JP6411952B2 - Method for producing pyrolytic boron nitride container - Google Patents

Method for producing pyrolytic boron nitride container Download PDF

Info

Publication number
JP6411952B2
JP6411952B2 JP2015117015A JP2015117015A JP6411952B2 JP 6411952 B2 JP6411952 B2 JP 6411952B2 JP 2015117015 A JP2015117015 A JP 2015117015A JP 2015117015 A JP2015117015 A JP 2015117015A JP 6411952 B2 JP6411952 B2 JP 6411952B2
Authority
JP
Japan
Prior art keywords
container
pbn
boron nitride
film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015117015A
Other languages
Japanese (ja)
Other versions
JP2017002357A (en
Inventor
狩野 正樹
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015117015A priority Critical patent/JP6411952B2/en
Priority to DE102016006963.5A priority patent/DE102016006963A1/en
Priority to CN201610405107.3A priority patent/CN106245000B/en
Publication of JP2017002357A publication Critical patent/JP2017002357A/en
Application granted granted Critical
Publication of JP6411952B2 publication Critical patent/JP6411952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、熱分解窒化ほう素容器の製造方法、特にIII−V族化合物半導体単結晶育成時に使用する大型のルツボ、または真空蒸着もしくは分子線エピタキシー(MBE)などに使用するAl溶解用ルツボなどに最適な熱分解窒化ほう素容器の製造方法、及び熱分解窒化ほう素容器に関する。   The present invention relates to a method for producing a pyrolytic boron nitride container, particularly a large crucible used for growing a III-V compound semiconductor single crystal, or an Al melting crucible used for vacuum deposition or molecular beam epitaxy (MBE). The present invention relates to a method for producing a pyrolytic boron nitride container and a pyrolytic boron nitride container that are optimal for the above.

III-V族化合物半導体単結晶、例えばGaAs単結晶やInP単結晶の引き上げには、水平ブリッジマン法(HB法)、水平温度勾配凝固法(GF法)、液体封止引き上げ法(液体封止チョクラルスキー法;LEC法)、垂直ブリッジマン法(VB法)、垂直温度勾配凝固法(VGF法)等様々な方法が用いられている。   For raising III-V compound semiconductor single crystals, such as GaAs single crystals and InP single crystals, the horizontal Bridgman method (HB method), the horizontal temperature gradient solidification method (GF method), the liquid sealing pulling method (liquid sealing) Various methods such as Czochralski method (LEC method), vertical Bridgman method (VB method), and vertical temperature gradient solidification method (VGF method) are used.

成分元素の揮発を防ぐためにLEC法が採用されており、このLEC法では従来から石英ルツボなどが使用されている。この場合、結晶中にSiが不純物として混入するという問題があることから、通常はCrをドープして引き上げを行なうという方法が採られている。   In order to prevent volatilization of the component elements, the LEC method is adopted, and conventionally, a quartz crucible or the like is used in this LEC method. In this case, since there is a problem that Si is mixed as an impurity in the crystal, a method of pulling up by doping Cr is usually adopted.

しかし、Crをドープすると絶縁性が低下するために、IC用基板として適さないものとなる。そこで、ノンドープの半導体基板を得るために、高純度のIII−V族化合物が得られ、たとえ単結晶中に混入してもドーパントとして作用するほどの不純物レベルを形成しない熱分解窒素ほう素(以下、「PBN」(Pyrolytic Boron Nitride)ということがある)容器を使用することが提案されている(特許文献1)。   However, when Cr is doped, the insulating property is lowered, so that it is not suitable as an IC substrate. Therefore, in order to obtain a non-doped semiconductor substrate, a high-purity group III-V compound is obtained, and even if it is mixed in a single crystal, it does not form an impurity level enough to act as a dopant. It has been proposed to use a “PBN” (sometimes called Pyrolytic Boron Nitride) container (Patent Document 1).

このLEC法は温度勾配の高い環境下で育成するため、結晶中の転位密度が高いという欠点を有する。一方、VB法、VGF法等の縦型ボート法は、PBNルツボに種結晶を配置し、原料融液を種結晶に接触させ、種結晶側から除々に温度を降下させて単結晶を成長する方法であり、LEC法に比べ転位密度が低いために電子デバイス用の基板として注目されている。   Since this LEC method is grown in an environment with a high temperature gradient, it has the disadvantage that the dislocation density in the crystal is high. On the other hand, in the vertical boat method such as the VB method and the VGF method, a seed crystal is arranged in a PBN crucible, a raw material melt is brought into contact with the seed crystal, and a temperature is gradually decreased from the seed crystal side to grow a single crystal. This method is attracting attention as a substrate for electronic devices because it has a lower dislocation density than the LEC method.

これらの縦型ボート法で使用されるPBNルツボでは、原料融液が直接接触して濡れにくくするために、原料と一緒に入れる酸化ほう素(B)でルツボ内壁面を被覆することが必要となる。原料とBを一緒に入れて加熱すると融点の低いBが融解してルツボの内壁面を覆い、さらに加熱していくと原料が溶解するので原料は直接PBNルツボと接触せず、欠陥の少ない単結晶が得られる。しかしながらPBNルツボ内壁面でPBN膜の脱膜、剥離などが生じるとBがうまく被覆されない部分が存在する可能性が高くなる。その結果として、その場所を起点にして結晶境界が発生してしまい、最悪の場合は多結晶化して単結晶が得られないという致命的な問題が生じる(特許文献2)。 In PBN crucibles used in these vertical boat methods, the inner wall surface of the crucible is coated with boron oxide (B 2 O 3 ) that is put together with the raw material so that the raw material melt is in direct contact and is difficult to wet. Is required. When the raw material and B 2 O 3 are put together and heated, B 2 O 3 having a low melting point melts and covers the inner wall surface of the crucible, and further heating causes the raw material to melt, so the raw material directly contacts the PBN crucible. Therefore, a single crystal with few defects can be obtained. However, when the PBN film is removed or peeled off from the inner wall surface of the PBN crucible, there is a high possibility that there is a portion that is not well covered with B 2 O 3 . As a result, a crystal boundary is generated starting from the place, and in the worst case, a critical problem arises in that a single crystal cannot be obtained by polycrystallization (Patent Document 2).

また、PBN容器はしばしば、熱CVD法でカーボン製の容器型材上に成膜して作られるが、脱型後に容器型材由来のカーボンが表面に付着する。そのため、炭素コンタミを嫌うプロセスで容器を用いる場合に問題となる(特許文献3)。   Also, PBN containers are often made by forming a film on a carbon container mold material by a thermal CVD method, but carbon derived from the container mold material adheres to the surface after demolding. Therefore, it becomes a problem when a container is used in a process that dislikes carbon contamination (Patent Document 3).

特開平10−87306号公報JP-A-10-87306 特開2003−146791号公報JP 2003-146791 A 特開平11−335195号公報JP 11-335195 A

本発明は、上記のような問題に鑑みなされたものであり、脱膜、剥離などが生じにくく、単結晶を育成するのに最適なPBN容器及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a PBN container that is unlikely to cause film removal and peeling, and is optimal for growing a single crystal, and a method for manufacturing the same.

上記課題を解決するために、本発明は、熱分解窒化ほう素容器を製造する方法であって、熱分解窒化ほう素を熱CVD法でカーボン製の容器型材上に成膜する工程、この成膜物を前記容器型材から取り外すことで容器形状の成形体を得る工程、該容器形状の成形体を酸化処理することで前記容器型材に由来して表面に付着したカーボンを除去する工程、その後に、前記容器形状の成形体に型材と接していた側の面から減肉化処理を施し容器とする工程から成る熱分解窒化ほう素容器の製造方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a method for producing a pyrolytic boron nitride container, comprising the step of forming a film of pyrolytic boron nitride on a carbon container mold by a thermal CVD method. Removing the film from the container mold, obtaining a container-shaped molded body, oxidizing the container-shaped molded body to remove carbon adhering to the surface derived from the container mold, and thereafter A method for producing a pyrolytic boron nitride container comprising the step of subjecting the container-shaped molded body to a thinning process from the side in contact with the mold material to form a container is provided.

PBNをカーボン製の容器型材上で成膜すると、容器型材由来のカーボンが付着する。本発明ではこのカーボンを除去するため、容器型材から取り外した後に、容器形状の成形体を酸化処理する。これによって、容器型材由来の、例えば内壁面に付着したカーボンが二酸化炭素となって炭素分がほぼ完全に除去されるので、炭素コンタミを嫌うプロセスでの使用に最適である。   When PBN is deposited on a carbon container mold, carbon derived from the container mold adheres. In this invention, in order to remove this carbon, after removing from a container mold material, a container-shaped molded object is oxidized. As a result, the carbon derived from the container mold material, for example, carbon adhering to the inner wall surface becomes carbon dioxide, and the carbon content is almost completely removed. Therefore, it is optimal for use in a process that dislikes carbon contamination.

また、この酸化処理により表層のPBNも酸化されて一部Bとなる。例えば酸化の条件を空気中で800℃から1100℃の温度で3時間程度とすると、酸化層が0.01μmから0.5μm程度の厚さとなる。この部分はPBNとBが混在するので、脆くなり、局所的に脱膜化しやすくなる。この部分を減肉化処理することにより除去し、脱膜、剥離などが生じないPBN容器を得ることができる。また、内最表面の膜は成膜初期段階に形成されたため、成膜雰囲気が安定せずにPBNの欠陥が多く存在すると考えられる。この表層も上記減肉化処理によって除去され、フレッシュな欠陥の少ないPBN層が表面に露出することになる。 In addition, this oxidation treatment also oxidizes the PBN on the surface layer to partially become B 2 O 3 . For example, if the oxidation conditions are about 800 ° C. to 1100 ° C. in air for about 3 hours, the oxide layer has a thickness of about 0.01 μm to 0.5 μm. Since this part is a mixture of PBN and B 2 O 3 , it becomes brittle and it is easy to remove the film locally. This portion can be removed by reducing the thickness, and a PBN container in which film removal and peeling do not occur can be obtained. Further, since the innermost film is formed in the initial stage of film formation, it is considered that the film formation atmosphere is not stable and there are many PBN defects. This surface layer is also removed by the above thinning process, and a PBN layer with few fresh defects is exposed on the surface.

前記減肉化処理を研削もしくは研磨またはその両方によって行うことが好ましい。   The thinning process is preferably performed by grinding or polishing or both.

研削・研磨であれば、簡単かつ確実にPBN容器表層のBが混在する層を除去することができる。 If it is grinding and polishing, the layer containing B 2 O 3 on the surface of the PBN container can be removed easily and reliably.

前記減肉化処理において、容器型材と接していた側の面から0.5μm以上100μm以下の厚さの表層を除去するのが好ましい。   In the thinning process, it is preferable to remove a surface layer having a thickness of 0.5 μm or more and 100 μm or less from the surface in contact with the container mold.

こうした減肉化処理の施された容器は、Bが混在する層がほぼ完全に除去されており、結晶育成に使用された際にも、脱膜、剥離などがより確実に生じにくいものとなる。 In the container subjected to such a thinning process, the layer containing B 2 O 3 is almost completely removed, and even when used for crystal growth, film removal and peeling are less likely to occur. It will be a thing.

前記減肉化処理は、前記容器形状の成形体のコーナー部について行うのが好ましい。
PBN容器の面と面を繋ぐコーナー部は特に膜の異方性による残留応力によって、PBN膜質が脆くなりやすく脱離し易くなると考えられる。そのためこのコーナー部の、元々脆い上に一部B化したPBN層の減肉化は、フレッシュな欠陥の少ないPBN層を露出させる点でより有効である。
It is preferable to perform the said thinning process about the corner part of the said container-shaped molded object.
It is considered that the corner portion connecting the surfaces of the PBN container is likely to be easily detached due to the PBN film quality easily due to the residual stress due to the anisotropy of the film. Therefore, reducing the thickness of the PBN layer that is originally brittle and partially B 2 O 3 at this corner is more effective in exposing the PBN layer with few fresh defects.

本発明はまた、熱分解窒化ほう素容器において、熱CVD法でカーボン製の容器型材上に成膜され、該容器型材から取り外された後、酸化処理によって表面に付着したカーボンが除去されたものであって、前記容器型材と接していた側の面から減肉化処理が施されたものであることを特徴とする熱分解窒化ほう素容器を提供する。   The present invention also relates to a pyrolytic boron nitride container in which a film is formed on a carbon container mold material by a thermal CVD method, removed from the container mold material, and then carbon attached to the surface is removed by oxidation treatment. In addition, a pyrolytic boron nitride container is provided, which is subjected to a thinning process from the side in contact with the container mold material.

このようなPBN容器であれば、内壁面にBが混在する層がなく、かつフレッシュな面が出ており、脱膜や剥離が生じにくいものとなるため、単結晶育成用のルツボ等に最適なものとなる。 In such a PBN container, there is no layer in which B 2 O 3 is mixed on the inner wall surface, and a fresh surface appears, and it is difficult for film removal and peeling to occur. It becomes the best one for etc.

本発明によれば、脱膜、剥離などが生じにくい良質なPBN容器を提供することができる。本発明で提供されるPBN容器は単結晶を育成するのに最適で、これを用いて結晶育成することで結晶欠陥の少ない単結晶を安定して製造することができる。特に、III−V族化合物半導体単結晶育成時に使用する大型のルツボ、または真空蒸着もしくは分子線エピタキシー(MBE)などに使用するAl溶解用ルツボなどに適している。本発明により提供されるPBN容器は使用時にクラックが生じにくいと言う利点も示し、半導体製造などにおけるコスト低減にも有用である。また、従来は容器型材として、PBN容器の不純物混入を避けるために高純度処理グラファイトを使用していた。本発明では上記のように酸化処理後に減肉化処理するので、未処理の通常グレード品を容器型材として用いても従来と同じ品質の容器が製造可能となり、容器型材のコストも削減できる利点もある。   According to the present invention, it is possible to provide a high-quality PBN container that hardly causes film removal or peeling. The PBN container provided in the present invention is optimal for growing a single crystal, and by using this to grow a crystal, a single crystal with few crystal defects can be stably produced. Particularly, it is suitable for a large crucible used for growing a group III-V compound semiconductor single crystal, or an Al melting crucible used for vacuum deposition or molecular beam epitaxy (MBE). The PBN container provided by the present invention also has the advantage that cracks are unlikely to occur during use, and is also useful for cost reduction in semiconductor manufacturing and the like. Conventionally, high purity treated graphite has been used as a container mold material in order to avoid contamination of impurities in the PBN container. In the present invention, the thickness reduction treatment is performed after the oxidation treatment as described above, so that even if an untreated normal grade product is used as a container mold material, a container having the same quality as that of the conventional can be manufactured, and the cost of the container mold material can be reduced is there.

本発明で使用することができる外熱型減圧CVD装置の模式図である。It is a schematic diagram of an external heating type low pressure CVD apparatus that can be used in the present invention. カーボン製の容器型材からPBN容器を外す様子を示した断面説明図である。It is sectional explanatory drawing which showed a mode that the PBN container was removed from the container mold material made from carbon. 本発明で提供されるPBN容器の一例を示した断面説明図である。It is sectional explanatory drawing which showed an example of the PBN container provided by this invention.

以下、本発明の実施の形態を詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment of the present invention is described in detail, the present invention is not limited to this.

本発明者は鋭意検討を行い、PBN容器をカーボン製の容器型材を用いて熱CVD法で製造する際に、得られたPBN容器形状の成形体を酸化させた後に減肉化処理することで良質なPBN容器が得られ、これを用いて結晶育成すると結晶欠陥のない単結晶が得られることを見出した。   The present inventor has intensively studied, and when the PBN container is manufactured by a thermal CVD method using a carbon container mold material, the obtained PBN container-shaped molded body is oxidized and subjected to a thinning process. It has been found that a high-quality PBN container can be obtained, and a single crystal free of crystal defects can be obtained by crystal growth using this container.

以下、図面を参照して説明する。   Hereinafter, description will be given with reference to the drawings.

本発明のPBN容器製造においては、公知の熱CVD法を用いることができる。熱CVDによるPBN膜形成は、例えば図1に示したような外熱型減圧CVD装置1内で行われる。ヒーター3、原料供給部5、排気部6を備えた反応室2にカーボン製の容器型材4を配し、NH(アンモニア)のようなN原子を含む化合物と、BCl(三塩化ホウ素)のようなハロゲン化ほう素とを原料として供給し、これを1800℃から2000℃の高温下に熱CVD反応させ、容器型材4上にPBNを成膜する。容器型材としては、グラファイト、C/Cコンポジットカーボン、熱分解黒鉛などをはじめとする種々のカーボン材料を使用することができるが、グラファイト製の容器型材を用いるのが好ましい。 In manufacturing the PBN container of the present invention, a known thermal CVD method can be used. The PBN film formation by thermal CVD is performed in an external heating type low pressure CVD apparatus 1 as shown in FIG. A container mold 4 made of carbon is arranged in a reaction chamber 2 equipped with a heater 3, a raw material supply unit 5 and an exhaust unit 6, and a compound containing N atoms such as NH 3 (ammonia) and BCl 3 (boron trichloride) Boron halide as a raw material is supplied as a raw material, and this is subjected to thermal CVD reaction at a high temperature of 1800 ° C. to 2000 ° C. to form a PBN film on the container mold 4. As the container mold material, various carbon materials such as graphite, C / C composite carbon, pyrolytic graphite and the like can be used, but it is preferable to use a graphite container mold material.

こうして得られたPBN成膜物を、次いで図2に示したように容器型材4から取り外し、容器形状の成形体7を得る。この成形体においては、容器型材と接していた側(図2では内側)の表面に、前記容器型材に由来するカーボンが付着している。本発明では、これを酸化処理することによって除去する。   The PBN film thus obtained is then removed from the container mold 4 as shown in FIG. 2 to obtain a container-shaped molded body 7. In this molded body, carbon derived from the container mold material is attached to the surface on the side in contact with the container mold material (inner side in FIG. 2). In the present invention, this is removed by oxidation treatment.

酸化処理の条件に特に制限はない。例えば、空気中で800℃から1100℃の温度で1〜10時間、例えば3時間程度加熱する。このことによって、容器形状の成形体に付着したカーボンが酸化されて二酸化炭素となり、カーボン分がほぼ完全に除去される。加熱時に、周辺雰囲気の酸素濃度を高めても良い。この酸化処理により、本発明で得られる容器は内壁面の炭素が除去されているので、炭素コンタミを嫌うプロセスに用いる容器として最適なものとなる。   There are no particular restrictions on the conditions for the oxidation treatment. For example, heating is performed in air at a temperature of 800 ° C. to 1100 ° C. for 1 to 10 hours, for example, about 3 hours. As a result, the carbon adhering to the container-shaped molded body is oxidized to carbon dioxide, and the carbon content is almost completely removed. During heating, the oxygen concentration in the surrounding atmosphere may be increased. By this oxidation treatment, the container obtained by the present invention has the carbon removed from the inner wall surface, so that it is optimal as a container used in a process that dislikes carbon contamination.

上記酸化処理により表層のPBNも酸化されて一部Bとなる。例えば上記の条件で酸化処理すると、酸化層(PBNとBが混在する層)が0.01μmから0.5μm程度の厚さとなり、この表層部分が脱膜化しやすくなる。本発明ではこの表層を除去すべく、前記容器形状の成形体に型材と接していた側の面から減肉化処理を施して容器を完成させる。 As a result of the oxidation treatment, the PBN on the surface layer is also oxidized and partially becomes B 2 O 3 . For example, when the oxidation treatment is performed under the above conditions, the oxide layer (a layer in which PBN and B 2 O 3 are mixed) has a thickness of about 0.01 μm to 0.5 μm, and the surface layer portion is easily removed. In the present invention, in order to remove the surface layer, the container-shaped formed body is subjected to a thinning process from the surface on the side in contact with the mold material, thereby completing the container.

前記減肉化処理の方法は特に制限はなく、表面を一部除去することができればいずれの方法でもよく、研削、研磨あるいはエッチングなどの種々の慣用の方法を用いることができる。しかし本発明においては、減肉化処理を研削もしくは研磨またはその両方によって行うことが好ましい。研削、研磨であれば簡単でコストも低い上に、確実に表層を高精度で除去することができるからである。例えば、NC旋盤を用いて研削する、または容器を回転研磨機にセットして内壁面をサンドペーパー、砥粒付スポンジもしくは砥粒付ブラシを用いて、容器内壁面に押し当てて容器を回転させながら研磨を行う。両者を併用することもできる。この際に、研削、研磨量を超音波膜厚計、マイクロメータで実測するか重量の差分から厚さに換算して求めると良い。   The method for reducing the thickness is not particularly limited, and any method can be used as long as the surface can be partially removed, and various conventional methods such as grinding, polishing, and etching can be used. However, in the present invention, it is preferable to perform the thinning process by grinding and / or polishing. This is because grinding and polishing are simple and low in cost, and the surface layer can be reliably removed with high accuracy. For example, grind using an NC lathe, or set the container on a rotary polishing machine, press the inner wall surface against the inner wall surface of the container using sandpaper, sponge with abrasive grains, or brush with abrasive grains, and rotate the container. While polishing. Both can be used together. At this time, the grinding and polishing amount may be obtained by actually measuring with an ultrasonic film thickness meter and a micrometer or by converting to a thickness from a difference in weight.

上記減肉化処理において、容器型材と接していた側の面から0.5μm以上100μm以下の厚さの表層を除去するのが好ましい。0.5μm未満では一部B化した脆いPBN層が除去されずに残留し、結晶育成に使用する際に比較的短い使用時間で膜が剥がれ落ちて、結晶欠陥発生の要因となるおそれがある。一方、100μmを超えて除去した場合は、PBN膜の異方性特有の層分離が発生する可能性が高くなり、やはり結晶欠陥発生の要因となり得る。また、除去した膜の分を余分に厚く成膜しなければならないのでコストアップとなる。特に研磨による減肉化処理では、研磨時間がかかるのでコストアップとなり好ましくない。より好ましくは、除去する厚さを1μm以上50μm以下とする。このことによって、コストをあまりかけずに脱膜などの問題を抑制でき、本発明の効果が最大限に発揮できる。 In the thinning process, it is preferable to remove a surface layer having a thickness of 0.5 μm or more and 100 μm or less from the surface in contact with the container mold. If the thickness is less than 0.5 μm, the partially broken B 2 O 3 PBN layer remains without being removed, and the film is peeled off in a relatively short usage time when used for crystal growth, causing crystal defects. There is a fear. On the other hand, if the thickness exceeds 100 μm, there is a high possibility that layer separation peculiar to the anisotropy of the PBN film will occur, which may also cause crystal defects. Further, since the removed film must be formed to be excessively thick, the cost is increased. In particular, the thinning process by polishing is not preferable because it takes a long time to polish and increases the cost. More preferably, the thickness to be removed is 1 μm or more and 50 μm or less. As a result, problems such as film removal can be suppressed without much cost, and the effects of the present invention can be maximized.

上記減肉化処理は、特に前記容器形状の成形体のコーナー部について行うのが好ましい。図3を基に説明すると、コーナー部8は特にPBN膜の異方性による残留応力によって、膜質が脆くなりやすく脱離し易くなると考えられる。特に底部のコーナー(R部)でその曲率がR20mm以下の場合は膜が脱離しやすい。そのためこのコーナー部の、元々脆い上に一部B化したPBN層の減肉化は、フレッシュな欠陥の少ないPBN層を露出させる点でより有効である。尚、前記の減肉化処理量は、内壁面全体で均一にしても良いが、容器形状の成形体の箇所毎に、種々に変化させても良い。例えばコーナー部だけを減肉化処理しても良く、また、上記した厚さ範囲内で箇所毎に研削量あるいは研磨量を変えても、同様な効果が得られる。目的、容器形状等に基づいて適宜変更することができる。 It is preferable to perform the said thinning process especially about the corner part of the said container-shaped molded object. Referring to FIG. 3, it is considered that the corner portion 8 is likely to be easily detached because the film quality tends to become brittle due to the residual stress due to the anisotropy of the PBN film. In particular, when the curvature is R20 mm or less at the bottom corner (R portion), the film is easily detached. Therefore, reducing the thickness of the PBN layer that is originally brittle and partially B 2 O 3 at this corner is more effective in exposing the PBN layer with few fresh defects. In addition, although the said thinning processing amount may be made uniform over the whole inner wall surface, you may change variously for every location of a container-shaped molded object. For example, only the corner portion may be thinned, and the same effect can be obtained even if the grinding amount or the polishing amount is changed for each portion within the above-described thickness range. It can be appropriately changed based on the purpose, container shape and the like.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.

<実施例1−10、比較例1>
図1に示す外熱型減圧CVD装置1内に 150mmφ×200mmH、コーナー部R20mmの円筒状のグラファイト製の容器型材4をセットし、NHとBClとを2Torr(267Pa)の真空下に1800℃で反応させて、容器型材4上にPBN膜を厚さ1mm成膜した。室温まで冷却して、図2に示すようにして容器型材4から取り外し、図3のような内径150mmで高さ200mm、コーナー部がR20mmの容器形状のPBN成形体7を作製した。
<Example 1-10, Comparative Example 1>
A cylindrical graphite container mold 4 having a diameter of 150 mmφ × 200 mmH and a corner portion R20 mm is set in the external heating low pressure CVD apparatus 1 shown in FIG. 1, and NH 3 and BCl 3 are placed in a vacuum of 2 Torr (267 Pa) for 1800. A PBN film was formed to a thickness of 1 mm on the container mold 4 by reacting at a temperature of 0 ° C. After cooling to room temperature, it was removed from the container mold 4 as shown in FIG. 2, and a container-shaped PBN molded body 7 having an inner diameter of 150 mm, a height of 200 mm, and a corner portion of R20 mm as shown in FIG.

このようにして得られた容器形状の成形体について、大気中850℃で3時間酸化処理を行い、グラファイト製容器型材から転写して内壁面に付着したカーボンを除去した。この時のB化層の厚さはおおよそ0.05μmであった。さらに内壁面を番手#600のサンドペーパーで所定の厚さを研磨除去して、種々のPBN容器を作製した(実施例1〜10)。 The container-shaped molded body thus obtained was oxidized in the atmosphere at 850 ° C. for 3 hours to remove carbon adhering to the inner wall surface transferred from the graphite container mold. At this time, the thickness of the B 2 O 3 layer was about 0.05 μm. Further, the inner wall surface was polished and removed with a sandpaper of # 600 and various PBN containers were prepared (Examples 1 to 10).

比較のため、研磨除去を実施しなかった以外は上記と同一の操作により、PBN容器を作製した(比較例1)。   For comparison, a PBN container was produced by the same operation as above except that polishing removal was not performed (Comparative Example 1).

このようにして得られたPBN容器について、以下のようなライフテストを行った。容器中に200gのBを入れ、1100℃まで昇温して1時間保持した後自然放冷した。これによりBは一時溶けて再び固化し、このときBは熱収縮してPBN容器内壁面から剥がれ落ちたが、一部付着し残存していたBを、エタノールに10時間浸漬させて完全に除去した。これら一連の操作を繰り返して、容器にクラックが生じるまでの回数を求めてライフとした。また、一連の操作を終える度に、容器内壁面の膜脱離や層分離の状況を確認した。これら実施例の結果を、表1に示す。 The following life test was performed on the PBN container thus obtained. 200 g of B 2 O 3 was put in the container, heated to 1100 ° C. and held for 1 hour, and then allowed to cool naturally. Thus B 2 O 3 is solidified again melted temporary this time B 2 O 3 is fell off from PBN container wall by heat shrinkage, the B 2 O 3 which has been partially adhered residual ethanol For 10 hours to complete removal. A series of these operations was repeated, and the number of times until a crack was generated in the container was determined and defined as life. In addition, every time a series of operations was completed, the state of membrane desorption and layer separation on the inner wall surface of the container was confirmed. The results of these examples are shown in Table 1.

Figure 0006411952
Figure 0006411952

実施例1〜10においては研磨量によっては1回目の使用で膜脱離や層分離が観察された例もあるが、いずれも4回以上のライフを示した。尚、層分離とは膜として脱離はしていないが、層の分離が生じており、剥がれそうになっている状態を示す。特に研磨量を0.5〜100μm、中でも1〜50μmとした場合には、ライフが長い上に膜脱離や層分離も起こしにくくなることが判明した。一方、内壁面の減肉化処理をしていない比較例1は、高価なPBN容器のライフが3回であった。   In Examples 1 to 10, depending on the polishing amount, there was an example in which membrane desorption or layer separation was observed in the first use, but all showed a life of 4 times or more. In addition, although the layer separation does not detach | desorb as a film | membrane, the layer separation has arisen and the state which is going to peel is shown. In particular, it has been found that when the polishing amount is 0.5 to 100 μm, especially 1 to 50 μm, the life is long and membrane detachment and layer separation are difficult to occur. On the other hand, in Comparative Example 1 in which the inner wall surface was not thinned, the cost of the expensive PBN container was three times.

<実施例11−20、比較例2>
実施例1−10と同様に容器形状のPBN成形体を作製し、その後大気中1000℃で3時間酸化処理を行い、内壁面にグラファイト型から転写して付着したカーボンを除去した。さらに内壁面のコーナー部を番手#600のサンドペーパーで所定の厚さを研磨除去して種々のPBN容器を作製した(実施例11〜20)。
<Examples 11-20, Comparative Example 2>
A container-shaped PBN compact was produced in the same manner as in Example 1-10, and then oxidized in the atmosphere at 1000 ° C. for 3 hours to remove carbon adhering to the inner wall surface by transfer from the graphite mold. Further, various corners of the inner wall surface were sanded and removed with a sandpaper of # 600 to produce various PBN containers (Examples 11 to 20).

比較のため、研磨除去を実施しなかった以外は上記と同一の操作により、PBN容器を作製した(比較例2)。   For comparison, a PBN container was produced by the same operation as above except that polishing removal was not performed (Comparative Example 2).

得られたPBN容器について、実施例1−10と同様にライフテストを行い、かつ容器内壁面の膜脱離や層分離の状況を確認した。それらの結果を、表2に示す。   The obtained PBN container was subjected to a life test in the same manner as in Example 1-10, and the state of membrane detachment and layer separation on the inner wall surface of the container was confirmed. The results are shown in Table 2.

Figure 0006411952
Figure 0006411952

実施例11〜20では、研磨量によっては1回目の使用で膜脱離や層分離が観察された例もあるが、いずれも3回以上のライフを示した。特に研磨量を0.5〜100μm、中でも1〜50μmとした場合には、ライフが長い上に膜脱離や層分離も起こしにくくなることが判明した。   In Examples 11-20, depending on the polishing amount, there was an example in which membrane detachment or layer separation was observed in the first use, but all showed a life of 3 times or more. In particular, it has been found that when the polishing amount is 0.5 to 100 μm, especially 1 to 50 μm, the life is long and membrane detachment and layer separation are difficult to occur.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…外熱型減圧CVD装置、 2…反応室、 3…ヒーター、 4…カーボン製の容器型材、 5…原料供給部、 6…排気部、 7…容器形状の成形体、 8…コーナー部

DESCRIPTION OF SYMBOLS 1 ... External-heat type low pressure CVD apparatus, 2 ... Reaction chamber, 3 ... Heater, 4 ... Carbon container mold material, 5 ... Raw material supply part, 6 ... Exhaust part, 7 ... Container-shaped molded object, 8 ... Corner part

Claims (2)

熱分解窒化ほう素容器を製造する方法であって
熱分解窒化ほう素を熱CVD法でカーボン製の容器型材上に成膜する工程
この成膜物を前記容器型材から取り外すことで容器形状の成形体を得る工程
該容器形状の成形体を850℃から1100℃の温度で1〜10時間加熱して、酸化処理することで前記容器型材に由来して表面に付着したカーボンを除去する工程
その後に、前記容器形状の成形体に型材と接していた側の面から0.5μm以上100μm以下の厚さの表層を除去する減肉化処理を施し容器とする工程から成る熱分解窒化ほう素容器の製造方法。
A method of manufacturing a pyrolytic boron nitride container ,
Forming a film of pyrolytic boron nitride on a carbon container mold by a thermal CVD method ;
A step of obtaining a container-shaped molded body by removing the film-formed product from the container mold ,
Heating the container-shaped formed body at a temperature of 850 ° C. to 1100 ° C. for 1 to 10 hours, and removing the carbon adhering to the surface derived from the container mold material by oxidation treatment ;
Thereafter, a pyrolytic boron nitride comprising a step of forming a container by performing a thinning process for removing a surface layer having a thickness of not less than 0.5 μm and not more than 100 μm from the surface in contact with the mold material on the container-shaped molded body Container manufacturing method.
前記減肉化処理を、前記容器形状の成形体のコーナー部だけに行うことを特徴とする請求項1に記載した熱分解窒化ほう素容器の製造方法。 The method for manufacturing a pyrolytic boron nitride container according to claim 1, wherein the thinning process is performed only on a corner portion of the container-shaped molded body.
JP2015117015A 2015-06-09 2015-06-09 Method for producing pyrolytic boron nitride container Active JP6411952B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015117015A JP6411952B2 (en) 2015-06-09 2015-06-09 Method for producing pyrolytic boron nitride container
DE102016006963.5A DE102016006963A1 (en) 2015-06-09 2016-06-07 A method of manufacturing a pyrolytic boron nitride container and pyrolytic boron nitride container
CN201610405107.3A CN106245000B (en) 2015-06-09 2016-06-08 Method for manufacturing container for thermally decomposing boron nitride and container for thermally decomposing boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117015A JP6411952B2 (en) 2015-06-09 2015-06-09 Method for producing pyrolytic boron nitride container

Publications (2)

Publication Number Publication Date
JP2017002357A JP2017002357A (en) 2017-01-05
JP6411952B2 true JP6411952B2 (en) 2018-10-24

Family

ID=57395054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117015A Active JP6411952B2 (en) 2015-06-09 2015-06-09 Method for producing pyrolytic boron nitride container

Country Status (3)

Country Link
JP (1) JP6411952B2 (en)
CN (1) CN106245000B (en)
DE (1) DE102016006963A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108545914B (en) * 2018-05-18 2022-09-06 山东国晶新材料有限公司 Preparation method of anti-peeling pyrolytic boron nitride coating hot bending die for solving oxidation problem
CN110219051A (en) * 2019-06-12 2019-09-10 有研光电新材料有限责任公司 The separation method and separator of arsenide gallium monocrystal are separated from pyrolytic boron nitride crucible
CN111321388A (en) * 2020-03-26 2020-06-23 久钻科技(成都)有限公司 Diamond film de-coating method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431309A (en) * 1990-05-24 1992-02-03 Shin Etsu Chem Co Ltd Production of thermally decomposed boron nitride formed article
JPH1087306A (en) 1996-09-10 1998-04-07 Shin Etsu Chem Co Ltd Pyrolytic boron nitride vessel
JP3212522B2 (en) * 1996-12-27 2001-09-25 信越化学工業株式会社 Pyrolytic boron nitride crucible for molecular beam epitaxy
JP3596337B2 (en) 1998-03-25 2004-12-02 住友電気工業株式会社 Method for manufacturing compound semiconductor crystal
JP2003146791A (en) 2001-11-19 2003-05-21 Sumitomo Metal Mining Co Ltd Method of manufacturing compound semiconductor single crystal
CN101643932B (en) * 2009-09-09 2011-07-27 北京博宇半导体工艺器皿技术有限公司 Low texture pyrolysis born nitride (PBN) thin-wall container and preparation method thereof
CN102586754B (en) * 2012-03-06 2013-10-23 山东国晶新材料有限公司 Method for preparing pyrolytic boron nitride crucible easy to demould
CN103803513B (en) * 2014-03-13 2015-06-10 中国人民解放军国防科学技术大学 Preparation method of boron nitride nanotube

Also Published As

Publication number Publication date
CN106245000B (en) 2019-12-13
CN106245000A (en) 2016-12-21
DE102016006963A1 (en) 2016-12-15
JP2017002357A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
TW471052B (en) Silicon focus ring and its manufacturing method
JP2004530306A5 (en)
JP6279619B2 (en) Manufacturing method of semiconductor substrate
JP2007119273A (en) Method for growing silicon carbide single crystal
JP6411952B2 (en) Method for producing pyrolytic boron nitride container
JP2018027893A (en) Production method of group iii nitride semiconductor single crystal
TWI772866B (en) Wafer and manufacturing method of the same
JP2013004825A5 (en)
JP2015182948A (en) Production method of silicon carbide single crystal
CN111819311A (en) Method for producing silicon carbide single crystal
CN116084011A (en) Silicon carbide composite substrate and manufacturing method thereof
JP2014034485A (en) Method for producing single crystal
JP5948988B2 (en) Method for producing silicon carbide single crystal
KR101419472B1 (en) Method for manufacturing seed for single crystal growth, and growing nethod for single crystal using the seed
CN107923068B (en) Method for regenerating component in silicon single crystal pulling apparatus
JPH0977595A (en) Production of silicon carbide single crystal
JPH0797299A (en) Method for growing sic single crystal
CN113322520A (en) Wafer and method for manufacturing the same
CN115698391A (en) Substrate for group III nitride epitaxial growth and method for producing the same
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
KR101544904B1 (en) Seed adhesion method using high temperature reaction
US20220372653A1 (en) Method for reducing structural damage to the surface of monocrystalline aluminium-nitride substrates, and monocrystalline aluminium-nitride substrates that can be produced by a method of this type
CN111902573B (en) Gallium arsenide single crystal and gallium arsenide single crystal substrate
JP2005029459A (en) Method for growing silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
TWI806990B (en) Indium phosphide single crystal and indium phosphide single crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180927

R150 Certificate of patent or registration of utility model

Ref document number: 6411952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150