JP6417974B2 - Ion conductive solid electrolyte - Google Patents

Ion conductive solid electrolyte Download PDF

Info

Publication number
JP6417974B2
JP6417974B2 JP2015015575A JP2015015575A JP6417974B2 JP 6417974 B2 JP6417974 B2 JP 6417974B2 JP 2015015575 A JP2015015575 A JP 2015015575A JP 2015015575 A JP2015015575 A JP 2015015575A JP 6417974 B2 JP6417974 B2 JP 6417974B2
Authority
JP
Japan
Prior art keywords
chemical formula
solid electrolyte
compound
ion conductive
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015015575A
Other languages
Japanese (ja)
Other versions
JP2016138080A (en
Inventor
門田 敦志
敦志 門田
海老沢 晃
晃 海老沢
純一 星野
純一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015015575A priority Critical patent/JP6417974B2/en
Publication of JP2016138080A publication Critical patent/JP2016138080A/en
Application granted granted Critical
Publication of JP6417974B2 publication Critical patent/JP6417974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、イオン導電性固体電解質に関する。 The present invention relates to an ion conductive solid electrolyte.

従来から知られているイオン導電性材料としては、無機材料を用いた無機固体電解質、有機高分子を用いた高分子固体電解質、水または非水溶媒を用いた液状電解質が挙げられる。   Conventionally known ion conductive materials include inorganic solid electrolytes using inorganic materials, polymer solid electrolytes using organic polymers, and liquid electrolytes using water or non-aqueous solvents.

また、固体と液体の中間的性質を有する液晶材料を用い、液晶材料が有する配向性等の特性を利用した固体電解質が提案されている(特許文献1参照)。固体電解質は形状が液体ではないので、部外への漏れがなく、耐熱性、信頼性、デバイスの小型化に対して液状電解質に比べ有利である。   In addition, a solid electrolyte using a liquid crystal material having an intermediate property between a solid and a liquid and utilizing characteristics such as alignment properties of the liquid crystal material has been proposed (see Patent Document 1). Since the solid electrolyte is not liquid, there is no leakage outside the unit, which is advantageous over the liquid electrolyte in terms of heat resistance, reliability, and device miniaturization.

この液晶材料を用いた固体電解質は、電池などの蓄電デバイスへの応用が期待されているものの、現状ではまだ高温下においてイオン導電性が得られているにすぎない。実際の使用を考慮した場合には、より低温でイオン導電性を示す固体電解質が望まれている。   Although the solid electrolyte using this liquid crystal material is expected to be applied to power storage devices such as batteries, at present, only ionic conductivity is obtained at high temperatures. In consideration of actual use, a solid electrolyte that exhibits ionic conductivity at a lower temperature is desired.

特開2012−116770号公報JP 2012-116770 A

本発明は、前記課題に鑑みてなされたものであり、良好なイオン導電性を有するイオン導電性固体電解質を提供することを目的とする。   This invention is made | formed in view of the said subject, and aims at providing the ion conductive solid electrolyte which has favorable ionic conductivity.

本発明にかかるイオン導電性固体電解質は、化学式(1)で示される化合物を含有することを特徴とする。

Figure 0006417974
〔化学式(1)において、R1は、炭素数6〜20のアルキル基、アルコキシ基、エチレンオキシド基を示す。Aは−O−(CH2)n−又は−(CH2)n−(式中、nは1〜20の整数を示す。)から選ばれる基を示す。R2はカルボン酸基、スルホン酸基及びホスホン酸基からプロトンを除いた酸残基を示す。Xは化学式(2)〜(5)から選ばれる基を示す。mはアニオンの価数により定まる整数を示す。〕
Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974
The ion conductive solid electrolyte according to the present invention contains a compound represented by the chemical formula (1).
Figure 0006417974
[In chemical formula (1), R1 shows a C6-C20 alkyl group, an alkoxy group, and an ethylene oxide group. A represents a group selected from -O- (CH2) n- or-(CH2) n- (wherein n represents an integer of 1 to 20). R2 represents an acid residue obtained by removing a proton from a carboxylic acid group, a sulfonic acid group, and a phosphonic acid group. X represents a group selected from chemical formulas (2) to (5). m represents an integer determined by the valence of the anion. ]
Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974

化学式(1)の化合物は、屈曲構造を取ることで液晶性は示さないものの、分子間力が適度に緩和されることで分子運動がしやすくなり、その熱運動によってLiイオンの動きが良くなるものと推測される。その結果、引用文献に示された化合物に比べ、より低い温度での導電性発現が実現できるものと考えられる。   Although the compound of the chemical formula (1) does not exhibit liquid crystallinity due to the bending structure, the molecular motion is facilitated by moderately relaxing the intermolecular force, and the movement of Li ions is improved by the thermal motion. Presumed to be. As a result, it is considered that the conductivity expression at a lower temperature can be realized as compared with the compound shown in the cited document.

本発明にかかるイオン導電性固体電解質は、化学式(1A)および化学式(2A)で示される化合物のうち少なくとも一方の化合物を含有することを特徴とする。

Figure 0006417974
Figure 0006417974
〔化学式(1A)および化学式(2A)において、R1及びAは前記と同義である。〕 The ion conductive solid electrolyte according to the present invention is characterized by containing at least one of the compounds represented by the chemical formula (1A) and the chemical formula (2A).
Figure 0006417974
Figure 0006417974
[In chemical formula (1A) and chemical formula (2A), R1 and A are as defined above. ]

分子間力を緩和するという点において、化学式(1)で示される化合物のXは、化学式(2)もしくは化学式(3)で示される基が好ましい。Xに存在する2つのメチル基もしくはフルオロメチル基が分子鎖から張り出すことでより効果的に分子間力を緩和していると推測される。また、スルホン酸基はLiイオンの解離度が高いという点で、導電性向上に有利となる。   In terms of relaxing intermolecular force, X in the compound represented by the chemical formula (1) is preferably a group represented by the chemical formula (2) or the chemical formula (3). It is presumed that the intermolecular force is more effectively relaxed by extending two methyl groups or fluoromethyl groups present in X from the molecular chain. In addition, the sulfonic acid group is advantageous in improving conductivity in that it has a high degree of dissociation of Li ions.

本発明にかかるイオン導電性固体電解質は、化学式(1B)および化学式(2B)で示される化合物のうち少なくとも一方の化合物を含有することを特徴とする。

Figure 0006417974
Figure 0006417974
〔化学式(1B)および化学式(2B)において、R1及びAは前記と同義である。〕 The ion conductive solid electrolyte according to the present invention is characterized by containing at least one of the compounds represented by the chemical formula (1B) and the chemical formula (2B).
Figure 0006417974
Figure 0006417974
[In chemical formula (1B) and chemical formula (2B), R1 and A are as defined above. ]

分子間力を緩和するという点において、化学式(1)で示される化合物のXは、化学式(2)もしくは化学式(3)で示される基が好ましい。Xに存在する2つのメチル基もしくはフルオロメチル基が分子鎖から張り出すことでより効果的に分子間力を緩和していると推測される。また、ホスホン酸基はスルホン酸基に比べるとLiイオンの解離度は劣るが、1分子あたり2個のLiイオンを導入できるため、導電性向上に有利となる。   In terms of relaxing intermolecular force, X in the compound represented by the chemical formula (1) is preferably a group represented by the chemical formula (2) or the chemical formula (3). It is presumed that the intermolecular force is more effectively relaxed by extending two methyl groups or fluoromethyl groups present in X from the molecular chain. In addition, the phosphonic acid group is inferior in the degree of dissociation of Li ions compared to the sulfonic acid group, but two Li ions can be introduced per molecule, which is advantageous for improving the conductivity.

本発明によれば、良好なイオン導電性を有するイオン導電性固体電解質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ion conductive solid electrolyte which has favorable ionic conductivity can be provided.

実施例1において、昇温させながら交流電圧を印加し電流測定を行った際の、温度と電流値の関係を示す図である。In Example 1, it is a figure which shows the relationship between temperature and an electric current value at the time of applying an alternating voltage while raising temperature and performing an electric current measurement. 比較例1において、昇温させながら交流電圧を印加し電流測定を行った際の、温度と電流値の関係を示す図である。In the comparative example 1, it is a figure which shows the relationship between temperature and an electric current value at the time of applying an alternating voltage and performing current measurement, raising temperature.

以下、本実施形態の好適な実施形態について説明する。ただし、本発明にかかるイオン導電性固体電解質は、以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present embodiment will be described. However, the ion conductive solid electrolyte according to the present invention is not limited to the following embodiments.

本発明にかかるイオン導電性固体電解質は、化学式(1)で示される化合物を含む。 The ion conductive solid electrolyte concerning this invention contains the compound shown by Chemical formula (1).

Figure 0006417974
Figure 0006417974

式中のR1は、炭素数6〜20のアルキル基、アルコキシ基、エチレンオキシド基を示す。分岐状であっても直鎖状であっても良い。また、炭素数が6以上であればLiイオンを輸送するために必要な適度な分子運動を得ることが出来て好ましく、炭素数が20以下であれば、分子全体に占めるLiイオンの濃度を過度に下げることがないためより好ましい。   R1 in the formula represents an alkyl group having 6 to 20 carbon atoms, an alkoxy group, or an ethylene oxide group. It may be branched or linear. Further, if the number of carbon atoms is 6 or more, it is preferable to obtain an appropriate molecular motion necessary for transporting Li ions, and if the number of carbon atoms is 20 or less, the concentration of Li ions in the whole molecule is excessive. It is more preferable because it is not lowered.

式中のAは−O−(CH2)n−又は−(CH2)n−(式中、nは1〜20の整数を示す。)から選ばれる基を示す。(CH2)ユニットが1以上であればLiイオンを輸送するために必要な適度な分子運動を得ることが出来て好ましく、(CH2)ユニットが20以下であれば、分子全体に占めるLiイオンの濃度を過度に下げることがないためより好ましい。   A in the formula represents a group selected from -O- (CH2) n- or-(CH2) n- (wherein n represents an integer of 1 to 20). If the (CH2) unit is 1 or more, an appropriate molecular motion necessary for transporting Li ions can be obtained, and if the (CH2) unit is 20 or less, the concentration of Li ions in the entire molecule is preferable. It is more preferable because it is not excessively lowered.

式中のR2はカルボン酸基(−COOH)、スルホン酸基(−SOH)及びホスホン酸基(−PO)からプロトンを除いた酸残基を示す。ホスホン酸基はLi原子と反応可能な活性部位を2個有している。このためR2がホスホン酸基の場合は、Liイオンを2個導入可能である。スルホン酸基はLiイオンの解離度が高いという点で、導電性向上に有利となるためより好ましい。また、ホスホン酸基はスルホン酸基に比べるとLiイオンの解離度は劣るが、1分子あたり2個のLiイオンを導入できるため、分子全体に占めるLiイオンの濃度を向上させることが出来るため好ましい。 R2 in the formula represents an acid residue obtained by removing a proton from a carboxylic acid group (—COOH), a sulfonic acid group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). The phosphonic acid group has two active sites capable of reacting with Li atoms. For this reason, when R2 is a phosphonic acid group, two Li ions can be introduced. The sulfonic acid group is more preferable because it has a high degree of dissociation of Li ions and is advantageous for improving conductivity. In addition, the phosphonic acid group is inferior in the degree of dissociation of Li ions compared to the sulfonic acid group, but since two Li ions can be introduced per molecule, the concentration of Li ions in the entire molecule can be improved, which is preferable. .

式中のXは化学式(2)〜(5)から選ばれる基を示す。

Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974
X in the formula represents a group selected from chemical formulas (2) to (5).
Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974

分子間力を緩和し、分子の熱運動を向上させるという点において、Xは、化学式(2)もしくは化学式(3)で示される基がより好ましい。Xに存在する2つのメチル基もしくはフルオロメチル基が分子鎖から張り出すことでより効果的に分子間力を緩和していると推測される。   X is more preferably a group represented by the chemical formula (2) or the chemical formula (3) in that the intermolecular force is relaxed and the thermal motion of the molecule is improved. It is presumed that the intermolecular force is more effectively relaxed by extending two methyl groups or fluoromethyl groups present in X from the molecular chain.

式中、mはアニオンの価数により定まる整数を示す。   In the formula, m represents an integer determined by the valence of the anion.

化学式(1)で示される化合物を含有することによる効果発現のメカニズムははっきりとしないが、本発明者らは以下のように考えている。   Although the mechanism of the effect expression by containing the compound represented by the chemical formula (1) is not clear, the present inventors consider as follows.

化学式(1)の化合物は、2つのベンゼン環が1つの炭素原子もしくは1つの硫黄原子によって結合しており、この結合部分、つまりXの部分で屈曲した構造を取るため、このような構造では液晶性を発現することが出来ない。特許文献1に示された化合物のように液晶性を発現させるには、2つのベンゼン環を連結する結合子(Xに相当)の主鎖の数を偶数個として、直線構造を取る必要がある。   In the compound of the chemical formula (1), two benzene rings are bonded by one carbon atom or one sulfur atom, and take a structure bent at this bonded portion, that is, the X portion. Sex cannot be expressed. In order to exhibit liquid crystallinity like the compound shown in Patent Document 1, it is necessary to have a linear structure with an even number of main chains of the connector (corresponding to X) connecting two benzene rings. .

つまり、化学式(1)の化合物は、屈曲構造を取ることで液晶性は示さないものの、分子間力が適度に緩和されることで分子運動がしやすくなり、その熱運動によってLiイオンの動きが良くなるものと推測される。その結果、引用文献に示された化合物に比べ、より低い温度での導電性発現が実現できるものと考えられる。   In other words, although the compound of the chemical formula (1) does not exhibit liquid crystallinity due to the bent structure, the intermolecular force is moderately relaxed to facilitate the molecular motion, and the thermal motion causes the movement of Li ions. Presumed to improve. As a result, it is considered that the conductivity expression at a lower temperature can be realized as compared with the compound shown in the cited document.

本発明にかかるイオン導電性固体電解質は、上述した化合物、金属塩以外に、ゲル化剤、ポリエチレンオキサイドなどのその他の成分を含んでいてもよい。その他の成分の含有率は、0.2モル%以下とすることが好ましい。   The ion conductive solid electrolyte concerning this invention may contain other components, such as a gelatinizer and a polyethylene oxide, in addition to the compound and metal salt which were mentioned above. The content of other components is preferably 0.2 mol% or less.

本発明にかかるイオン導電性固体電解質は、リチウムイオン電池、燃料電池などの各種デバイスへの適用が可能である。これらデバイスでは、不揮発性のイオン導電性固体電解質が求められているが、本発明にかかるイオン導電性固体電解質は十分に要求特性を満たすことができる。   The ion conductive solid electrolyte according to the present invention can be applied to various devices such as lithium ion batteries and fuel cells. In these devices, a nonvolatile ion conductive solid electrolyte is required, but the ion conductive solid electrolyte according to the present invention can sufficiently satisfy the required characteristics.

以下、実施例及び比較例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to these Examples at all.

以下に示す手順により、実施例1〜10および比較例1〜2のイオン導電性測定用サンプルを作製し、イオン導電性評価を行った。   Samples for measuring ion conductivity of Examples 1 to 10 and Comparative Examples 1 and 2 were prepared by the procedure shown below, and ion conductivity was evaluated.

(実施例1)
まず、グローブボックス内でイオン導電性固体電解質の溶液を作製した。化学式(6)の化合物0.05gを2mlのアセトニトリルに溶解させた。
Example 1
First, an ion conductive solid electrolyte solution was prepared in a glove box. 0.05 g of the compound of the chemical formula (6) was dissolved in 2 ml of acetonitrile.

Figure 0006417974
Figure 0006417974

次に、イオン導電性測定用のサンプルを作製した。櫛形ITO電極を備えた基板(電極:縦1cm、横1cm、ランド:10μm、スペース:10μm、EHC社製)に、縦1cm、横1cmの四角穴を設けた厚さ70μmのマスキングテ−プを、電極部分以外がマスキングされるように貼り、当該四角穴に、前記溶液を100μL滴下した。自然乾燥させてアセトニトリルを揮発させた後、マスキングテ−プを剥がし、80℃で12時間真空乾燥した。   Next, a sample for measuring ion conductivity was prepared. A masking tape having a thickness of 70 μm provided with a square hole measuring 1 cm in length and 1 cm in width on a substrate (electrode: 1 cm in length, 1 cm in width, land: 10 μm, space: 10 μm, manufactured by EHC) with a comb-shaped ITO electrode The other portions than the electrode portion were masked so as to be masked, and 100 μL of the solution was dropped into the square hole. After natural drying to volatilize acetonitrile, the masking tape was peeled off and vacuum dried at 80 ° C. for 12 hours.

このように準備したイオン導電性測定用セルに対して、昇温させながら交流電圧を印加し、その時の電流値をモニターした。直流電圧ではなく交流電圧を印加したのは、電極界面でのイオンの焼き付きを防ぐためである。具体的には、任意波形ファンクションジェネレータ(AFG−2000、GW INSTEK社製)により、電圧6Vpp、方形波duty50、周波数1KHzの条件で交流電圧を印加し電流測定を行った。結果を図1に示す。また、電流値が0.1mAを示した時の温度を「電流の立ち上がり温度(℃)」とし、最大到達電流値を「到達電流値(mA)」とした。その結果を表1に示す。   An AC voltage was applied to the ion conductivity measurement cell prepared in this manner while raising the temperature, and the current value at that time was monitored. The reason why the AC voltage is applied instead of the DC voltage is to prevent the seizure of ions at the electrode interface. Specifically, an AC voltage was applied by an arbitrary waveform function generator (AFG-2000, manufactured by GW INSTEK) under the conditions of a voltage of 6 Vpp, a square wave duty of 50, and a frequency of 1 KHz, and current measurement was performed. The results are shown in FIG. Further, the temperature when the current value showed 0.1 mA was defined as “current rising temperature (° C.)”, and the maximum reached current value was defined as “arrival current value (mA)”. The results are shown in Table 1.

(実施例2)
化学式(6)の化合物を化学式(7)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 2)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (7). The results are shown in Table 1.
Figure 0006417974

(実施例3)
化学式(6)の化合物を化学式(8)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 3)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (8). The results are shown in Table 1.
Figure 0006417974

(実施例4)
化学式(6)の化合物を化学式(9)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
Example 4
Ionic conductivity measurement was performed in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (9). The results are shown in Table 1.
Figure 0006417974

(実施例5)
化学式(6)の化合物を化学式(10)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 5)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (10). The results are shown in Table 1.
Figure 0006417974

(実施例6)
化学式(6)の化合物を化学式(11)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 6)
Ionic conductivity measurement was performed in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (11). The results are shown in Table 1.
Figure 0006417974

(実施例7)
化学式(6)の化合物を化学式(12)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 7)
Ionic conductivity measurement was performed in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (12). The results are shown in Table 1.
Figure 0006417974

(実施例8)
化学式(6)の化合物を化学式(13)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 8)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (13). The results are shown in Table 1.
Figure 0006417974

(実施例9)
化学式(6)の化合物を化学式(14)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
Example 9
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (14). The results are shown in Table 1.
Figure 0006417974

(実施例10)
化学式(6)の化合物を化学式(15)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を表1に示す。

Figure 0006417974
(Example 10)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (15). The results are shown in Table 1.
Figure 0006417974

(比較例1)
化学式(6)の化合物を化学式(16)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を図2および表1に示す。

Figure 0006417974
(Comparative Example 1)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (16). The results are shown in FIG.
Figure 0006417974

(比較例2)
化学式(6)の化合物を化学式(17)の化合物に変更する以外は、実施例1と同様にしてイオン導電性測定を行った。結果を図2および表1に示す。

Figure 0006417974
(Comparative Example 2)
Ionic conductivity was measured in the same manner as in Example 1 except that the compound of the chemical formula (6) was changed to the compound of the chemical formula (17). The results are shown in FIG.
Figure 0006417974

実施例1〜10と比較例1〜2との比較より、イオン導電性固体電解質が化学式(1)で示される化合物を含むことで、より低温でのイオン導電性と優れた電流値が確認された。   From comparison between Examples 1 to 10 and Comparative Examples 1 and 2, the ion conductive solid electrolyte contains a compound represented by the chemical formula (1), thereby confirming ion conductivity at a lower temperature and an excellent current value. It was.

Figure 0006417974
Figure 0006417974

Claims (3)

化学式(1)で示される化合物を含有することを特徴とするイオン導電性固体電解質。
Figure 0006417974
〔化学式(1)において、R1は、炭素数6〜20のアルキル基、アルコキシ基、エチレンオキシド基を示す。Aは−O−(CH2)n−又は−(CH2)n−(式中、nは1〜20の整数を示す。)から選ばれる基を示す。R2はカルボン酸基、スルホン酸基及びホスホン酸基からプロトンを除いた酸残基を示す。Xは化学式(2)〜(5)から選ばれる基を示す。mはアニオンの価数により定まる整数を示す。〕
Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974
An ion conductive solid electrolyte comprising a compound represented by the chemical formula (1).
Figure 0006417974
[In chemical formula (1), R1 shows a C6-C20 alkyl group, an alkoxy group, and an ethylene oxide group. A represents a group selected from -O- (CH2) n- or-(CH2) n- (wherein n represents an integer of 1 to 20). R2 represents an acid residue obtained by removing a proton from a carboxylic acid group, a sulfonic acid group, and a phosphonic acid group. X represents a group selected from chemical formulas (2) to (5). m represents an integer determined by the valence of the anion. ]
Figure 0006417974
Figure 0006417974
Figure 0006417974
Figure 0006417974
化学式(1A)および化学式(2A)で示される化合物のうち少なくとも一方の化合物を含有することを特徴とする請求項1に記載のイオン導電性固体電解質。
Figure 0006417974
Figure 0006417974
〔化学式(1A)および化学式(2A)において、R1及びAは前記と同義である。〕
2. The ion conductive solid electrolyte according to claim 1, comprising at least one of the compounds represented by chemical formula (1A) and chemical formula (2A).
Figure 0006417974
Figure 0006417974
[In chemical formula (1A) and chemical formula (2A), R1 and A are as defined above. ]
化学式(1B)および化学式(2B)で示される化合物のうち少なくとも一方の化合物を含有することを特徴とする請求項1に記載のイオン導電性固体電解質。
Figure 0006417974
Figure 0006417974
〔化学式(1B)および化学式(2B)において、R1及びAは前記と同義である。〕
2. The ion conductive solid electrolyte according to claim 1, comprising at least one of the compounds represented by chemical formula (1B) and chemical formula (2B).
Figure 0006417974
Figure 0006417974
[In chemical formula (1B) and chemical formula (2B), R1 and A are as defined above. ]
JP2015015575A 2015-01-29 2015-01-29 Ion conductive solid electrolyte Active JP6417974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015015575A JP6417974B2 (en) 2015-01-29 2015-01-29 Ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015015575A JP6417974B2 (en) 2015-01-29 2015-01-29 Ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JP2016138080A JP2016138080A (en) 2016-08-04
JP6417974B2 true JP6417974B2 (en) 2018-11-07

Family

ID=56558859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015015575A Active JP6417974B2 (en) 2015-01-29 2015-01-29 Ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JP6417974B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870422B2 (en) * 2017-03-28 2021-05-12 Tdk株式会社 Ion conductive solid electrolyte and all solid alkali metal ion secondary battery
KR102346844B1 (en) 2018-07-25 2022-01-03 주식회사 엘지에너지솔루션 Polymer electrolyte and manufacturing method thereof
CN111342135B (en) * 2020-03-13 2022-02-15 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261763A (en) * 2000-03-22 2001-09-26 Sekisui Chem Co Ltd Ionic conductive solid for solid electrolyte and solid electrolyte and cell of batter using the same
JP4217425B2 (en) * 2001-07-06 2009-02-04 日本乳化剤株式会社 Novel polymer electrolyte and lithium secondary battery
JP4189948B2 (en) * 2002-05-20 2008-12-03 日本化学工業株式会社 Sulfonic acid type liquid crystal material, production method thereof, proton transport material, and proton transport material utilizing molecular arrangement depending on liquid crystal state
JP2004018449A (en) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc Aromatic compound containing sulfonic acid group and its manufacturing method
JP2006310158A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Solid electrolyte, electrode membrane assembly, fuel cell, and manufacturing method of solid electrolyte
JP2008027890A (en) * 2006-06-23 2008-02-07 Fujifilm Corp Solid electrolyte, membrane electrode assembly, and fuel cell
US8647793B2 (en) * 2008-12-26 2014-02-11 Samsung Electronics Co., Ltd. Solid proton conductor for fuel cell and fuel cell using the same
JP5584600B2 (en) * 2010-11-29 2014-09-03 日本化学工業株式会社 Lithium ionic liquid crystal compound, production method thereof and liquid crystal material
JP5919891B2 (en) * 2012-03-02 2016-05-18 凸版印刷株式会社 Polymer electrolyte, polymer electrolyte membrane, polymer electrolyte fuel cell, and ionic material having polymerizable group
JP6108587B2 (en) * 2012-03-29 2017-04-05 国立大学法人東京工業大学 POLYMER ELECTROLYTE, MEMBRANE ELECTRODE ASSEMBLY, SOLID POLYMER FUEL CELL, AND METHOD FOR PRODUCING POLYMER ELECTROLYTE

Also Published As

Publication number Publication date
JP2016138080A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
Zhao et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries
Shkrob et al. Why bis (fluorosulfonyl) imide is a “magic anion” for electrochemistry
Chagas et al. Ionic liquid-based electrolytes for sodium-ion batteries: tuning properties to enhance the electrochemical performance of manganese-based layered oxide cathode
Ruiz et al. Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation
Kakibe et al. Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries
Ibrahim et al. Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes
Yamada et al. Pyrrolidinium-based organic ionic plastic crystals: Relationship between side chain length and properties
Zhu et al. Ionic liquid-based electrolytes for capacitor applications
Leung et al. Progress in electrolytes for rechargeable aluminium batteries
Navarra et al. New Ether‐functionalized Morpholinium‐and Piperidinium‐based Ionic Liquids as Electrolyte Components in Lithium and Lithium–Ion Batteries
Krummacher et al. Al (TFSI) 3 as a conducting salt for high-voltage electrochemical double-layer capacitors
Wen et al. Blend-based polymer electrolytes of poly (ethylene oxide) and hyperbranched poly [bis (triethylene glycol) benzoate] with terminal acetyl groups
JP6417974B2 (en) Ion conductive solid electrolyte
JPWO2010055762A1 (en) Electric double layer capacitor
Yang et al. N-ethyl-N-propylpyrrolidinium bis (fluorosulfonyl) amide ionic liquid electrolytes for sodium secondary batteries: effects of Na ion concentration
Nirmale et al. Imidazolium-based dicationic ionic liquid electrolyte: strategy toward safer lithium-ion batteries
Hasan et al. Solvent toolkit for electrochemical characterization of hybrid perovskite films
Khodr et al. Electrochemical study of functional additives for Li-ion batteries
JP6730723B2 (en) Non-aqueous electrolyte
Fu et al. Ionic liquids based on bis (2, 2, 2-trifluoroethoxysulfonyl) imide with various oniums
JP2006196390A (en) Ionic liquid composition and electrochemical device using it
JP2006190618A (en) Ionic liquid composition and electrochemical device containing same
Horiuchi et al. Physicochemical and electrochemical properties of N-methyl-N-methoxymethylpyrrolidinium bis (fluorosulfonyl) amide and its lithium salt composites
JP6417975B2 (en) Ion conductive solid electrolyte
JP6417973B2 (en) Ion conductive solid electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150