の流路を流れる反応ガスと第1の空間部に収容された化学蓄熱材とが化学反応することで、化学蓄熱材に貯蔵されていた熱が反応熱として放出される。一方で、外管の閉塞側端部から突出した、内管の一方の開口端部から内管の内部へ、反応ガスとしての機能を有した熱輸送流体の液化物が供給される。内管の内部へ供給された前記熱輸送流体の液化物は、内管の内部を一方の開口端部から他方の開口端部へ流れる間に、上記反応熱を受熱して気化する。内管の内部にて気化した前記熱輸送流体は、内管の他方の開口端部から第1の流路へ反応ガスとして供給される。第1の流路へ供給された反応ガスは、第1の流路を外管の開口側端部側から閉塞側端部側の方向へ流れていき、上記の通り、第1の空間部に収容された化学蓄熱材と化学反応して、化学蓄熱材から反応熱が放出される。   In the said aspect, the 1st flow path is a flow path of the vaporized material of the heat transport fluid having the function as a reaction gas that contributes to the endothermic reaction and exothermic reaction of the chemical heat storage material. Accordingly, the reaction gas flowing through the first flow path and the chemical heat storage material accommodated in the first space chemically react to release heat stored in the chemical heat storage material as reaction heat. On the other hand, a liquefied product of a heat transport fluid having a function as a reaction gas is supplied from one open end of the inner tube protruding from the closed end of the outer tube into the inner tube. The liquefied product of the heat transport fluid supplied to the inside of the inner pipe receives the reaction heat and vaporizes while flowing in the inner pipe from one opening end to the other opening end. The heat transport fluid vaporized inside the inner tube is supplied as a reaction gas from the other opening end of the inner tube to the first flow path. The reaction gas supplied to the first flow path flows from the opening side end side of the outer pipe toward the closing side end side of the outer pipe, and as described above, enters the first space part. Chemical reaction with the stored chemical heat storage material causes reaction heat to be released from the chemical heat storage material.

また、反応ガスとして使用されなかった、つまり、内管の他方の開口端部から第1の流路へ供給されなかった、余剰の気化した前記熱輸送流体は、上記反応熱を輸送する熱輸送媒体として、外管の開口側端部から熱利用先へ輸送される。   Further, the excess vaporized heat transport fluid that was not used as the reaction gas, that is, not supplied to the first flow path from the other opening end of the inner tube, transported the heat of reaction. As a medium, it is transported from the opening side end of the outer tube to a heat utilization destination.

一方で、蓄熱容器の外管の壁面を介して、蓄熱容器の外部の熱が、外管内部の第1の空間部に収容された化学蓄熱材へ、移動可能となっている。この外管の内部へ熱移動した熱によって、反応ガスが、一旦化学反応により結合して反応熱を放出した化学蓄熱材から脱離する反応を起こし、化学蓄熱材が、外管の内部へ熱移動した熱を貯蔵する。化学蓄熱材から脱離した反応ガスは、第1の流路へ放出される。   On the other hand, heat outside the heat storage container can be transferred to the chemical heat storage material accommodated in the first space inside the outer pipe through the wall surface of the outer pipe of the heat storage container. The heat transferred to the inside of the outer tube causes a reaction in which the reaction gas is desorbed from the chemical heat storage material once bonded by a chemical reaction and releases the reaction heat, and the chemical heat storage material is heated to the inside of the outer tube. Stores the transferred heat. The reaction gas desorbed from the chemical heat storage material is released to the first flow path.

本発明の態様は、前記内管の内部である第2の空間部に、ウィック構造体と前記ウィック構造体を前記第2の空間部の長手方向に貫通する第2の流路とが設けられている蓄熱容器である。   In the aspect of the present invention, a wick structure and a second flow path penetrating the wick structure in the longitudinal direction of the second space portion are provided in the second space portion inside the inner tube. It is a heat storage container.

この態様では、ウィック構造体の毛細管力によって、反応ガスとしての機能を有した熱輸送流体の液化物が、内管の内部へ供給される。内管の内部へ供給された前記熱輸送流体の液化物は、内管のウィック構造体内部にて上記反応熱を受熱することで気化してウィック構造体から第2の流路へ放出される。第2の流路へ放出された気体状の前記熱輸送流体は、第2の流路を内管の一方の開口端部側から他方の開口端部側の方向へ流れていく。   In this aspect, the liquefied product of the heat transport fluid having a function as a reaction gas is supplied into the inner tube by the capillary force of the wick structure. The liquefied product of the heat transport fluid supplied to the inside of the inner tube is vaporized by receiving the heat of reaction inside the wick structure of the inner tube and is discharged from the wick structure to the second flow path. . The gaseous heat transport fluid released into the second flow path flows from the one opening end side of the inner pipe toward the other opening end side through the second flow path.

本発明の態様は、前記内管の壁面に、貫通孔が設けられた蓄熱容器である。本発明の態様は、前記内管の壁面に、貫通孔が設けられ、該貫通孔の部位には前記ウィック構造体が設けられていない蓄熱容器である。   An aspect of the present invention is a heat storage container in which a through hole is provided in a wall surface of the inner tube. An aspect of the present invention is a heat storage container in which a through hole is provided in a wall surface of the inner tube, and the wick structure is not provided in a portion of the through hole.

本発明の態様は、前記外管の閉塞側端部から突出した前記内管の一方の開口端部が、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と接続されている蓄熱容器である。   In an aspect of the present invention, one open end portion of the inner tube protruding from the closed side end portion of the outer tube has a function as a reaction gas that contributes to an endothermic reaction and an exothermic reaction of the chemical heat storage material. It is the heat storage container connected with the heat transport fluid container in which the liquefied material of the transport fluid was accommodated.

本発明の態様は、前記外管の閉塞側端部から突出した前記内管の一方の開口端部が、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と接続され、前記熱輸送流体容器の底部が前記内管の一方の開口端部よりも上方にある蓄熱容器である。本明細書中、「下」とは、重力方向を意味し、「上」とは、重力方向と反対の方向を意味する。   In an aspect of the present invention, one open end portion of the inner tube protruding from the closed side end portion of the outer tube has a function as a reaction gas that contributes to an endothermic reaction and an exothermic reaction of the chemical heat storage material. The heat storage container is connected to a heat transport fluid container in which a liquefied product of transport fluid is accommodated, and a bottom portion of the heat transport fluid container is located above one opening end of the inner tube. In this specification, “down” means the direction of gravity, and “up” means the direction opposite to the direction of gravity.

本発明の態様は、前記化学蓄熱材を含有する蓄熱部構造体が、化学蓄熱材と、金属粉、粘土鉱物、有機物の炭化物及び金属製メッシュからなる群から選択された少なくとも1種との混合物の焼結体である蓄熱容器である。   In an aspect of the present invention, the heat storage unit structure containing the chemical heat storage material is a mixture of the chemical heat storage material and at least one selected from the group consisting of metal powder, clay minerals, organic carbides, and metal meshes. It is a heat storage container which is a sintered body of.

本発明の態様は、一方の端部が閉塞された閉塞側端部と他方の端部が開口した開口側端部とを有する筒状体からなる外管と、該外管の閉塞側端部から一方の開口端部が突出し、他方の開口端部が前記外管の開口側端部よりも前記外管の閉塞側端部側に位置するように、前記外管内に挿入された内管と、前記外管の内面と前記内管の外面との間に形成された第1の空間部に収容された化学蓄熱材を含有する蓄熱部構造体と、前記蓄熱部構造体を前記第1の空間部の長手方向に貫通する第1の流路と、を備えた蓄熱容器と、前記外管の閉塞側端部から突出した前記内管の一方の開口端部と接続された、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と、前記外管の開口側端部と接続された、前記外管の開口側端部から放出される気化した前記熱輸送流体を液化させる凝縮器と、前記熱輸送流体容器と前記凝縮器を接続し、前記凝縮器によって得られた前記熱輸送流体の液化物を前記熱輸送流体容器へ供給する配管系と、を備えた、前記熱輸送流体の循環系を有し、前記循環系が、気密状態であり、脱気されている蓄熱装置である。   An aspect of the present invention includes an outer tube having a cylindrical body having a closed side end portion closed at one end and an open end portion opened at the other end, and a closed side end portion of the outer tube An inner tube inserted into the outer tube such that one open end projects from the outer tube and the other open end is positioned closer to the closed end of the outer tube than the open end of the outer tube; The heat storage unit structure containing a chemical heat storage material housed in a first space formed between the inner surface of the outer tube and the outer surface of the inner tube, and the heat storage unit structure as the first A heat storage container comprising: a first flow path penetrating in a longitudinal direction of the space; and the chemical heat storage connected to one open end of the inner tube protruding from the closed end of the outer tube. A heat transport fluid container containing a liquefied product of a heat transport fluid having a function as a reaction gas contributing to an endothermic reaction and an exothermic reaction of the material, and the outer tube A condenser connected to the opening side end portion for liquefying the vaporized heat transport fluid discharged from the opening side end portion of the outer tube; and the heat transport fluid container and the condenser connected to each other, and the condenser And a piping system for supplying the liquefied product of the heat transport fluid obtained by the above to the heat transport fluid container, the heat transport fluid circulation system, wherein the circulation system is in an airtight state and is removed. It is a heat storage device that is concerned.

本発明の態様は、前記外管の表面が、熱源と熱的に接続されている蓄熱装置である。   An aspect of the present invention is a heat storage device in which a surface of the outer tube is thermally connected to a heat source.

本発明の態様によれば、該外管の閉塞側端部から一方の開口端部が突出し、他方の開口端部が前記外管の開口側端部よりも前記外管の閉塞側端部側に位置するように、前記外管内に挿入された内管の内部に、化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能も有する熱輸送流体の液化物が供給されることで、反応ガスの流路と熱輸送流体の流路とを分けて設ける必要がないので、簡易な構成の蓄熱容器とすることができる。このように、蓄熱容器を簡易な構成にすることができるので、蓄熱容器の単位体積あたりの蓄熱部構造体の搭載量が多くなり、吸熱及び発熱の効率が向上して、蓄熱容器としての蓄熱密度を高めることができる。   According to the aspect of the present invention, one open end projects from the closed end of the outer tube, and the other open end is closer to the closed end of the outer tube than the open end of the outer tube. The liquefied product of the heat transport fluid that also functions as a reaction gas that contributes to the endothermic reaction and exothermic reaction of the chemical heat storage material is supplied to the inside of the inner tube inserted into the outer tube. Since there is no need to separately provide the reaction gas flow path and the heat transport fluid flow path, a heat storage container having a simple configuration can be obtained. As described above, since the heat storage container can have a simple configuration, the amount of the heat storage unit structure mounted per unit volume of the heat storage container is increased, the efficiency of heat absorption and heat generation is improved, and heat storage as the heat storage container is achieved. The density can be increased.

また、液状の前記熱輸送流体が内管の内部に供給されることで、液状の前記熱輸送流体は、第1の流路を流れる反応ガスと第1の空間部に収容された化学蓄熱材とが化学反応することで放出される反応熱を、顕熱としてだけでなく潜熱としても受熱できるので、前記熱輸送流体の熱輸送量が向上する。また、内管の壁面を介して、第1の空間部と内管の内部空間が相互に分離されていることから、第1の空間部に収容された蓄熱部構造体が、内管の内部に供給された液状の前記熱輸送流体と接触することを防止できるので、蓄熱部構造体の劣化が抑制され、さらに、蓄熱部構造体に浸透した液状の前記熱輸送流体が、気化して膨張することによって蓄熱部構造体が破壊されることを防止できる。   The liquid heat transport fluid is supplied to the inside of the inner tube, so that the liquid heat transport fluid is a chemical heat storage material accommodated in the reaction gas flowing through the first flow path and the first space. Since the reaction heat released by the chemical reaction with can be received not only as sensible heat but also as latent heat, the heat transport amount of the heat transport fluid is improved. Further, since the first space portion and the inner space of the inner tube are separated from each other via the wall surface of the inner tube, the heat storage unit structure housed in the first space portion is provided inside the inner tube. Can be prevented from contacting the liquid heat transport fluid supplied to the liquid, so that deterioration of the heat storage section structure is suppressed, and further, the liquid heat transport fluid permeating the heat storage section structure is vaporized and expanded. By doing, it can prevent that a thermal storage part structure is destroyed.

本発明の態様によれば、内管内部の第2の空間部に、ウィック構造体が設けられているので、ウィック構造体の有する毛細管力によって、反応ガスとしての機能を有する熱輸送流体の液化物が内管の内部空間に円滑に供給され、該毛細管力によって前記熱輸送流体の液化物を内管の長手方向に沿って確実に流すことができる。また、ウィック構造体を第2の空間部の長手方向に貫通する第2の流路が設けられているので、上記反応熱によってウィック構造体内部にて気化した前記熱輸送流体は、第2の流路へ放出され、第2の流路へ放出された気化した前記熱輸送流体は、反応ガスとして第1の流路へ流れるにあたり、その供給量が不足するのを防止できる。   According to the aspect of the present invention, since the wick structure is provided in the second space portion inside the inner tube, the liquefaction of the heat transport fluid having a function as the reaction gas by the capillary force of the wick structure. An object is smoothly supplied to the internal space of the inner tube, and the liquefied material of the heat transport fluid can be reliably flowed along the longitudinal direction of the inner tube by the capillary force. Further, since the second flow path penetrating the wick structure in the longitudinal direction of the second space is provided, the heat transport fluid vaporized inside the wick structure by the reaction heat is The vaporized heat transport fluid released to the flow channel and discharged to the second flow channel can prevent the supply amount from being insufficient when flowing to the first flow channel as the reaction gas.

本発明の態様によれば、内管の壁面に貫通孔が設けられるので、気化した前記熱輸送流体の第2の流路への放出量、すなわち、第1の流路への反応ガスの供給量が不足するのを確実に防止できる。さらに、本発明の態様によれば、上記貫通孔の部位にはウィック構造体が設けられていないので、第1の流路への反応ガスの供給量が不足するのをより確実に防止できる。   According to the aspect of the present invention, since the through hole is provided in the wall surface of the inner tube, the amount of the vaporized heat transport fluid discharged into the second flow path, that is, the supply of the reaction gas to the first flow path. It can be surely prevented that the amount is insufficient. Furthermore, according to the aspect of the present invention, since the wick structure is not provided in the portion of the through hole, it is possible to more reliably prevent the supply amount of the reaction gas to the first flow path from being insufficient.

本発明の態様によれば、熱輸送流体容器の底部が、熱輸送流体容器と接続された内管の一方の開口端部よりも上方にあるので、重力作用によって、反応ガスとしての機能を有する熱輸送流体の液化物を内管の内部空間に供給することができる。   According to the aspect of the present invention, the bottom portion of the heat transport fluid container is located above the one open end of the inner pipe connected to the heat transport fluid container, and thus has a function as a reaction gas by the gravitational action. The liquefied product of the heat transport fluid can be supplied to the inner space of the inner tube.

本発明の態様によれば、蓄熱装置における反応ガスとしての機能を有する熱輸送流体の循環系が、密閉状態であり、さらに脱気されていることにより、前記熱輸送流体を循環させるための機器を使用しなくても、前記熱輸送流体は、蓄熱装置内を円滑に循環することができる。また、前記循環系が、密閉状態であり、さらに脱気されていることにより、第2の流路へ放出された気化した前記熱輸送流体を、反応ガスとして、第1の流路へ円滑に流すことができる。   According to the aspect of the present invention, the circulation system of the heat transport fluid having a function as the reaction gas in the heat storage device is in a sealed state and further degassed so that the heat transport fluid is circulated. Even without using, the heat transport fluid can smoothly circulate in the heat storage device. Further, since the circulation system is in a sealed state and further deaerated, the vaporized heat transport fluid released to the second flow path can be smoothly supplied to the first flow path as a reaction gas. It can flow.

また、化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器が、内管に接続されることにより、熱輸送流体の気化熱による熱輸送流体容器の温度低下が防止でき、熱輸送流体容器に温度維持のためのエネルギーを投入することを防止できる。   Further, a heat transport fluid container containing a liquefied product of a heat transport fluid having a function as a reaction gas that contributes to an endothermic reaction and an exothermic reaction of the chemical heat storage material is connected to the inner tube, so that the heat transport fluid It is possible to prevent the temperature of the heat transport fluid container from decreasing due to the heat of vaporization, and to prevent the heat transport fluid container from being charged with energy for maintaining the temperature.

本発明の第1実施形態例に係る蓄熱容器の側面断面図である。It is side surface sectional drawing of the thermal storage container which concerns on the example of 1st Embodiment of this invention. 本発明の第1実施形態例に係る蓄熱容器の正面断面図である。It is front sectional drawing of the thermal storage container which concerns on the example of 1st Embodiment of this invention. 本発明の第1実施形態例に係る蓄熱容器の使用方法例の側面断面図である。It is side surface sectional drawing of the usage example of the thermal storage container which concerns on 1st Embodiment of this invention. 本発明の第2実施形態例に係る蓄熱容器の側面断面図である。It is side surface sectional drawing of the thermal storage container which concerns on the 2nd Embodiment of this invention. 本発明の第2実施形態例に係る蓄熱容器の正面断面図である。It is front sectional drawing of the thermal storage container which concerns on the 2nd Example of this invention. 本発明の第2実施形態例に係る蓄熱容器の使用方法例の側面断面図である。It is side surface sectional drawing of the usage example of the thermal storage container which concerns on the 2nd Example of this invention. 本発明の実施形態例に係る蓄熱装置の説明図である。It is explanatory drawing of the thermal storage apparatus which concerns on the example of embodiment of this invention. 従来の蓄熱装置の説明図である。It is explanatory drawing of the conventional heat storage apparatus.

以下に、本発明の第1実施形態例に係る蓄熱容器について図面を用いながら説明する。図1に示すように、第1実施形態例に係る蓄熱容器1は、一方の端部が閉塞された閉塞側端部3と他方の端部が開口した開口側端部4とを有する筒状体からなる外管2と、外管2の閉塞側端部3から一方の開口端部6が突出し、他方の開口端部7が外管2の開口側端部4よりも外管2の閉塞側端部3側に位置するように、外管2内に挿入された内管5と、を備えている。外管2の閉塞側端部3には、内管5の外形に対応する形状と寸法を有する貫通穴が形成されている。該貫通穴に内管5が嵌挿されることにより、外管2の内部に内管5が配置、固定され、外管2の閉塞側端部3に密閉性が付与されている。   Below, the thermal storage container which concerns on the example of 1st Embodiment of this invention is demonstrated, using drawing. As shown in FIG. 1, the heat storage container 1 according to the first embodiment has a cylindrical shape having a closed side end 3 with one end closed and an open end 4 with the other end opened. One open end 6 protrudes from the outer tube 2 made of a body and the closed side end 3 of the outer tube 2, and the other open end 7 is blocked from the open side end 4 of the outer tube 2. And an inner tube 5 inserted into the outer tube 2 so as to be positioned on the side end 3 side. A through hole having a shape and a dimension corresponding to the outer shape of the inner tube 5 is formed in the closing side end portion 3 of the outer tube 2. By inserting and inserting the inner tube 5 into the through hole, the inner tube 5 is arranged and fixed inside the outer tube 2, and the closing end 3 of the outer tube 2 is sealed.

図2に示すように、蓄熱容器1では、外管2は円形状の管材を扁平加工した扁平形状であり、内管5は円形状の管材からなる。蓄熱容器1では、外管2の中心軸と内管5の中心軸は、同軸状に配置されている。   As shown in FIG. 2, in the heat storage container 1, the outer tube 2 has a flat shape obtained by flattening a circular tube material, and the inner tube 5 is made of a circular tube material. In the heat storage container 1, the central axis of the outer tube 2 and the central axis of the inner tube 5 are arranged coaxially.

図1、2に示すように、外管2の内面と内管5の外面との間に、第1の空間部8が形成され、第1の空間部8には、化学蓄熱材を含有する蓄熱部構造体9が収容されている。蓄熱部構造体9は、外管2の内面及び内管5の外面と接触することで、外管2及び内管5と熱的に接続されている。蓄熱部構造体9は、外管2及び内管5の長手方向に対して平行方向に、内管5の他方の開口端部7またはその近傍から外管2の閉塞側端部3まで伸びている。   As shown in FIGS. 1 and 2, a first space 8 is formed between the inner surface of the outer tube 2 and the outer surface of the inner tube 5, and the first space 8 contains a chemical heat storage material. A heat storage unit structure 9 is accommodated. The heat storage unit structure 9 is thermally connected to the outer tube 2 and the inner tube 5 by contacting the inner surface of the outer tube 2 and the outer surface of the inner tube 5. The heat storage unit structure 9 extends in a direction parallel to the longitudinal direction of the outer tube 2 and the inner tube 5 from the other open end 7 of the inner tube 5 or the vicinity thereof to the closed side end 3 of the outer tube 2. Yes.

また、蓄熱部構造体9の内部には、第1の空間部8の長手方向に対して平行方向に、蓄熱部構造体9の内部を貫通する第1の流路10が設けられている。蓄熱容器1では、内管5の左右に、それぞれ、1つずつ、第1の流路10が配置されている。第1の流路10の形状は、特に限定されないが、蓄熱容器1では、第1の流路10内に流れる反応ガスと蓄熱部構造体9との接触面積を増大させて蓄熱部構造体9の発熱効率を向上させるために、正面視く字状となっている。第1の空間部8における、蓄熱部構造体9の体積と第1の流路10の体積の比率は、特に限定されないが、蓄熱密度と反応速度のバランスの点から2:1〜20:1が好ましく、5:1〜15:1が特に好ましい。   In addition, a first flow path 10 penetrating through the inside of the heat storage unit structure 9 is provided in the heat storage unit structure 9 in a direction parallel to the longitudinal direction of the first space 8. In the heat storage container 1, the first flow paths 10 are arranged one by one on the left and right of the inner tube 5. Although the shape of the 1st flow path 10 is not specifically limited, In the thermal storage container 1, the contact area of the reactive gas and the thermal storage part structure 9 which flow in the 1st flow path 10 is increased, and the thermal storage part structure 9 is increased. In order to improve the heat generation efficiency, it has a letter shape in front view. The ratio of the volume of the heat storage unit structure 9 and the volume of the first flow path 10 in the first space 8 is not particularly limited, but is 2: 1 to 20: 1 from the viewpoint of the balance between the heat storage density and the reaction rate. Is preferable, and 5: 1 to 15: 1 is particularly preferable.

図1に示すように、内管5の内部である第2の空間部11には、ウィック構造体12が設けられている。ウィック構造体12は、第2の空間部11の長手方向に対して平行方向に、内管5の一方の開口端部6またはその近傍から他方の開口端部7またはその近傍まで伸びている。   As shown in FIG. 1, a wick structure 12 is provided in the second space 11 inside the inner tube 5. The wick structure 12 extends in a direction parallel to the longitudinal direction of the second space portion 11 from one open end 6 of the inner tube 5 or the vicinity thereof to the other open end 7 or the vicinity thereof.

図2に示すように、ウィック構造体12は、内管5の内周面を覆うように設けられている。また、ウィック構造体12は、内管5の内周面と接触しており、化学蓄熱材を含有する蓄熱部構造体9から放出された反応熱Hを、内管5を介して受熱できる。   As shown in FIG. 2, the wick structure 12 is provided so as to cover the inner peripheral surface of the inner tube 5. Further, the wick structure 12 is in contact with the inner peripheral surface of the inner tube 5, and can receive the reaction heat H released from the heat storage unit structure 9 containing the chemical heat storage material via the inner tube 5.

さらに、内管5の内部では、内管5の他方の開口端部7またはその近傍から外管2の閉塞側端部3またはその近傍に相当する位置まで、第2の空間部11の長手方向にウィック構造体12を貫通する第2の流路13が伸びている。蓄熱部構造体9から放出された反応熱Hを、内管5を介して蓄熱部構造体9と熱的に接続されたウィック構造体12が受熱することで、ウィック構造体12中に含まれた反応ガスとしての機能を有する熱輸送流体の液化物が気化する。気化した反応ガスとしての機能を有する熱輸送流体(すなわち、反応ガスとしての機能を有する熱輸送流体の蒸気)Gは、ウィック構造体12から第2の流路13へ放出される。第2の流路13は、内管5の他方の開口端部7側で開口している。第2の流路13に放出された気化した前記熱輸送流体Gは、この第2の流路13の開口部から、外管2内部の開口側端部4近傍へ放出される。   Further, in the inner tube 5, the longitudinal direction of the second space 11 from the other open end 7 of the inner tube 5 or the vicinity thereof to a position corresponding to the closed end 3 of the outer tube 2 or the vicinity thereof. A second flow path 13 extending through the wick structure 12 extends. The reaction heat H released from the heat storage unit structure 9 is contained in the wick structure 12 by the wick structure 12 thermally connected to the heat storage unit structure 9 via the inner pipe 5. The liquefied product of the heat transport fluid having the function as the reaction gas is vaporized. The heat transport fluid having the function as the vaporized reaction gas (that is, the vapor of the heat transport fluid having the function as the reaction gas) G is discharged from the wick structure 12 to the second flow path 13. The second flow path 13 is open on the other opening end 7 side of the inner tube 5. The vaporized heat transport fluid G discharged to the second flow path 13 is discharged from the opening of the second flow path 13 to the vicinity of the opening side end 4 inside the outer tube 2.

第2の空間部11における、ウィック構造体12の体積と第2の流路13の体積の比率は、特に限定されないが、前記熱輸送流体Gの供給効率の点から2:1〜1:10が好ましく、1:1〜1:5が特に好ましい。また、第1の空間部8の体積と第2の空間部11の体積の比率は、特に限定されないが、蓄熱密度と前記熱輸送流体Gの供給効率とのバランスの点から3:1〜20:1が好ましく、5:1〜10:1が特に好ましい。   The ratio of the volume of the wick structure 12 and the volume of the second flow path 13 in the second space portion 11 is not particularly limited, but is 2: 1 to 1:10 in terms of supply efficiency of the heat transport fluid G. Is preferable, and 1: 1 to 1: 5 is particularly preferable. Moreover, the ratio of the volume of the first space 8 and the volume of the second space 11 is not particularly limited, but is 3: 1 to 20 in terms of the balance between the heat storage density and the supply efficiency of the heat transport fluid G. : 1 is preferred, and 5: 1 to 10: 1 is particularly preferred.

蓄熱部構造体9と反応ガスとが化学反応することで、反応熱Hを放出するとともに、第1の流路10内の反応ガスの蒸気圧が低下する。第1の流路10内における反応ガスの蒸気圧が低下すると、第2の流路13の開口部から、外管2内部の開口側端部4近傍へ放出された気化した前記熱輸送流体Gは、反応ガスとして、第1の流路10へ流れていく。また、内管5の他方の開口端部7が外管2の開口側端部4よりも外管2の閉塞側端部3側に位置する、すなわち、外管2の開口側端部4が内管5の他方の開口端部7よりも突出するように配置されることで、内管5の内部にて気化した前記熱輸送流体Gは、内管5の他方の開口端部7から第1の流路10へ、反応ガスとして、円滑に供給される。   The chemical reaction between the heat storage unit structure 9 and the reaction gas releases the reaction heat H, and the vapor pressure of the reaction gas in the first flow path 10 decreases. When the vapor pressure of the reaction gas in the first flow path 10 decreases, the vaporized heat transport fluid G discharged from the opening of the second flow path 13 to the vicinity of the opening end 4 inside the outer tube 2. Flows into the first flow path 10 as a reaction gas. Further, the other opening end 7 of the inner tube 5 is located closer to the closing side end 3 of the outer tube 2 than the opening side end 4 of the outer tube 2, that is, the opening side end 4 of the outer tube 2 is The heat transport fluid G vaporized inside the inner tube 5 is disposed from the other opening end 7 of the inner tube 5 by being arranged so as to protrude from the other opening end 7 of the inner tube 5. 1 is smoothly supplied as a reaction gas to one flow path 10.

内管5の第2の空間部11は、第2の流路13の閉塞した端部である外管2の閉塞側端部3またはその近傍に相当する位置から内管5の一方の開口端部6まで、ウィック構造体12によって充填されている。これにより、内管5の他方の開口端部7またはその近傍から外管2の閉塞側端部3またはその近傍に相当する位置まで存在するウィック構造体12に、反応ガスとしての機能を有した熱輸送流体の液化物を十分に供給することができる。   The second space portion 11 of the inner tube 5 has one open end of the inner tube 5 from a position corresponding to the closed end portion 3 of the outer tube 2 which is the closed end portion of the second flow path 13 or the vicinity thereof. The portion 6 is filled with the wick structure 12. Thereby, the wick structure 12 existing from the other open end 7 of the inner tube 5 or the vicinity thereof to a position corresponding to the closed side end 3 of the outer tube 2 or the vicinity thereof has a function as a reactive gas. The liquefied product of the heat transport fluid can be sufficiently supplied.

次に、第1実施形態例に係る蓄熱容器1に、反応ガスとしての機能を有した熱輸送流体を供給する方法の具体例を説明する。   Next, a specific example of a method for supplying a heat transport fluid having a function as a reaction gas to the heat storage container 1 according to the first embodiment will be described.

図3に示すように、外管2の閉塞側端部3から突出した内管5の一方の開口端部6が、反応ガスとしての機能を有した熱輸送流体の液化物Lが収容された熱輸送流体容器30と接続されることで、蓄熱容器1に反応ガスとしての機能を有した熱輸送流体を供給する。具体的には、内管5の一方の開口端部6には、第1の配管系31の一方の端部が接続され、第1の配管系31の他方の端部は、熱輸送流体容器30に収容された反応ガスとしての機能を有した熱輸送流体の液化物L中に埋入されている。第1の配管系31の内部にはウィック構造体32が充填されているので、ウィック構造体32の毛細管力によって、熱輸送流体容器30に収容された前記熱輸送流体の液化物Lが第1の配管系31へ供給される。第1の配管系31に供給された前記熱輸送流体の液化物Lは、ウィック構造体32の毛細管力によって、第1の配管系31のウィック構造体32内を他方の端部側から一方の端部側へ輸送されていき、第1の配管系31の一方の端部から内管5のウィック構造体12へ輸送される。   As shown in FIG. 3, the liquefied product L of the heat transport fluid in which one open end 6 of the inner tube 5 protruding from the closed end 3 of the outer tube 2 has a function as a reaction gas is accommodated. By being connected to the heat transport fluid container 30, a heat transport fluid having a function as a reaction gas is supplied to the heat storage container 1. Specifically, one end of the first piping system 31 is connected to one open end 6 of the inner pipe 5, and the other end of the first piping system 31 is a heat transport fluid container. 30 is embedded in a liquefied product L of a heat transport fluid having a function as a reaction gas. Since the inside of the first piping system 31 is filled with the wick structure 32, the liquefied product L of the heat transport fluid stored in the heat transport fluid container 30 is first caused by the capillary force of the wick structure 32. To the piping system 31. The liquefied product L of the heat transport fluid supplied to the first piping system 31 is caused by the capillary force of the wick structure 32 within the wick structure 32 of the first piping system 31 from one end side to the other. It is transported to the end side and transported from one end of the first piping system 31 to the wick structure 12 of the inner pipe 5.

第1の配管系31には、前記熱輸送流体の液化物Lの供給量及び供給のタイミングを調節するために、バルブ33が設けられている。なお、外管2の開口側端部4には第2の配管系34が接続されており、第1の流路10へは供給されなかった余剰の気化した前記熱輸送流体Gは、上記反応熱Hを輸送する熱輸送媒体として、第2の配管系34を介して、外管2の開口側端部4から熱利用先(図示せず)へ輸送される。   The first piping system 31 is provided with a valve 33 in order to adjust the supply amount and supply timing of the liquefied product L of the heat transport fluid. A second piping system 34 is connected to the opening side end 4 of the outer tube 2, and the excess vaporized heat transport fluid G that has not been supplied to the first flow path 10 is the above reaction. As a heat transport medium for transporting the heat H, the heat is transported from the opening side end 4 of the outer tube 2 to a heat utilization destination (not shown) via the second piping system 34.

次に、蓄熱容器1の作用について説明する。蓄熱容器1が、例えば、熱回収対象である流体の流れ中に設置されると、外管2の外面が、前記流体から熱を受け、回収する。外管2の外面が前記流体から回収した熱は、外管2と接触し熱的に接続されている蓄熱部構造体9へ伝えられ、蓄熱部構造体9に含まれる化学蓄熱材が、蓄熱部構造体9へ伝えられた前記熱を貯蔵する。化学蓄熱材は、熱を貯蔵する際に、反応ガスを第1の流路10へ放出する。   Next, the operation of the heat storage container 1 will be described. When the heat storage container 1 is installed, for example, in the flow of a fluid that is a heat recovery target, the outer surface of the outer tube 2 receives heat from the fluid and recovers it. The heat recovered by the outer surface of the outer tube 2 from the fluid is transmitted to the heat storage unit structure 9 that is in contact with and thermally connected to the outer tube 2, and the chemical heat storage material included in the heat storage unit structure 9 The heat transferred to the substructure 9 is stored. The chemical heat storage material releases the reaction gas to the first flow path 10 when storing heat.

一方、第1の流路10に存在する反応ガスと蓄熱部構造体9(熱を貯蔵した化学蓄熱材)とが反応することで、蓄熱部構造体9に貯蔵されていた熱が反応熱Hとして蓄熱部構造体9から放出される。第1の流路10の反応ガスと蓄熱部構造体9とが反応することで、第1の流路10における反応ガスの蒸気圧は低下するが、反応ガスの蒸気圧の低下に応じて、反応ガスとしての機能を有した熱輸送流体が、新たな反応ガスとして、第2の流路13から第1の流路10へ供給されるので、反応ガスの供給不足によって反応熱Hの放出が阻害されることを防止できる。蓄熱部構造体9から放出された反応熱Hは、内管5を介してウィック構造体12中の前記熱輸送流体の液化物Lへ伝えられ、前記熱輸送流体の液化物Lがウィック構造体12内部で上記反応熱Hを受熱して気化する。このうち、反応ガスとして第1の流路10へ供給されなかった余剰の気化した前記熱輸送流体Gが、該反応熱Hを輸送する熱媒体、すなわち、熱輸送流体として蓄熱容器1から熱利用先へ輸送される。   On the other hand, the reaction gas existing in the first flow path 10 reacts with the heat storage unit structure 9 (chemical heat storage material that stores heat), whereby the heat stored in the heat storage unit structure 9 is changed to the reaction heat H. And is discharged from the heat storage unit structure 9. The reaction gas in the first flow path 10 and the heat storage unit structure 9 react to reduce the vapor pressure of the reaction gas in the first flow path 10, but according to the decrease in the vapor pressure of the reaction gas, Since the heat transport fluid having the function as the reaction gas is supplied as the new reaction gas from the second flow path 13 to the first flow path 10, the reaction heat H is released due to insufficient supply of the reaction gas. It can be prevented from being inhibited. The reaction heat H released from the heat storage unit structure 9 is transmitted to the liquefied product L of the heat transport fluid in the wick structure 12 via the inner pipe 5, and the liquefied product L of the heat transport fluid is transferred to the wick structure. 12 receives the reaction heat H and vaporizes. Among these, the surplus vaporized heat transport fluid G that has not been supplied as the reaction gas to the first flow path 10 is used as a heat medium for transporting the reaction heat H, that is, as heat transport fluid from the heat storage container 1. It is transported ahead.

なお、熱回収対象である流体から受熱し、熱を回収する効率を向上させるために、外管2の外面に熱交換手段であるフィンを取り付けてもよい。   In addition, in order to improve the efficiency of receiving heat from the fluid that is the subject of heat recovery and recovering heat, fins that are heat exchange means may be attached to the outer surface of the outer tube 2.

蓄熱部構造体9の成分は特に限定されず、例えば、化学蓄熱材と金属粉の混合物の焼結体、化学蓄熱材と粘土鉱物の混合物の焼結体、化学蓄熱材と金属製メッシュの混合物の焼結体、化学蓄熱材と有機物から生成した炭化物の混合の焼結体等を挙げることができる。化学蓄熱材と反応ガスは、特に限定されず、公知のものはいずれも使用でき、例えば、化学蓄熱材であるCaO及び/またはMgOと反応ガスであるHOとの組み合わせ、CaO及び/またはMgOと反応ガスであるCOとの組み合わせ等を挙げることができる。上記金属粉は、特に限定されず、例えば、銅粉、アルミニウム粉、鉄粉等を挙げることができる。また、金属製メッシュの材質は、特に限定されず、例えば、銅、アルミニウム、鉄、ステンレス、チタン等を挙げることができる。化学蓄熱材と金属粉とを混合し焼結することで、蓄熱部構造体9中に多孔質の金属が得られる。多孔質の金属により、蓄熱部構造体9の伝熱性が向上しつつ、化学蓄熱材を蓄熱部構造体9中に効率よく分散、担持できるので、蓄熱部構造体9の熱貯蔵性と熱放出性が向上する。 The components of the heat storage unit structure 9 are not particularly limited. For example, a sintered body of a mixture of a chemical heat storage material and a metal powder, a sintered body of a mixture of a chemical heat storage material and a clay mineral, a mixture of a chemical heat storage material and a metal mesh. And a sintered body of a mixture of a carbide formed from a chemical heat storage material and an organic material. The chemical heat storage material and the reaction gas are not particularly limited, and any known materials can be used. For example, a combination of CaO and / or MgO which is a chemical heat storage material and H 2 O which is a reaction gas, CaO and / or A combination of MgO and reactive gas CO 2 can be used. The said metal powder is not specifically limited, For example, copper powder, aluminum powder, iron powder etc. can be mentioned. Moreover, the material of a metal mesh is not specifically limited, For example, copper, aluminum, iron, stainless steel, titanium etc. can be mentioned. A porous metal is obtained in the heat storage unit structure 9 by mixing and sintering the chemical heat storage material and the metal powder. The porous metal can efficiently disperse and carry the chemical heat storage material in the heat storage unit structure 9 while improving the heat transfer property of the heat storage unit structure 9, so that the heat storage property and heat release of the heat storage unit structure 9 can be achieved. Improves.

外管2、内管5の材質は、特に限定されず、例えば、銅、アルミニウム、ステンレス等を挙げることができる。また、熱交換手段であるフィンの材質も、特に限定されず、例えば、同じく、銅、アルミニウム、ステンレス等を挙げることができる。   The material of the outer tube 2 and the inner tube 5 is not particularly limited, and examples thereof include copper, aluminum, and stainless steel. Moreover, the material of the fin which is a heat exchange means is not specifically limited, For example, copper, aluminum, stainless steel etc. can be mentioned similarly.

ウィック構造体12、32は、毛細管構造を有する構成であれば特に限定されず、例えば、メッシュ、ワイヤ等を有する部材を挙げることができる。   The wick structures 12 and 32 are not particularly limited as long as they have a capillary structure, and examples thereof include a member having a mesh, a wire, and the like.

次に、本発明の第2実施形態例に係る蓄熱容器20について図面を用いながら説明する。なお、蓄熱容器1と同じ構成要素については、同じ符号を用いて説明する。図4、5に示すように、第2実施形態例に係る蓄熱容器20では、内管5の壁面に、貫通孔21が複数設けられている。貫通孔21の位置及び数量は特に限定されないが、蓄熱容器20では、内管5の周方向について等間隔に4カ所、内管5の長手方向について等間隔に6カ所、計24個の貫通孔21が内管5に設けられている。各貫通孔21の位置に相当する部位にはウィック構造体12が設けられていない。   Next, the heat storage container 20 according to the second embodiment of the present invention will be described with reference to the drawings. In addition, about the same component as the thermal storage container 1, it demonstrates using the same code | symbol. As shown in FIGS. 4 and 5, in the heat storage container 20 according to the second embodiment, a plurality of through holes 21 are provided in the wall surface of the inner tube 5. The position and quantity of the through-holes 21 are not particularly limited. In the heat storage container 20, there are a total of 24 through-holes, 4 at regular intervals in the circumferential direction of the inner tube 5 and 6 at regular intervals in the longitudinal direction of the inner tube 5. 21 is provided in the inner pipe 5. The wick structure 12 is not provided in a portion corresponding to the position of each through hole 21.

また、図5に示すように、蓄熱部構造体9の内部には、第1の空間部8の長手方向に対して平行方向に蓄熱部構造体9の内部を貫通する第1の流路10に代えて、外管2の内面と内管5の外面との間に形成された第1の空間部8の長手方向に対して平行方向に蓄熱部構造体9の内部を貫通する長手方向の流路と、それぞれの貫通孔21と該長手方向の流路とを連通させる短手方向の流路と、からなる第3の流路22が設けられている。   In addition, as shown in FIG. 5, a first flow path 10 that penetrates through the inside of the heat storage unit structure 9 in a direction parallel to the longitudinal direction of the first space 8 is provided inside the heat storage unit structure 9. Instead of the longitudinal direction penetrating the inside of the heat storage unit structure 9 in a direction parallel to the longitudinal direction of the first space portion 8 formed between the inner surface of the outer tube 2 and the outer surface of the inner tube 5. A third flow path 22 is provided that includes a flow path and a short-direction flow path that communicates each through hole 21 with the long-direction flow path.

従って、内管5の内部にて気化した反応ガスとしての機能を有した熱輸送流体Gは、内管5の他方の開口端部7から第3の流路22へ、反応ガスとして供給されるだけでなく、貫通孔21から蓄熱部構造体9の内部に設けられた第3の流路22へ、気化した前記熱輸送流体Gが放出されるので、蓄熱部構造体9への気化した前記熱輸送流体Gの放出量、すなわち、蓄熱部構造体9への反応ガスの供給量が、不足するのを確実に防止できる。   Accordingly, the heat transport fluid G having a function as a reaction gas vaporized inside the inner tube 5 is supplied as a reaction gas from the other open end 7 of the inner tube 5 to the third flow path 22. In addition, since the vaporized heat transport fluid G is discharged from the through hole 21 to the third flow path 22 provided inside the heat storage section structure 9, the vaporized heat storage section structure 9 is vaporized. It is possible to reliably prevent the discharge amount of the heat transport fluid G, that is, the supply amount of the reaction gas to the heat storage unit structure 9, from being insufficient.

第1の空間部8における、蓄熱部構造体9の体積と第3の流路22の体積の比率は、特に限定されないが、蓄熱密度と反応速度のバランスの点から2:1〜20:1が好ましく、5:1〜15:1が特に好ましい。内管5の内部である第2の空間部11における、ウィック構造体12の体積と第2の流路13の体積の比率は、特に限定されないが、前記熱輸送流体Gの供給効率の点から2:1〜1:10が好ましく、1:1〜1:5が特に好ましい。また、第1の空間部8の体積と第2の空間部11の体積の比率は、特に限定されないが、蓄熱密度と前記熱輸送流体Gの供給効率とのバランスの点から3:1〜20:1が好ましく、5:1〜10:1が特に好ましい。   The ratio of the volume of the heat storage unit structure 9 and the volume of the third flow path 22 in the first space 8 is not particularly limited, but is 2: 1 to 20: 1 from the viewpoint of the balance between the heat storage density and the reaction rate. Is preferable, and 5: 1 to 15: 1 is particularly preferable. The ratio of the volume of the wick structure 12 and the volume of the second flow path 13 in the second space 11 inside the inner pipe 5 is not particularly limited, but from the viewpoint of the supply efficiency of the heat transport fluid G 2: 1 to 1:10 are preferable, and 1: 1 to 1: 5 are particularly preferable. Moreover, the ratio of the volume of the first space 8 and the volume of the second space 11 is not particularly limited, but is 3: 1 to 20 in terms of the balance between the heat storage density and the supply efficiency of the heat transport fluid G. : 1 is preferred, and 5: 1 to 10: 1 is particularly preferred.

第2実施形態例に係る蓄熱容器20に、反応ガスとしての機能を有した熱輸送流体を供給する方法は、蓄熱容器1と同様の方法にて行うことができる。   A method for supplying a heat transport fluid having a function as a reaction gas to the heat storage container 20 according to the second embodiment can be performed by the same method as that for the heat storage container 1.

すなわち、図6に示すように、外管2の閉塞側端部3から突出した内管5の一方の開口端部6が、反応ガスとしての機能を有した熱輸送流体の液化物Lが収容された熱輸送流体容器30と接続されることで、蓄熱容器20に反応ガスとしての機能を有した熱輸送流体を供給する。具体的には、内管5の一方の開口端部6には、内部にウィック構造体32が充填された第1の配管系31の一方の端部が接続され、第1の配管系31の他方の端部は、熱輸送流体容器30に収容された反応ガスとしての機能を有した熱輸送流体の液化物L中に埋入される。   That is, as shown in FIG. 6, one open end 6 of the inner tube 5 protruding from the closed end 3 of the outer tube 2 accommodates a liquefied product L of a heat transport fluid having a function as a reaction gas. By being connected to the heat transport fluid container 30, a heat transport fluid having a function as a reaction gas is supplied to the heat storage container 20. Specifically, one end of a first piping system 31 filled with a wick structure 32 is connected to one open end 6 of the inner pipe 5. The other end is embedded in a liquefied product L of heat transport fluid having a function as a reaction gas accommodated in the heat transport fluid container 30.

次に、本発明の蓄熱容器の製造方法例を説明する。製造方法は特に限定されないが、例えば、外管の閉塞側端部に、内管の外形に対応する形状と寸法を有する貫通穴を形成し、該貫通穴に内管を嵌挿して外管の内部空間に内管を配置、固定する。次に、外管の内面と内管の外面との間に形成された第1の空間部に、該第1の空間部の形状と寸法に対応した形状と寸法を有し、第1の流路または第3の流路に相当する空隙部を有する蓄熱部構造体を挿入する。次に、内管の内部である第2の空間部に、外形が内管の内面に対応する形状と寸法を有し、第2の流路に相当する空隙部を有する(内管に貫通孔が形成されている場合には、各貫通孔の位置に相当する部位にも各貫通孔から第2の流路へ連通した空隙部がさらに形成されている)ウィック構造体を挿入することで、蓄熱容器を製造することができる。   Next, the example of the manufacturing method of the thermal storage container of this invention is demonstrated. Although the manufacturing method is not particularly limited, for example, a through hole having a shape and a dimension corresponding to the outer shape of the inner tube is formed in the closed end portion of the outer tube, and the inner tube is fitted into the through hole to insert the outer tube. Place and fix the inner tube in the internal space. Next, the first space formed between the inner surface of the outer tube and the outer surface of the inner tube has a shape and a size corresponding to the shape and size of the first space, and the first flow portion A heat storage unit structure having a gap corresponding to the path or the third flow path is inserted. Next, in the second space inside the inner tube, the outer shape has a shape and size corresponding to the inner surface of the inner tube, and has a gap corresponding to the second flow path (through hole in the inner tube). When the wick structure is inserted, the space corresponding to the position of each through hole is also formed with a void portion communicating from each through hole to the second flow path). A heat storage container can be manufactured.

次に、本発明の蓄熱容器を用いた蓄熱装置について、図面を用いながら説明する。   Next, a heat storage device using the heat storage container of the present invention will be described with reference to the drawings.

図7に示すように、本発明の実施形態例に係る蓄熱装置100は、複数の蓄熱容器1、20が並列に配置されている。それぞれの蓄熱容器1、20は、蓄熱容器1、20の外管2の閉塞側端部から突出した内管5の一方の開口端部が、ウィック構造体が充填された第1の配管系31を介して、化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器30と接続されている。前記熱輸送流体の液化物は、蓄熱容器1、20のウィック構造体及び第1の配管系31内のウィック構造体の毛細管力により、熱輸送流体容器30から蓄熱容器1、20の内管5の内部へ流入する。蓄熱容器1、20の内管5内部へ流入した前記熱輸送流体の液化物は、該内管5内部において気化し、内管5と外管2の間に形成された第1の流路へ流入して蓄熱部構造体の化学蓄熱材と化学反応し、化学蓄熱材が反応熱を放出する。   As shown in FIG. 7, the heat storage apparatus 100 according to the embodiment of the present invention has a plurality of heat storage containers 1 and 20 arranged in parallel. Each of the heat storage containers 1, 20 has a first piping system 31 in which one open end of the inner pipe 5 protruding from the closed end of the outer pipe 2 of the heat storage containers 1, 20 is filled with a wick structure. The heat transport fluid container 30 containing a liquefied product of the heat transport fluid having a function as a reaction gas that contributes to the endothermic reaction and the exothermic reaction of the chemical heat storage material is connected. The liquefied product of the heat transport fluid is transferred from the heat transport fluid container 30 to the inner tube 5 of the heat storage container 1, 20 by the capillary force of the wick structure of the heat storage container 1, 20 and the wick structure in the first piping system 31. Flows into the interior. The liquefied material of the heat transport fluid that has flowed into the inner pipe 5 of the heat storage containers 1, 20 is vaporized inside the inner pipe 5, and enters a first flow path formed between the inner pipe 5 and the outer pipe 2. It flows in and chemically reacts with the chemical heat storage material of the heat storage unit structure, and the chemical heat storage material releases reaction heat.

放出された反応熱は、新たに熱輸送流体容器30から蓄熱容器1、20の内管5内部へ流入する反応ガスとしての機能を有した熱輸送流体中へ移動する。前記反応熱を受熱した前記熱輸送流体は、上記と同様に気化し、化学蓄熱材との上記化学反応に使用されなかった余剰の、反応ガスとしての機能を有した熱輸送流体は、蒸気として、蓄熱容器1、20から第2の配管系34へ放出される。   The released reaction heat moves into a heat transport fluid having a function as a reaction gas newly flowing from the heat transport fluid container 30 into the inner pipe 5 of the heat storage container 1, 20. The heat transport fluid that has received the reaction heat is vaporized in the same manner as described above, and the surplus heat transport fluid that has not been used for the chemical reaction with the chemical heat storage material has a function as a reaction gas. The heat storage containers 1 and 20 are discharged to the second piping system 34.

それぞれの蓄熱容器1、20は、外管2の開口側端部が、第2の配管系34を介して、蓄熱容器1、20から排出される反応ガスとしての機能を有する熱輸送流体の蒸気を液化する凝縮器35と接続されている。第2の配管系34へ放出された、上記化学反応に使用されなかった前記熱輸送流体の蒸気は、第2の配管系34中を凝縮器35の方向へ移動していき、凝縮器35へ導入される。   In each heat storage container 1, 20, the opening side end of the outer tube 2 has a function as a reaction gas discharged from the heat storage container 1, 20 through the second piping system 34, and is a heat transport fluid vapor. Is connected to a condenser 35 for liquefying the liquid. The vapor of the heat transport fluid that has been released to the second piping system 34 and has not been used for the chemical reaction moves in the second piping system 34 toward the condenser 35 and enters the condenser 35. be introduced.

凝縮器35に導入された前記熱輸送流体の蒸気は、凝縮されて液化するとともに潜熱を放出する。凝縮器35にて放出された潜熱は、凝縮器と熱的に接続された熱利用先(図示せず)へ輸送される。このように、蓄熱装置100では、反応ガスを、熱利用先へ化学蓄熱材から放出された反応熱を輸送する熱輸送流体としても使用している。熱利用先としては、特に限定されず、例えば、内燃機関や暖房装置等を挙げることができる。   The vapor of the heat transport fluid introduced into the condenser 35 is condensed and liquefied and releases latent heat. The latent heat released by the condenser 35 is transported to a heat utilization destination (not shown) thermally connected to the condenser. Thus, in the heat storage device 100, the reaction gas is also used as a heat transport fluid for transporting the reaction heat released from the chemical heat storage material to the heat utilization destination. The heat utilization destination is not particularly limited, and examples thereof include an internal combustion engine and a heating device.

さらに、蓄熱装置100は、凝縮器35と熱輸送流体容器30を接続し、凝縮器35によって得られた反応ガスとしての機能を有した熱輸送流体の液化物を熱輸送流体容器30へ戻す第3の配管系36を備えている。   Further, the heat storage device 100 connects the condenser 35 and the heat transport fluid container 30, and returns the liquefied product of the heat transport fluid having a function as a reaction gas obtained by the condenser 35 to the heat transport fluid container 30. 3 piping systems 36 are provided.

蓄熱装置100は、第1の配管系31、第2の配管系34及び第3の配管系36によって、それぞれ、熱輸送流体容器30から蓄熱容器1、20へ、蓄熱容器1、20から凝縮器35へ、凝縮器35から熱輸送流体容器30へと、前記熱輸送流体が循環する循環系が形成されている。前記循環系は、気密状態であり、かつ脱気されている。   The heat storage device 100 includes a first piping system 31, a second piping system 34, and a third piping system 36, respectively, from the heat transport fluid container 30 to the heat storage containers 1 and 20, and from the heat storage containers 1 and 20 to the condenser, respectively. 35, a circulation system in which the heat transport fluid circulates from the condenser 35 to the heat transport fluid container 30 is formed. The circulatory system is airtight and degassed.

従って、前記熱輸送流体を循環させるための機器を使用しなくても、第1の配管系31内部に設けられたウィック構造体の前記熱輸送流体を輸送する毛細管力と、相対的に高温である蓄熱容器1、20内部と相対的に低温である凝縮器35との温度差と、蓄熱容器1、20内部と凝縮器35における前記熱輸送流体の蒸気圧差を駆動力として、前記熱輸送流体は、蓄熱装置100の循環系を循環することができる。   Accordingly, the capillary force for transporting the heat transport fluid of the wick structure provided in the first piping system 31 and the relatively high temperature without using a device for circulating the heat transport fluid. Using the temperature difference between the interior of a certain heat storage container 1, 20 and the condenser 35, which is relatively low temperature, and the vapor pressure difference of the heat transport fluid in the heat storage container 1, 20 and the condenser 35 as a driving force, the heat transport fluid Can circulate through the circulation system of the heat storage device 100.

本発明の実施形態例に係る蓄熱装置100の使用方法は、特に限定されないが、例えば、図7に示すように、車両に搭載された内燃機関に接続された排気管40に蓄熱装置100の蓄熱容器1、20を搭載することで、排気管40内を流れる排ガス41中の熱を蓄熱容器1、20に蓄熱することができる。蓄熱容器1、20の外管2の外面が、排気管40内を流れる排ガス41と直接接触するように蓄熱容器1、20を配置することで、蓄熱容器1、20を熱源と熱的に接続することができる。   Although the usage method of the thermal storage apparatus 100 which concerns on the example of embodiment of this invention is not specifically limited, For example, as shown in FIG. 7, the thermal storage of the thermal storage apparatus 100 is connected to the exhaust pipe 40 connected to the internal combustion engine mounted in the vehicle. By mounting the containers 1 and 20, the heat in the exhaust gas 41 flowing through the exhaust pipe 40 can be stored in the heat storage containers 1 and 20. By arranging the heat storage containers 1 and 20 so that the outer surface of the outer pipe 2 of the heat storage containers 1 and 20 is in direct contact with the exhaust gas 41 flowing in the exhaust pipe 40, the heat storage containers 1 and 20 are thermally connected to the heat source. can do.

図7では、排気管40内を流れる排ガス41から熱を効率的に回収するために、それぞれの蓄熱容器1、20について、外管2の外面に、熱交換手段であるフィン37を、複数、取り付けている。また、蓄熱容器1、20の外管2は扁平形状なので、扁平形状の平坦部が排ガス41の流れ方向と平行となるように蓄熱容器1、20を配置することで、排ガス41の流れが、蓄熱容器1、20によって阻害されるのを抑制できる。   In FIG. 7, in order to efficiently recover heat from the exhaust gas 41 flowing in the exhaust pipe 40, a plurality of fins 37 as heat exchange means are provided on the outer surface of the outer pipe 2 for each of the heat storage containers 1 and 20. It is attached. In addition, since the outer tube 2 of the heat storage containers 1 and 20 is flat, by arranging the heat storage containers 1 and 20 so that the flat portion of the flat shape is parallel to the flow direction of the exhaust gas 41, the flow of the exhaust gas 41 is Inhibition by the heat storage containers 1 and 20 can be suppressed.

次に、本発明の他の実施形態例について説明する。第1の実施形態例である蓄熱容器1では、内管5内部にウィック構造体12が設けられていたが、これに代えて、ウィック構造体12を設けなくてもよい。この場合、熱輸送流体容器の底部を蓄熱容器よりも上方に設置して、重力作用によって、熱輸送流体容器から蓄熱容器へ反応ガスとしての機能を有した熱輸送流体の液化物を供給することが好ましい。また、第1の実施形態例である蓄熱容器1では、第1の流路10の形状は、正面視く字状となっていたが、これに代えて、正面視円形状、正面視楕円形状、正面視矩形状でもよく、第1の流路10内に流れる反応ガスと蓄熱部構造体9との接触面積をさらに増大させるために、正面視波状等としてもよい。   Next, another embodiment of the present invention will be described. In the heat storage container 1 according to the first embodiment, the wick structure 12 is provided inside the inner tube 5. However, instead of this, the wick structure 12 may not be provided. In this case, the bottom of the heat transport fluid container is installed above the heat storage container, and the liquefied product of the heat transport fluid having a function as a reaction gas is supplied from the heat transport fluid container to the heat storage container by the gravitational action. Is preferred. Moreover, in the thermal storage container 1 which is the first embodiment, the shape of the first flow path 10 is a square shape when viewed from the front, but instead, is a circular shape when viewed from the front and an elliptical shape when viewed from the front. The shape may be rectangular when viewed from the front, or may be wavy when viewed from the front in order to further increase the contact area between the reaction gas flowing in the first flow path 10 and the heat storage unit structure 9.

また、第1、2の実施形態例である蓄熱容器1、20では、外管2は円形状の管材を扁平加工した扁平形状であり、内管5は円形状の管材であったが、外管及び内管の形状は特に限定されず、これに代えて、例えば、外管及び内管ともに、扁平形状または円形状でもよく、外管及び/または内管が、矩形状でもよい。また、第2実施形態例に係る蓄熱容器20では、各貫通孔21の位置に相当する部位にはウィック構造体12が設けられていないが、これに代えて、必要に応じて、貫通孔21の位置に相当する部位にもウィック構造体12が設けられている態様としてもよい。   In the heat storage containers 1 and 20 as the first and second embodiments, the outer tube 2 has a flat shape obtained by flattening a circular tube material, and the inner tube 5 is a circular tube material. The shapes of the tube and the inner tube are not particularly limited. Instead, for example, both the outer tube and the inner tube may be flat or circular, and the outer tube and / or the inner tube may be rectangular. In addition, in the heat storage container 20 according to the second embodiment, the wick structure 12 is not provided in a portion corresponding to the position of each through-hole 21, but instead of this, the through-hole 21 is used as necessary. It is good also as an aspect by which the wick structure 12 is provided also in the site | part corresponded to this position.

簡易な構成にて、吸熱及び発熱の効率と熱輸送量を向上でき、また、化学蓄熱材の破壊を防止できる蓄熱容器及び蓄熱容器を備えた蓄熱装置を得ることができるので、エンジンや工業プラント等からの排熱の回収・貯蔵及び利用の分野、例えば、車両に搭載して排熱を回収・貯蔵及び利用する分野で、利用価値が高い。   With a simple configuration, it is possible to improve the efficiency of heat absorption and heat generation and the amount of heat transport, and it is possible to obtain a heat storage container and a heat storage device equipped with a heat storage container that can prevent the destruction of chemical heat storage materials. The utility value is high in the field of recovery, storage and use of exhaust heat from the vehicle, for example, the field of recovery, storage and use of exhaust heat mounted on a vehicle.

1、20 蓄熱容器
2 外管
5 内管
9 蓄熱部構造体
10 第1の流路
12 ウィック構造体
13 第2の流路
21 貫通孔
30 熱輸送流体容器
100 蓄熱装置
DESCRIPTION OF SYMBOLS 1, 20 Thermal storage container 2 Outer tube 5 Inner tube 9 Thermal storage part structure 10 1st flow path 12 Wick structure 13 2nd flow path 21 Through-hole 30 Heat transport fluid container 100 Thermal storage apparatus

Claims (8)

一方の端部が閉塞された閉塞側端部と他方の端部が開口した開口側端部とを有する筒状体からなる外管と、該外管の閉塞側端部から一方の開口端部が突出し、他方の開口端部が前記外管の開口側端部よりも前記外管の閉塞側端部側に位置するように、前記外管内に挿入された内管と、前記外管の内面と前記内管の外面との間に形成された第1の空間部に収容された化学蓄熱材を含有する蓄熱部構造体と、前記蓄熱部構造体を前記第1の空間部の長手方向に貫通する第1の流路と、を備え
前記内管の内部である第2の空間部に、ウィック構造体と前記ウィック構造体を前記第2の空間部の長手方向に貫通する第2の流路とが設けられている蓄熱容器。
An outer tube made of a cylindrical body having a closed side end where one end is closed and an open side end where the other end is open, and one open end from the closed side end of the outer tube The inner tube inserted into the outer tube, and the inner surface of the outer tube so that the other opening end is located closer to the closing side end of the outer tube than the opening side end of the outer tube And a heat storage part structure containing a chemical heat storage material housed in a first space formed between the outer surface of the inner pipe and the heat storage part structure in the longitudinal direction of the first space A first flow path extending therethrough ,
A heat storage container in which a wick structure and a second flow path that penetrates the wick structure in a longitudinal direction of the second space are provided in a second space that is inside the inner pipe .
前記内管の壁面に、貫通孔が設けられた請求項に記載の蓄熱容器。 The heat storage container according to claim 1 , wherein a through hole is provided in a wall surface of the inner tube. 前記内管の壁面に、貫通孔が設けられ、該貫通孔の部位には前記ウィック構造体が設けられていない請求項に記載の蓄熱容器。 The heat storage container according to claim 1 , wherein a through hole is provided in a wall surface of the inner tube, and the wick structure is not provided in a portion of the through hole. 前記外管の閉塞側端部から突出した前記内管の一方の開口端部が、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と接続されている請求項1乃至のいずれか1項に記載の蓄熱容器。 A liquefied product of a heat transport fluid in which one open end of the inner tube protruding from the closed end of the outer tube has a function as a reaction gas contributing to an endothermic reaction and an exothermic reaction of the chemical heat storage material. The heat storage container according to any one of claims 1 to 3 , wherein the heat storage container is connected to a stored heat transport fluid container. 前記外管の閉塞側端部から突出した前記内管の一方の開口端部が、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と接続され、前記熱輸送流体容器の底部が前記内管の一方の開口端部よりも上方にある請求項1に記載の蓄熱容器。   A liquefied product of a heat transport fluid in which one open end of the inner tube protruding from the closed end of the outer tube has a function as a reaction gas contributing to an endothermic reaction and an exothermic reaction of the chemical heat storage material. 2. The heat storage container according to claim 1, wherein the heat storage container is connected to the accommodated heat transport fluid container, and the bottom of the heat transport fluid container is located above one open end of the inner pipe. 前記化学蓄熱材を含有する蓄熱部構造体が、化学蓄熱材と、金属粉、粘土鉱物、有機物の炭化物及び金属製メッシュからなる群から選択された少なくとも1種との混合物の焼結体である請求項1乃至のいずれか1項に記載の蓄熱容器。 The heat storage unit structure containing the chemical heat storage material is a sintered body of a mixture of the chemical heat storage material and at least one selected from the group consisting of metal powder, clay minerals, organic carbides and metal meshes. The heat storage container according to any one of claims 1 to 5 . 一方の端部が閉塞された閉塞側端部と他方の端部が開口した開口側端部とを有する筒状体からなる外管と、該外管の閉塞側端部から一方の開口端部が突出し、他方の開口端部が前記外管の開口側端部よりも前記外管の閉塞側端部側に位置するように、前記外管内に挿入された内管と、前記外管の内面と前記内管の外面との間に形成された第1の空間部に収容された化学蓄熱材を含有する蓄熱部構造体と、前記蓄熱部構造体を前記第1の空間部の長手方向に貫通する第1の流路と、を備え
前記内管の内部である第2の空間部に、ウィック構造体と前記ウィック構造体を前記第2の空間部の長手方向に貫通する第2の流路とが設けられている蓄熱容器と、
前記外管の閉塞側端部から突出した前記内管の一方の開口端部と接続された、前記化学蓄熱材の吸熱反応及び発熱反応に寄与する反応ガスとしての機能を有した熱輸送流体の液化物が収容された熱輸送流体容器と、
前記外管の開口側端部と接続された、前記外管の開口側端部から放出される気化した前記熱輸送流体を液化させる凝縮器と、
前記熱輸送流体容器と前記凝縮器を接続し、前記凝縮器によって得られた前記熱輸送流体の液化物を前記熱輸送流体容器へ供給する配管系と、
を備えた、前記熱輸送流体の循環系を有し、
前記循環系が、気密状態であり、脱気されている蓄熱装置。
An outer tube made of a cylindrical body having a closed side end where one end is closed and an open side end where the other end is open, and one open end from the closed side end of the outer tube The inner tube inserted into the outer tube, and the inner surface of the outer tube so that the other opening end is located closer to the closing side end of the outer tube than the opening side end of the outer tube And a heat storage part structure containing a chemical heat storage material housed in a first space formed between the outer surface of the inner pipe and the heat storage part structure in the longitudinal direction of the first space A first flow path extending therethrough ,
A heat storage container in which a wick structure and a second flow path penetrating the wick structure in the longitudinal direction of the second space portion are provided in the second space portion that is inside the inner tube ;
A heat transport fluid having a function as a reaction gas that contributes to an endothermic reaction and an exothermic reaction of the chemical heat storage material, connected to one open end of the inner tube protruding from the closed end of the outer tube. A heat transport fluid container containing the liquefied material;
A condenser connected to the opening side end of the outer pipe and liquefying the vaporized heat transport fluid discharged from the opening side end of the outer pipe;
A piping system for connecting the heat transport fluid container and the condenser, and supplying a liquefied product of the heat transport fluid obtained by the condenser to the heat transport fluid container;
Comprising a circulation system of the heat transport fluid,
The heat storage device in which the circulation system is in an airtight state and is deaerated.
前記外管の表面が、熱源と熱的に接続されている請求項に記載の蓄熱装置。 The heat storage device according to claim 7 , wherein a surface of the outer tube is thermally connected to a heat source.
JP2014197928A 2014-09-29 2014-09-29 Heat storage container and heat storage device provided with heat storage container Expired - Fee Related JP6422283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197928A JP6422283B2 (en) 2014-09-29 2014-09-29 Heat storage container and heat storage device provided with heat storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197928A JP6422283B2 (en) 2014-09-29 2014-09-29 Heat storage container and heat storage device provided with heat storage container

Publications (2)

Publication Number Publication Date
JP2016070542A JP2016070542A (en) 2016-05-09
JP6422283B2 true JP6422283B2 (en) 2018-11-14

Family

ID=55864403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197928A Expired - Fee Related JP6422283B2 (en) 2014-09-29 2014-09-29 Heat storage container and heat storage device provided with heat storage container

Country Status (1)

Country Link
JP (1) JP6422283B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218492A (en) * 2016-06-06 2017-12-14 古河電気工業株式会社 Chemical thermal storage material and heat storage container using chemical thermal storage material
JP6757613B2 (en) * 2016-07-27 2020-09-23 古河電気工業株式会社 Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
JP7296207B2 (en) * 2018-12-20 2023-06-22 三菱重工業株式会社 Plate-shaped chemical heat storage element
JP7472509B2 (en) * 2020-01-29 2024-04-23 株式会社豊田中央研究所 Heat storage body and chemical heat storage reactor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9001289A (en) * 1990-06-07 1992-01-02 Beijer Raadgevend Tech Bureau HEAT ACCUMULATOR, METHOD FOR THE PRODUCTION THEREOF, AND ENERGY SYSTEM INCLUDED WITH SUCH A HEAT ACCUMULATOR.
JP5232510B2 (en) * 2008-03-14 2013-07-10 株式会社豊田中央研究所 Manufacturing method of chemical heat storage material molded body
JP5232521B2 (en) * 2008-04-18 2013-07-10 株式会社豊田中央研究所 Method for producing chemical heat storage material composite
JP2010216772A (en) * 2009-03-18 2010-09-30 Toyota Central R&D Labs Inc Chemical heat storage reactor and chemical heat storage system
JP5724302B2 (en) * 2010-11-04 2015-05-27 アイシン精機株式会社 Chemical heat storage device and chemical heat storage device
JP2012211713A (en) * 2011-03-30 2012-11-01 Toyota Central R&D Labs Inc Chemical heat storage reactor, and chemical heat storage system
WO2014004428A1 (en) * 2012-06-29 2014-01-03 Saint-Gobain Ceramics & Plastics. Inc. Low void fraction thermal storage articles and methods
JP6200646B2 (en) * 2012-12-27 2017-09-20 株式会社デンソー Chemical heat storage device

Also Published As

Publication number Publication date
JP2016070542A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6647223B2 (en) Thermal storage container and thermal storage device provided with thermal storage container
JP5231076B2 (en) Chemical heat storage system
JP6422283B2 (en) Heat storage container and heat storage device provided with heat storage container
US11015876B2 (en) Porous honeycomb heat storage structure
DK3090199T3 (en) REVERSIBLE H2 STORAGE SYSTEM WITH RESERVOIR CONTAINING METAL HYDROIDS AND WITH PRESSURE EQUALIZATION
JP2017218492A (en) Chemical thermal storage material and heat storage container using chemical thermal storage material
JP5531334B2 (en) Chemical heat pump container
EP3516317B1 (en) System and method for thermochemical storage of energy
JP6026469B2 (en) Flat heat accumulator, heat accumulator unit with flat heat accumulator and heat accumulator with heat accumulator unit
CN109642776B (en) Heat storage system, heat storage container, heat storage device using heat storage container, and heating device using heat storage device
JP6877205B2 (en) Heat storage device
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP2017219234A (en) Heat storage container and heat storage device including heat storage container
JP2015178926A (en) Heat storage system
JP6215048B2 (en) Thermal storage management system
JP2012145252A (en) Chemical heat pump
JP6838475B2 (en) Chemical heat storage reactor and chemical heat storage reactor system
JP6815755B2 (en) Heat storage system
JP6877204B2 (en) Heat storage device
JP6895783B2 (en) Heat storage device
JP2017009224A (en) Reactor and heat storage system
JP2022157388A (en) Reactor, and heat storage device
JP2020143852A (en) Chemical heat storage reactor and chemical heat storage device
JP6395622B2 (en) Heat storage device
Vasiliev HEAT PIPES TO INCREASE THE EFFICIENCY OF NEW POWER SOURCES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R151 Written notification of patent or utility model registration

Ref document number: 6422283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees