JP6413958B2 - Method for reforming steelmaking slag - Google Patents

Method for reforming steelmaking slag Download PDF

Info

Publication number
JP6413958B2
JP6413958B2 JP2015136413A JP2015136413A JP6413958B2 JP 6413958 B2 JP6413958 B2 JP 6413958B2 JP 2015136413 A JP2015136413 A JP 2015136413A JP 2015136413 A JP2015136413 A JP 2015136413A JP 6413958 B2 JP6413958 B2 JP 6413958B2
Authority
JP
Japan
Prior art keywords
slag
steelmaking slag
reforming
steelmaking
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015136413A
Other languages
Japanese (ja)
Other versions
JP2017020058A (en
Inventor
加藤 裕介
裕介 加藤
高橋 克則
克則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015136413A priority Critical patent/JP6413958B2/en
Publication of JP2017020058A publication Critical patent/JP2017020058A/en
Application granted granted Critical
Publication of JP6413958B2 publication Critical patent/JP6413958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、溶融した製鋼スラグの処理に関し、具体的には製鋼スラグを改質してその膨張を抑制する方法に関するものである。   The present invention relates to the treatment of molten steelmaking slag, and more particularly to a method for modifying steelmaking slag to suppress its expansion.

鉄鋼業では高炉、予備処理プロセス、転炉、電気炉等からスラグが副生される。これらの内、予備処理プロセス、転炉、電気炉から副生されるものを製鋼スラグという。   In the steel industry, slag is by-produced from blast furnaces, pretreatment processes, converters, electric furnaces, and the like. Among these, what is by-produced from the pretreatment process, converter, and electric furnace is called steelmaking slag.

製鋼工程では、溶銑中に吹き生まれる燐や珪素などの除去や炉体保護を目的として、多量の石灰やマグネシアが投入される。そのため、製鋼スラグ中には未溶解の石灰やマグネシア、また冷却時に晶出した石灰やマグネシアが残留している。これらの石灰やマグネシアはFree CaOやFree MgOといわれ、水と接触した際、水和膨張という体積膨張が生じる。   In the steelmaking process, a large amount of lime and magnesia are introduced for the purpose of removing phosphorus, silicon, etc. blown into the hot metal and protecting the furnace body. Therefore, undissolved lime and magnesia, and lime and magnesia crystallized during cooling remain in the steelmaking slag. These lime and magnesia are called Free CaO and Free MgO, and when they come into contact with water, volume expansion called hydration expansion occurs.

ここで、製鋼スラグの用途としては、路盤材やコンクリート用細骨材などがあるが、製鋼スラグ中に、上述したFree CaOやFree MgOが残っていると、これらFree CaOやFree MgOが上記した水和膨張を起こすことによって、製鋼スラグを使用した路盤やコンクリートは、隆起や亀裂が生じてしまう。   Here, the applications of the steelmaking slag include roadbed materials and fine aggregates for concrete. If the above-mentioned Free CaO and Free MgO remain in the steelmaking slag, these Free CaO and Free MgO are described above. By causing hydration and expansion, the roadbed and concrete using steelmaking slag are raised and cracked.

そこで、この水和膨張対策として、スラグ中のFree CaOやFree MgOの低減化を図ることを企図し、エージング処理を行うことが一般的に行われている。そして、エージング処理の種類としては、ヤードで大気雰囲気に保持することによって行う方法と、蒸気を用いる方法とがある。   Therefore, as a countermeasure against this hydration and expansion, aging treatment is generally performed in an attempt to reduce Free CaO and Free MgO in the slag. And as a kind of aging process, there exist the method performed by hold | maintaining to an atmospheric atmosphere in a yard, and the method of using a steam | vapor.

しかし、大気により行うエージングはスラグが安定化するまでに長い時間を要する。また、蒸気によるエージングは大量の蒸気を使用するため処理コストが増加するというデメリットがある。また、エージングは低温での処理であるため、完全にFree CaOやFree MgOを消滅させることは困難である。   However, the aging performed by the atmosphere requires a long time until the slag is stabilized. In addition, aging with steam has a demerit that processing costs increase because a large amount of steam is used. Moreover, since aging is a process at a low temperature, it is difficult to completely eliminate Free CaO and Free MgO.

ここで、上記製鋼スラグのFree CaO等を低減する方法(改質方法)として、特許文献1や特許文献2に記載されたような溶融状態のスラグ中に酸化性ガスを吹込む改質方法や、特許文献3に記載されたような風砕に係る改質技術が知られている。   Here, as a method (reforming method) for reducing Free CaO or the like of the steelmaking slag, a reforming method in which an oxidizing gas is blown into a molten slag as described in Patent Document 1 or Patent Document 2, A reforming technique related to wind crushing as described in Patent Document 3 is known.

特願2014−156820号明細書Japanese Patent Application No. 2014-156820 特開2003−183717号公報JP 2003-183717 A 特開2004−238234号公報JP 2004-238234 A

しかしながら、特許文献1および2に開示されたような溶融状態の製鋼スラグに酸化性ガスを吹込む改質方法においては、Feや改質材を用いて、Free CaOの固定化を図っているものの、未溶解のMgOについては、何ら考慮がなされていない。
そして、この場合、1600℃未満であると、MgOは、依然、固体として溶融スラグ中に存在する可能性があるため、スラグ中の他の成分と安定な鉱物を形成することなく改質後も未滓化のまま存在することになる。
However, in the reforming method in which oxidizing gas is blown into molten steelmaking slag as disclosed in Patent Documents 1 and 2, Free CaO is immobilized using Fe 2 O 3 or a reforming material. However, no consideration is given to undissolved MgO.
And in this case, if it is less than 1600 ° C., MgO may still be present in the molten slag as a solid, so even after modification without forming a stable mineral with other components in the slag. It will remain unhatched.

また、特許文献3に開示されたような風砕では、短時間でスラグ中のFeOを酸化し、Free CaOを低減する工程を採用するため、未溶解の石灰やマグネシアは低減できずに改質後も残留するという問題があった。   Further, in the air crushing disclosed in Patent Document 3, since a process of oxidizing FreeO in slag and reducing Free CaO in a short time is adopted, undissolved lime and magnesia cannot be reduced and modified. There was a problem that it remained afterwards.

すなわち、改質材を用いる方法は未溶解のMgO低減に関しては有効ではなく、改質前のスラグが未溶解のMgOを含んでいた場合、Free CaO低減後も膨張するという問題があった。
よって、これらの改質方法では、未溶解のMgOがスラグ中に含有された場合、改質後もFree MgOによる膨張の可能性が残ってしまう。
That is, the method using a modifying material is not effective in reducing undissolved MgO, and there is a problem that when the slag before reforming contains undissolved MgO, it expands even after free CaO is reduced.
Therefore, in these reforming methods, when undissolved MgO is contained in the slag, the possibility of expansion by Free MgO remains after the reforming.

本発明は、上記した現状に鑑み開発されたもので、改質処理中にスラグを高温にすることで未溶解のMgOを溶解し、水和反応による膨張を低減した製鋼スラグの改質技術を提案することを目的とする。   The present invention has been developed in view of the above-described present situation, and is a steelmaking slag reforming technology that dissolves undissolved MgO by raising the slag to a high temperature during the reforming process and reduces expansion due to a hydration reaction. The purpose is to propose.

本発明は前記課題を解決するために、溶融状態の製鋼スラグに酸素を含む気体を吹込み、製鋼スラグを改質するものである。
まず、発明者らは、溶融状態の製鋼スラグに酸素を含む気体を吹込むと、スラグ中のFeOがFeに酸化されてFree CaOが低減することを確認した。
In order to solve the above-mentioned problems, the present invention blows a gas containing oxygen into molten steelmaking slag to improve the steelmaking slag.
First, the inventors confirmed that when a gas containing oxygen was blown into a molten steelmaking slag, FeO in the slag was oxidized to Fe 2 O 3 and Free CaO was reduced.

そこで、発明者らは、溶融状態の転炉脱炭スラグに上部から吹込みランスを浸漬し、酸素を含む気体をスラグ内に吹込んだ。具体的には、酸素を含む気体の吹込み速度をスラグ1t当り1.5Nm/(t−slag・min)以上とし、吹込み時にスラグ内部の温度を測定し、1600℃以上の高温で2分以上保持していることを確認した後、吹込みランスを上部から引き抜き、スラグの入った容器を傾転し溶融スラグを排出した。その結果、未溶解のMgOを溶解し、製鋼スラグの水和反応による膨張を低減することが可能であることを知見した。 Therefore, the inventors dipped a blow lance from above into the converter decarburization slag in a molten state, and blown a gas containing oxygen into the slag. Specifically, the blowing speed of the gas containing oxygen is set to 1.5 Nm 3 / (t-slag · min) or more per 1 slag of slag, the temperature inside the slag is measured at the time of blowing, After confirming that the slag was held for more than a minute, the blowing lance was pulled out from the upper part, the container containing the slag was tilted, and the molten slag was discharged. As a result, it has been found that undissolved MgO can be dissolved and expansion due to the hydration reaction of steelmaking slag can be reduced.

また、排出したスラグは大気中で冷却し、冷却後のスラグは通常のスラグと同等で破砕と篩分けによりサイズの選択が可能であることを併せて知見した。
本発明は、上記知見に基づいてなされたものである。
In addition, the discharged slag was cooled in the atmosphere, and the slag after cooling was found to be the same as normal slag, and the size could be selected by crushing and sieving.
The present invention has been made based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.製鋼工程で発生する製鋼スラグに含まれるFree CaOとFree MgOを低減する製鋼スラグの改質方法であって、
溶融状態の製鋼スラグを用い、該製鋼スラグの内部に、酸素を含む気体を吹込むことで、該製鋼スラグの温度を1600℃以上まで上昇させ、ついで1600℃以上で2分以上保持したのち、冷却することを特徴する製鋼スラグの改質方法。
That is, the gist configuration of the present invention is as follows.
1. A steelmaking slag reforming method for reducing Free CaO and Free MgO contained in steelmaking slag generated in a steelmaking process,
Using the steelmaking slag in a molten state, by blowing a gas containing oxygen into the steelmaking slag, the temperature of the steelmaking slag is increased to 1600 ° C. or higher, and then kept at 1600 ° C. or higher for 2 minutes or more. A method for reforming steelmaking slag characterized by cooling.

2.前記製鋼スラグ中へ吹込む酸素を含む気体の吹込み速度が、酸素分換算で1.5Nm−O/(t−slag・min)以上であることを特徴とする前記1に記載の製鋼スラグの改質方法。 2. 2. The steelmaking as described in 1 above, wherein a blowing speed of a gas containing oxygen to be blown into the steelmaking slag is 1.5 Nm 3 —O 2 / (t-slag · min) or more in terms of oxygen content. Slag reforming method.

3.前記製鋼スラグ中へ吹込む気体が酸素または酸素濃度50%以上の気体であることを特徴とする前記1または2に記載の製鋼スラグの改質方法。 3. 3. The method for reforming steelmaking slag according to 1 or 2, wherein the gas blown into the steelmaking slag is oxygen or a gas having an oxygen concentration of 50% or more.

本発明によれば、未溶解のMgOを溶解し確実に膨張しない製鋼スラグを得ることができる。   According to the present invention, it is possible to obtain a steelmaking slag that dissolves undissolved MgO and does not expand reliably.

実施例で使用した製鋼スラグを改質するための装置の概略図である。It is the schematic of the apparatus for reforming the steelmaking slag used in the Example.

以下、本発明を具体的に説明する。
本発明は、製鋼工程で発生する製鋼スラグに含まれるFree CaOとFree MgOを低減する製鋼スラグの改質方法である(以下、製鋼スラグを単にスラグともいう)。
ここで、本発明において、製鋼スラグを改質するための容器は、図1に示すような、溶融状態のスラグに吹込みランスを浸漬して酸素を含む気体を吹込むことのできる専用の改質容器を用いることができる。
また、製鋼スラグを改質するための容器は、転炉やスラグ鍋であってもよい。
Hereinafter, the present invention will be specifically described.
The present invention is a method for modifying steelmaking slag that reduces Free CaO and Free MgO contained in the steelmaking slag generated in the steelmaking process (hereinafter, the steelmaking slag is also simply referred to as slag).
Here, in the present invention, a container for reforming steelmaking slag is a special modification that can blow a gas containing oxygen by immersing a blowing lance in a molten slag as shown in FIG. A quality container can be used.
Moreover, a converter and a slag pan may be sufficient as the container for reforming steelmaking slag.

本発明に用いるスラグは、製鋼工程で発生するスラグであれば、特に限定されない。
ここで、本発明に用いるスラグのスラグ組成は、改質によりFree CaOも併せて低減する必要があるため、改質前の組成が下記(1)式を満たすスラグが好ましい。
[T−CaO]−(1.87×[SiO]+1.43×([T−Fe]−1.55)+1.10×[Al]+1.18×[P])≦1 ・・・(1)
ここで、[ ]は該括弧内の化合物又は元素の含有率(質量%)であり、T−CaOは全CaO、T−Feは全Feである。
The slag used in the present invention is not particularly limited as long as it is slag generated in the steel making process.
Here, since the slag composition of the slag used in the present invention needs to reduce Free CaO together with the modification, the slag satisfying the following formula (1) is preferable because the composition before the modification is reduced.
[T-CaO]-(1.87 × [SiO 2 ] + 1.43 × ([T-Fe] −1.55) + 1.10 × [Al 2 O 3 ] + 1.18 × [P 2 O 5 ] ) ≦ 1 (1)
Here, [] is the content (mass%) of the compound or element in the parenthesis, T-CaO is total CaO, and T-Fe is total Fe.

そして、本発明では、所定の容器に入れられた溶融状態のスラグに、吹込みランスを浸漬して酸素を含む気体を吹込む。そして、酸素を含む気体を吹込むことによって、改質中のスラグ温度を1600℃以上に上昇させる。ついで、1600℃以上で2分以上保持することで、未溶解のMgOを溶解することが肝要である。   And in this invention, the blowing lance is immersed in the molten slag put into the predetermined | prescribed container, and the gas containing oxygen is blown in. And the slag temperature during reforming is raised to 1600 ° C. or higher by blowing a gas containing oxygen. Next, it is important to dissolve undissolved MgO by holding at 1600 ° C. or higher for 2 minutes or longer.

ここで、改質中のスラグ温度は、1600℃以上にする必要があるが、好ましくは1620℃以上である。一方、スラグ温度の上限に制限はない。   Here, the slag temperature during the reforming needs to be 1600 ° C. or higher, but is preferably 1620 ° C. or higher. On the other hand, there is no limit on the upper limit of the slag temperature.

また、改質中のスラグは、1600℃以上で2分以上保持することが必要であるが、1600℃以上が保たれれば、常時、酸素を含む気体を吹込んでいる必要はない。   Further, the slag during reforming needs to be maintained at 1600 ° C. or higher for 2 minutes or longer, but if 1600 ° C. or higher is maintained, it is not always necessary to blow a gas containing oxygen.

また、上記、1600℃以上で2分以上に保持する方法については、酸素の吹込みによる反応熱で、1600℃以上が保持されれば問題はないが、1600℃以上が保できない場合には、別途、加熱する必要が有る。なお、その際の加熱手段は熱源を投入しても、バーナーなどで過熱しても構わない。   In addition, with respect to the method of maintaining at 1600 ° C. or higher for 2 minutes or longer, there is no problem as long as 1600 ° C. or higher is maintained by the heat of reaction by blowing oxygen, but when 1600 ° C. or higher cannot be maintained, It is necessary to heat separately. The heating means at that time may be a heat source or may be overheated with a burner or the like.

かかる条件でスラグを加熱処理することで、未溶解のMgO粒子は溶解し、膨張安定化または微細化して、製鋼スラグの利用時の水和反応による膨張を効果的に低減することができる。   By heat-treating the slag under such conditions, undissolved MgO particles can be dissolved and expanded or stabilized, and expansion due to a hydration reaction when using steelmaking slag can be effectively reduced.

スラグに吹込む気体は、酸素を含んでいればよい。具体的な酸素濃度は、以下に記載する流量とも関係があるが、高濃度の方がスラグの温度が上昇しやすいため、吹込むガスの酸素濃度は50体積%以上が好ましく、80体積%以上がより好ましい。また、100体積%であっても良い。

The gas blown into the slag only needs to contain oxygen. Although the specific oxygen concentration is related to the flow rate described below, the higher the concentration, the easier the slag temperature rises. Therefore, the oxygen concentration of the injected gas is preferably 50% by volume or more, and 80 % by volume or more. Is more preferable. Moreover, 100 volume% may be sufficient.

また、本発明では、スラグに吹込む気体の流量は、酸素分換算で1.0Nm−O/(t−slag・min)以上が好ましい。
特に、酸素濃度100体積%の場合は、吹込みガスの流量が1.5Nm−O/(t−slag・min)以上で改質時の最高温度1633℃以上まで上昇することから、酸素流量は1.5Nm−O/(t−slag・min)以上がより好ましい。
In the present invention, the flow rate of the gas blown into the slag is preferably 1.0 Nm 3 —O 2 / (t-slag · min) or more in terms of oxygen content.
In particular, when the oxygen concentration is 100% by volume, the flow rate of the blown gas is 1.5 Nm 3 —O 2 / (t-slag · min) or higher and the maximum temperature during reforming is increased to 1633 ° C. or higher. The flow rate is more preferably 1.5 Nm 3 —O 2 / (t-slag · min) or more.

そして、前記酸素を含む気体の吹込み終了後、すなわちスラグ温度を1600℃以上に上昇させ、ついで1600℃以上で2分以上保持後に、当該改質を行った容器を傾転して排滓し、溶融状態のスラグを大気中で冷却する。
冷却後のスラグは通常のスラグと同等で、破砕と篩分けによりサイズの選択が可能である。
なお、本発明は、改質後に容器から排出しても、改質を行った容器内で凝固させても良い。
Then, after the blowing of the oxygen-containing gas is completed, that is, the slag temperature is raised to 1600 ° C. or higher, and then held at 1600 ° C. or higher for 2 minutes or longer, the reformed container is tilted and discharged. The molten slag is cooled in the atmosphere.
The slag after cooling is equivalent to normal slag, and the size can be selected by crushing and sieving.
The present invention may be discharged from the container after the modification or may be solidified in the modified container.

かかる工程を経ることで、本発明の水和反応による膨張を低減した製鋼スラグを得ることができるが、上記した以外の改質条件は、公知公用の条件を用いることができる。   By passing through this process, a steelmaking slag with reduced expansion due to the hydration reaction of the present invention can be obtained, but known and publicly available conditions can be used for the reforming conditions other than those described above.

本発明の実施に当たって使用したスラグは転炉での脱炭スラグとした。
スラグ組成は、下記(1)式を満たすスラグを対象とした。
[T−CaO]−(1.87×[SiO]+1.43×([T−Fe]−1.55)+1.10×[Al]+1.18×[P])≦1 ・・・(1)
また、吹込みに用いた装置は、図1に示したものを使用した。
図1に示した専用の改質容器1に入れられた溶融状態の転炉スラグ2内に、吹込みランス3を浸漬して酸素4を含む気体を吹込み、熱電対5により溶融スラグ温度を測定した。吹込み終了後に容器を傾転し排滓し溶融状態のスラグを大気中で冷却した。
The slag used in carrying out the present invention was decarburized slag in the converter.
The slag composition was intended for slag that satisfies the following formula (1).
[T-CaO]-(1.87 × [SiO 2 ] + 1.43 × ([T-Fe] −1.55) + 1.10 × [Al 2 O 3 ] + 1.18 × [P 2 O 5 ] ) ≦ 1 (1)
Moreover, the apparatus shown in FIG. 1 was used for blowing.
A blower lance 3 is immersed in a molten converter slag 2 placed in a dedicated reforming vessel 1 shown in FIG. 1 and a gas containing oxygen 4 is blown, and a thermocouple 5 is used to adjust the molten slag temperature. It was measured. After completion of the blowing, the container was tilted and discharged, and the molten slag was cooled in the atmosphere.

改質後の評価としては蛍光X線により元素分析とスラグの水和膨張性を水浸膨張試験(JIS A 5015)によって評価した。
改質条件と、改質後のFree CaOの含有比率、改質後のスラグの膨張性の評価結果を表1に併記する。なお、表1の膨張性については水浸膨張試験において膨張量が0.2%以下であったものを優、1.5%以下であったものを良とし、1.5%より膨張したものを不良とした。
As the evaluation after the modification, elemental analysis was performed by fluorescent X-ray and the hydration expansion property of slag was evaluated by a water immersion expansion test (JIS A 5015).
Table 1 shows the reforming conditions, the content ratio of Free CaO after reforming, and the evaluation results of the expandability of the slag after reforming. In addition, as for the expansibility in Table 1, those in which the amount of expansion was 0.2% or less in the water immersion expansion test were excellent, those in which the amount was 1.5% or less were good, and those that were expanded from 1.5% Was regarded as defective.

Figure 0006413958
Figure 0006413958

表1に示したように、改質時のスラグの最高温度が1600℃以上でかつ2分以上保持されているものは、いずれも、改質後のFree CaOの含有比率が0.6質量%以下、水浸膨張試験においてその膨張量が1.5%以下になった。   As shown in Table 1, in all cases where the maximum temperature of the slag during reforming is 1600 ° C. or more and held for 2 minutes or more, the content ratio of Free CaO after reforming is 0.6% by mass. Hereinafter, the amount of expansion was 1.5% or less in the water immersion expansion test.

特に、表1に示したように、改質による膨張低減の効果は酸素濃度に因らず、吹込み酸素量が1.5Nm−O/(t−slag・min)以上の場合、改質後のフリーMgO等の量が十分に低減でき、スラグの膨張量が0.2%以下に低減できた。これは吹込み酸素量が1.5Nm−O/(t−slag・min)以上の場合、改質時のスラグの最高温度が1620℃以上となっているためである。 In particular, as shown in Table 1, the effect of reducing expansion by reforming does not depend on the oxygen concentration, and when the amount of blown oxygen is 1.5 Nm 3 —O 2 / (t-slag · min) or more, The amount of free MgO after tempering could be reduced sufficiently, and the expansion of slag could be reduced to 0.2% or less. This is because the maximum temperature of slag during reforming is 1620 ° C. or higher when the amount of oxygen blown is 1.5 Nm 3 —O 2 / (t-slag · min) or higher.

一方、吹込み酸素量が1.0Nm−O/(t−slag・min)以上の場合であっても、吹込みガスの酸素濃度が50%以下の場合、改質時のスラグ温度は1600℃以上まで上昇せずに膨張性が不良という結果になった。 On the other hand, even when the amount of injected oxygen is 1.0 Nm 3 —O 2 / (t-slag · min) or more, when the oxygen concentration of the injected gas is 50% or less, the slag temperature during reforming is As a result, the expansibility was poor without increasing to 1600 ° C. or higher.

1:改質容器
2:溶融スラグ
3:吹込み用ランス
4:酸素を含む気体
5:熱電対
1: reforming vessel 2: molten slag 3: blowing lance 4: gas containing oxygen 5: thermocouple

Claims (2)

製鋼工程で発生する製鋼スラグに含まれるFree CaOとFree MgOを低減する製鋼スラグの改質方法であって、
溶融状態の製鋼スラグを用い、該製鋼スラグの内部に、酸素を含む気体を、酸素分換算で1.12Nm 3 −O 2 /(t−slag・min)以上の速度で吹込むことで、該製鋼スラグの温度を1600℃以上まで上昇させ、ついで1600℃以上で2分以上保持したのち、冷却することを特徴する製鋼スラグの改質方法。
A steelmaking slag reforming method for reducing Free CaO and Free MgO contained in steelmaking slag generated in a steelmaking process,
By using a steelmaking slag in a molten state, a gas containing oxygen is blown into the steelmaking slag at a rate of 1.12 Nm 3 —O 2 / (t-slag · min) or more in terms of oxygen content , A method for reforming steelmaking slag, characterized by raising the temperature of steelmaking slag to 1600 ° C or higher, then holding it at 1600 ° C or higher for 2 minutes or more, and then cooling.
製鋼工程で発生する製鋼スラグに含まれるFree CaOとFree MgOを低減する製鋼スラグの改質方法であって、A steelmaking slag reforming method for reducing Free CaO and Free MgO contained in steelmaking slag generated in a steelmaking process,
溶融状態の製鋼スラグを用い、該製鋼スラグの内部に、酸素濃度80体積%以上の酸素を含む気体を、酸素分換算で1.5NmUsing molten steelmaking slag, a gas containing oxygen having an oxygen concentration of 80% by volume or more inside the steelmaking slag is 1.5 Nm in terms of oxygen content. 3Three −O-O 22 /(t−slag・min)以上の速度で吹込むことで、該製鋼スラグの温度を1600℃以上まで上昇させ、ついで1600℃以上で2分以上保持したのち、冷却することを特徴する製鋼スラグの改質方法。/ Steelmaking slag characterized by raising the temperature of the steelmaking slag to 1600 ° C or higher by blowing at a speed of at least t-slag · min, then holding it at 1600 ° C or higher for 2 minutes or more and then cooling. Reforming method.
JP2015136413A 2015-07-07 2015-07-07 Method for reforming steelmaking slag Active JP6413958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136413A JP6413958B2 (en) 2015-07-07 2015-07-07 Method for reforming steelmaking slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136413A JP6413958B2 (en) 2015-07-07 2015-07-07 Method for reforming steelmaking slag

Publications (2)

Publication Number Publication Date
JP2017020058A JP2017020058A (en) 2017-01-26
JP6413958B2 true JP6413958B2 (en) 2018-10-31

Family

ID=57888866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136413A Active JP6413958B2 (en) 2015-07-07 2015-07-07 Method for reforming steelmaking slag

Country Status (1)

Country Link
JP (1) JP6413958B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3967670B1 (en) * 2019-05-10 2024-07-10 JFE Steel Corporation Method for modifying steelmaking slag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347206B2 (en) * 1974-12-28 1978-12-19
JPS5388688A (en) * 1977-01-17 1978-08-04 Nippon Steel Corp Converter slag modifying method
JPS5919897B2 (en) * 1979-04-03 1984-05-09 川崎製鉄株式会社 Method for reforming converter slag
JPS5732314A (en) * 1980-08-06 1982-02-22 Sumitomo Metal Ind Ltd Lance for oxidation treatment of molten slag
JPS57143418A (en) * 1981-02-28 1982-09-04 Sumitomo Metal Ind Ltd Modification method for converter slag
JP2003183717A (en) * 2001-10-04 2003-07-03 Nippon Steel Corp Steel slag product and manufacturing method therefor
JP2009270132A (en) * 2008-04-30 2009-11-19 Sanyo Special Steel Co Ltd Method for producing steelmaking slag with high swelling stability

Also Published As

Publication number Publication date
JP2017020058A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
BR112015016963B1 (en) CONVERTER STEEL MANUFACTURING METHOD
JP6011728B2 (en) Hot metal dephosphorization method
JP6413958B2 (en) Method for reforming steelmaking slag
WO2020230561A1 (en) Method for modifying steelmaking slag, and lance
JP4984946B2 (en) Hot metal pretreatment method
JP5838711B2 (en) Method for removing sulfur from desulfurized slag
JP6206355B2 (en) Steelmaking slag reforming method
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP2013189688A (en) Method for removing sulfur from desulfurization slag
JP6299690B2 (en) Steelmaking slag reforming method
JPWO2018123991A1 (en) Hot metal pretreatment method and ultra low phosphorus steel production method
JP6443463B2 (en) Method for modifying steelmaking slag and method for producing steelmaking slag
JP2014201805A (en) Method for regenerating desulfurization slag and method for converting desulfurization slag to useful material
JP2013127089A (en) Method for pretreating molten iron
JP2011084777A (en) Steel-making refining method performed by using electric furnace
JP2008308754A (en) Sulfer removal method for used slag
JP2008050700A (en) Method for treating chromium-containing steel slag
JP2617948B2 (en) Ladle refining method for molten steel
JP2011184707A (en) Method for removing sulfur in reducing slag
JP2007191347A (en) Method for producing high purity silicon
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
TWI824547B (en) Denitrification method of molten steel, simultaneous denitrification and desulfurization treatment method and steel manufacturing method
TWI824546B (en) Method for denitrification of molten steel and method for manufacturing steel
JP7167704B2 (en) Hot metal desulfurization method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250