JP6421232B1 - Method for forming electrolytic copper zinc alloy plating film - Google Patents

Method for forming electrolytic copper zinc alloy plating film Download PDF

Info

Publication number
JP6421232B1
JP6421232B1 JP2017235508A JP2017235508A JP6421232B1 JP 6421232 B1 JP6421232 B1 JP 6421232B1 JP 2017235508 A JP2017235508 A JP 2017235508A JP 2017235508 A JP2017235508 A JP 2017235508A JP 6421232 B1 JP6421232 B1 JP 6421232B1
Authority
JP
Japan
Prior art keywords
copper
alloy plating
zinc alloy
plating film
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235508A
Other languages
Japanese (ja)
Other versions
JP2019099895A (en
Inventor
吉原 佐知雄
佐知雄 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2017235508A priority Critical patent/JP6421232B1/en
Application granted granted Critical
Publication of JP6421232B1 publication Critical patent/JP6421232B1/en
Publication of JP2019099895A publication Critical patent/JP2019099895A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

【課題】ムラのない均一な銅亜鉛合金めっき膜を、極めて生産性よく大電流で形成することができる亜鉛合金めっき膜の形成方法及び銅亜鉛合金めっき膜を提供する。
【解決手段】銅イオンと、亜鉛イオンと、添加剤とを少なくとも有する銅亜鉛合金めっき液を用いる銅亜鉛合金めっき膜の形成方法であって、前記添加剤が、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロールとを併用したことにより上記課題を解決する。複素環式化合物がL−ヒスチジンであることが好ましく、その場合において、L−ヒスチジンの含有量が0.05〜0.15mol/Lの範囲内であり、クアドロールの含有量が0.01〜0.02mol/Lの範囲内であることが好ましい。
【選択図】図1
The present invention provides a zinc alloy plating film forming method and a copper zinc alloy plating film capable of forming a uniform copper-zinc alloy plating film with no unevenness with a high current with extremely high productivity.
A method of forming a copper-zinc alloy plating film using a copper-zinc alloy plating solution having at least copper ions, zinc ions, and additives, wherein the additive has at least one imidazole group. And the said subject is solved by using together the heterocyclic compound which has a hydrophilic group, and quadrol. The heterocyclic compound is preferably L-histidine, in which case the content of L-histidine is in the range of 0.05 to 0.15 mol / L and the content of quadrol is 0.01 to 0. It is preferable to be within the range of 0.02 mol / L.
[Selection] Figure 1

Description

本発明は、銅亜鉛めっき膜を大電流で均一に成膜できる銅亜鉛合金めっき膜の形成方法、及びその方法によって得られた銅亜鉛合金めっき膜に関する。   The present invention relates to a method for forming a copper-zinc alloy plating film capable of uniformly forming a copper-zinc plating film with a large current, and a copper-zinc alloy plating film obtained by the method.

銅亜鉛合金めっきは、金属製品、プラスチック製品、セラミック製品等の装飾用として、プリント配線板用銅箔上への形成用として、また、タイヤ用スチールコードとゴムとの接着性を向上させる目的として広く用いられている。   Copper zinc alloy plating is used for decoration of metal products, plastic products, ceramic products, etc., for formation on copper foil for printed wiring boards, and for the purpose of improving the adhesion between tire steel cords and rubber. Widely used.

例えば特許文献1には、銅箔と樹脂基板間の接着強度を高く維持するとともに、耐マイグレーション性に優れたプリント配線板用銅箔を提供するプリント配線板用銅箔の表面処理方法が提案されている。この技術は、銅塩、亜鉛塩、オキシカルボン酸又はその塩、脂肪族ジカルボン酸又はその塩、及びチオシアン酸又はその塩を含む非シアン系銅亜鉛電気めっき浴に銅箔を浸漬して、銅箔の少なくとも一面に陰極電解処理を施して炭素含有銅−亜鉛被覆層を形成する表面処理方法である。この炭素含有銅−亜鉛被覆層は、予め銅箔面を粗面形成した状態を損なわせしめない程度、言い換えれば粗面形成によってもたらされる投錨効果から生じる樹脂基材との接着強度を十分発揮させることができる厚みの薄層として形成されるものである。   For example, Patent Document 1 proposes a surface treatment method for a copper foil for a printed wiring board that maintains a high adhesive strength between the copper foil and the resin substrate and provides a copper foil for a printed wiring board excellent in migration resistance. ing. In this technique, a copper foil is immersed in a non-cyanide copper zinc electroplating bath containing a copper salt, a zinc salt, an oxycarboxylic acid or a salt thereof, an aliphatic dicarboxylic acid or a salt thereof, and a thiocyanic acid or a salt thereof. This is a surface treatment method in which at least one surface of a foil is subjected to cathodic electrolytic treatment to form a carbon-containing copper-zinc coating layer. This carbon-containing copper-zinc coating layer has sufficient adhesion strength with the resin base material resulting from the anchoring effect brought about by the rough surface formation, in other words, it does not impair the state in which the copper foil surface is previously roughened. It is formed as a thin layer with a thickness that can be obtained.

また、特許文献2には、印刷回路用電解銅箔を対象として、非シアンめっき浴による電解銅箔粗化面へのCu−Zn合金めっき障壁層形成方法が提案されている。この技術は、電解銅箔の粗化面にCu−Zn合金めっき障壁層を形成するためにCu−Zn合金めっき浴を通して電解銅箔を移動させながらCu−Zn合金めっきを行う段階を含む印刷回路用銅箔の製造方法において、Cu−Zn合金めっき浴として(1)ピロりん酸のアルカリ金属塩及びポリりん酸のアルカリ金属塩から選ばれた少なくとも1種、(2)銅塩、(3)亜鉛塩並びに(4)アミノ酸及びその塩から選ばれた少なくとも1種よりなるめっき浴を用い、浴中の電解銅箔の移動速度を500m/hr〜3000m/hr、陰極電流密度を6A/dm2〜15A/dm2とするものである。 Patent Document 2 proposes a Cu-Zn alloy plating barrier layer forming method on an electrolytic copper foil roughened surface using a non-cyan plating bath for an electrolytic copper foil for a printed circuit. This technique includes a step of performing Cu-Zn alloy plating while moving an electrolytic copper foil through a Cu-Zn alloy plating bath to form a Cu-Zn alloy plating barrier layer on a roughened surface of the electrolytic copper foil. (1) At least one selected from an alkali metal salt of pyrophosphoric acid and an alkali metal salt of polyphosphoric acid, (2) a copper salt, (3) A plating bath comprising at least one selected from zinc salts and (4) amino acids and salts thereof is used, the moving speed of the electrolytic copper foil in the bath is 500 m / hr to 3000 m / hr, and the cathode current density is 6 A / dm 2. it is an ~15A / dm 2.

一方、特許文献3には、めっきヤケを生じず、均一な銅−亜鉛合金めっき層の生産性を向上させることができる銅−亜鉛合金めっき方法およびそれに用いる銅−亜鉛合金めっき浴が提案されている。この技術は、銅塩と、亜鉛塩と、ピロリン酸アルカリ金属塩と、アミノ酸またはその塩から選ばれた少なくとも一種と、を含有し、pHが8.5〜14である銅−亜鉛合金めっき浴を用いた銅−亜鉛合金めっき方法であり、めっき処理の際に、10A/dmを超える陰極電流密度で銅−亜鉛合金めっき処理を行うことができるというものである。 On the other hand, Patent Document 3 proposes a copper-zinc alloy plating method capable of improving the productivity of a uniform copper-zinc alloy plating layer and a copper-zinc alloy plating bath used therefor without causing plating burn. Yes. This technique includes a copper-zinc alloy plating bath containing a copper salt, a zinc salt, an alkali metal pyrophosphate, and at least one selected from amino acids or salts thereof, and having a pH of 8.5-14. This is a copper-zinc alloy plating method using copper, and the copper-zinc alloy plating process can be performed at a cathode current density exceeding 10 A / dm 2 during the plating process.

特開平7−233497号公報JP-A-7-233497 特開平8−277485号公報JP-A-8-277485 特開2012−136753号公報JP 2012-136753 A

特許文献1に記載の炭素含有銅−亜鉛被覆層は、予め銅箔面を粗面形成した状態を損なわせない程度の厚みで形成されたものであり、その実施例及び比較例では0.5〜5A/dmの電流密度でめっきされている。銅亜鉛合金めっき等の各種めっきでは、要求される特性を満足する範囲内で可能な限り大きな電流でめっきして生産性を高めることが要求されるが、上記範囲の電流密度では要求を十分に満たすことはできず、より高い電流密度でのめっきが望まれる。 The carbon-containing copper-zinc coating layer described in Patent Document 1 is formed with a thickness that does not impair the state in which the copper foil surface is formed in advance, and in the examples and comparative examples, 0.5% is used. Plated at a current density of ˜5 A / dm 2 . In various types of plating such as copper-zinc alloy plating, it is required to increase the productivity by plating with as much current as possible within the range that satisfies the required characteristics. It cannot be satisfied and plating at a higher current density is desired.

また、特許文献2に記載のピロりん酸系めっき浴で形成されたCu−Zn合金めっきは、電解銅箔粗化面への障壁層として機能するものであり、そのめっき浴に添加されるL−ヒスチジン塩酸塩は、K427と同様に金属イオンの錯化剤で浴の安定性を増すと共にCu、Znの析出過電圧の変化に関与し、析出Cu−Zn合金めっき層の平滑性に影響している。しかし、その実施例及び比較例では10〜13A/dmの電流密度とされ、より高い電流密度でのめっきが望まれる。 Further, the Cu—Zn alloy plating formed by the pyrophosphate plating bath described in Patent Document 2 functions as a barrier layer to the roughened surface of the electrolytic copper foil, and is added to the plating bath. -Histidine hydrochloride, like K 4 P 2 O 7 , is a metal ion complexing agent that increases the stability of the bath and contributes to changes in the deposition overvoltage of Cu and Zn, and smoothes the deposited Cu-Zn alloy plating layer. Affects sex. However, in the examples and comparative examples, the current density is 10 to 13 A / dm 2 , and plating with a higher current density is desired.

また、特許文献3では、タイヤ用スチールコードに銅−亜鉛合金めっきを設けて、タイヤ用スチールコードとゴムとの接着性を向上させており、その実施例では1〜30A/dmの電流密度でめっきしている。しかし、これらは硫酸銅と硫酸亜鉛を含むめっき液であり、本発明者の実験結果によれば、こうしためっき液を用いた場合に必ずしも均一なめっき膜が得られないことがあった。 Moreover, in patent document 3, copper-zinc alloy plating is provided in the steel cord for tires, and the adhesiveness of the steel cord for tires and rubber | gum is improved, In the Example, the current density of 1-30 A / dm < 2 > It is plated with. However, these are plating solutions containing copper sulfate and zinc sulfate, and according to the experiment results of the present inventors, when such a plating solution is used, a uniform plating film may not always be obtained.

本発明は、上記課題を解決するためになされたものであって、その目的は、ムラのない均一な銅亜鉛合金めっき膜を、極めて生産性よく大電流で形成することができる亜鉛合金めっき膜の形成方法及び銅亜鉛合金めっき膜を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to form a uniform copper-zinc alloy plating film having no unevenness with a high current and extremely high productivity. And a copper-zinc alloy plating film.

(1)本発明に係る銅亜鉛合金めっき膜の形成方法は、銅イオンと、亜鉛イオンと、添加剤とを少なくとも有する銅亜鉛合金めっき液を用いる銅亜鉛合金めっき膜の形成方法であって、前記添加剤が、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用したことを特徴とする。
(1) A method for forming a copper zinc alloy plating film according to the present invention is a method for forming a copper zinc alloy plating film using a copper zinc alloy plating solution having at least copper ions, zinc ions, and additives, The additive is characterized in that a heterocyclic compound having at least one imidazole group and having a hydrophilic group and Quadrol (registered trademark) are used in combination.

この発明によれば、上記添加剤を有する銅亜鉛合金めっき液を用いることにより、銅亜鉛合金めっき膜を、生産性のよい高電流密度でムラなく均一に形成することができる。   According to the present invention, by using the copper-zinc alloy plating solution having the additive, the copper-zinc alloy plating film can be uniformly formed with high productivity and high current density.

本発明に係る銅亜鉛合金めっき膜の形成方法において、前記複素環式化合物がL−ヒスチジンであることが好ましい。   In the method for forming a copper-zinc alloy plating film according to the present invention, the heterocyclic compound is preferably L-histidine.

本発明に係る銅亜鉛合金めっき膜の形成方法において、前記複素環式化合物がL−ヒスチジンである場合において、前記L−ヒスチジンの含有量が0.05〜0.15mol/Lの範囲内であり、前記クアドロール(登録商標)の含有量が0.01〜0.02mol/Lの範囲内であることが好ましい。
In the method for forming a copper-zinc alloy plating film according to the present invention, when the heterocyclic compound is L-histidine, the content of L-histidine is in the range of 0.05 to 0.15 mol / L. The content of the Quadroll (registered trademark) is preferably in the range of 0.01 to 0.02 mol / L.

本発明に係る銅亜鉛合金めっき膜の形成方法において、前記銅イオンがピロリン酸銅イオンであり、前記亜鉛イオンがピロリン酸亜鉛イオンであることが好ましい。   In the method for forming a copper-zinc alloy plating film according to the present invention, it is preferable that the copper ions are copper pyrophosphate ions and the zinc ions are zinc pyrophosphate ions.

(2)本発明に係る銅亜鉛合金めっき膜は、各部の表面には、平均粒径0.03〜0.2μmの球状又は略球状粒子、又は、平均長さ0.5〜1.5μmで平均アスペクト比が5〜20の針状又は略針状粒子が堆積されていることを特徴とする。   (2) The copper zinc alloy plating film according to the present invention has spherical or substantially spherical particles having an average particle diameter of 0.03 to 0.2 μm or an average length of 0.5 to 1.5 μm on the surface of each part. Acicular or substantially acicular particles having an average aspect ratio of 5 to 20 are deposited.

本発明によれば、ムラのない均一な銅亜鉛合金めっき膜を、極めて生産性よく大電流で形成することができる亜鉛合金めっき膜の形成方法及び銅亜鉛合金めっき膜を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the formation method and copper-zinc alloy plating film of the zinc alloy plating film which can form a uniform copper zinc alloy plating film without a nonuniformity with a large current with very high productivity can be provided.

実施例1〜3で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained in Examples 1-3. 実施例4〜6で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained in Examples 4-6. 実施例7で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained in Example 7. 比較例1,2で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained in Comparative Examples 1 and 2. 比較例3,4で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained by the comparative examples 3 and 4. 比較例5,6で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。It is the surface photograph and enlarged photograph of the copper zinc alloy plating film obtained by Comparative Examples 5 and 6. 銅:亜鉛の質量比を測定しためっき膜各部を示す模式図である。It is a schematic diagram which shows each part of the plating film which measured the mass ratio of copper: zinc.

本発明に係る銅亜鉛合金めっき膜及びその形成方法について説明する。なお、本発明の技術的範囲は、その要旨の範囲内で以下の実施形態に限定されない。   The copper zinc alloy plating film and its formation method according to the present invention will be described. The technical scope of the present invention is not limited to the following embodiments within the scope of the gist.

[銅亜鉛合金めっき膜の形成方法]
本発明に係る銅亜鉛合金めっき膜の形成方法は、銅イオンと、亜鉛イオンと、添加剤とを少なくとも有する銅亜鉛合金めっき液を用いる銅亜鉛合金めっき膜の形成方法であって、その添加剤が、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用したことに特徴がある。
[Method of forming copper-zinc alloy plating film]
The method of forming a copper zinc alloy plating film according to the present invention is a method of forming a copper zinc alloy plating film using a copper zinc alloy plating solution having at least copper ions, zinc ions, and additives, and the additives Is characterized by the combined use of a heterocyclic compound having at least one imidazole group and a hydrophilic group, and Quadrol (registered trademark) .

この銅亜鉛合金めっき膜の形成方法では、上記添加剤を有する銅亜鉛合金めっき液を用いることにより、銅亜鉛合金めっき膜を、生産性のよい高電流密度でムラなく均一に形成することができる。以下、詳しく説明する。   In this method of forming a copper-zinc alloy plating film, the copper-zinc alloy plating film can be uniformly formed with high productivity and high current density by using a copper-zinc alloy plating solution having the above additives. . This will be described in detail below.

(めっき液)
銅亜鉛合金めっき液(以下、単に「めっき液」ということがある。)は、銅イオンと、亜鉛イオンと、添加剤とを少なくとも有する非シアン系の銅亜鉛合金めっき液であり、添加剤として、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用していることに特徴がある。これらを併用することにより、上記本発明の効果を奏することができる。後述の比較例で説明するように、そうした複素環式化合物とクアドロール(登録商標)とを併用せずに、一方だけを添加しても本発明の効果を奏することはできなかった。
(Plating solution)
A copper-zinc alloy plating solution (hereinafter sometimes simply referred to as “plating solution”) is a non-cyanide copper-zinc alloy plating solution having at least copper ions, zinc ions, and additives. The heterocyclic compound is characterized by the combined use of a heterocyclic compound having at least one imidazole group and a hydrophilic group, and Quadrol (registered trademark) . By using these together, the effects of the present invention can be achieved. As will be described in Comparative Examples described later, the effects of the present invention could not be achieved even when only one of these heterocyclic compounds and Quadrol (registered trademark) was added.

複素環式化合物は、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有するものである。親水性基としては、例えば、カルボキシル基、水酸基、アミノ基等を挙げることができるので、イミダゾール基を少なくとも1つ以上有し且つ親水性基としては、例えば、L−ヒスチジン、イミダゾール−4−カルボン酸、ヒドロキシメチルイミダゾール塩、2−アミノイミダゾール硫酸塩等を挙げることができる。なかでも、後述の実施例で詳しく検討し、本発明の効果を安定して奏する下記式1のL−ヒスチジンが好ましい。なお、これらの複素環式化合物は、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有するものであるが、本発明者は、こうした骨格構造の上記複素環式化合物を添加剤として用いた場合に本発明の効果を奏することが確認できたことから、その骨格構造で特定した。   The heterocyclic compound has at least one imidazole group and a hydrophilic group. Examples of the hydrophilic group include a carboxyl group, a hydroxyl group, and an amino group. Therefore, examples of the hydrophilic group include at least one imidazole group and examples of the hydrophilic group include L-histidine and imidazole-4-carboxylic acid. An acid, a hydroxymethylimidazole salt, 2-aminoimidazole sulfate, etc. can be mentioned. Among these, L-histidine represented by the following formula 1 which is examined in detail in Examples described later and stably exhibits the effects of the present invention is preferable. Although these heterocyclic compounds have at least one imidazole group and a hydrophilic group, the present inventor used the above heterocyclic compound having such a skeleton structure as an additive. In some cases, it was confirmed that the effects of the present invention were exhibited, and therefore, the skeleton structure was specified.

クアドロール(登録商標)(Quadrol)は、下記式2のように、分子式がC14H32N2O4の下記化合物であり、エントプロール(Entprol)とも呼ばれ、体系名は、1,1’,1’’,1’’’−(エチレンビスニトリロ)テトラキス(プロパン−2−オール)又はN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)−1,2−エタンジアミン等として表される。
Kuadororu (TM) (Quadrol) is as shown in Equation 2, the molecular formula of the following compounds of C14H32N2O4, also called entry Prowl (Entprol), systematic name 1,1 ', 1'',1'''-(Ethylenebisnitrilo) tetrakis (propan-2-ol) or N, N, N ′, N′-tetrakis (2-hydroxypropyl) -1,2-ethanediamine or the like.

複素環式化合物としてL−ヒスチジンである場合において、L−ヒスチジンの含有量が0.05〜0.15mol/Lの範囲内(より好ましくは0.08〜0.15mol/Lの範囲内)であり、クアドロール(登録商標)の含有量が0.01〜0.02mol/Lの範囲内であることが好ましい。この範囲内の含有量は、後述の実施例及び比較例で詳細に検討した結果得られたものであり、この範囲内とすることによって、本発明の効果を奏する銅亜鉛合金めっき膜を安定して得ることができる。
In the case of L-histidine as the heterocyclic compound, the content of L-histidine is in the range of 0.05 to 0.15 mol / L (more preferably in the range of 0.08 to 0.15 mol / L). Yes, and the content of Quadrol (registered trademark) is preferably in the range of 0.01 to 0.02 mol / L. The content within this range was obtained as a result of detailed studies in Examples and Comparative Examples described later, and by making it within this range, the copper-zinc alloy plated film exhibiting the effects of the present invention can be stabilized. Can be obtained.

添加剤としては、本発明の効果を阻害しない範囲内であれば、上記複素環式化合物及びクアドロール(登録商標)以外のものも含まれていてもよい。含まれていてもよい添加剤としては、例えば、応力緩和剤、レベリング剤等の添加剤を挙げることができる。
As an additive, if it is in the range which does not inhibit the effect of this invention, things other than the said heterocyclic compound and quadrol (trademark) may be contained. As an additive which may be contained, additives, such as a stress relaxation agent and a leveling agent, can be mentioned, for example.

銅イオン源としては、各種の銅塩を用いることができ、例えば、硫酸銅やピロリン酸銅等を挙げることができる。また、亜鉛イオン源も各種の亜鉛塩を用いることができ、例えば、硫酸亜鉛やピロリン酸亜鉛等を挙げることができる。なお、後述の実施例では、銅イオン源としてピロリン酸銅を用い、亜鉛イオン源としてピロリン酸亜鉛を用いているが、本発明の効果を阻害しない限り、ピロリン酸銅以外の例えば硫酸銅等や、ピロリン酸亜鉛以外の例えば硫酸亜鉛等であってもよい。なお、本発明の効果を阻害しなければ、複数の銅塩(例えばピロリン酸銅と硫酸銅等)や亜鉛塩(例えばピロリン酸亜鉛と硫酸亜鉛等)を混合してもよい。   Various copper salts can be used as the copper ion source, and examples thereof include copper sulfate and copper pyrophosphate. Various zinc salts can be used as the zinc ion source, and examples thereof include zinc sulfate and zinc pyrophosphate. In the examples described later, copper pyrophosphate is used as the copper ion source and zinc pyrophosphate is used as the zinc ion source. However, as long as the effect of the present invention is not impaired, for example, copper sulfate, etc. For example, zinc sulfate other than zinc pyrophosphate may be used. A plurality of copper salts (for example, copper pyrophosphate and copper sulfate) and zinc salts (for example, zinc pyrophosphate and zinc sulfate) may be mixed as long as the effects of the present invention are not impaired.

めっき液に含まれる銅イオンと亜鉛イオンのモル比は、得ようとするめっき膜の組成に応じて任意に設定することができる。例えば、めっき膜各部での銅:亜鉛の質量比が73:27〜88:12の範囲内の銅亜鉛合金めっき膜を形成したい場合には、めっき液中の銅イオン:亜鉛イオンを例えば65:35〜67:33程度の範囲内にすることができる。また、例えば、めっき膜各部での銅:亜鉛の質量比が18:82程度の銅亜鉛合金めっき膜を形成したい場合には、めっき液中の銅イオン:亜鉛イオンを例えば20:80〜25:75程度の範囲内にすることができる。   The molar ratio of copper ions and zinc ions contained in the plating solution can be arbitrarily set according to the composition of the plating film to be obtained. For example, when it is desired to form a copper zinc alloy plating film having a copper: zinc mass ratio of 73:27 to 88:12 in each part of the plating film, the copper ion: zinc ion in the plating solution is, for example, 65: It can be in the range of about 35 to 67:33. For example, when it is desired to form a copper zinc alloy plating film having a copper: zinc mass ratio of about 18:82 in each part of the plating film, the copper ions: zinc ions in the plating solution are, for example, 20:80 to 25: It can be in the range of about 75.

なお、後述する実施例1〜6に示すように、銅イオン:亜鉛イオンのモル比が65:35〜70:30で含まれている場合において、めっき液に含まれるピロリン酸銅イオンの含有量は0.40〜0.50mol/Lの範囲内であることが好ましく、ピロリン酸亜鉛イオンの含有量は0.15〜0.25mol/Lの範囲内であることが好ましい。この範囲内のモル比で含まれることにより、めっき膜各部において銅:亜鉛の質量比が73:27〜88:12の範囲内、好ましくは77:23〜85:15の範囲内になるムラのない均一な銅亜鉛合金めっき膜を製品バラツキなく安定して形成することができる。また、後述する実施例7に示すように、銅イオン:亜鉛イオンのモル比が例えば18:82で含まれている場合においても、めっき膜各部において銅:亜鉛の質量比が例えば20:80〜25:75になるムラのない均一な銅亜鉛合金めっき膜を製品バラツキなく安定して形成することができる。このように、銅イオン:亜鉛イオンのモル比が広い範囲で、そのモル比と同程度の銅:亜鉛の質量比となるムラのない均一な銅亜鉛合金めっき膜を、めっき膜各部において得ることができる。「めっき膜各部」とは、後述の実施例及び比較例での図7に示すように、縦120mm・横100mmの被めっき面での各部のことである。   In addition, as shown in Examples 1 to 6 described later, when the molar ratio of copper ion: zinc ion is 65:35 to 70:30, the content of copper pyrophosphate ion contained in the plating solution Is preferably in the range of 0.40 to 0.50 mol / L, and the content of zinc pyrophosphate ions is preferably in the range of 0.15 to 0.25 mol / L. By being included at a molar ratio within this range, the mass ratio of copper: zinc in each part of the plating film is within the range of 73:27 to 88:12, preferably within the range of 77:23 to 85:15. A uniform copper-zinc alloy plated film can be stably formed without product variations. Further, as shown in Example 7 to be described later, even when the molar ratio of copper ions: zinc ions is included at 18:82, for example, the mass ratio of copper: zinc is 20:80 to about each part of the plated film. A uniform copper-zinc alloy plating film with no unevenness of 25:75 can be stably formed without product variations. In this way, a uniform copper-zinc alloy plating film having a copper: zinc mass ratio that is the same as the molar ratio in a wide range of the copper ion: zinc ion molar ratio is obtained in each part of the plating film. Can do. “Each part of the plating film” means each part on the surface to be plated having a length of 120 mm and a width of 100 mm, as shown in FIG. 7 in Examples and Comparative Examples described later.

めっき液には、通常、支持電解質が含まれている。支持電解質の種類は特に限定されないが、ピロリン酸カリウム、ピロリン酸ナトリウム等のピロリン酸塩を好ましく挙げることができる。なお、ピロリン酸カリウム等のピロリン酸塩は、支持電解質としての作用の他、水に不溶なピロリン酸銅及びピロリン酸亜鉛をピロリン酸カリウムと錯塩にして可溶化させるために配合される。ピロリン酸塩の含有量は支持電解質としての役割とピロリン酸銅及びピロリン酸亜鉛を可溶化させる役割に応じてその含有量が設定され、特に限定されないが、例えば、ピロリン酸銅イオン及びピロリン酸亜鉛イオンを構成するピロリン酸イオンとの合計で2mol/L程度になるように配合されていることが好ましい。   The plating solution usually contains a supporting electrolyte. Although the kind of supporting electrolyte is not specifically limited, Pyrophosphates, such as potassium pyrophosphate and sodium pyrophosphate, can be mentioned preferably. In addition, pyrophosphates such as potassium pyrophosphate are blended in order to solubilize copper pyrophosphate and zinc pyrophosphate, which are insoluble in water, into a complex salt with potassium pyrophosphate in addition to acting as a supporting electrolyte. The content of pyrophosphate is set according to the role of supporting electrolyte and the role of solubilizing copper pyrophosphate and zinc pyrophosphate, and is not particularly limited. For example, copper pyrophosphate ion and zinc pyrophosphate It is preferable that the total amount of pyrophosphate ions constituting the ions is about 2 mol / L.

ピロリン酸塩以外の支持電解質としては、クエン酸ナトリウム等のクエン酸塩、グルコン酸ナトリウムのグルコン酸塩等を挙げることができるが、本発明の効果を阻害しない限り、その種類や含有量は任意に選択される。   Examples of supporting electrolytes other than pyrophosphate include citrates such as sodium citrate, gluconate sodium gluconate, etc. The type and content thereof are arbitrary as long as the effects of the present invention are not impaired. Selected.

めっき液のpHは特に限定されないが、通常、9.6〜11.6の範囲内で目的とする銅亜鉛合金めっき膜を得ることができる。なお、めっき膜各部でムラなく均一に形成できる観点において、より好ましいpHの範囲は、10.0〜11.0である。   Although the pH of a plating solution is not specifically limited, Usually, the target copper zinc alloy plating film can be obtained within the range of 9.6 to 11.6. In addition, from a viewpoint which can form uniformly with each part in a plating film, the range of more preferable pH is 10.0-11.0.

こうして構成された銅亜鉛合金めっき液により、得ようとする組成の銅亜鉛合金めっき膜はその各部において、大電流であってもムラのなく均一に形成でき、極めて生産性よく形成することができる。なお、めっき液を構成する各金属イオン種の含有量は、高周波誘導結合プラズマ発光分光分析法等によって同定及び定量測定することができる。銅塩(銅イオン)、亜鉛塩(亜鉛イオン)、添加剤は、イオンクロマトグラフ、高速液体クロマトグラフ(HPLC)、CVS(サイクリックボルタンメトリックストリッピング)法等によって同定及び定量測定することができる。銅亜鉛合金めっき膜の質量比は、エネルギー分散型X線分析(EDX)等によって同定及び定量測定することができる。   With the copper-zinc alloy plating solution thus configured, a copper-zinc alloy plating film having a composition to be obtained can be formed uniformly in each part even with a large current without unevenness, and can be formed with extremely high productivity. . In addition, the content of each metal ion species constituting the plating solution can be identified and quantitatively measured by a high frequency inductively coupled plasma emission spectroscopy method or the like. Copper salts (copper ions), zinc salts (zinc ions), and additives can be identified and quantitatively measured by ion chromatography, high performance liquid chromatography (HPLC), CVS (cyclic voltammetric stripping) method, etc. . The mass ratio of the copper-zinc alloy plating film can be identified and quantitatively measured by energy dispersive X-ray analysis (EDX) or the like.

(めっき条件)
めっき条件としては、15〜40A/dmの範囲内の高い電流密度であっても、本発明の効果を奏するムラのない均一な銅亜鉛合金めっき膜をその各部で得ることができる。また、めっき液温度としては、例えば30〜55℃とすることができる。実際の生産設備においては、後述の被めっき材を連続して搬送している過程で高電流密度を印加してめっきしたり、めっき液の循環や撹拌を行いながら高電流密度を印加してめっきすることができる。めっき手段も特に限定されないが、直流めっきであってもよいし、パルスめっきであってもよい。また、めっき膜は、被めっき材の一方の面に形成してもよいし、両面に形成してもよい。なお、銅亜鉛合金めっき膜の厚さも特に限定されないが、例えば、0.1〜12μm程度の範囲で形成することができる。
(Plating conditions)
As plating conditions, even if the current density is high within a range of 15 to 40 A / dm 2, a uniform copper-zinc alloy plating film that exhibits the effects of the present invention can be obtained at each portion. Moreover, as plating solution temperature, it can be set as 30-55 degreeC, for example. In an actual production facility, plating is performed by applying a high current density while the material to be plated, which will be described later, is continuously conveyed, or by applying a high current density while circulating and stirring the plating solution. can do. The plating means is not particularly limited, but may be direct current plating or pulse plating. Moreover, the plating film may be formed on one surface of the material to be plated, or may be formed on both surfaces. In addition, although the thickness of a copper zinc alloy plating film is not specifically limited, For example, it can form in the range of about 0.1-12 micrometers.

(被めっき材)
被めっき材は特に限定されないが、例えば、銅箔、アルミニウム箔、ステンレススチール等の金属材料又は表面に金属材料を有する樹脂やセラミックス等を挙げることができる。これらの被めっき材は、めっき処理前には、例えば脱脂、酸洗等の必要な前処理が施されてめっきに供される。
(Plating material)
Although a to-be-plated material is not specifically limited, For example, resin, ceramics, etc. which have metal materials, such as copper foil, aluminum foil, and stainless steel, or a metal material on the surface can be mentioned. These materials to be plated are subjected to necessary pretreatments such as degreasing and pickling before being subjected to plating.

[銅亜鉛合金めっき膜]
本発明に係る銅亜鉛合金めっき膜は、上記本発明に係る銅亜鉛合金めっき膜の形成方法によって得られためっき膜であって、各部の表面には、平均粒径0.03〜0.2μmの球状又は略球状粒子、又は、平均長さ0.5〜1.5μmで平均アスペクト比が5〜20の針状又は略針状粒子が堆積されている。こうした粒子は、電子顕微鏡等で拡大して確認でき、その平均粒径、平均長さ、平均アスペクト比も電子顕微鏡等での観察像から測定することができる。本発明では、後述の実施例に示すように、上記範囲の粒子が銅亜鉛合金めっき膜の表面に現れている。なお、銅亜鉛合金めっき膜には、微量の不可避不純物が含まれていてもよい。
[Copper zinc alloy plating film]
The copper-zinc alloy plating film according to the present invention is a plating film obtained by the method for forming a copper-zinc alloy plating film according to the present invention described above, and has an average particle size of 0.03 to 0.2 μm on the surface of each part. Or acicular particles having an average length of 0.5 to 1.5 μm and an average aspect ratio of 5 to 20 are deposited. Such particles can be enlarged and confirmed with an electron microscope or the like, and the average particle diameter, average length, and average aspect ratio can also be measured from an image observed with an electron microscope or the like. In this invention, as shown in the below-mentioned Example, the particle | grains of the said range have appeared on the surface of the copper zinc alloy plating film. The copper zinc alloy plating film may contain a trace amount of inevitable impurities.

以下、実験例及び比較例により本発明をさらに詳しく説明する。なお、本発明は以下の実験結果で得られた内容に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and comparative examples. In addition, this invention is not limited to the content obtained by the following experimental results.

[実施例1〜7及び比較例1〜6]
ピロリン酸第二銅(ピロリン酸銅(II):Cu・3HO)をピロリン酸銅イオン源として準備し、ピロリン酸亜鉛(二リン酸亜鉛:Zn・3HO)をピロリン酸亜鉛イオン源として準備し、ピロリン酸カリウム(ピロリン酸四カリウム:K)をピロリン酸イオンとして準備した。また、L−ヒスチジン塩酸塩・一水和物(CAS登録番号:5934−29−2、C10ClN・HO)をL−ヒスチジン源として準備し、クアドロール(登録商標)(CAS登録番号:102−60−3 分、C1432)をクアドロール(登録商標)として準備した。これらを表1及び表2に示す組成比にした銅亜鉛合金めっき液を準備した。
[Examples 1-7 and Comparative Examples 1-6]
Cupric pyrophosphate (copper pyrophosphate (II): Cu 2 P 2 O 7 · 3H 2 O) was prepared as a copper pyrophosphate ion source, and zinc pyrophosphate (zinc diphosphate: Zn 2 P 2 O 7 · 3H 2 O) was prepared as a zinc pyrophosphate ion source, and potassium pyrophosphate (tetrapotassium pyrophosphate: K 4 P 2 O 7 ) was prepared as pyrophosphate ions. In addition, L-histidine hydrochloride monohydrate (CAS registration number: 5934-29-2, C 6 H 10 ClN 3 O 2 .H 2 O) was prepared as an L-histidine source, and Quadrol (registered trademark) (CAS registration number: 102-60-3 minutes, C 14 H 32 N 2 O 4 ) was prepared as Quadroll (registered trademark) . The copper zinc alloy plating solution which made these the composition ratio shown in Table 1 and Table 2 was prepared.

銅亜鉛合金めっき膜の形成は、めっき液温度を約45℃とし、めっき液を循環させながら、所定の電流密度で、厚さ18μmの銅箔を縦120mm・横100mmの被めっき面となるようにマスキングしてめっきした。銅板は、予め脱脂、酸洗い、水洗等の前処理を適宜行った後にめっきに供した。めっき時間は、めっき電気量が600C/dmとなるまで行った。めっき厚さは、約3μmとなった。陽極は、不溶性陽極を用いた。 The copper-zinc alloy plating film is formed so that the temperature of the plating solution is about 45 ° C., and the plating solution is circulated so that a 18 μm-thick copper foil becomes a surface to be plated with a length of 120 mm and a width of 100 mm at a predetermined current density. Masked and plated. The copper plate was subjected to pretreatment such as degreasing, pickling, washing with water, etc. in advance, and then subjected to plating. Plating time, plating quantity of electricity was conducted until 600C / dm 2. The plating thickness was about 3 μm. As the anode, an insoluble anode was used.

[測定と評価]
(表面観察)
図1は実施例1〜3で得られた銅亜鉛合金めっき膜の表面写真と拡大写真であり、図2は実施例4〜6で得られた銅亜鉛合金めっき膜の表面写真と拡大写真であり、図3は実施例7で得られた銅亜鉛合金めっき膜の表面写真と拡大写真であり、図4は比較例1,2で得られた銅亜鉛合金めっき膜の表面写真と拡大写真であり、図5は比較例3,4で得られた銅亜鉛合金めっき膜の表面写真と拡大写真であり、図6は比較例5,6で得られた銅亜鉛合金めっき膜の表面写真と拡大写真である。実施例1〜7のように、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用しためっき液を用いた場合においては、めっき膜の各部でムラのない均一な光沢表面になっていた。一方、比較例1〜6のように、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用しないめっき液を用いた場合においては、全体的にムラややけが見られたり、部分的にムラがあったりした。
[Measurement and evaluation]
(Surface observation)
FIG. 1 is a surface photograph and an enlarged photograph of the copper zinc alloy plating film obtained in Examples 1 to 3, and FIG. 2 is a surface photograph and an enlarged photograph of the copper zinc alloy plating film obtained in Examples 4 to 6. 3 is a surface photograph and an enlarged photograph of the copper-zinc alloy plating film obtained in Example 7, and FIG. 4 is a surface photograph and an enlarged photograph of the copper-zinc alloy plating film obtained in Comparative Examples 1 and 2. 5 is a surface photograph and an enlarged photograph of the copper zinc alloy plating film obtained in Comparative Examples 3 and 4, and FIG. 6 is a surface photograph and an enlarged photograph of the copper zinc alloy plating film obtained in Comparative Examples 5 and 6. It is a photograph. In the case of using a plating solution using a heterocyclic compound having at least one imidazole group and having a hydrophilic group and Quadrol (registered trademark) as in Examples 1 to 7, a plating film A uniform glossy surface with no unevenness was observed in each part. On the other hand, as in Comparative Examples 1 to 6, in the case of using a plating solution that has at least one imidazole group and has a hydrophilic group and does not use Quadrol (registered trademark) in combination, There were unevenness and burns as a whole, and partial unevenness.

拡大写真は、電界放出形走査電子顕微鏡(株式会社日立製作所製、型番:FE−SEM)で1万倍で電極表面観察したものである。実施例1〜7では、めっき膜各部での銅:亜鉛の質量比が73:27〜88:12程度の範囲内の銅亜鉛合金めっき膜、及びめっき膜各部での銅:亜鉛の質量比が20:80〜25:75程度の範囲内の銅亜鉛合金めっき膜のいずれにおいても、めっき膜各部の表面には、平均粒径0.03〜0.2μmの球状又は略球状粒子、又は、平均長さ0.5〜1.5μmで平均アスペクト比が5〜20の針状又は略針状粒子が堆積されていた。一方、比較例1〜6では、大きな粒子があったり、不規則で大きさが揃っていない粒子があったりしており、また、欠陥が各所に見られるものもあった。   The enlarged photograph is obtained by observing the electrode surface at a magnification of 10,000 with a field emission scanning electron microscope (manufactured by Hitachi, Ltd., model number: FE-SEM). In Examples 1 to 7, the mass ratio of copper: zinc in each part of the plating film is within the range of about 73:27 to 88:12, and the mass ratio of copper: zinc in each part of the plating film is In any of the copper zinc alloy plating films in the range of about 20:80 to 25:75, the surface of each part of the plating film has spherical or substantially spherical particles having an average particle diameter of 0.03 to 0.2 μm, or an average. Needle-like or substantially needle-like particles having a length of 0.5 to 1.5 μm and an average aspect ratio of 5 to 20 were deposited. On the other hand, in Comparative Examples 1 to 6, there are large particles, there are particles that are irregular and not uniform in size, and some have defects in various places.

(組成分析)
図7に示すめっき膜各部において、銅:亜鉛の質量比を測定した。銅亜鉛合金めっき膜の組成の定性(同定)及び定量分析は、エネルギー分散型X線分析装置(株式会社堀場製作所製、型番:EMAX−5770)を利用し、加速電圧15kV、プローブ電流0.2nAで行った。図7(A)は、実施例1〜6及び比較例1,3〜5で測定した位置であり、図7(B)は実施例7で測定した位置である。その結果を表1及び表2に示した。
(Composition analysis)
In each part of the plating film shown in FIG. 7, the mass ratio of copper: zinc was measured. For the qualitative (identification) and quantitative analysis of the composition of the copper-zinc alloy plating film, an energy dispersive X-ray analyzer (manufactured by Horiba, Ltd., model number: EMAX-5770) is used, and the acceleration voltage is 15 kV and the probe current is 0.2 nA. I went there. FIG. 7A shows the positions measured in Examples 1 to 6 and Comparative Examples 1 and 3 to 5, and FIG. 7B shows the positions measured in Example 7. The results are shown in Tables 1 and 2.

以上の実験により、イミダゾール基を少なくとも1つ以上有し且つ親水性基を有する複素環式化合物と、クアドロール(登録商標)とを併用しためっき液を用いた本発明に係る銅亜鉛合金めっき膜の形成方法を適用することにより、生産性のよい高電流密度でめっきしても、銅亜鉛合金めっき膜を、めっき膜各部においてムラなく均一に形成することができることを確認できた。 Based on the above experiment, the copper zinc alloy plating film according to the present invention using a plating solution in which a heterocyclic compound having at least one imidazole group and having a hydrophilic group and Quadrol (registered trademark) is used in combination. By applying the forming method, it was confirmed that the copper-zinc alloy plating film can be uniformly formed in each part of the plating film even if plating is performed at a high current density with good productivity.

Claims (2)

銅イオンと、亜鉛イオンと、添加剤とを少なくとも有する銅亜鉛合金めっき液を用いる銅亜鉛合金めっき膜の形成方法であって、前記添加剤が、0.05〜0.15mol/Lの範囲内のL−ヒスチジン0.01〜0.02mol/Lの範囲内のN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)−1,2−エタンジアミンとを併用したことを特徴とする電気銅亜鉛合金めっき膜の形成方法。 A method for forming a copper-zinc alloy plating film using a copper-zinc alloy plating solution having at least copper ions, zinc ions, and additives, wherein the additive is within a range of 0.05 to 0.15 mol / L. Of L-histidine and N, N, N ′, N′-tetrakis (2-hydroxypropyl) -1,2-ethanediamine in a range of 0.01 to 0.02 mol / L A method for forming an electrolytic copper zinc alloy plating film. 前記銅イオンがピロリン酸銅イオンであり、前記亜鉛イオンがピロリン酸亜鉛イオンである、請求項に記載の電気銅亜鉛合金めっき膜の形成方法。
The method for forming an electrolytic copper-zinc alloy plating film according to claim 1 , wherein the copper ions are copper pyrophosphate ions and the zinc ions are zinc pyrophosphate ions.
JP2017235508A 2017-12-07 2017-12-07 Method for forming electrolytic copper zinc alloy plating film Active JP6421232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235508A JP6421232B1 (en) 2017-12-07 2017-12-07 Method for forming electrolytic copper zinc alloy plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235508A JP6421232B1 (en) 2017-12-07 2017-12-07 Method for forming electrolytic copper zinc alloy plating film

Publications (2)

Publication Number Publication Date
JP6421232B1 true JP6421232B1 (en) 2018-11-07
JP2019099895A JP2019099895A (en) 2019-06-24

Family

ID=64098775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235508A Active JP6421232B1 (en) 2017-12-07 2017-12-07 Method for forming electrolytic copper zinc alloy plating film

Country Status (1)

Country Link
JP (1) JP6421232B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401407B2 (en) 2020-07-28 2023-12-19 株式会社ミクニ engine throttle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215492A (en) * 1983-05-19 1984-12-05 Nippon Kagaku Sangyo Kk Zinc alloy electroplating bath
JPS61196595A (en) * 1985-02-26 1986-08-30 日立化成工業株式会社 Manufacture of printed wiring board
JPS63145783A (en) * 1986-07-01 1988-06-17 Nippon Denso Co Ltd Chemical copper plating bath
JP2000114678A (en) * 1998-09-29 2000-04-21 Ibiden Co Ltd Printed wiring board
JP2007525598A (en) * 2004-02-26 2007-09-06 アトテック・ドイチュラント・ゲーエムベーハー Bathes, systems, and methods for electroplating zinc-nickel ternary alloys and higher ternary alloys and articles electroplated so

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215492A (en) * 1983-05-19 1984-12-05 Nippon Kagaku Sangyo Kk Zinc alloy electroplating bath
JPS61196595A (en) * 1985-02-26 1986-08-30 日立化成工業株式会社 Manufacture of printed wiring board
JPS63145783A (en) * 1986-07-01 1988-06-17 Nippon Denso Co Ltd Chemical copper plating bath
JP2000114678A (en) * 1998-09-29 2000-04-21 Ibiden Co Ltd Printed wiring board
JP2007525598A (en) * 2004-02-26 2007-09-06 アトテック・ドイチュラント・ゲーエムベーハー Bathes, systems, and methods for electroplating zinc-nickel ternary alloys and higher ternary alloys and articles electroplated so

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤原 裕、榎本 英彦: "Quadrolを含むピロリン酸浴からの銅−亜鉛合金めっき", 金属表面技術, vol. 36, no. 2, JPN6018009806, 16 July 1984 (1984-07-16), JP, pages 77 - 81 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401407B2 (en) 2020-07-28 2023-12-19 株式会社ミクニ engine throttle device

Also Published As

Publication number Publication date
JP2019099895A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP4221064B2 (en) Electrodeposition method of copper layer
DE4343946C2 (en) Galvanic copper bath and process for the galvanic deposition of copper
JP4812365B2 (en) Tin electroplating solution and tin electroplating method
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
EP2997180B1 (en) Method for depositing thick copper layers onto sintered materials
TWI548782B (en) Cyanide-free acidic matte silver electroplating compositions and methods
KR20080017276A (en) A hard gold alloy plating bath
TWI452179B (en) Gold plating solution
KR20120099697A (en) Immersion tin silver plating in electronics manufacture
KR20050111766A (en) Method of analyzing electrolytic copper plating solution, and analyzing device therefor and production method for semi-conductor product
JP6421232B1 (en) Method for forming electrolytic copper zinc alloy plating film
TWI794440B (en) Electrolytic rhodium plating solution
JPH10212591A (en) Nickel electroplating bath or nickel alloy electroplating bath and plating method using the bath
US4411965A (en) Process for high speed nickel and gold electroplate system and article having improved corrosion resistance
Satpathy et al. Structural and mechanical characterization of nano-structured CuAg bimetallic coatings developed from a novel thiourea-based electroplating bath
TWI261075B (en) Pulse reverse electrolysis of acidic copper electroplating solutions
TW201637527A (en) Thick copper layer and method for manufacturing the same
KR20200089698A (en) Magnesium or aluminum metal member with black oxide film and method for manufacturing same
JP2017053031A (en) Acid copper electroplating bath and method for electroplating low internal stress and good ductility copper deposit
US3729396A (en) Rhodium plating composition and method for plating rhodium
JPH08277485A (en) Production of copper foil for printed circuit
JP2009149978A (en) Copper-zinc alloy electroplating bath and plating method using the same
TW202028541A (en) Indium electroplating compositions and methods for electroplating indium on nickel
US20140262798A1 (en) Electrodeposition methods and baths for use with printed circuit boards and other articles
WO2010101212A1 (en) Copper-zinc alloy electroplating bath and method of plating using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6421232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250