JP6415393B2 - Step detection device and step climbing device - Google Patents

Step detection device and step climbing device Download PDF

Info

Publication number
JP6415393B2
JP6415393B2 JP2015116567A JP2015116567A JP6415393B2 JP 6415393 B2 JP6415393 B2 JP 6415393B2 JP 2015116567 A JP2015116567 A JP 2015116567A JP 2015116567 A JP2015116567 A JP 2015116567A JP 6415393 B2 JP6415393 B2 JP 6415393B2
Authority
JP
Japan
Prior art keywords
wheel
load
actuator
climbing
drag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015116567A
Other languages
Japanese (ja)
Other versions
JP2017003383A (en
Inventor
俊哉 的崎
俊哉 的崎
水野 大輔
大輔 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015116567A priority Critical patent/JP6415393B2/en
Publication of JP2017003383A publication Critical patent/JP2017003383A/en
Application granted granted Critical
Publication of JP6415393B2 publication Critical patent/JP6415393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、ビル、マンション等の建設現場で、エレベータ―、エスカレータ等の昇降機設備の据付工事を行う際に、重量物機材の搬送用の台車に取り付けて使用される段差検出装置及び段差乗り越え装置に関するものである。   The present invention relates to a step detection device and a step climbing device that are used by being attached to a carriage for transporting heavy equipment when installing elevator equipment such as elevators and escalators at construction sites such as buildings and condominiums. It is about.

従来の移動体ロボットや段差乗り越え機能を有する搬送装置では、段差を検出する方法として、カメラで捉えた画像を画像処理したり、或いは、レーザー又は超音波を照射し、反射して戻って来たレーザー又は超音波を検知器で検出した信号を解析処理して認識したりする等、非接触手段と解析処理技術を駆使して段差を検出している。そして、この検出した段差に基づいて、車輪を昇降するアームの制御を行ったものがある(例えば特許文献1参照)。   In a conventional mobile robot or a transfer device having a step-over function, as a method of detecting a step, an image captured by a camera is processed, or a laser or ultrasonic wave is irradiated and reflected back. The level difference is detected by making full use of non-contact means and analysis processing technology, such as analyzing and recognizing a signal detected by a detector using laser or ultrasonic waves. And there exists what performed control of the arm which raises / lowers a wheel based on this detected level | step difference (for example, refer patent document 1).

特開2005−28971号公報JP 2005-28971 A

機材の搬送は屋外及び屋内の両方の環境下で作業する必要があるが、上記の特許文献1のような非接触手段による段差の検出装置の場合には、搬送路の表面反射の違い、又は天候による明るさの違い、表面が乾いているか濡れているかなどによって検出信号の変動が大きく、工事現場で使用する台車用途の段差のセンシング手段としては適さなかった。   It is necessary to carry the equipment in both outdoor and indoor environments. However, in the case of a step detection device using non-contact means such as the above-mentioned Patent Document 1, the difference in surface reflection on the conveyance path, or The detection signal fluctuates greatly depending on the difference in brightness depending on the weather and whether the surface is dry or wet, making it unsuitable as a means of sensing the level difference for trucks used at construction sites.

本発明は、斯かる従来技術の課題を解消するためになされたもの、接触式の検出手段を用いることにより段差を検出する装置と、この段差検出装置を利用して段差を乗り越える装置を提供することを目的とする。   The present invention provides a device for detecting a level difference by using a contact type detection means and a device for overcoming the level difference using the level difference detection device, which have been made to solve the problems of the prior art. For the purpose.

上記の目的を達成するため、本発明に係る段差検出装置は、駆動輪の回転軸に接する部位に取り付けられ、前記駆動輪の回転軸と垂直な面内で、直角を成す2軸方向の加速度を検出する加速度センサと、走行路の段差と前記駆動輪が接触したときに、前記加速度センサから得られる抗力加速度の2軸方向成分から抗力方向角度を求め、前記抗力方向角度から前記段差の高さを推定する制御装置とを備える。   In order to achieve the above object, a level difference detecting device according to the present invention is attached to a portion in contact with a rotation axis of a drive wheel, and a biaxial acceleration that forms a right angle in a plane perpendicular to the rotation axis of the drive wheel. When the driving wheel comes into contact with the acceleration sensor for detecting the road, the drag direction angle is obtained from the biaxial component of the drag acceleration obtained from the acceleration sensor, and the height of the step is calculated from the drag direction angle. And a control device for estimating the height.

また、本発明では、上記の段差検出装置を備え、台車の前輪及び後輪よりそれぞれ前側及び後側に前記駆動輪を配置した段差乗り越え装置であって、前記駆動輪の高さを変えるアクチュエータを備え、前記制御装置は、前記抗力方向角度の値から、前記前側の駆動輪が接している段差が前記台車の進行方向に対して上昇する方向か、下降する方向かを判別した後、前記段差の高さだけ前記アクチュエータを動作させる段差乗り越え装置が提供される。   Further, the present invention is a step climbing device provided with the step detection device described above, wherein the drive wheel is disposed on the front side and the rear side of the front wheel and the rear wheel of the carriage, respectively, and includes an actuator that changes the height of the drive wheel. And the control device determines, from the value of the drag direction angle, whether the step with which the front drive wheel is in contact is an upward direction or a downward direction with respect to the traveling direction of the carriage. A step-over device for operating the actuator by the height of is provided.

本発明によれば、駆動輪の回転軸に接する部位に2軸方向の加速度を検出するセンサを設け、走行路の段差と駆動輪が接触したときに、検出された2軸方向成分から抗力方向角度を求めて段差の高さを推定するように段差検出装置を構成したので、工事現場等の環境変化に影響されることなく、直接接触するという方法で簡単な演算により確かな段差の認識ができ、この段差に基づいて重量物を搬送する際の安全性に配慮した段差乗り越え装置を提供することができる。   According to the present invention, the sensor that detects the acceleration in the biaxial direction is provided at a portion that is in contact with the rotation axis of the driving wheel, and the drag direction is detected from the detected biaxial component when the step on the traveling road and the driving wheel contact each other. Since the step detection device is configured to estimate the height of the step by obtaining the angle, it is possible to recognize the step by a simple calculation with a simple contact method without being affected by environmental changes such as the construction site. In addition, it is possible to provide a step-over device in consideration of safety when transporting a heavy object based on the step.

本発明に係る段差検出装置を搭載した本発明に係る段差乗り越え装置と上り段差及び下り段差との関係を示す概略側面図である。It is a schematic side view which shows the relationship between the level | step difference climbing apparatus which mounts the level | step difference detection apparatus which concerns on this invention, and an up step and a down step. 本発明に係る段差検出装置を搭載した本発明の段差乗り越え装置における、段差接触時の重力方向を基準とした抗力方向と前輪車軸に取り付けた加速度センサとの関係を示した概略図である。It is the schematic which showed the relationship between the drag direction on the basis of the gravitational direction at the time of level | step contact, and the acceleration sensor attached to the front-wheel axle in the level | step crossing apparatus of this invention carrying the level | step difference detection apparatus which concerns on this invention. 本発明に係る段差検出装置と、この段差検出装置を組み込んだ本発明に係る段差乗り越え装置の電気的な制御系統を示すブロック図である。It is a block diagram which shows the electrical control system of the level | step difference detection apparatus which concerns on this invention, and the level | step difference climbing apparatus which concerns on this invention incorporating this level | step difference detection apparatus. 本発明に係る段差検出装置を搭載した本発明に係る段差乗り越え装置の上り方向における段差の乗り越え動作を説明するための概略図である。It is the schematic for demonstrating the climbing operation of the level | step difference in the up direction of the level | step climbing apparatus which mounts the level | step difference detection apparatus which concerns on this invention. 本発明に係る段差検出装置を搭載した本発明に係る段差乗り越え装置の下り方向における段差の乗り越え動作を説明するための概略図である。It is the schematic for demonstrating the level | step difference operation | movement in the down direction of the level | step crossing apparatus based on this invention carrying the level | step difference detection apparatus based on this invention. 図3に示した本発明に係る段差検出装置と、この段差検出装置を組み込んだ本発明に係る段差乗り越え装置における演算過程を示すフローチャートである。It is a flowchart which shows the calculation process in the level | step difference detection apparatus which concerns on this invention shown in FIG. 3, and the level | step difference climbing apparatus which concerns on this invention incorporating this level | step difference detection apparatus. 図6のフローチャートによる演算結果に基づき、図3に示した本発明に係る段差乗り越え装置が上り方向段差を乗り越えるときの動作過程を示すフローチャートである。7 is a flowchart showing an operation process when the step climbing apparatus according to the present invention shown in FIG. 3 gets over an upward step based on the calculation result of the flowchart of FIG. 6. 図6のフローチャートによる演算結果に基づき、図3に示した本発明に係る段差乗り越え装置が下り方向段差を乗り越えるときの動作過程を示すフローチャートである。7 is a flowchart showing an operation process when the step climbing apparatus according to the present invention shown in FIG. 3 gets over a downward step based on the calculation result of the flowchart of FIG. 6. 本発明において段差接触時に駆動輪に作用する段差からの抗力と、積載荷重と、段差乗り越え力との関係を示した図である。It is the figure which showed the relationship between the drag from the level | step difference which acts on a drive wheel at the time of level | step contact in this invention, a loading load, and level | step climbing force. 本発明に係る段差検出装置で演算される段差高さhと車輪の半径rとの比h/rに対する段差接触時で発生する抗力の方向角度θにおける、0度から90度までの関係を示したグラフ図である。FIG. 6 shows a relationship from 0 degree to 90 degrees in the direction angle θ of the drag generated at the time of step contact with respect to the ratio h / r of the step height h and the wheel radius r calculated by the step detecting device according to the present invention. FIG. 本発明に係る段差検出装置で演算される段差高さhと車輪の半径rとの比h/rに対して、駆動輪に掛かる荷重に対して何倍の乗り越え力が必要となるかを示したグラフ図である。The figure shows how many times the overcoming force is required with respect to the load applied to the driving wheel with respect to the ratio h / r between the step height h and the wheel radius r calculated by the step detecting device according to the present invention. FIG. 本発明に係る段差検出装置を搭載した本発明に係る段差乗り越え装置を、別体の台車に連結した構造を示した図である。It is the figure which showed the structure which connected the level | step climbing apparatus concerning this invention carrying the level | step difference detection apparatus concerning this invention to the separate trolley | bogie.

(台車を使用する搬送経路)
本発明に係る段差乗り越え装置の走行経路としては、舗装が施された車道及び歩道、並びに養生用に敷かれた厚さが数mmから20mmほどの鉄製敷板を想定している。また、段差としては、車道から歩道の境にあるコンクリートブロックの縁石及び敷板の反りや地面の凹凸による隣接した敷板間での高さ違いに見られる段差等直角に近いエッジを持つ段差を想定している。敷板の反り及び通常、車道、歩道には傾斜面があり、路面は必ずしも水平面に限定されない。
(Conveying route using cart)
As a travel route of the step-over device according to the present invention, a pavement roadway and a sidewalk, and an iron floor having a thickness of several to 20 mm laid for curing are assumed. In addition, the steps are assumed to be steps with edges that are close to right angles, such as the curb of the concrete block on the boundary of the sidewalk from the roadway and the warpage of the floorboard and the height difference between adjacent floorboards due to the unevenness of the ground. ing. The warp of the floorboard and usually the roadway and the sidewalk have an inclined surface, and the road surface is not necessarily limited to a horizontal surface.

また、屋外で機材を搭載した後、車道から歩道等、屋外を通り、建設用建物に近づくに従い幅が狭く、曲がりがきつくなる。屋内に入ると人が生活するための幅しかなく周囲は壁に仕切られた狭通路になる。屋外では、昼夜、晴天雨天で環境変化の格差が大きい。屋内では、安定した照明状態が得られず搬送経路全長にわたり明暗が大きく変化する。   In addition, after loading equipment outdoors, the width becomes narrower and the bending becomes tighter as it approaches the building for construction, as it passes the road from the roadway to the sidewalk. Once inside, there is only a width for people to live, and the surrounding area is a narrow passage partitioned by walls. Outside, there is a large disparity in environmental changes between day and night and fine weather. Indoors, a stable lighting state cannot be obtained, and the brightness changes greatly over the entire length of the conveyance path.

実施の形態1.
以下、本発明の実施の形態1に係る段差検出装置及び段差乗り越え装置について、図面を参照して詳細に説明する。
Embodiment 1 FIG.
Hereinafter, a step detection device and a step climbing device according to Embodiment 1 of the present invention will be described in detail with reference to the drawings.

本発明に係る段差検出装置を搭載した段差乗り越え装置を示す図1において、台車200は、一般に知られている搬送用台車であり、台車キャスター前輪201と台車キャスター後輪202がそれぞれ2脚ずつ固定されている。本発明に係る段差乗り越え装置は、ベース100を台車200の下部に連結固定して使用する。但し、これに限らず、最初から台車にベースを組み込んだものでもよいことは言うまでもない。   In FIG. 1 showing a step climbing apparatus equipped with a step detecting device according to the present invention, a carriage 200 is a generally known carriage, and two carriage caster front wheels 201 and two carriage caster rear wheels 202 are fixed. Has been. The step-over device according to the present invention is used by connecting and fixing the base 100 to the lower portion of the carriage 200. However, the present invention is not limited to this, and it goes without saying that the base may be built into the cart from the beginning.

ベース100を台車200に連結する構造の場合には、取付け及び取外しが容易になるので、機材に適した台車を使用できるだけでなく、電源や駆動モータ等設備費用を抑え、トラックで運搬する際の占有量を抑えることができる。   In the case of the structure in which the base 100 is connected to the carriage 200, it is easy to install and remove. Therefore, not only can the carriage suitable for the equipment be used, but also the equipment costs such as the power source and the drive motor can be reduced and transported by truck. Occupancy can be reduced.

段差乗り越え装置のベース100には、前輪昇降アクチュエータ102と後輪昇降アクチュエータ104が取り付けられている。前輪昇降アクチュエータ102の先端部に前輪101が取り付けられ、後輪昇降アクチュエータ104の先端部に後輪103が取り付けられている。台車200のキャスター前後輪201,202を使用しない状態で全荷重が前後の昇降アクチュエータに加わった状態でも、前後独立した動きで上下方向に可動できるようになっている。   A front wheel lifting / lowering actuator 102 and a rear wheel lifting / lowering actuator 104 are attached to the base 100 of the step climbing apparatus. A front wheel 101 is attached to the front end portion of the front wheel lifting actuator 102, and a rear wheel 103 is attached to the front end portion of the rear wheel lifting actuator 104. Even when the caster front and rear wheels 201 and 202 of the carriage 200 are not used, even when a full load is applied to the front and rear lifting actuators, the cart 200 can move up and down independently of the front and rear.

台車200は段差乗り越え装置に連結固定されているので、前輪昇降アクチュエータ102及び後輪昇降アクチュエータ104の上下動作により水平を保ったまま上下方向に昇降可能である。   Since the carriage 200 is connected and fixed to the step climbing device, the carriage 200 can be moved up and down while maintaining the level by the vertical movement of the front wheel lifting actuator 102 and the rear wheel lifting actuator 104.

前輪昇降アクチュエータ102及び後輪昇降アクチュエータ104は、図示しない荷重センサを内蔵し、駆動輪としての前輪101及び後輪103が受ける荷重を検出する。段差乗り越え装置の前輪101の車軸105には、2軸加速度センサ300が固定され、この2軸加速度センサ300は、前輪101が段差に接触した時に発生する前輪101の抗力加速度を2軸方向にax、axとして分解して計測することができる。2軸方向に分解してax、azが計測できるため抗力加速度の重力加速度の方向に対する角度θを求めることができる。   The front wheel lifting / lowering actuator 102 and the rear wheel lifting / lowering actuator 104 incorporate a load sensor (not shown) and detect the load received by the front wheel 101 and the rear wheel 103 as driving wheels. A biaxial acceleration sensor 300 is fixed to the axle 105 of the front wheel 101 of the step climbing device. The biaxial acceleration sensor 300 axes the drag acceleration of the front wheel 101 generated when the front wheel 101 contacts the step in the biaxial direction. , Ax can be decomposed and measured. Since ax and az can be measured by disassembling in the biaxial direction, the angle θ of the drag acceleration with respect to the direction of gravitational acceleration can be obtained.

前輪101は図1(a)に示すように進行方向前方の段差だけでなく、図1(b)に示すように進行方向後方の段差に対しても接触時の抗力Aを計測することができる。そして、2軸加速度センサ300で計測した抗力成分ax、azを元に、後述するように、段差高さhを求めることができる。   As shown in FIG. 1A, the front wheel 101 can measure the drag A at the time of contact not only with the step forward in the traveling direction but also with the step backward in the traveling direction as shown in FIG. . As described later, the step height h can be obtained based on the drag components ax and az measured by the biaxial acceleration sensor 300.

図2は、本発明の段差乗り越え装置の、前輪101の車軸105に取り付けた加速度センサ300と重力方向を基準とした抗力方向との関係を示す。
図2(a)は、段差乗り越え装置の前輪101と前輪昇降アクチュエータ102の支持部と前輪101の車軸105に固定した2軸加速度センサ300と段差hとの関係を示している。
FIG. 2 shows the relationship between the acceleration sensor 300 attached to the axle 105 of the front wheel 101 and the drag direction based on the direction of gravity in the step-over device of the present invention.
FIG. 2A shows the relationship between the step h and the two-axis acceleration sensor 300 fixed to the front wheel 101 of the step climbing device, the support portion of the front wheel lifting / lowering actuator 102, and the axle 105 of the front wheel 101.

図2(a)では段差乗り越え装置の前輪101が段差手前の面に接した状態で段差hの角に半径rの前輪101が接触した状態を示している。この場合に、車輪101が受ける抗力Aは、段差hとの接点で円の接線と垂直となる方向で、車輪101の車軸105の中心に向かう方向に発生する。抗力の加速度Aを2軸加速度センサ300で2軸成分ax、azとして計測することにより、図1(a)に示すように、重力方向を基準とする抗力方向角θを容易に求めることができる。   FIG. 2A shows a state in which the front wheel 101 having a radius r is in contact with the corner of the step h while the front wheel 101 of the step climbing apparatus is in contact with the surface in front of the step. In this case, the drag A received by the wheel 101 is generated in the direction toward the center of the axle 105 of the wheel 101 in a direction perpendicular to the tangent of the circle at the contact point with the step h. By measuring the drag acceleration A with the biaxial acceleration sensor 300 as the biaxial components ax and az, the drag direction angle θ based on the direction of gravity can be easily obtained as shown in FIG. .

図2(b)は、前輪昇降アクチュエータ102の昇降動作で2軸加速度センサ300の傾きが変化し、抗力がAからA1に変化(角度はθからθ1に変化)する状態を示しているが、どの場合でも重力加速度gを基準にすることで前輪101の現状位置から残りの段差高さhを求めることが可能であることを示している。   FIG. 2B shows a state in which the tilt of the biaxial acceleration sensor 300 is changed by the lifting operation of the front wheel lifting actuator 102 and the drag is changed from A to A1 (the angle is changed from θ to θ1). In any case, it is shown that the remaining step height h can be obtained from the current position of the front wheel 101 by using the gravitational acceleration g as a reference.

図3は、本発明に係る段差検出装置と、この段差検出装置の演算出力によって制御を受ける段差乗り越え装置の電気的な制御系統を示している。
図中、制御装置10は、演算回路11と記憶装置12とで構成され、段差検出装置を構成し、設定値として与えられる前後輪の半径rと、加速度センサ300によって検出される抗力Aの前輪加速度成分ax、azと、アクチュエータ102に取り付けられた荷重センサ(図示せず)によって検出された荷重Wとを入力し、後述するように、抗力Aの方向θと、段差高さhと、乗り越え力Fとを演算する。
FIG. 3 shows an electrical control system of the step detection device according to the present invention and the step climbing device controlled by the calculation output of the step detection device.
In the figure, the control device 10 includes an arithmetic circuit 11 and a storage device 12 to form a level difference detection device. The front and rear wheels have a radius r given as a set value and a front wheel of the drag A detected by the acceleration sensor 300. The acceleration components ax and az and the load W detected by a load sensor (not shown) attached to the actuator 102 are input, and the direction A of the drag A and the step height h are overcome as will be described later. The force F is calculated.

制御装置10で演算されたθ、h、Fは、前輪駆動回路20a及び後輪駆動回路20bに送られる。前輪駆動回路20aは、前輪駆動モータ108aに回転量を与え、前輪昇降アクチュエータ102に昇降量を与える。後輪駆動回路20bは、後輪駆動モータ108bに回転量を与え、後輪昇降アクチュエータ104に昇降量を与える。   Θ, h, and F calculated by the control device 10 are sent to the front wheel drive circuit 20a and the rear wheel drive circuit 20b. The front wheel drive circuit 20 a gives a rotation amount to the front wheel drive motor 108 a and gives a lift amount to the front wheel lift actuator 102. The rear wheel drive circuit 20 b gives a rotation amount to the rear wheel drive motor 108 b and gives a lift amount to the rear wheel lift actuator 104.

図4(a)〜(f)は、それぞれ以下の通り、本発明の段差乗り越え装置の上り方向の動作過程を示している。
(a)前輪昇降アクチュエータ102を駆動し、前輪101を、制御装置10が演算で求めた段差高さhだけ上昇させる。
(b)後輪駆動モータ108bを駆動して後輪103を前進させる。
(c)前輪昇降アクチュエータ102と後輪昇降アクチュエータ104の両方を、同時に、等速度で、高さhだけ下降させ、台車200を水平のまま高さhだけ上昇させる。
(d)後輪駆動モータ108bを駆動して後輪103を前進させる。
(e)後輪昇降アクチュエータ104を駆動し、後輪103を段差高さhだけ上昇させる。
(f)前輪駆動モータ108aを駆動して前輪101を前進させる。
4 (a) to 4 (f) show the operation process in the upward direction of the step climbing apparatus of the present invention as follows.
(A) The front wheel lifting / lowering actuator 102 is driven, and the front wheel 101 is raised by the step height h determined by the control device 10 through calculation.
(B) The rear wheel drive motor 108b is driven to move the rear wheel 103 forward.
(C) Both the front wheel lifting actuator 102 and the rear wheel lifting actuator 104 are simultaneously lowered at the same speed by the height h, and the carriage 200 is raised by the height h while being horizontal.
(D) The rear wheel drive motor 108b is driven to move the rear wheel 103 forward.
(E) The rear wheel lifting / lowering actuator 104 is driven to raise the rear wheel 103 by the step height h.
(F) The front wheel drive motor 108a is driven to move the front wheel 101 forward.

図5(a)〜(f)は、それぞれ以下の通り、本発明の段差乗り越え装置の下り方向の動作過程を示している。
(a)後輪駆動モータ108bを駆動して後輪103を前進させる。
(b)前輪昇降アクチュエータ102を駆動し、前輪101を段差下面まで下降させ、段差高さhを計測する。
(c)後輪駆動モータ108bを駆動して後輪103を前進させる。
(d)前輪昇降アクチュエータ102と後輪昇降アクチュエータ104の両方を、同時に、等速度で、高さhだけ上昇させ、台車200を水平のまま高さhだけ下降させる。
(e)前輪駆動モータ108aを駆動して前輪101を前進させる。
(f)後輪昇降アクチュエータ104を駆動し、後輪103を段差高さhだけ下降させる。
5 (a) to 5 (f) show the operation process in the downward direction of the step climbing apparatus of the present invention as follows.
(A) The rear wheel drive motor 108b is driven to move the rear wheel 103 forward.
(B) The front wheel lifting / lowering actuator 102 is driven, the front wheel 101 is lowered to the lower surface of the step, and the step height h is measured.
(C) The rear wheel drive motor 108b is driven to move the rear wheel 103 forward.
(D) Both the front wheel lifting / lowering actuator 102 and the rear wheel lifting / lowering actuator 104 are simultaneously raised at the same speed by the height h, and the carriage 200 is lowered by the height h while being horizontal.
(E) The front wheel drive motor 108a is driven to move the front wheel 101 forward.
(F) The rear wheel lifting / lowering actuator 104 is driven to lower the rear wheel 103 by the step height h.

上記の図4及び図5の動作を、さらに、図6〜図8に示すフローチャートに沿って以下に説明する。
図6は、本発明による段差検出装置及び段差乗り越え装置の動作フローチャートを示し、特に初期情報の設定から上り段差か下り段差かの選択までを示している。
The operation of FIGS. 4 and 5 will be further described below along the flowcharts shown in FIGS.
FIG. 6 shows an operation flowchart of the step detection device and step climbing device according to the present invention, and particularly shows from the setting of the initial information to the selection of the up step or the down step.

まず、制御装置10における演算回路11の演算に使用する前提条件として、ステップS101では、前輪101の半径rと、乗り越え力の最大値F0を入力する。この乗り越え力の最大値F0とは、作業者の牽引力、又は動力装置を使用した場合の駆動力による牽引力の最大値を指す。段差高さhが車輪半径rと比較して小さいときは、後述する図11のグラフのように、車輪のみで段差を越えるための牽引力は小さくて済むことになる。   First, as preconditions used for calculation of the calculation circuit 11 in the control device 10, in step S101, the radius r of the front wheel 101 and the maximum value F0 of the overcoming force are input. The maximum value F0 of the overcoming force indicates the maximum value of the traction force of the worker or the traction force by the driving force when the power device is used. When the step height h is smaller than the wheel radius r, as shown in the graph of FIG. 11 described later, the traction force for exceeding the step with only the wheel is small.

次に、ステップS102では、搭載物を載せた段階で実施する前輪101と後輪103に加わる荷重量を荷重センサ(図示せず)により計測する。この場合、台車200の台車キャスター前輪201と台車キャスター後輪202が接地していない状態で、前輪101と後輪103のみで全体を支えた場合の各荷重量を計測し、前輪荷重をW21、後輪荷重をW22として記憶する。   Next, in step S102, the amount of load applied to the front wheel 101 and the rear wheel 103, which is performed when the mounted object is placed, is measured by a load sensor (not shown). In this case, in the state where the bogie caster front wheel 201 and the bogie caster rear wheel 202 of the bogie 200 are not in contact with each other, each load amount when only the front wheel 101 and the rear wheel 103 are supported is measured, and the front wheel load is expressed as W21, The rear wheel load is stored as W22.

次に、全車輪が均等に接地した状態で前輪101と後輪103に加わる荷重量を計測し、前輪荷重をW23、後輪荷重をW24として記憶する。搬送中の前輪荷重及び後輪荷重の各計測値と、上記の記憶した荷重W21、W22、W23、W24を参照比較することで、図4(a)〜(f)及び図5(a)〜(f)のどの状態にあるのかを判断することができる。   Next, the load applied to the front wheel 101 and the rear wheel 103 is measured in a state where all the wheels are grounded uniformly, and the front wheel load is stored as W23 and the rear wheel load is stored as W24. By comparing the measured values of the front wheel load and the rear wheel load during conveyance with the stored loads W21, W22, W23, and W24 described above, FIGS. 4A to 4F and FIGS. It can be determined in which state of (f).

次に、ステップS103において、前輪101を段差の角部に接触させ、このとき、演算回路11は、前輪101が受ける段差からの接触加速度を加速度センサ300から2軸加速度成分ax、azとして受け、以て抗力方向角度θと、段差高さhと、乗り越え力Fを演算する。
まず、抗力方向角度θは、図1(a)に示すように、2軸加速度成分ax、azから求められる。
Next, in step S103, the front wheel 101 is brought into contact with the corner of the step, and at this time, the arithmetic circuit 11 receives the contact acceleration from the step received by the front wheel 101 from the acceleration sensor 300 as the biaxial acceleration components ax and az. Accordingly, the drag direction angle θ, the step height h, and the overcoming force F are calculated.
First, the drag direction angle θ is obtained from the biaxial acceleration components ax and az as shown in FIG.

次に段差高さhの算出方法を、本発明による段差乗り越え装置の車輪に作用する段差からの抗力Aと、駆動輪に掛かる積載荷重Wと、段差乗り越え力Fと、抗力方向角度θとの関係を示した図9を参照して説明する。
なお、図9において、耐荷重2500Nで、車輪の外直径が200mmのキャスター車輪400で、外輪部はゴム素材が使われ他の部分は鋼板プレス材料を使用した一般的な構成のキャスターある。キャスター車輪400の中心にキャスター車軸401があり、キャスター支持部材402で台車の連結部材403に取り付けられる。
Next, the step height h is calculated using a drag A from the step acting on the wheels of the step climbing apparatus according to the present invention, a load W applied to the driving wheel, a step climbing force F, and a drag direction angle θ. This will be described with reference to FIG. 9 showing the relationship.
In FIG. 9, a caster wheel 400 having a load resistance of 2500 N and a wheel outer diameter of 200 mm is a caster having a general configuration in which a rubber material is used for the outer ring portion and a steel plate press material is used for the other portions. A caster axle 401 is located at the center of the caster wheel 400 and is attached to a connecting member 403 of the carriage by a caster support member 402.

上記のように、抗力方向角度θが求められると、段差高さhは、次式で求められる。
h=r(1−cosθ) ・・・・・・式(1)
また、段差乗り越え力Fについては、段差とキャスターの外輪部の接点を基点とした抗力ベクトル方向Aに対して、荷重Wの分力と乗り越え力Fの分力を考え、両者が等しくなる条件が段差を乗り越え条件と考えることができる。従って、次式が成立する。
F・cosθ=W・sinθ ・・・・・・式(2)
これを変形すると、段差乗り越え力Fは、次式で求められる。
F=W・tanθ ・・・・・・式(3)
As described above, when the drag direction angle θ is obtained, the step height h is obtained by the following equation.
h = r (1-cos θ) (1)
Further, regarding the step overcoming force F, with respect to the drag vector direction A based on the contact point between the step and the outer ring portion of the caster, the component force of the load W and the component force of the overcoming force F are considered, and the conditions for making both equal It can be considered as a condition to overcome a step. Therefore, the following equation is established.
F · cos θ = W · sin θ ··· Equation (2)
If this is deformed, the step overcoming force F is obtained by the following equation.
F = W · tan θ ········ Equation (3)

図10のグラフは、段差高さhと車輪の半径rとの比h/rに対する段差接触時で発生する抗力の方向角度θにおける、0度から90度までの関係を示したグラフ図である。
この縦軸θを別の角度で示したものが、図11に示されており、係数Kは、上記の式(3)におけるtanθに相当しており、駆動輪101、103に掛かる荷重に対して何倍の乗り越え力が必要となるかを示している。
The graph of FIG. 10 is a graph showing the relationship from 0 degree to 90 degrees in the direction angle θ of the drag generated at the time of step contact with respect to the ratio h / r between the step height h and the wheel radius r. .
FIG. 11 shows this vertical axis θ at another angle, and the coefficient K corresponds to tan θ in the above equation (3), and corresponds to the load applied to the drive wheels 101 and 103. It shows how many times overcoming power is required.

例えば、車輪半径100mmで段差高さ10mmを乗り越える場合、h/rは0.1、係数Kは0.48であり、段差を乗り越えるための牽引力は、車輪に掛かる荷重Wの半分以上の牽引力が必要となることを示している。また、段差高さhと抗力方向角度θが分かれば段差を乗り越えるための牽引力が求まることを示している。すなわち、搭載物の荷重に合わせて段差乗り越え装置を開始する段差高さhの上限値を変えてもよく、搬送作業の効率向上を図ることが可能である。 For example, when overcoming a step height of 10 mm with a wheel radius of 100 mm, h / r is 0.1 and the coefficient K is 0.48, and the traction force for overcoming the step is more than half of the load W applied to the wheel. It shows that it is necessary. Further, it is shown that if the step height h and the drag direction angle θ are known, a traction force for getting over the step can be obtained. In other words, the upper limit value of the step height h at which the step climbing device is started may be changed in accordance with the load of the load, and the efficiency of the transfer work can be improved.

このようにして、ステップS103で抗力方向角度θが求められると、ステップS104において、このθの値を元に、段差上りか段差下りかを判断して段差乗り越え動作に移る(ステップS105,S106)。
例えば、図1(a)の場合、抗力方向角度θは正側になり段差上りであることが分かる。また、図1(b)の場合、抗力方向角度θは負側になり段差下りであることが分かる。
In this way, when the drag direction angle θ is obtained in step S103, in step S104, it is determined whether the step is up or down based on the value of θ, and the step moves over the step (steps S105 and S106). .
For example, in the case of FIG. 1A, it can be seen that the drag direction angle θ is on the positive side and is stepped up. Further, in the case of FIG. 1B, it can be seen that the drag direction angle θ is on the negative side and is step-down.

図7は、図6のステップS105に続く段差上り動作を示したものである。
まず、ステップS201では、段差上り動作が必要か否かを判断するため、乗り越え力Fと初期設定の乗り越え力F0を比較し、F≧F0の場合は段差上り操作を継続する。
F<F0の場合は、段差高さが小さく積載荷重も小さい場合に該当し、台車200の昇降操作の工程を経ることなく前輪101と後輪103による牽引作業を進め、乗り越え動作を省略する。
FIG. 7 shows a step-up operation following step S105 in FIG.
First, in step S201, the climbing force F is compared with the default climbing force F0 to determine whether or not a step climbing operation is necessary. If F ≧ F0, the step climbing operation is continued.
The case of F <F0 corresponds to the case where the step height is small and the load is small, and the traction work by the front wheel 101 and the rear wheel 103 is advanced without going through the lifting / lowering process of the carriage 200, and the overpass operation is omitted.

ステップS202では、前後輪101、103の回転を停止し、前輪昇降アクチュエータ102を駆動し、前輪101を段差高さhの分だけ上昇させる(図4(a)参照)。
ステップS203では、前後輪101、103を駆動し、段差乗り越え装置を進めて、台車200の前輪201が段差に接触する位置まで移動させる(図4(b)参照)。
In step S202, the rotation of the front and rear wheels 101 and 103 is stopped, the front wheel lifting / lowering actuator 102 is driven, and the front wheel 101 is raised by the step height h (see FIG. 4A).
In step S203, the front and rear wheels 101 and 103 are driven, the step climbing device is advanced, and the front wheel 201 of the carriage 200 is moved to a position where it contacts the step (see FIG. 4B).

ステップS204では、前後輪101、103の回転を停止し、前輪昇降アクチュエータ102と後輪昇降アクチュエータ104を、同時に等速度で段差高さhだけ下降させる。このとき台車200は水平のまま段差高さhだけ上昇することになる。全荷重を前輪101と後輪103で受けることになるため、前輪荷重が初期設定のW21、後輪荷重が初期設定のW22であることを確認する(図4(c)参照)。   In step S204, the rotation of the front and rear wheels 101 and 103 is stopped, and the front wheel elevating actuator 102 and the rear wheel elevating actuator 104 are simultaneously lowered by the step height h at the same speed. At this time, the carriage 200 rises by the step height h while remaining horizontal. Since the entire load is received by the front wheel 101 and the rear wheel 103, it is confirmed that the front wheel load is the initial setting W21 and the rear wheel load is the initial setting W22 (see FIG. 4C).

ステップS205では、前後輪101、103を駆動し、段差乗り越え装置を進めて、台車200の後輪103が段差に接触する位置まで移動させる(図4d参照)。
ステップS206では、前後輪101、103の回転を停止し、後輪昇降アクチュエータ104を駆動し、後輪103を段差高さhだけ上昇させる(図4(e)参照)。
In step S205, the front and rear wheels 101 and 103 are driven, the step climbing device is advanced, and moved to a position where the rear wheel 103 of the carriage 200 contacts the step (see FIG. 4d).
In step S206, the rotation of the front and rear wheels 101, 103 is stopped, the rear wheel lifting actuator 104 is driven, and the rear wheel 103 is raised by the step height h (see FIG. 4 (e)).

ステップS207では、前後輪101、103を駆動し、段差乗り越え装置を進めて、全車輪101〜104が段差高さhの上面に接地するまで移動させる(図4(f)参照)。   In step S207, the front and rear wheels 101 and 103 are driven, and the step climbing device is advanced to move all the wheels 101 to 104 until they contact the upper surface of the step height h (see FIG. 4 (f)).

ステップS208では、前後輪101、103の回転を停止し、前輪101が受ける荷重が初期設定のW23、後輪が受ける荷重が初期設定のW24となるように、前後輪昇降アクチュエータ102、104を駆動して段差乗り越え装置全体の接地状態が均等となるように調整して段差上り動作を終了する。   In step S208, the rotation of the front and rear wheels 101 and 103 is stopped, and the front and rear wheel elevating actuators 102 and 104 are driven so that the load received by the front wheel 101 is the initial setting W23 and the load received by the rear wheel is the initial setting W24. Then, the step climbing operation is finished by adjusting the ground contact state of the entire step climbing apparatus to be equal.

図8は、図6のステップS106に続く段差下り処理を示したものである。
まず、ステップS301では、前輪101が段差下面に接地できる位置まで段差乗り越え装置を前進させる(図5(a)参照)。
FIG. 8 shows a step-down process subsequent to step S106 in FIG.
First, in step S301, the step climbing apparatus is advanced to a position where the front wheel 101 can contact the lower surface of the step (see FIG. 5A).

前後輪101、103の回転を停止し、前輪昇降アクチュエータ102を駆動し、前輪101が段差下面に接地するまで下降させる(図5(b)参照)。
ステップS302では、前輪荷重が初期設定のW23、後輪荷重が初期設定のW24であることを確認する(図5(b)参照)。
The rotation of the front and rear wheels 101 and 103 is stopped, the front wheel lifting actuator 102 is driven, and the front wheel 101 is lowered until it contacts the lower surface of the step (see FIG. 5B).
In step S302, it is confirmed that the front wheel load is an initial setting W23 and the rear wheel load is an initial setting W24 (see FIG. 5B).

ステップS303では、段差乗り越え装置を後退させ前輪101を段差に接触させる(図5(b)参照)。そして、前輪101が受ける段差からの接触加速度ax,azを計測し、抗力方向角度θ、段差高さh、乗り越え力Fを演算し記憶する(図5(b)参照)。なお、このステップS303は、図6のステップS103があるため、省略してもよい。   In step S303, the step climbing device is moved backward to bring the front wheel 101 into contact with the step (see FIG. 5B). Then, the contact acceleration ax, az from the step received by the front wheel 101 is measured, and the drag direction angle θ, the step height h, and the overcoming force F are calculated and stored (see FIG. 5B). This step S303 may be omitted because there is step S103 in FIG.

ステップS304では、前後輪101、103を駆動し、段差乗り越え装置を進め、ステップS305で、前輪荷重が初期設定のW21、後輪荷重が初期設定のW22に変化した時点で前後輪101、103の駆動を停止する。   In step S304, the front and rear wheels 101 and 103 are driven and the step-over device is advanced. In step S305, when the front wheel load changes to the initial setting W21 and the rear wheel load changes to the initial setting W22, the front and rear wheels 101 and 103 are driven. Stop driving.

ステップS306では、台車200を下降させたとき、台車200の車輪201、202が段差下面に接地できる位置まで段差乗り越え装置を前進させる(図5(c)参照)。
ステップS307では、前後輪101、103の回転を停止し、前輪昇降アクチュエータ102と後輪昇降アクチュエータ104を、同時に等速度で段差高さhだけ上昇させる。このとき台車200は水平のまま段差高さhだけ下降することになる(図5(d)参照)。
In step S306, when the cart 200 is lowered, the step climbing device is advanced to a position where the wheels 201 and 202 of the cart 200 can contact the lower surface of the step (see FIG. 5C).
In step S307, the rotation of the front and rear wheels 101, 103 is stopped, and the front wheel lifting actuator 102 and the rear wheel lifting actuator 104 are simultaneously raised by the step height h at the same speed. At this time, the carriage 200 is lowered by the step height h while being horizontal (see FIG. 5D).

ステップS308では、前輪101を駆動して段差乗り越え装置を進め、後輪昇降アクチュエータ104を駆動し後輪103を段差下面に接地させる(図5(e)及び(f)参照)。
ステップS309では、前後輪101、103の回転を停止し、前輪101が受ける荷重が初期設定のW23、後輪103が受ける荷重が初期設定のW24となるように、前後輪昇降アクチュエータ102、104を駆動して段差乗り越え装置全体の接地状態が均等となるように調整して段差下り操作を終了する。
In step S308, the front wheel 101 is driven to advance the step climbing device, and the rear wheel lifting / lowering actuator 104 is driven to ground the rear wheel 103 to the lower surface of the step (see FIGS. 5E and 5F).
In step S309, the front and rear wheel lift actuators 102 and 104 are set so that the rotation of the front and rear wheels 101 and 103 is stopped, and the load received by the front wheel 101 is the initial setting W23 and the load received by the rear wheel 103 is the initial setting W24. The step-down operation is finished by driving and adjusting so that the ground contact state of the entire step-over device is equalized.

実施の形態2.
図12は、本発明による段差乗り越え装置の実施の形態2を示したものである。
図12(a)は、段差乗り越え装置と台車の連結前の状態を示している。台車200には台車キャスター前輪201と台車キャスター後輪202が各々2脚ずつ固定されており重量物500を搭載している状態を示している。
Embodiment 2. FIG.
FIG. 12 shows a second embodiment of the step climbing apparatus according to the present invention.
FIG. 12A shows a state before the step-over device and the carriage are connected. The carriage 200 has two front wheels 201 and two rear wheels 202 fixed to the carriage 200, and shows a state in which a heavy object 500 is mounted.

段差乗り越え装置は、前輪101及び前輪昇降アクチュエータ102、並びに後輪103及び後輪昇降アクチュエータ104がベース111に取り付けられた構成で、全体に車高を低く構成し台車200の下側に挿入することができる構造を有している。   The step climbing device has a configuration in which the front wheel 101 and the front wheel lifting actuator 102, and the rear wheel 103 and the rear wheel lifting actuator 104 are attached to the base 111. It has a structure that can.

ベース111には連結部106、107があり、台車200の下側に挿入した後、台車200と乗り越え装置のベース111とを強固に締結する。
段差乗り越え装置には、駆動モータ108と電源109がバンドル110の近傍の車輪より高い位置に集中して配置されている。
段差乗り越え装置の前後輪101、103と昇降アクチュエータ102、104への駆動力は、駆動モータ108からワイヤを介して駆動トルクを車輪近傍の減速ギアに伝達する。
The base 111 has connecting portions 106 and 107, and after being inserted below the carriage 200, the carriage 200 and the base 111 of the climbing apparatus are firmly fastened.
In the step climbing device, the drive motor 108 and the power source 109 are concentrated at a position higher than the wheel near the bundle 110.
The driving force to the front and rear wheels 101, 103 and the lifting actuators 102, 104 of the step climbing device transmits the driving torque from the driving motor 108 to the reduction gear near the wheels via the wire.

図12(b)は、段差乗り越え装置と台車を連結した状態を示している。
台車の車輪の数は4脚、乗り越え装置の車輪は前後輪各々2脚あり、全部で8脚の車輪で重量物500を搬送する構成になっている。
FIG. 12B shows a state where the step-over device and the carriage are connected.
The number of wheels of the carriage is four and the number of wheels of the climbing device is two each of the front and rear wheels, and the heavy object 500 is transported by a total of eight wheels.

通常の搬送時は、8脚の車輪に均等に荷重が分散した状態で走行する。段差乗り越えの過程では、台車の4脚と前輪又は後輪の2脚、全6脚で支持する場合、台車の4脚のみで支持する場合、段差乗り越え装置の4脚のみで支持する場合がある。   During normal transportation, the vehicle travels with the load evenly distributed over the eight-legged wheels. In the process of climbing over the step, when supporting with 4 legs of the carriage and 2 legs of the front or rear wheel, all 6 legs, supporting with only 4 legs of the carriage, it may be supported with only 4 legs of the step overpass device .

なお、上記の各実施の形態において、段差との接触で発生する抗力方向の検出は、2軸加速度センサの代わりに、2軸荷重センサを用いてもよい。   In each of the above embodiments, the direction of the drag generated by contact with the step may be detected using a biaxial load sensor instead of the biaxial acceleration sensor.

100 ベース、101 前輪、102 前輪昇降アクチュエータ、103 後輪、104 後輪昇降アクチュエータ、105 前輪の車軸、106 連結部、107 連結部、108 駆動モータ、109 電源、110 ハンドル、111 ベース、200 台車、201 台車キャスター前輪、202 台車キャスター後輪、300 2軸加速度センサ、400 キャスター車輪、401 キャスター車軸、402 キャスター支持部材、403 連結部材、500 重量物。   100 base, 101 front wheel, 102 front wheel lifting actuator, 103 rear wheel, 104 rear wheel lifting actuator, 105 front wheel axle, 106 connecting part, 107 connecting part, 108 drive motor, 109 power supply, 110 handle, 111 base, 200 dolly, 201 wheel front wheel, 202 wheel rear wheel, 300 biaxial acceleration sensor, 400 caster wheel, 401 caster axle, 402 caster support member, 403 connecting member, 500 heavy object.

Claims (6)

駆動輪の回転軸に接する部位に取り付けられ、前記駆動輪の回転軸と垂直な面内で、直角を成す2軸方向の加速度を検出する加速度センサと、
走行路の段差と前記駆動輪が接触したときに、前記加速度センサから得られる抗力加速度の2軸方向成分から抗力方向角度を求め、前記抗力方向角度から前記段差の高さを推定する制御装置とを備えた
段差検出装置。
An acceleration sensor that is attached to a portion that is in contact with the rotational axis of the drive wheel and detects acceleration in a biaxial direction perpendicular to the rotational axis of the drive wheel;
A control device for obtaining a drag direction angle from a biaxial component of drag acceleration obtained from the acceleration sensor and estimating a height of the step from the drag direction angle when a step of a traveling road and the driving wheel contact each other; A level difference detecting device.
請求項1に記載の段差検出装置を備え、台車の前輪及び後輪よりそれぞれ前側及び後側に前記駆動輪を配置した段差乗り越え装置であって、
前記駆動輪の高さを変えるアクチュエータを備え、
前記制御装置は、前記抗力方向角度の値から、前記前側の駆動輪が接している段差が前記台車の進行方向に対して上昇する方向か、下降する方向かを判別した後、前記段差の高さだけ前記アクチュエータを動作させる
段差乗り越え装置。
A step climbing device comprising the step detecting device according to claim 1, wherein the driving wheel is disposed on the front side and the rear side of the front wheel and the rear wheel of the carriage, respectively.
An actuator for changing the height of the drive wheel,
The control device determines, from the value of the drag direction angle, whether the step with which the front drive wheel is in contact is an upward direction or a downward direction with respect to the traveling direction of the carriage, and then determines the height of the step. A step-over device that operates the actuator.
前記アクチュエータにおいて、前記駆動輪に加わる荷重を前記段差と前記駆動輪が接触する前に検出する荷重センサを備え、
前記制御装置は、前記荷重と前記抗力方向角度とから前記段差を乗り越えるのに必要な力を算出し、前記段差を乗り越えるのに必要な力が、搬送のために加えることが可能な力を下回る場合には、前記アクチュエータを使わずに前記駆動輪のみで前記段差の乗り越えを行う
請求項2に記載の段差乗り越え装置。
The actuator includes a load sensor that detects a load applied to the driving wheel before the step and the driving wheel contact each other.
The control device calculates a force necessary to overcome the step from the load and the drag direction angle, and a force necessary to overcome the step is less than a force that can be applied for conveyance. In this case, the step climbing device according to claim 2, wherein the step climbing is performed only by the driving wheel without using the actuator.
前記制御装置は、前記段差に対して前記アクチュエータを動作させる時に前記前側及び後側の駆動輪の昇降速度を同一にする
請求項2に記載の段差乗り越え装置。
The step climbing device according to claim 2, wherein when the actuator is operated with respect to the step, the control device makes the lifting speed of the front and rear drive wheels the same.
前記加速度センサの代わりに、2軸荷重を検出する荷重センサを用いる
請求項2に記載の段差乗り越え装置。
The step climbing apparatus according to claim 2, wherein a load sensor that detects a biaxial load is used instead of the acceleration sensor.
前記台車の下部において取付け及び取外しが可能に連結される構造を有する
請求項2に記載の段差乗り越え装置。
The level | step climbing apparatus of Claim 2. It has a structure connected so that attachment and removal are possible in the lower part of the said trolley | bogie.
JP2015116567A 2015-06-09 2015-06-09 Step detection device and step climbing device Active JP6415393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116567A JP6415393B2 (en) 2015-06-09 2015-06-09 Step detection device and step climbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116567A JP6415393B2 (en) 2015-06-09 2015-06-09 Step detection device and step climbing device

Publications (2)

Publication Number Publication Date
JP2017003383A JP2017003383A (en) 2017-01-05
JP6415393B2 true JP6415393B2 (en) 2018-10-31

Family

ID=57754163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116567A Active JP6415393B2 (en) 2015-06-09 2015-06-09 Step detection device and step climbing device

Country Status (1)

Country Link
JP (1) JP6415393B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107264669A (en) * 2017-06-26 2017-10-20 徐州乐泰机电科技有限公司 A kind of obstacle detouring moving trolley
CN107521576B (en) * 2017-08-24 2023-09-05 广州南洋理工职业学院 Robot capable of walking on ground and climbing stairs
CN111270608B (en) * 2020-03-09 2021-11-16 浙江大学 Wall-climbing robot for detection in steel box girder of large-span bridge
JP7386783B2 (en) * 2020-12-11 2023-11-27 株式会社クボタ work vehicle
CN112849300B (en) * 2021-01-28 2022-07-12 北京建筑大学 Multi-mode deformable wheel type moving mechanism
CN113306644B (en) * 2021-07-01 2022-06-07 北京理工大学 Wheel leg mechanism and wheel leg type vehicle using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131803U (en) * 1987-02-20 1988-08-29
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
JP2009156746A (en) * 2007-12-27 2009-07-16 Isuzu Motors Ltd Load center-of-gravity height estimation device of vehicle
US8418787B2 (en) * 2011-01-10 2013-04-16 King Fahd University Of Petroleum And Minerals Stair climbing apparatus
JP6232873B2 (en) * 2012-09-18 2017-11-22 株式会社村田製作所 Wheelbarrow and program
JPWO2014162605A1 (en) * 2013-04-05 2017-02-16 株式会社安川電機 Moving body

Also Published As

Publication number Publication date
JP2017003383A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6415393B2 (en) Step detection device and step climbing device
US9752341B2 (en) Vehicle parking with automated guided vehicles, vertically reciprocating conveyors and safety barriers
JP4140015B2 (en) Moving body traveling device
US20080044262A1 (en) Article storage facility and operation method thereof
JP6540008B2 (en) Dolly
CN210488316U (en) Indoor distribution robot
WO2015060218A1 (en) Reverse travel support device
MX2010011943A (en) Automatic transport loading system and method.
JP2017109294A (en) Robot for construction work
US20210339993A1 (en) Moving body
CN102583138A (en) Installation and operation methods for stepping elevator and system device
JP2011167042A (en) Power supplying system
CN112147996A (en) Indoor distribution robot
JP7185612B2 (en) Vehicle transportation control device, vehicle transportation control method, and vehicle transportation system
JP2012028628A (en) Conveyor horizontal maintenance mechanism and attitude control method for transportation truck
JP7114536B2 (en) Conveyor
JPS59200313A (en) Traveling control method
KR101841197B1 (en) Speed-adjustable track system for moving apparatus using force sensing means
JP6758699B1 (en) Bridge girder inspection device
KR102128086B1 (en) An Intelligent Vehicle Transfer Robot that carries and carries out parking and departure
US20230258016A1 (en) Conveying device for moving vehicles, and robot system comprising such a device
JP6027064B2 (en) Inspection robot
JP2005067753A (en) Transfer crane
JPH1016833A (en) Traveling device
JP7397045B2 (en) Unmanned conveyance device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250