JP6411623B1 - Water sampling equipment - Google Patents

Water sampling equipment Download PDF

Info

Publication number
JP6411623B1
JP6411623B1 JP2017248621A JP2017248621A JP6411623B1 JP 6411623 B1 JP6411623 B1 JP 6411623B1 JP 2017248621 A JP2017248621 A JP 2017248621A JP 2017248621 A JP2017248621 A JP 2017248621A JP 6411623 B1 JP6411623 B1 JP 6411623B1
Authority
JP
Japan
Prior art keywords
water
water sampling
tank
pipe
pump means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248621A
Other languages
Japanese (ja)
Other versions
JP2019111506A (en
Inventor
忠男 新井
忠男 新井
正人 小森
正人 小森
敬太 住谷
敬太 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2017248621A priority Critical patent/JP6411623B1/en
Application granted granted Critical
Publication of JP6411623B1 publication Critical patent/JP6411623B1/en
Publication of JP2019111506A publication Critical patent/JP2019111506A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】採水管の詰まり防止機能を備えた採水装置を提供する。【解決手段】この採水装置80、80aは、採水管34の吐出口(ノズル34b)を膜分離槽30及び生物処理槽20の液面よりも上に位置させる。また、採水ポンプ手段34aを間欠運転する。これにより、採水ポンプ手段34aの停止時には採水管34内の残留水が自重によって水処理設備100の処理槽(本例では生物処理槽20)側に逆流し、これにより採水管34の逆洗が行われる。そしてこの定期的な逆洗により採水管34内に付着した夾雑物等は脱離し、採水管34の詰りを防止することができる。さらに、この採水装置80、80aは、残留水の逆流が全て完了する前に開閉弁38を閉動作し残留水の逆流を停止する。これにより、再稼働時の送水負荷を軽減することができる。【選択図】図1A water sampling apparatus having a function of preventing clogging of a water sampling pipe is provided. In the water sampling devices 80, 80a, the discharge port (nozzle 34b) of the water sampling pipe 34 is positioned above the liquid level of the membrane separation tank 30 and the biological treatment tank 20. Further, the water sampling pump means 34a is intermittently operated. Thereby, when the water sampling pump means 34a is stopped, the residual water in the water sampling pipe 34 flows back to the treatment tank (biological treatment tank 20 in this example) side of the water treatment facility 100 by its own weight, thereby backwashing the water sampling pipe 34 Is done. Then, impurities and the like attached in the water sampling pipe 34 are detached by this regular backwashing, and the water sampling pipe 34 can be prevented from being clogged. Further, the water sampling devices 80 and 80a close the on-off valve 38 and stop the backflow of the residual water before all the backflow of the residual water is completed. Thereby, the water supply load at the time of a restart can be reduced. [Selection] Figure 1

Description

本発明は、水処理設備の水質を自動で測定する測定機器に検水を供給するための採水装置に関するものである。   The present invention relates to a water sampling apparatus for supplying test water to a measuring device that automatically measures the water quality of a water treatment facility.

現在、下水道、農業集落排水施設及び浄化槽による全国の汚水処理人口普及率は90%を超えており、将来的に人口が減少していく社会的状況において、水処理設備のより効率的な運用が求められている。この問題点に関し、例えば下記[特許文献1]には濃縮汚泥の一部を生物処理槽やこの生物処理槽の前段に位置する調整槽に返送し、濃縮汚泥中のバチルス菌を用いて余剰汚泥の減容と悪臭の低減とを図る発明が記載されている。   Currently, the national sewage treatment population penetration rate by sewers, agricultural settlement drainage facilities and septic tanks is over 90%, and in the social situation where the population is decreasing in the future, more efficient operation of water treatment facilities is possible. It has been demanded. Regarding this problem, for example, in the following [Patent Document 1], a part of the concentrated sludge is returned to the biological treatment tank or the adjustment tank located in the preceding stage of the biological treatment tank, and surplus sludge is obtained using Bacillus bacteria in the concentrated sludge. An invention for reducing the volume and reducing bad odor is described.

また、生活系排水の処理は、有機物の分解に加えアンモニアの酸化、硝酸の脱窒による窒素処理が必要とされており、[特許文献1]にも記載されているように、曝気による好気性条件下での生物処理が広く行われている。ただし、曝気のためのブロアの消費電力は全体の約4分の1〜2分の1を占め、水処理設備の効率的な運用のためにはブロアの適正運転による省電力化が重要な課題となっている。この問題点に対し生物処理槽(曝気槽)の水質を自動的に測定して、この測定結果に基づいてブロアの適正運転を行い消費電力を削減する水処理設備が増加傾向にある。   In addition, the treatment of domestic wastewater requires nitrogen treatment by oxidation of ammonia and denitrification of nitric acid in addition to decomposition of organic matter, and as described in [Patent Document 1], aerobic by aeration. Biological treatment under conditions is widely performed. However, the power consumption of the blower for aeration occupies about one-quarter to one-half of the whole, and power saving through proper operation of the blower is an important issue for efficient operation of water treatment facilities. It has become. In response to this problem, water treatment facilities that automatically measure the water quality of biological treatment tanks (aeration tanks) and appropriately operate the blowers based on the measurement results tend to increase power consumption.

このような水質の自動測定方法の一つとして、例えば下記[特許文献2]に記載されているように、水処理設備の経路上に水質センサを設置し、この水質センサの測定値によりブロア等の各部の動作を制御する方法が考えられる。しかしながら、この方法では測定箇所ごとに水質センサが必要となりシステム構成が複雑化する他、設備コストが高額となる可能性がある。   As one of such automatic water quality measurement methods, for example, as described in [Patent Document 2] below, a water quality sensor is installed on the path of a water treatment facility, and a blower or the like is determined by the measured value of the water quality sensor. A method of controlling the operation of each part of the above is conceivable. However, this method requires a water quality sensor for each measurement location, complicating the system configuration, and may increase the equipment cost.

この問題点に対し、例えば生物処理槽の処理水を分離膜等を用いて濾過(膜分離)し、その濾水を検水として測定機器に送って処理水中の溶存態物質等の濃度を所定の時間間隔で自動的に測定する測定装置が実用化されている。この分離膜を用いた構成では、比較的簡易な装置構成で水質の自動測定が可能となる。ただし、膜分離を行うにはある程度の吸引力を要するため、検水を送水する検水管は長くできず、分離膜と測定機器とを離して設置することが難しい。このため、分離膜を処理槽に直接設置する場合には測定機器も処理槽の近くに配置する必要があり装置構成の自由度が制限される。この問題点に対し、水処理設備の槽とは別に膜分離槽を設け、この膜分離槽に分離膜を設置するとともに処理槽(生物処理槽)の水を活性汚泥ごと供給して、この膜分離槽で膜分離を行う構成が考えられる。この構成では水処理設備の経路から独立した膜分離槽から検水を取得するため、測定機器の設置場所の自由度が高く、既存の水処理設備にも比較的容易に設置することができる。   In response to this problem, for example, the treated water in the biological treatment tank is filtered (membrane separated) using a separation membrane or the like, and the filtrate is sent as a test water to a measuring device to set the concentration of dissolved substances in the treated water to a predetermined level. A measuring apparatus that automatically measures at a time interval of is in practical use. In the configuration using this separation membrane, it is possible to automatically measure water quality with a relatively simple device configuration. However, since a certain amount of suction force is required to perform membrane separation, the test pipe for feeding the test water cannot be made long, and it is difficult to install the separation membrane and the measuring device apart from each other. For this reason, when installing a separation membrane directly in a processing tank, it is necessary to arrange | position a measuring instrument also near a processing tank, and the freedom degree of an apparatus structure is restrict | limited. In response to this problem, a membrane separation tank is provided separately from the tank of the water treatment facility, and the separation membrane is installed in the membrane separation tank and the water in the treatment tank (biological treatment tank) is supplied together with the activated sludge. A configuration in which membrane separation is performed in a separation tank is conceivable. In this configuration, since the test water is obtained from the membrane separation tank independent from the path of the water treatment facility, the degree of freedom of the installation location of the measuring device is high, and it can be relatively easily installed in the existing water treatment facility.

特開2005−296852号公報JP 2005-296852 A 特開2013−202511号公報JP2013-202511A

しかしながら、膜分離槽は水質測定の採水用に設けられた槽であるから一般的に容量が小さく、これに処理水を送水する採水管の径も小さい。また、生物処理槽の処理水には毛髪等の夾雑物を含む活性汚泥が混合しているため、径の小さい採水管では詰まり易く、長期間の安定した送水が困難であるという問題点がある。   However, since the membrane separation tank is a tank provided for collecting water for water quality measurement, the capacity is generally small, and the diameter of the water collection pipe for supplying treated water to this is also small. In addition, since activated sludge containing contaminants such as hair is mixed in the treatment water of the biological treatment tank, there is a problem that it is easy to clog with a small-diameter sampling tube and it is difficult to stably supply water for a long period of time. .

本発明は上記事情に鑑みてなされたものであり、採水管の詰まり防止機能を備えた採水装置の提供を目的とする。   This invention is made | formed in view of the said situation, and aims at provision of the water sampling apparatus provided with the clogging prevention function of a water sampling pipe | tube.

本発明は、
(1)固液分離を行う分離膜32と、前記分離膜32が設置された膜分離槽30と、水処理設備100の所定の処理槽(生物処理槽20)の処理水を前記膜分離槽30に供給する採水管34と、前記採水管34に処理水を送水する採水ポンプ手段34aと、前記分離膜32を通過した検水を測定機器10に供給する検水管36と、を有する採水装置において、
前記採水管34の吐出口(ノズル34b)は前記膜分離槽30及び前記処理槽の液面よりも上に位置するとともに前記採水管34の取水側に開閉弁38を有し、
前記採水ポンプ手段34aは間欠運転するとともに、前記採水ポンプ手段34aの停止後、前記採水管34中に残留した処理水の前記処理槽への逆流が完了する前に前記開閉弁38が閉動作することを特徴とする採水装置80、80aを提供することにより、上記課題を解決する。
)水処理設備100の他の処理槽の処理水を検水管36に送る第2の採水管44と、
測定機器10への検水の流路を前記第2の採水管44側と分離膜32側とで切り替える流路切替手段48と、をさらに有し、
前記流路切替手段48は検水の流路を採水ポンプ手段34aの動作時には分離膜32側に切り替えるとともに、前記採水ポンプ手段34aの停止時には前記第2の採水管44側に切り替えることを特徴とする上記(1)に記載の採水装置80aを提供することにより、上記課題を解決する。
The present invention
(1) A separation membrane 32 for performing solid-liquid separation, a membrane separation tank 30 in which the separation membrane 32 is installed, and treated water in a predetermined treatment tank (biological treatment tank 20) of the water treatment facility 100 are supplied to the membrane separation tank. A water sampling pipe 34 to be supplied to 30, a water sampling pump means 34 a for supplying treated water to the water sampling pipe 34, and a water sampling pipe 36 for supplying the water sample passing through the separation membrane 32 to the measuring instrument 10. In the water device,
The discharge port (nozzle 34b) of the water sampling pipe 34 is located above the liquid level of the membrane separation tank 30 and the processing tank and has an opening / closing valve 38 on the water intake side of the water sampling pipe 34,
The water sampling pump means 34a operates intermittently, and the on- off valve 38 is closed after the water sampling pump means 34a is stopped and before the backflow of the treated water remaining in the water sampling pipe 34 to the treatment tank is completed. The above problems are solved by providing the water sampling devices 80 and 80a which are characterized by operation.
( 2 ) a second water sampling pipe 44 that sends treated water from other treatment tanks of the water treatment facility 100 to the test pipe 36;
Flow path switching means 48 for switching the flow path of the test water to the measuring device 10 between the second water collection pipe 44 side and the separation membrane 32 side;
The flow path switching means 48 switches the sample flow path to the separation membrane 32 side when the water sampling pump means 34a is operated, and switches to the second water sampling pipe 44 side when the water sampling pump means 34a is stopped. The above problem is solved by providing the water sampling device 80a described in (1), which is characterized.

本発明に係る採水装置は、採水管の吐出口を膜分離槽及び取水する槽の液面よりも上に位置させるとともに採水ポンプ手段を間欠運転する。これにより、採水ポンプ手段の停止時には採水管内の残留水が自重によって取水する槽側に逆流し、これにより採水管の逆洗が行われる。そしてこの定期的な逆洗により採水管の詰りを防止することができる。また、本発明に係る採水装置は、残留水の逆流が全て完了する前に開閉弁を閉動作し残留水の逆流を停止する。これにより、再稼働時の送水負荷を軽減することができる。   In the water sampling apparatus according to the present invention, the discharge port of the water sampling pipe is positioned above the liquid level of the membrane separation tank and the tank for taking water, and the water sampling pump means is intermittently operated. Thereby, when the water sampling pump means is stopped, the residual water in the water sampling pipe flows back to the tank side where water is taken up by its own weight, thereby backwashing the water sampling pipe. And this regular backwashing can prevent clogging of the water sampling pipe. Moreover, the water sampling apparatus which concerns on this invention closes an on-off valve, and stops the backflow of residual water before all the backflow of residual water is completed. Thereby, the water supply load at the time of a restart can be reduced.

本発明に係る採水装置を説明する図である。It is a figure explaining the water sampling apparatus which concerns on this invention. 本発明に係る第2の採水装置を説明する図である。It is a figure explaining the 2nd water sampling apparatus which concerns on this invention.

本発明に係る採水装置について図面に基づいて説明する。先ず、本発明を適用する水処理設備100について説明する。尚、ここでは生活系排水を浄化して河川等に放流する水処理設備100を用いて説明を行うが、本発明を適用する水処理設備100はこれに限定されるものではなく、例えば上水や工業排水の水処理設備、プールや温泉、温浴施設等の浄水設備など、夾雑物との固液分離が必要な如何なる水処理設備にも適用が可能である。また、採水する槽に関しても目的や測定項目によって適宜選択が可能であり、特にブロア14の適正運転を目的とする場合には、本例に示すように生物処理槽20(曝気槽)の処理水を採水することが好ましい。   A water sampling apparatus according to the present invention will be described with reference to the drawings. First, the water treatment facility 100 to which the present invention is applied will be described. In addition, although it demonstrates using the water treatment facility 100 which purifies domestic wastewater and discharges it to a river etc. here, the water treatment facility 100 to which this invention is applied is not limited to this, For example, water supply It can be applied to any water treatment facility that requires solid-liquid separation from impurities, such as water treatment facilities for industrial wastewater, water purification facilities such as pools, hot springs, and warm bath facilities. In addition, the water collecting tank can be appropriately selected depending on the purpose and measurement item. Especially when the purpose is to operate the blower 14 appropriately, the treatment of the biological treatment tank 20 (aeration tank) is performed as shown in this example. It is preferable to collect water.

ここで、本発明に好適な水処理設備100は、例えば排水等を一旦貯水し水量及び水質を調整する調整槽22と、この調整槽22から供給される原水を貯留してブロア14による曝気を行い好気性菌による有機物の分解、アンモニアの硝化、及び嫌気下における脱窒等の生物処理を行う生物処理槽20と、この生物処理槽20の処理水を静置して活性汚泥等の固形物を沈殿させ固液分離する沈殿槽26と、この沈殿槽26の上澄みに対し例えば次亜塩素酸ナトリウム等の殺菌剤を投与する消毒槽28と、ブロア14の動作を制御するブロア制御部12と、を少なくとも有している。   Here, the water treatment facility 100 suitable for the present invention includes, for example, an adjustment tank 22 that temporarily stores drainage or the like and adjusts the amount and quality of water, and stores the raw water supplied from the adjustment tank 22 and aerated by the blower 14. A biological treatment tank 20 that performs biological treatment such as organic matter decomposition by aerobic bacteria, nitrification of ammonia, and denitrification under anaerobic conditions, and solids such as activated sludge by leaving the treated water in this biological treatment tank 20 A sedimentation tank 26 for precipitating and solid-liquid separation, a disinfection tank 28 for administering a disinfectant such as sodium hypochlorite to the supernatant of the precipitation tank 26, and a blower control unit 12 for controlling the operation of the blower 14. , At least.

そして、本発明に係る採水装置80は水処理設備100の所定の処理槽の水を固液分離して測定機器10に供給するものであり、処理水の固液分離を行う分離膜32と、この分離膜32が設置された膜分離槽30と、水処理設備100の所定の処理槽の処理水を膜分離槽30に供給する採水管34と、この採水管34に処理水を送水する採水ポンプ手段34aと、分離膜32を通過した検水を測定機器10に供給する検水管36と、この検水管36に検水を送水する吸引ポンプ手段36aと、採水管34の取水側(水処理設備100の処理槽側)に設けられた開閉弁38と、膜分離槽30の余剰な処理水を水処理設備100の所定の槽に返送するオーバーフロー管40と、採水ポンプ手段34aを間欠運転するとともに開閉弁38の開閉等を制御する図示しない採水制御部と、を有している。   And the water sampling apparatus 80 which concerns on this invention solid-liquid-separates the water of the predetermined processing tank of the water treatment facility 100, and supplies it to the measuring apparatus 10, and the separation membrane 32 which performs solid-liquid separation of treated water, The membrane separation tank 30 in which the separation membrane 32 is installed, the water collection pipe 34 that supplies the treated water in a predetermined treatment tank of the water treatment facility 100 to the membrane separation tank 30, and the treated water is sent to the water collection pipe 34. A water sampling pump means 34 a, a water sampling pipe 36 that supplies the test water that has passed through the separation membrane 32 to the measuring device 10, a suction pump means 36 a that supplies water to this water sampling pipe 36, and a water intake side of the water sampling pipe 34 ( An on-off valve 38 provided on the treatment tank side of the water treatment facility 100, an overflow pipe 40 for returning surplus treated water from the membrane separation tank 30 to a predetermined tank of the water treatment facility 100, and a water sampling pump means 34a. Intermittent operation and open / close valve 38 It has a water sampling control unit (not shown) Gosuru, the.

次に、本発明に係る採水装置80の各部の構成を説明する。先ず、採水ポンプ手段34aは処理槽中の処理水を夾雑物ごと圧送可能な周知のポンプ手段を用いることができる。特に、処理槽が生物処理槽20の場合には汚水用水中ポンプを用いて、処理水を活性汚泥ごと送水することが好ましい。また、採水管34は採水ポンプ手段34aが取水した処理水を活性汚泥等の夾雑物ごと膜分離槽30に送水するものであり、合成樹脂もしくは金属製の周知のパイプもしくはホースを用いることができる。中でも特に口径10A〜50A程度の合成樹脂製のホースとパイプとを適宜組み合わせて構成することが好ましい。また、採水管34の吐出口にはノズル34bを設け、このノズル34bの口径を最適化することで採水管34の流量を適切な値に固定することが好ましい。尚、採水管34の流量は前述のように基本的にノズル34bの口径によって設定し、可変バルブ等の流量調整機構は設けない。ここで、流量調整機構を採水管34に設けた場合、この流量調整機構の狭隘部に処理水中の夾雑物が詰り易く、安定的な送水が難しい。このため本発明に係る採水装置80ではノズル34bの口径により流量を決定し、採水管34の経路上に際立った狭隘部を設けない構成としている。尚、際立った狭隘部を有さなければ口径が可変なノズル34bを用いても良い。また、吐出口(ノズル34b)は膜分離槽30及び処理槽(生物処理槽20)の液面よりも上に位置させる。これにより、採水ポンプ手段34aの停止時には採水管34内に残留した処理水が自重によって処理槽(生物処理槽20)側に逆流する。   Next, the structure of each part of the water sampling apparatus 80 which concerns on this invention is demonstrated. First, as the water sampling pump means 34a, a well-known pump means capable of pumping the treated water in the treatment tank together with the impurities can be used. In particular, when the treatment tank is the biological treatment tank 20, it is preferable to feed the treated water together with the activated sludge using a sewage submersible pump. Further, the water sampling pipe 34 feeds treated water taken by the water sampling pump means 34a together with impurities such as activated sludge to the membrane separation tank 30, and a well-known pipe or hose made of synthetic resin or metal is used. it can. Among these, it is particularly preferable that the hose and pipe made of synthetic resin having a diameter of about 10A to 50A are appropriately combined. Moreover, it is preferable to provide the nozzle 34b in the discharge port of the water sampling pipe 34, and to fix the flow volume of the water sampling pipe 34 to an appropriate value by optimizing the diameter of this nozzle 34b. The flow rate of the water sampling pipe 34 is basically set by the diameter of the nozzle 34b as described above, and no flow rate adjusting mechanism such as a variable valve is provided. Here, when the flow rate adjusting mechanism is provided in the water sampling pipe 34, the narrow portion of the flow rate adjusting mechanism is likely to be clogged with impurities in the treated water, and stable water supply is difficult. For this reason, in the water sampling apparatus 80 which concerns on this invention, a flow volume is determined by the aperture of the nozzle 34b, and it is set as the structure which does not provide the conspicuous narrow part on the path | route of the water sampling pipe 34. If there is no conspicuous narrow portion, a nozzle 34b having a variable diameter may be used. The discharge port (nozzle 34b) is positioned above the liquid level of the membrane separation tank 30 and the treatment tank (biological treatment tank 20). Thereby, when the water collection pump means 34a is stopped, the treated water remaining in the water collection pipe 34 flows back to the treatment tank (biological treatment tank 20) by its own weight.

また、採水管34の取水側(処理槽側)には開閉弁38が設けられる。この開閉弁38は採水制御部による開閉操作が可能な周知の開閉弁を用いることができる。尚、開閉弁38は内部に際立った狭隘部が存在しない構造の物を用いることが好ましい。   An on-off valve 38 is provided on the water intake side (treatment tank side) of the water sampling pipe 34. The on-off valve 38 may be a known on-off valve that can be opened and closed by the water sampling control unit. The on-off valve 38 preferably uses a structure having no conspicuous narrow portion inside.

また、膜分離槽30は測定機器10の近傍に配置され、槽内に分離膜32を有するとともに、採水管34を介して水処理設備100からの処理水が供給される。尚、生物処理槽20の処理水を膜分離槽30に供給する場合には、膜分離槽30にも曝気機構を設けることが好ましい。また、膜分離槽30は余剰な処理水(以後、余剰水とする)を水処理設備100の所定の槽に返送するオーバーフロー管40を有している。尚、生物処理槽20の処理水を膜分離槽30に供給する場合には、余剰水を活性汚泥とともに生物処理槽20もしくは生物処理槽20よりも上流の例えば図1に示す調整槽22に返送することが好ましい。このうち特に調整槽22に返送する構成では、生物処理槽20で活性化した好気性菌を上流に位置する調整槽22に返送するため、後段の生物処理槽20における生物処理をより効果的に行うことができる。これにより、悪臭の防止、汚泥の減容化、処理水の水質の向上等の好ましい効果を得ることができる。尚、この調整槽22への余剰水の返送量は水処理設備100の流量の5%〜15%が好ましく8%〜12%が特に好ましい。尚、流量が5%よりも少ない場合には余剰水の返送量が少なく生物処理の向上効果が小さい。また15%よりも多い場合には返送量が過多となり水処理設備100全体としての処理能力が悪化する。尚、膜分離槽30から測定機器10に送水される検水の量は膜分離槽30へ供給される処理水の量の1%〜2%程度と小さいから、処理水の供給量とオーバーフロー管40による返送量とはほぼ同等となる。   In addition, the membrane separation tank 30 is disposed in the vicinity of the measuring device 10, has a separation membrane 32 in the tank, and is supplied with treated water from the water treatment facility 100 via a water sampling pipe 34. In addition, when supplying the treated water of the biological treatment tank 20 to the membrane separation tank 30, it is preferable to provide an aeration mechanism also in the membrane separation tank 30. Further, the membrane separation tank 30 has an overflow pipe 40 for returning surplus treated water (hereinafter referred to as surplus water) to a predetermined tank of the water treatment facility 100. In addition, when supplying the treated water of the biological treatment tank 20 to the membrane separation tank 30, the surplus water is returned together with the activated sludge to the biological treatment tank 20 or the adjustment tank 22 shown in FIG. It is preferable to do. Among these, especially in the structure which returns to the adjustment tank 22, since the aerobic microbe activated in the biological treatment tank 20 is returned to the adjustment tank 22 located upstream, the biological treatment in the latter biological treatment tank 20 is more effectively performed. It can be carried out. Thereby, favorable effects, such as prevention of malodor, volume reduction of sludge, and improvement of the quality of treated water, can be obtained. The amount of surplus water returned to the adjustment tank 22 is preferably 5% to 15% of the flow rate of the water treatment facility 100, and particularly preferably 8% to 12%. When the flow rate is less than 5%, the return amount of surplus water is small and the effect of improving biological treatment is small. On the other hand, if it exceeds 15%, the return amount becomes excessive and the treatment capacity of the water treatment facility 100 as a whole deteriorates. In addition, since the amount of test water sent from the membrane separation tank 30 to the measuring device 10 is as small as about 1% to 2% of the amount of treated water supplied to the membrane separation tank 30, the amount of treated water supplied and the overflow pipe The amount returned by 40 is almost the same.

尚、処理水の供給量に対して採水ポンプ手段34aの能力が過大な場合には、開閉弁38と採水ポンプ手段34aとの間に返送管34cを設けて過剰な処理水を生物処理槽20に返送するようにしても良い。この構成では処理水の供給量をノズル34bの口径と返送管34cの口径の双方で調整可能なため供給量の調整を楽に行える他、採水ポンプ手段34aの負荷を軽減することができる。   When the capacity of the sampling pump means 34a is excessive with respect to the supply amount of treated water, a return pipe 34c is provided between the on-off valve 38 and the sampling pump means 34a to biologically treat excess treated water. You may make it return to the tank 20. FIG. In this configuration, the supply amount of the treated water can be adjusted by both the diameter of the nozzle 34b and the diameter of the return pipe 34c, so that the supply amount can be easily adjusted and the load on the water sampling pump means 34a can be reduced.

また、膜分離槽30に設置する分離膜32は測定機器10の測定に十分な固液分離が行なえれば如何なるものを用いても良い。尚、分離膜32を活性汚泥の分離に用いる場合にはMF膜(精密濾過膜)を用いることが好ましい。中でも特に吸引口を備えた枠体の両平面にMF膜が固定された平板濾過ユニットを用い、この平板濾過ユニットの吸引口に検水管36を接続して用いることが装置構成の簡略化の面から最も好ましい。   Further, any separation membrane 32 installed in the membrane separation tank 30 may be used as long as the solid-liquid separation sufficient for the measurement of the measuring device 10 can be performed. When the separation membrane 32 is used for separating activated sludge, it is preferable to use an MF membrane (microfiltration membrane). In particular, it is possible to use a flat plate filtration unit in which MF membranes are fixed to both planes of a frame having a suction port, and to connect a test tube 36 to the suction port of the flat plate filtration unit. To most preferred.

また、吸引ポンプ手段36aは所定の吸引能力を有する周知の液送ポンプを用いることができる。また、検水管36の管路長は吸引ポンプ手段36aの吸引力による検水の送水と膜分離とが十分に行える長さとする。   The suction pump means 36a may be a known liquid feed pump having a predetermined suction capability. Further, the pipe length of the test water pipe 36 is set to a length that can sufficiently perform the water supply and membrane separation of the test water by the suction force of the suction pump means 36a.

また、採水装置80と接続する測定機器10は、目的とする測定項目を自動で測定することが可能な周知の測定機器を用いることができる。尚、ここでは測定機器10として水中のNH−N(アンモニア性窒素)濃度及びNOx-N(硝酸・亜硝酸性窒素)濃度を測定するものを用いている。 Moreover, the measurement apparatus 10 connected with the water sampling apparatus 80 can use the known measurement apparatus which can measure the target measurement item automatically. Here, the measuring device 10 is used to measure NH 4 —N (ammonia nitrogen) concentration and NO x —N (nitric acid / nitrite nitrogen) concentration in water.

次に、本発明に係る採水装置80の動作を説明する。先ず、生活系排水(原水)が調整槽22に流入する。そして、この調整槽22において原水の流量や濃度、pH等の調整が行われる。次に、原水は生物処理槽20に流入する。この生物処理槽20ではブロア14がブロア制御部12によって所定の時間間隔で間欠動作する。そして、ブロア14の動作時には曝気が行われ槽内は好気状態となる。これにより、生物処理槽20内の好気性菌及び微生物が処理水中の有機物の分解及びアンモニアの硝化を行う。また、ブロア14の停止時には槽内は嫌気状態となり、槽内の脱窒素菌が硝酸の脱窒を行う。そして、これらが交互に行われることで、処理水に対する生物処理が行われる。このブロア14の間欠運転の時間間隔は水処理設備100の能力や流入する排水によって異なるが概ね30分〜2時間であり、45分〜1時間が一般的である。そして、生物処理槽20にて生物処理された処理水は次に沈殿槽26に流入し静置される。これにより、活性汚泥等の固形物は下方に沈殿し固液分離が行われる。次に、沈殿槽26の上澄みが消毒槽28に流入する。そして、この消毒槽28において所定量の殺菌剤が例えば殺菌剤添加装置28aによって添加され処理水の殺菌消毒処理が行われる。そして、殺菌の行われた処理水は河川等へ放流される。   Next, the operation of the water sampling apparatus 80 according to the present invention will be described. First, domestic wastewater (raw water) flows into the adjustment tank 22. Then, the flow rate, concentration, pH, etc. of the raw water are adjusted in the adjustment tank 22. Next, the raw water flows into the biological treatment tank 20. In the biological treatment tank 20, the blower 14 is intermittently operated by the blower control unit 12 at predetermined time intervals. When the blower 14 is operated, aeration is performed and the inside of the tank is in an aerobic state. Thereby, the aerobic bacteria and microorganisms in the biological treatment tank 20 decompose organic substances in the treated water and nitrify ammonia. Further, when the blower 14 is stopped, the inside of the tank becomes anaerobic, and the denitrifying bacteria in the tank denitrify nitric acid. And by performing these alternately, the biological treatment with respect to treated water is performed. Although the time interval of intermittent operation of the blower 14 varies depending on the capacity of the water treatment facility 100 and inflowing wastewater, it is generally 30 minutes to 2 hours, and is generally 45 minutes to 1 hour. Then, the treated water biologically treated in the biological treatment tank 20 flows into the sedimentation tank 26 and is left still. Thereby, solid substances, such as activated sludge, settle down and solid-liquid separation is performed. Next, the supernatant of the sedimentation tank 26 flows into the disinfection tank 28. In the sterilization tank 28, a predetermined amount of sterilizing agent is added by, for example, the sterilizing agent adding device 28a, and sterilization processing of the treated water is performed. Then, the sterilized treated water is discharged into a river or the like.

また、これと並行して採水ポンプ手段34aが生物処理槽20内の処理水を活性汚泥ごと取水し採水管34で圧送する。そして、この処理水は採水管34を通ってノズル34bから膜分離槽30に吐出される。尚、膜分離槽30の余剰水はオーバーフロー管40を介して例えば調整槽22に返送される。また、吸引ポンプ手段36aが動作し、例えば平板濾過ユニットの吸引口から枠体内の検水を吸引する。この検水の吸引により、新たな処理水が平板濾過ユニットの分離膜32から枠体内に流入する。このとき、活性汚泥等の固形物は分離膜32を通過できず、これにより膜分離(濾過)が行われる。   In parallel with this, the water collection pump means 34 a takes the treated water in the biological treatment tank 20 together with the activated sludge and pumps it through the water collection pipe 34. Then, the treated water is discharged from the nozzle 34 b to the membrane separation tank 30 through the water collection pipe 34. The surplus water in the membrane separation tank 30 is returned to, for example, the adjustment tank 22 via the overflow pipe 40. Further, the suction pump means 36a is operated to suck the sample water in the frame from the suction port of the flat plate filtration unit, for example. Due to the suction of the test water, new treated water flows from the separation membrane 32 of the flat plate filtration unit into the frame. At this time, solids such as activated sludge cannot pass through the separation membrane 32, and thus membrane separation (filtration) is performed.

また、吸引ポンプ手段36aにより吸引された検水は検水管36を通して測定機器10に供給され、この測定機器10において例えばNH−N濃度やNOx-N濃度等の所定の水質測定が行われる。そして、測定機器10はこの測定結果をブロア制御部12に出力するとともに所定の記録媒体に記録する。尚、測定後の検水は例えばオーバーフロー管40に排水される。 Further, the sample water sucked by the suction pump means 36a is supplied to the measuring device 10 through the sample tube 36, and predetermined water quality measurement such as NH 4 -N concentration and NOx-N concentration is performed in the measuring device 10. The measuring device 10 outputs the measurement result to the blower control unit 12 and records it on a predetermined recording medium. Incidentally, the measured water after the measurement is drained into the overflow pipe 40, for example.

ブロア制御部12は測定機器10からの測定結果に基づいてブロア14の風量(曝気量)を変化させる。例えば、測定機器10の測定値が水質の悪化を示す値の場合、ブロア制御部12はブロア14の風量を増加させ生物処理を促進させる。また、測定機器10の測定値が優良な場合、ブロア制御部12はブロア14の風量を減少させ消費電力を低減する。これにより、ブロア14は生物処理を良好な状態で維持可能な適切な消費電力で動作する。これにより、電力消費量が抑制され電力コストの削減を図ることができる。   The blower control unit 12 changes the air volume (aeration volume) of the blower 14 based on the measurement result from the measuring device 10. For example, when the measurement value of the measuring device 10 is a value indicating deterioration of water quality, the blower control unit 12 increases the air volume of the blower 14 and promotes biological treatment. Moreover, when the measured value of the measuring device 10 is excellent, the blower control unit 12 reduces the air volume of the blower 14 to reduce power consumption. Thereby, the blower 14 operates with an appropriate power consumption capable of maintaining the biological treatment in a good state. Thereby, power consumption can be suppressed and reduction in power cost can be achieved.

次に、本発明に係る採水装置80の特徴的な動作に関して説明する。先ず、採水制御部は採水ポンプ手段34aのオン・オフを制御して間欠運転する。この採水ポンプ手段34aの間欠運転の間隔はブロア14の間欠運転の間隔と略同等としても良いし、異なる独立した時間間隔としても良い。尚、採水制御部は採水ポンプ手段34aのオン・オフと同時に吸引ポンプ手段36aのオン・オフを行っても良い。この構成では、採水ポンプ手段34aの停止と同時に検水の測定機器10への供給も停止する。   Next, the characteristic operation of the water sampling apparatus 80 according to the present invention will be described. First, the water sampling control unit performs intermittent operation by controlling on / off of the water sampling pump means 34a. The interval of the intermittent operation of the water sampling pump means 34a may be substantially equal to the interval of the intermittent operation of the blower 14, or may be a different independent time interval. The water sampling control unit may turn on / off the suction pump unit 36a simultaneously with turning on / off the water sampling pump unit 34a. In this configuration, the supply of the sample water to the measuring device 10 is stopped simultaneously with the stop of the water sampling pump means 34a.

そして、採水制御部が採水ポンプ手段34aをオフすると膜分離槽30への処理水の供給が停止する。このとき、採水管34の吐出口(ノズル34b)は膜分離槽30及び生物処理槽20の液面よりも上に位置するから、採水管34内に残留した処理水(以後、残留水とする)は自重によって生物処理槽20側に逆流する。これにより採水管34の逆洗が行われ、仮に採水管34内に汚泥や夾雑物が引っ掛かっていた場合でも、これを離脱させることができる。ただし、逆流が全て完了し採水管34内の残留水が処理槽の液面高さまで吐出してしまうと、採水ポンプ手段34aの再稼働時に送水負荷が大きく、特に採水管34の管路長が長い場合等に送水の不具合や消費電力の増加等が生じる可能性が有る。よって、採水制御部は採水ポンプ手段34aの停止後、所定の時間間隔を取った後に開閉弁38を閉動作する。これにより、残留水の逆流は停止する。尚、このときの所定の時間間隔とは、残留水の逆流が完了する前までの時間であり、例えば残留水の10%〜50%が吐出する時間である。この開閉弁38が動作する時間間隔は、採水装置80の設置時等に予め計測するなどして取得し設定することが好ましい。そして、この構成では採水管34内の残留水が全て抜けきらないため、採水ポンプ手段34aの再稼働時の送水負荷を軽減することができ、送水の不具合等を防止することができる。   And if a water sampling control part turns off the water sampling pump means 34a, supply of the treated water to the membrane separation tank 30 will stop. At this time, since the discharge port (nozzle 34b) of the water sampling pipe 34 is located above the liquid level of the membrane separation tank 30 and the biological treatment tank 20, the treated water remaining in the water sampling pipe 34 (hereinafter referred to as residual water). ) Flows backward to the biological treatment tank 20 by its own weight. As a result, the water collection pipe 34 is back-washed, and even if sludge or impurities are caught in the water collection pipe 34, it can be removed. However, if all of the backflow is completed and the residual water in the water sampling pipe 34 is discharged to the liquid level of the treatment tank, the water supply load is large when the water sampling pump means 34a is restarted, and the pipe length of the water sampling pipe 34 is particularly large. There is a possibility that problems such as water supply and increased power consumption may occur when the length is long. Therefore, the water sampling control unit closes the on-off valve 38 after a predetermined time interval after the water sampling pump unit 34a is stopped. Thereby, the backflow of residual water stops. The predetermined time interval at this time is a time until the backflow of the residual water is completed, for example, a time for discharging 10% to 50% of the residual water. It is preferable to obtain and set the time interval at which the on-off valve 38 operates by measuring in advance, for example, when the water sampling device 80 is installed. And in this structure, since all the residual water in the water sampling pipe 34 cannot escape, the water supply load at the time of re-operation of the water sampling pump means 34a can be reduced, and the malfunction of water supply etc. can be prevented.

次に、所定の停止期間が終了すると採水制御部は開閉弁38を開動作するとともに採水ポンプ手段34a及び、吸引ポンプ手段36aをオンする。これにより、採水ポンプ手段34aが生物処理槽20の処理水を採水管34に圧送し、膜分離槽30に供給する。また、吸引ポンプ手段36aが検水を吸引し測定機器10に供給する。そして、分離膜32による膜分離と測定機器10による検水の測定が再開する。   Next, when the predetermined stop period ends, the water sampling control unit opens the on-off valve 38 and turns on the water sampling pump means 34a and the suction pump means 36a. Thereby, the water sampling pump means 34 a pumps the treated water of the biological treatment tank 20 to the water sampling pipe 34 and supplies it to the membrane separation tank 30. The suction pump means 36 a sucks the sample water and supplies it to the measuring device 10. Then, the membrane separation by the separation membrane 32 and the measurement of the test water by the measuring device 10 are resumed.

次に、本発明に係る第2の採水装置80aについて図2を用いて説明を行う。本発明に係る第2の採水装置80aは水処理設備100の他の処理槽、例えば消毒槽28の処理水を検水として検水管36に送る第2の採水管44と、測定機器10の検水の流路を第2の採水管44側と分離膜30側とで切り替える流路切替手段48と、をさらに有している。尚、流路切替手段48としては採水制御部によって切り替えが可能な周知の三方弁や切替弁等を用いることができる。そして、採水制御部は採水ポンプ手段34aの動作時には流路切替手段48の流路を分離膜32側に切り替える。これにより、測定機器10へ供給される検水は分離膜32を通過した生物処理槽20の濾水となる。また、採水ポンプ手段34aの停止時には流路切替手段48の流路を第2の採水管44側に切り替える。これにより、測定機器10へ供給される検水は消毒槽28の処理水、即ち水処理設備100が放流する処理水となる。そして、測定機器10はこの消毒槽28の処理水を測定して記録するとともに、異常が存在する場合には管理者に警告を発するなどの然るべき措置を講じる。尚、第2の採水装置80aにおいては吸引ポンプ手段36aはブロア14のオン・オフに関わらず常時動作する。   Next, the 2nd water sampling apparatus 80a which concerns on this invention is demonstrated using FIG. The second water sampling apparatus 80a according to the present invention includes a second water sampling pipe 44 that sends the treated water in another processing tank of the water treatment facility 100, for example, the disinfection tank 28 to the water sampling pipe 36 as the test water, and the measuring device 10 It further has a flow path switching means 48 for switching the flow path of the sample water between the second water sampling tube 44 side and the separation membrane 30 side. As the flow path switching means 48, a well-known three-way valve, a switching valve or the like that can be switched by the water sampling control unit can be used. And the water sampling control part switches the flow path of the flow path switching means 48 to the separation membrane 32 side at the time of operation | movement of the water sampling pump means 34a. Thereby, the test water supplied to the measuring instrument 10 becomes the drainage of the biological treatment tank 20 that has passed through the separation membrane 32. When the water sampling pump means 34a is stopped, the flow path of the flow path switching means 48 is switched to the second water sampling pipe 44 side. Thereby, the test water supplied to the measuring device 10 becomes the treated water in the disinfection tank 28, that is, treated water discharged by the water treatment facility 100. Then, the measuring device 10 measures and records the treated water in the sterilization tank 28, and takes appropriate measures such as issuing a warning to the administrator if an abnormality exists. In the second water sampling apparatus 80a, the suction pump means 36a always operates regardless of whether the blower 14 is on or off.

そして、この第2の採水装置80aでは、採水ポンプ手段34aの停止中に消毒槽28の水質測定を行う。このため、水処理設備100の二つの槽の水質測定を交互に行うことができる。   And in this 2nd water sampling apparatus 80a, the water quality measurement of the disinfection tank 28 is performed while the water sampling pump means 34a is stopped. For this reason, the water quality measurement of the two tanks of the water treatment facility 100 can be performed alternately.

以上のように、本発明に係る採水装置80、80aは、採水管34の吐出口(ノズル34b)を膜分離槽30及び生物処理槽20の液面よりも上に位置させる。また、採水ポンプ手段34aを間欠運転する。これにより、採水ポンプ手段34aの停止時には採水管34内の残留水が自重によって水処理設備100の処理槽(本例では生物処理槽20)側に逆流し、これにより採水管34の逆洗が行われる。そしてこの定期的な逆洗により採水管34内に付着した夾雑物等は脱離し、採水管34の詰りを防止することができる。さらに、本発明に係る採水装置80、80aは、残留水の逆流が全て完了する前に開閉弁38を閉動作し残留水の逆流を停止する。これにより、再稼働時の送水負荷が軽減され、送水の不具合等を防止することができる。   As described above, the water sampling devices 80 and 80 a according to the present invention position the discharge port (nozzle 34 b) of the water sampling pipe 34 above the liquid level of the membrane separation tank 30 and the biological treatment tank 20. Further, the water sampling pump means 34a is intermittently operated. Thereby, when the water sampling pump means 34a is stopped, the residual water in the water sampling pipe 34 flows back to the treatment tank (biological treatment tank 20 in this example) side of the water treatment facility 100 by its own weight, thereby backwashing the water sampling pipe 34 Is done. Then, impurities and the like attached in the water sampling pipe 34 are detached by this regular backwashing, and the water sampling pipe 34 can be prevented from being clogged. Furthermore, the water sampling devices 80 and 80a according to the present invention close the on-off valve 38 and stop the backflow of the residual water before all the backflow of the residual water is completed. Thereby, the water supply load at the time of re-operation is reduced, and the malfunction of water supply etc. can be prevented.

また、本発明に係る採水装置80、80aは水処理設備100の経路から独立した膜分離槽30を設け、この膜分離槽30から測定機器10に検水を送水する。これにより、連続的且つ安定的な検水の送水を行うことができる。また、測定機器10による信頼性の高い水質測定を行うことができる。さらに、分離膜32や測定機器10のメンテナンスを楽に行うことができる。   In addition, the water sampling devices 80 and 80 a according to the present invention are provided with a membrane separation tank 30 independent from the path of the water treatment facility 100, and feed water from the membrane separation tank 30 to the measuring device 10. Thereby, continuous and stable water supply of test water can be performed. In addition, it is possible to perform highly reliable water quality measurement using the measuring device 10. Furthermore, maintenance of the separation membrane 32 and the measuring device 10 can be easily performed.

またさらに、本発明に係る採水装置80、80aは、採水管34、膜分離槽30、オーバーフロー管40が水処理設備100に対する還流路を構成する。このため、水処理設備100が生物処理槽20を有する場合には、返送量(膜分離槽30への処理水の供給量)を最適化するとともに、取水した活性汚泥を生物処理槽20の上流の槽に返送することで、生物処理槽20における処理効率を向上することができる。   Furthermore, in the water sampling devices 80 and 80a according to the present invention, the water sampling pipe 34, the membrane separation tank 30, and the overflow pipe 40 constitute a reflux path for the water treatment facility 100. For this reason, when the water treatment facility 100 has the biological treatment tank 20, the return amount (the amount of treated water supplied to the membrane separation tank 30) is optimized, and the taken activated sludge is upstream of the biological treatment tank 20. The processing efficiency in the biological treatment tank 20 can be improved by returning it to the tank.

尚、本例で示した採水装置80、80a、水処理設備100の各部の構成、機構、動作、配管経路等は一例であるから、特に本例に限定される訳ではなく、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。また、本発明に係る採水装置80、80aは生物処理槽20を有する水処理設備100のみならず、検水の固液分離が必要な如何なる水処理設備100にも適用することができる。   In addition, since the structure, mechanism, operation | movement, piping path | route, etc. of each part of the water sampling apparatus 80, 80a shown in this example and the water treatment facility 100 are examples, it is not necessarily limited to this example, and this invention is Modifications can be made without departing from the scope of the present invention. Moreover, the water sampling devices 80 and 80a according to the present invention can be applied not only to the water treatment facility 100 having the biological treatment tank 20, but also to any water treatment facility 100 that requires solid-liquid separation of test water.

10 測定機器
20 生物処理槽(処理槽)
30 膜分離槽
32 分離膜
34 採水管
34a 採水ポンプ手段
34b ノズル(吐出口)
36 検水管
38 開閉弁
44 第2の採水管
48 流路切替手段
80、80a 採水装置
100 水処理設備
10 Measuring equipment
20 Biological treatment tank (treatment tank)
30 Membrane separation tank
32 Separation membrane
34 Water sampling pipe
34a Water sampling pump means
34b Nozzle (discharge port)
36 Test tube
38 On-off valve
44 Second sampling pipe
48 Channel switching means
80, 80a Water sampling device
100 Water treatment facility

Claims (2)

固液分離を行う分離膜と、前記分離膜が設置された膜分離槽と、水処理設備の所定の処理槽の処理水を前記膜分離槽に供給する採水管と、前記採水管に処理水を送水する採水ポンプ手段と、前記分離膜を通過した検水を測定機器に供給する検水管と、を有する採水装置において、
前記採水管の吐出口は前記膜分離槽及び前記処理槽の液面よりも上に位置するとともに前記採水管の取水側に開閉弁を有し、
前記採水ポンプ手段は間欠運転するとともに、前記採水ポンプ手段の停止後、前記採水管中に残留した処理水の前記処理槽への逆流が完了する前に前記開閉弁が閉動作することを特徴とする採水装置。
A separation membrane that performs solid-liquid separation, a membrane separation tank in which the separation membrane is installed, a water collection pipe that supplies treated water from a predetermined treatment tank of a water treatment facility to the membrane separation tank, and treated water in the water collection pipe In a water sampling apparatus having a water sampling pump means for supplying water, and a water sampling pipe for supplying water to the measuring instrument through the separation membrane,
The discharge port of the water sampling pipe is located above the liquid level of the membrane separation tank and the processing tank and has an open / close valve on the water intake side of the water sampling pipe,
The water sampling pump means is operated intermittently, and after the water sampling pump means is stopped , the on- off valve is closed before the backflow of the treated water remaining in the water sampling pipe to the treatment tank is completed. Characteristic water sampling device.
水処理設備の他の処理槽の処理水を検水管に送る第2の採水管と、
測定機器への検水の流路を前記第2の採水管側と分離膜側とで切り替える流路切替手段と、をさらに有し、
前記流路切替手段は検水の流路を採水ポンプ手段の動作時には分離膜側に切り替えるとともに、前記採水ポンプ手段の停止時には前記第2の採水管側に切り替えることを特徴とする請求項1に記載の採水装置。
A second water collection pipe that sends treated water from other treatment tanks of the water treatment facility to the test pipe;
A flow path switching means for switching the flow path of the test water to the measurement device between the second water collection pipe side and the separation membrane side,
With switching on the separation membrane side during operation of the passage switching means water sampling pump means the flow path of the test water, claims wherein the time of stopping the water sampling pump unit and switches to the second water sampling pipe side The water sampling apparatus according to 1 .
JP2017248621A 2017-12-26 2017-12-26 Water sampling equipment Active JP6411623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248621A JP6411623B1 (en) 2017-12-26 2017-12-26 Water sampling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248621A JP6411623B1 (en) 2017-12-26 2017-12-26 Water sampling equipment

Publications (2)

Publication Number Publication Date
JP6411623B1 true JP6411623B1 (en) 2018-10-24
JP2019111506A JP2019111506A (en) 2019-07-11

Family

ID=63920517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248621A Active JP6411623B1 (en) 2017-12-26 2017-12-26 Water sampling equipment

Country Status (1)

Country Link
JP (1) JP6411623B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053335B1 (en) * 2019-03-27 2019-12-09 (주)윤호 Non-powered unmanned watering system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164443U (en) * 1981-04-09 1982-10-16
JPS581141U (en) * 1981-06-25 1983-01-06 有限会社廣島衛生社 Test liquid automatic water sampling device
JPS588141U (en) * 1981-07-07 1983-01-19 三菱電機株式会社 Water sampling device
JPS6189035U (en) * 1984-11-15 1986-06-10
JPH0540079A (en) * 1991-08-07 1993-02-19 Fuji Electric Co Ltd Specimen liquid sampler
JPH07120362A (en) * 1993-10-26 1995-05-12 Fuji Electric Co Ltd Test water sampling apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164443U (en) * 1981-04-09 1982-10-16
JPS581141U (en) * 1981-06-25 1983-01-06 有限会社廣島衛生社 Test liquid automatic water sampling device
JPS588141U (en) * 1981-07-07 1983-01-19 三菱電機株式会社 Water sampling device
JPS6189035U (en) * 1984-11-15 1986-06-10
JPH0540079A (en) * 1991-08-07 1993-02-19 Fuji Electric Co Ltd Specimen liquid sampler
JPH07120362A (en) * 1993-10-26 1995-05-12 Fuji Electric Co Ltd Test water sampling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053335B1 (en) * 2019-03-27 2019-12-09 (주)윤호 Non-powered unmanned watering system and method

Also Published As

Publication number Publication date
JP2019111506A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US7473365B2 (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
KR101050374B1 (en) Automatic operation device of small sewage treatment facility
CZ2005564A3 (en) Method for deep biological purification of waste water and apparatus to implement the same
JP6411623B1 (en) Water sampling equipment
JP4793635B2 (en) Recycling method of organic wastewater
US20070170106A1 (en) Installation and method for the treatment of sewage sludge, and membrane unit
JP4892390B2 (en) Water treatment apparatus having a solid-liquid separator
JP5947067B2 (en) Wastewater treatment system and method
JP2020097023A (en) Wastewater treatment method and system
CN206289134U (en) Electro-osmosis sludge high-drying dehydration extrusion liquid treatment integrated apparatus
JP5687463B2 (en) Ozone supply device
JP2010269203A (en) Waste water treatment apparatus and method of controlling the same
JP3688146B2 (en) Septic tank
JP3124197B2 (en) Sewage treatment equipment
JP2005163411A (en) Circulating flush toilet system
JPH10290994A (en) Septic tank
JP6550212B2 (en) Waste water treatment apparatus and waste water treatment method
JP2006218435A (en) Activated sludge treatment system
JP2016002541A (en) Membrane separation activated sludge treatment apparatus and method
CN219950783U (en) MBBR integrated treatment equipment for sewage
CN111099795B (en) Sewage treatment equipment
JP6883992B2 (en) Wastewater treatment method and wastewater treatment equipment
RU2757589C1 (en) Method for purifying domestic waste water and station for implementation thereof
JP3263283B2 (en) Septic tank
JP3106063B2 (en) Membrane separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250