JP6410287B2 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
JP6410287B2
JP6410287B2 JP2014023701A JP2014023701A JP6410287B2 JP 6410287 B2 JP6410287 B2 JP 6410287B2 JP 2014023701 A JP2014023701 A JP 2014023701A JP 2014023701 A JP2014023701 A JP 2014023701A JP 6410287 B2 JP6410287 B2 JP 6410287B2
Authority
JP
Japan
Prior art keywords
coil
coils
primary
power supply
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014023701A
Other languages
Japanese (ja)
Other versions
JP2015153773A (en
Inventor
阿部 茂
茂 阿部
裕良 金子
裕良 金子
到 藤田
到 藤田
富夫 保田
富夫 保田
洋之 岸
洋之 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Saitama University NUC
Original Assignee
Technova Inc
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc, Saitama University NUC filed Critical Technova Inc
Priority to JP2014023701A priority Critical patent/JP6410287B2/en
Publication of JP2015153773A publication Critical patent/JP2015153773A/en
Application granted granted Critical
Publication of JP6410287B2 publication Critical patent/JP6410287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、一次側コイルから、空隙を隔てて対向する二次側コイルに電磁誘導作用により電力を給電する非接触給電システムに関し、一次側コイルと二次側コイルとの位置ずれによる給電効率の低下を改善するものである。   The present invention relates to a non-contact power feeding system that feeds electric power from a primary side coil to a secondary side coil that is opposed to each other with an air gap by an electromagnetic induction action. This is to improve the decline.

電気自動車やプラグインハイブリッド車に搭載されたバッテリーの充電には、電気ケーブルとコネクタを用いるコンダクティブ方式が採用されているが、近年、利便性や安全性の向上を図るために、ケーブル接続が不要な非接触給電方式による充電の研究開発が各方面で行われている。
この非接触給電方式では、車両の床裏面に搭載された非接触給電トランスの二次側コイル(受電コイル)と、地上側に設置された一次側コイル(送電コイル)とを対向させて、地上側から停車中の車両に非接触で給電が行われる。
この充電システムでは、車両の停車位置が正規の位置からずれて一次側コイルと二次側コイルとの間に位置ずれが生じたときの給電効率の低下を改善することが課題の一つとされている。
In order to improve convenience and safety in recent years, a cable connection is not required to charge a battery mounted on an electric vehicle or a plug-in hybrid vehicle. Research and development of charging using a non-contact power supply method is being conducted in various fields.
In this non-contact power feeding method, a secondary coil (power receiving coil) of a non-contact power feeding transformer mounted on the rear surface of the vehicle floor and a primary coil (power transmitting coil) installed on the ground side are opposed to each other on the ground. Electric power is supplied in a non-contact manner to the stopped vehicle from the side.
In this charging system, one of the problems is to improve the reduction in power supply efficiency when the stop position of the vehicle deviates from the normal position and a position shift occurs between the primary side coil and the secondary side coil. Yes.

これまで、コイル間の位置ずれによる給電効率の低下を改善するため、図20に示すように、板状の角型フェライトコア110の周りに巻線111を巻回した“両側巻コイル”(“ソレノイドコイル”とも呼ばれる)が開発されている。この両側巻コイルでは、巻線が巻回されていない角型コアの両端部がそれぞれ磁極となる(従って、図20のy方向が磁極の長手方向となる)。
両側巻コイルは、円形コアの片側にコイルを配置した従来の片側巻コイルに比べて、磁極の長手方向における位置ずれの許容範囲が大きい。
Up to now, in order to improve the decrease in power supply efficiency due to the positional deviation between the coils, as shown in FIG. 20, a “double-sided coil” (“ A so-called solenoid coil has also been developed. In this double-sided coil, both ends of the rectangular core around which no winding is wound serve as magnetic poles (therefore, the y direction in FIG. 20 is the longitudinal direction of the magnetic poles).
The double-sided coil has a larger allowable range of positional deviation in the longitudinal direction of the magnetic pole as compared with the conventional single-sided coil in which the coil is arranged on one side of the circular core.

また、下記特許文献1には、両側巻コイルの小型軽量化を図るため、図21に示すように、H字型のフェライトコアを用いた両側巻コイルが開示されている。このH型コア構造の両側巻コイルでは、H型コアの両側の平行する部分112が磁極部となり(従って、図21のy方向が磁極の長手方向となる)、二つの磁極部を繋ぐコア部分(このコア部分の磁極の長手方向における長さは、磁極部112の同一方向の長さよりも短い。)に巻線111が巻回される。
H型コア構造の両側巻コイルにおける位置ずれの許容範囲は、角型コアを用いた両側巻コイルと略同じであり、磁極の長手方向における位置ずれの許容範囲が大きい。
Patent Document 1 below discloses a double-sided coil using an H-shaped ferrite core, as shown in FIG. 21, in order to reduce the size and weight of the double-sided coil. In this double-sided coil having an H-shaped core structure, the parallel portions 112 on both sides of the H-shaped core are magnetic pole portions (therefore, the y direction in FIG. 21 is the longitudinal direction of the magnetic pole), and the core portion that connects the two magnetic pole portions. (The length of the core portion in the longitudinal direction of the magnetic pole is shorter than the length of the magnetic pole portion 112 in the same direction).
The allowable range of misalignment in the double-sided coil of the H-type core structure is substantially the same as that of the double-sided coil using the square core, and the allowable range of misalignment in the longitudinal direction of the magnetic pole is large.

本発明者等は、非接触給電トランスの容量の増大を図るため、図22に示すように、H型コア構造の両側巻コイルをコイル単体として、その二個を、磁極の長手方向の辺同士が接触するように縦列配置した一次側コイル及び二次側コイルを先に開発した(下記非特許文献1)。
二個のコイル単体は、図22(a)に示すように直列接続しても、図22(b)に示すように並列接続しても良いが、磁極間のコア部分に巻回された巻線に通電したとき、コア部分を通過する主磁束の向きが、一方のコイル単体と他方のコイル単体とで逆になるように、巻線の巻回方向や、電流の方向(即ち、高周波電源への接続の仕方)を設定する。
こうすることで、二個のコイル単体から成る一次側コイル及び二次側コイルを対向させて給電するときの磁束は、図23のようになり、主磁束の垂直方向の向きが揃うことで、一次側コイルと二次側コイルとの間に作用する磁界が強まり、給電電力が増加する。
一方、二個のコイル単体のそれぞれから発生する漏洩磁界は、十分離れた所では相互に打ち消し合うため、漏洩磁界の大きさが大幅に低下する。
In order to increase the capacity of the non-contact power supply transformer, the present inventors, as shown in FIG. 22, use the double-sided coil of the H-type core structure as a single coil, and connect the two in the longitudinal direction of the magnetic poles. The primary side coil and the secondary side coil which are arranged in a row so as to be in contact with each other have been developed first (Non-Patent Document 1 below).
The two single coils may be connected in series as shown in FIG. 22 (a) or in parallel as shown in FIG. 22 (b), but the winding wound around the core portion between the magnetic poles. When the wire is energized, the direction of the main magnetic flux passing through the core portion is reversed between one coil unit and the other coil unit, so that the winding direction and current direction (ie, high frequency power supply) How to connect to).
By doing so, the magnetic flux when power is supplied with the primary side coil and the secondary side coil consisting of two single coils facing each other is as shown in FIG. 23, and the vertical direction of the main magnetic flux is aligned, The magnetic field acting between the primary side coil and the secondary side coil is strengthened, and the feed power is increased.
On the other hand, the leakage magnetic field generated from each of the two coils alone cancels each other at a sufficiently distant location, so that the magnitude of the leakage magnetic field is greatly reduced.

図24は、一次側コイル及び二次側コイルが共に二個のコイル単体から成る非接触給電システムの回路構成の一例を示している。この例では、二個のコイル単体が直列接続されている。
給電側は、商用電源41の交流を直流に変換する直流供給部42と、直流供給部42の出力を平滑化する平滑コンデンサ43と、直流を高周波交流に変換するインバータ44と、この高周波交流が入力する一次側コイルの二個のコイル単体46、48と、インバータ44とコイル単体46との間に直列接続する直列コンデンサ45と、コイル単体46とコイル単体48との間に直列接続する直列コンデンサ47とを備えている。
FIG. 24 shows an example of a circuit configuration of a non-contact power feeding system in which both the primary side coil and the secondary side coil are composed of two single coils. In this example, two single coils are connected in series.
The power supply side includes a DC supply unit 42 that converts AC of the commercial power supply 41 to DC, a smoothing capacitor 43 that smoothes the output of the DC supply unit 42, an inverter 44 that converts DC to high frequency AC, and this high frequency AC Two primary coils 46 and 48 of the primary side coil to be input, a serial capacitor 45 connected in series between the inverter 44 and the single coil 46, and a serial capacitor connected in series between the single coil 46 and the single coil 48. 47.

一方、受電側は、二次側コイルの二個のコイル単体51、52と、コイル単体51に対して並列に接続された並列コンデンサ53と、コイル単体52に対して並列に接続された並列コンデンサ54と、コイル単体51、52で受電された交流を整流する整流回路55と、整流回路55の出力を平滑化する平滑コンデンサ56と、整流された電流が供給される負荷抵抗57とを備えており、非接触給電トランスを構成する一次側コイルの二個のコイル単体46、48と、二次側コイルの二個のコイル単体51、52とを介して、給電側から受電側に給電が行われる。
なお、負荷抵抗57はバッテリーを模擬したもので、バッテリーの充電電力PBと充電電圧VBが分かれば、負荷抵抗の値はRB=VB 2/PBと計算できる。
On the other hand, the power receiving side includes two coil units 51 and 52 of the secondary side coil, a parallel capacitor 53 connected in parallel to the coil unit 51, and a parallel capacitor connected in parallel to the coil unit 52. 54, a rectifier circuit 55 that rectifies the alternating current received by the single coils 51 and 52, a smoothing capacitor 56 that smoothes the output of the rectifier circuit 55, and a load resistor 57 that is supplied with the rectified current. In addition, power is supplied from the power feeding side to the power receiving side through the two coil single units 46 and 48 of the primary side coil and the two single coil units 51 and 52 of the secondary side coil constituting the non-contact power feeding transformer. Is called.
Note that the load resistance 57 simulates a battery. If the charging power P B and the charging voltage V B of the battery are known, the value of the load resistance can be calculated as R B = V B 2 / P B.

一次側の直列コンデンサ45、47及び二次側の並列コンデンサ53、54は、一次側コイルと二次側コイルとの間に空隙を有する非接触給電トランスの漏れリアクタンスを補償して給電効率を高めるために接続されている。一次側に直列コンデンサを接続し、二次側に並列コンデンサを接続する方式は“SP方式”と呼ばれる。
SP方式では、二次側の並列コンデンサ53、54の各値を、非接触給電トランスへの入力周波数f0(=ω0/2π)において、二次側のコイル単体51、52とそれぞれ共振するように設定し、一次側の直列コンデンサ45、47の合成容量の値を、一次側電源の出力力率が1となるように設定する。
The primary side series capacitors 45 and 47 and the secondary side parallel capacitors 53 and 54 compensate for the leakage reactance of the non-contact power supply transformer having a gap between the primary side coil and the secondary side coil to increase the power supply efficiency. Connected for. A system in which a series capacitor is connected to the primary side and a parallel capacitor is connected to the secondary side is called an “SP system”.
In the SP method, each value of the parallel capacitors 53 and 54 on the secondary side resonates with the coil units 51 and 52 on the secondary side at the input frequency f 0 (= ω 0 / 2π) to the non-contact power supply transformer, respectively. Thus, the value of the combined capacity of the primary side series capacitors 45 and 47 is set so that the output power factor of the primary side power supply becomes 1.

なお、下記特許文献2に記載されているように、一次側の直列コンデンサは、直列コンデンサ45と直列コンデンサ47とに分割せずに、それらを合成した一つのコンデンサをインバータ44とコイル単体46(または47)との間に直列接続しても良い。この場合、一つの直列コンデンサの端子間電圧が高くなると言う欠点がある)。
非接触給電トランスへのコンデンサ接続方式としては、その他に、一次側に直列コンデンサを接続し、二次側にも直列コンデンサを接続する、“SS方式”と呼ばれる方式も知られている。
Note that, as described in Patent Document 2 below, the primary-side series capacitor is not divided into the series capacitor 45 and the series capacitor 47, but one capacitor obtained by synthesizing them is combined with an inverter 44 and a single coil 46 ( Or 47) may be connected in series. In this case, there is a drawback that the voltage across the terminals of one series capacitor increases).
As another method of connecting a capacitor to a non-contact power supply transformer, there is also known a method called “SS method” in which a series capacitor is connected to the primary side and a series capacitor is connected to the secondary side.

図23の回路構成を備える非接触給電システムは、大容量のバッテリーを搭載する電気バスや電気トラックなどの大型車への非接触給電が可能である。   The non-contact power supply system having the circuit configuration of FIG. 23 is capable of non-contact power supply to a large vehicle such as an electric bus or an electric truck equipped with a large capacity battery.

特開2012−175793号公報JP 2012-175793 A 特開2011−176914号公報JP 2011-176914 A

藤田到・山中智裕・金子裕良・ 阿部茂・ 保田富夫・ 鈴木明「電気自動車用非接触給電トランスの複数モジュール構成による大容量化」平成24年電学産業応用部門大会論文集、No.4-9,pp.IV 111-IV 114(2012.8.23)Toru Fujita, Tomohiro Yamanaka, Hiroyoshi Kaneko, Shigeru Abe, Tomio Yasuda, Akira Suzuki “High-capacity non-contact power transformer for electric vehicles by using multiple modules” Proc. -9, pp.IV 111-IV 114 (2012.8.23)

しかし、大型車の場合、乗用車に比べて停車位置の位置合わせが難しい。そのため、地上側の一次側コイルと、大型車に搭載された二次側コイルとの位置ずれによる給電効率の低下が懸念される。   However, in the case of a large vehicle, it is difficult to align the stop position compared to a passenger car. For this reason, there is a concern about a decrease in power supply efficiency due to a displacement between the primary coil on the ground side and the secondary coil mounted on the large vehicle.

本発明は、こうした事情を考慮して創案したものであり、非接触給電トランスの容量が大きく、且つ、位置ずれの許容範囲が大きい非接触給電システムを提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-contact power feeding system having a large capacity of a non-contact power feeding transformer and a large allowable range of displacement.

本発明は、一次側コイルから、空隙を隔てて対向する二次側コイルに電磁誘導作用により電力を給電する非接触給電システムであって、一次側コイル及び二次側コイルは、複数のコイル単体から成り、コイル単体の各々は、長手方向の辺が互いに並行する二つの磁極と、磁極の間を繋ぐコア部分と、コア部分に巻回された電線と、を備え、一次側コイルは、磁極の長手方向の辺を互いに接して縦列する少なくとも三個のコイル単体を有し、二次側コイルは、磁極の長手方向の辺を互いに接して縦列する二個のコイル単体から成る対を少なくとも一対有し、さらに、一次側コイルに高周波交流を供給する高周波交流源と、一次側コイルが有するコイル単体の内で、高周波交流源から高周波交流が供給されるコイル単体を選択するとともに、選択したコイル単体と高周波交流源との接続形態を選択する選択手段と、を備える。
選択手段は、一次側コイルのコイル単体と二次側コイルのコイル単体とが対向する状況において、二次側コイルの対を構成する二つのコイル単体の磁極同士が接する位置が、一次側コイルに含まれる一つのコイル単体の中心付近に対向している場合には、その一つのコイル単体の両側に位置する二つのコイル単体(「一つ飛びの二つのコイル単体」)を選択し、その他の場合には、二次側コイルの二つのコイル単体が主に対向する一次側コイルの連続する二つのコイル単体を選択する。
選択手段は、さらに、選択した二つのコイル単体に対して、コア部分を通過する磁束の向きが互いに逆向きになるように高周波交流源を接続する。
この非接触給電システムでは、縦列する二個のコイル単体を備える二次側コイルが、一次側コイルのコイル単体の縦列方向に位置ずれしても、給電効率の低下が回避できる。
The present invention is a non-contact power feeding system that feeds electric power from a primary side coil to a secondary side coil facing with a gap by electromagnetic induction, and the primary side coil and the secondary side coil are a plurality of single coils. Each of the coil units includes two magnetic poles whose longitudinal sides are parallel to each other, a core part connecting the magnetic poles, and an electric wire wound around the core part. longitudinal and side of contact with each other have at least three coils alone to tandem, the secondary coil, at least one pair of pairs of two coils alone to tandem against the longitudinal sides of the magnetic poles of a further, a high frequency alternating current source for supplying a high-frequency alternating current to the primary coil, of the coil only with the primary coil, together with the high frequency AC selects coil only supplied from the high-frequency alternating current source, selected Comprising selecting means for selecting a connection form between the coil itself and the high frequency AC source was a.
Selection means Oite the situation and coil single coil alone and the secondary side coil of the primary coil are opposed, magnetic poles in contact with the position of the two single coil constituting a pair of secondary side coils, the primary side When facing the vicinity of the center of one single coil included in the coil, select two single coils located on both sides of the single coil ("two single coils jumping"), In other cases, two continuous single coils of the primary coil, which are mainly opposed to the two single coils of the secondary coil, are selected.
The selection means further connects a high-frequency AC source to the selected two single coils so that the directions of the magnetic flux passing through the core portion are opposite to each other.
In this non-contact power feeding system, even if a secondary coil having two single coils arranged in a row is displaced in the column direction of the single coil of the primary coil, a decrease in power feeding efficiency can be avoided.

また、本発明の非接触給電システムでは、選択手段は、二つのコイル単体を選択するに際して、一つのコイル単体の両側にある二つのコイル単体に高周波交流源を接続する選択と、連続する二つのコイル単体に高周波交流源を接続する選択とを切り替えた後、給電効率の高い方の二つのコイル単体を選択することが望ましい。
このように、連続する二つのコイル単体の駆動と、一つ飛びの二つのコイル単体の駆動とを両方試し、給電効率の高い方に切換えることで、非接触給電の高い給電効率が維持できる。
Further, in the non-contact power feeding system of the present invention, the selection means selects the two single coils, and selects the two high frequency alternating current sources connected to the two single coils on both sides of the single coil. After switching the selection of connecting a high-frequency AC source to a single coil, it is desirable to select the two single coils with higher power supply efficiency.
As described above, the high power supply efficiency of the non-contact power supply can be maintained by trying both the drive of the two continuous coils and the drive of the two separate coils and switching to the higher power supply efficiency.

また、本発明の非接触給電システムでは、二次側コイルには図22や図23のように、二つのコイルの間に位置する中央磁極と、二つのコイルの両端に位置する二つの両端磁極とがある。磁極の長手方向と直交する方向(図23のx方向)の磁極幅に関しては、中央磁極の磁極幅を二つの両端磁極の磁極幅の和よりも大きくすることが望ましい。
別の表現をすれば、二次側コイルの対を構成する二つのコイル単体の各々は、磁極の長手方向と直交する方向の磁極幅が異なる前記二つの磁極を有し、二次側コイルの二つのコイル単体は、前記磁極幅の広い方の磁極同士が互いに接するように縦列していることが望ましい。
このように二次側コイルの中央磁極の幅が増えることで、主磁束の磁路長、つまり磁気抵抗が小さくなり、結合係数が大きくなり、給電効率が向上する。
In the non-contact power feeding system of the present invention, as shown in FIG. 22 and FIG. 23, the secondary coil has a central magnetic pole located between the two coils and two magnetic poles located at both ends of the two coils. There is. Regarding the magnetic pole width in the direction orthogonal to the longitudinal direction of the magnetic pole (x direction in FIG. 23), it is desirable that the magnetic pole width of the central magnetic pole is larger than the sum of the magnetic pole widths of the two magnetic poles at both ends.
In other words, each of the two coils constituting the pair of secondary coils has the two magnetic poles having different magnetic pole widths in the direction orthogonal to the longitudinal direction of the magnetic poles, It is desirable that the two single coils are arranged in series so that the magnetic poles having the wider magnetic pole width are in contact with each other.
As the width of the central magnetic pole of the secondary coil is increased in this way, the magnetic path length of the main magnetic flux, that is, the magnetic resistance is reduced, the coupling coefficient is increased, and the feeding efficiency is improved.

また、本発明の非接触給電システムでは、二次側コイルの前記対が複数の場合は、各対が、一つ分のコイル単体の間隔を空けて、縦列していることが望ましい。
こうすることで、一つのコイル単体の両側にある二つのコイル単体を駆動(後述する“スキップ駆動”)する際に、支障なく実施できる。
Moreover, in the non-contact electric power feeding system of this invention, when the said pair of secondary side coil is plurality, it is desirable that each pair is located in a row at intervals of one coil unit.
By doing so, it is possible to carry out without trouble when driving two single coils on both sides of one single coil (hereinafter referred to as “skip driving”).

また、本発明の非接触給電システムでは、一次側コイルの縦列するコイル単体の両端に位置するコイル単体は、コア部分に巻回する巻線の巻数を、一次側コイルの他のコイル単体のコア部分に巻回する巻線の巻数より多くすることが望ましい。
縦列するコイル単体の構造が全て同一であると、縦列の中間に位置するコイル単体のインダクタンスは、隣接するコイル単体のコアの影響で、両端に位置するコイル単体のインダクタンスよりも上昇する。高周波電源と接続する一次側の各コイルのインダクタンスの値がほぼ均一であれば、一次側の直列コンデンサの種類を削減できる。そのため、両端に位置するコイル単体の巻数を増やして、中間位置のコイル単体のインダクタンスとバランスさせることが望ましい。
Further, in the non-contact power feeding system of the present invention, the single coil located at both ends of the single coil in the primary side coil is connected to the core of the other single coil of the primary coil. It is desirable to increase the number of windings wound around the part.
If all the structures of the single coil in the column are the same, the inductance of the single coil positioned in the middle of the vertical rises more than the inductance of the single coil positioned at both ends due to the influence of the core of the adjacent single coil. If the inductance value of each coil on the primary side connected to the high-frequency power source is substantially uniform, the types of series capacitors on the primary side can be reduced. Therefore, it is desirable to increase the number of turns of the single coil located at both ends to balance the inductance of the single coil at the intermediate position.

また、本発明の非接触給電システムでは、コイル単体は、磁極の長手方向の長さが、同一方向のコア部分の長さよりも長いH型構造を有することが望ましい。
コイル単体としてH型コア構造の両側巻コイルを用いることで一次側コイル及び二次側コイルの小型軽量化が可能になる。
In the non-contact power feeding system according to the present invention, it is desirable that the single coil has an H-shaped structure in which the length of the magnetic pole in the longitudinal direction is longer than the length of the core portion in the same direction.
By using a double-sided coil having an H-shaped core structure as a single coil, the primary side coil and the secondary side coil can be reduced in size and weight.

また、本発明の非接触給電システムでは、一次側コイルに含まれる複数のコイル単体を、その縦列方向が移動体の進行方向と一致するように地上側に設置し、二次側コイルに含まれる対を構成する二つのコイル単体を、その縦列方向が移動体の前後方向と一致するように移動体に搭載する。
こうすることで、移動体の停止位置が正規の位置から前後方向に大きくずれた場合でも、高い給電効率の非接触給電が可能になる。また、移動体の車幅方向では、両側巻コイルから成るコイル単体の位置ずれの許容範囲が大きいため、車幅方向にずれても高い給電効率が維持できる。
Further, in the non-contact power feeding system of the present invention, a plurality of single coils included in the primary coil are installed on the ground side so that the column direction thereof coincides with the traveling direction of the moving body, and are included in the secondary coil. Two coils constituting the pair are mounted on the moving body so that the column direction coincides with the front-rear direction of the moving body.
By doing so, even when the stop position of the mobile body is greatly deviated from the normal position in the front-rear direction, non-contact power feeding with high power feeding efficiency becomes possible. In addition, in the vehicle width direction of the moving body, the allowable range of positional deviation of a single coil composed of double-sided winding coils is large, so that high power supply efficiency can be maintained even when the moving body is displaced in the vehicle width direction.

本発明により、非接触給電トランスの容量が大きく、位置ずれの許容範囲が大きい非接触給電システムが実現できる。   According to the present invention, a non-contact power feeding system having a large capacity of a non-contact power feeding transformer and a large allowable range of displacement can be realized.

本発明の実施形態に係る非接触給電トランスを示す図The figure which shows the non-contact electric power feeding transformer which concerns on embodiment of this invention 図1(a)の非接触給電トランスの平面図Plan view of the non-contact power supply transformer of FIG. 本発明の実施形態に係る非接触給電システムの選択手段を示す図The figure which shows the selection means of the non-contact electric power feeding system which concerns on embodiment of this invention 一次側コイルのコイル単体Aとコイル単体Bの隣接駆動状態を示す図、The figure which shows the adjacent drive state of the coil single-piece | unit A and the coil single-piece | unit B of a primary side coil, 一次側コイルのコイル単体Cとコイル単体Dの隣接駆動状態を示す図The figure which shows the adjacent drive state of the coil single-piece | unit C and the coil single-piece | unit D of a primary side coil 一次側コイルのコイル単体Bとコイル単体Cの隣接駆動状態を示す図The figure which shows the adjacent drive state of the coil single-piece | unit B and the coil single-piece | unit C of a primary side coil 一次側コイルのコイル単体Aとコイル単体Cのスキップ駆動状態を示す図The figure which shows the skip drive state of the coil single A of the primary side coil, and the coil single C 一次側コイルのコイル単体Bとコイル単体Dのスキップ駆動状態を示す図The figure which shows the skip drive state of the coil single-piece | unit B and the coil single-piece | unit D of a primary side coil 二次側コイルを示す図Diagram showing secondary coil 二次側コイルの回路構成の一例を示す図The figure which shows an example of the circuit structure of a secondary side coil 二次側コイルの他の回路構成を示す図The figure which shows the other circuit structure of a secondary side coil 一次側コイルと二次側コイルとの間の磁束の流れを示す図The figure which shows the flow of the magnetic flux between a primary side coil and a secondary side coil 一次側コイルと二次側コイルとの位置ずれに隣接駆動のみで対応したときの特性を示す図The figure which shows the characteristic when dealing with the position shift of a primary side coil and a secondary side coil only by adjacent drive 給電効率実験装置の仕様を示す図Diagram showing specifications of power supply efficiency experiment equipment 一次側コイルと二次側コイルとの位置ずれに隣接駆動及びスキップ駆動で対応したときの特性を示す図The figure which shows the characteristic when corresponding to the position shift of a primary side coil and a secondary side coil by adjacent drive and skip drive 図15において、二次側コイルの中央の磁極幅を拡げたときの特性を示す図FIG. 15 is a graph showing characteristics when the magnetic pole width at the center of the secondary coil is expanded. 前後方向の位置ずれに隣接駆動及びスキップ駆動で対応したときの前後左右方向の位置ずれと給電効率との関係を示す図The figure which shows the relationship between the position shift of the front-back and left-right direction, and power feeding efficiency when responding to the position shift of the front-back direction by adjacent drive and skip drive. 前後方向の位置ずれに隣接駆動のみで対応したときの前後左右方向の位置ずれと給電効率との関係を示す図The figure which shows the relationship between the position shift of the front-back and left-right direction, and power feeding efficiency when addressing the position shift of the front-back direction only by adjacent drive 二次側コイルが4個(二対)のコイル単体の場合の構成を示す図The figure which shows a structure in case the secondary side coil is four (2 pairs) coil single-piece | units. 角型コアを用いた両側巻コイルを示す図Diagram showing a double-sided coil using a square core H型コアを用いた両側巻コイルを示す図The figure which shows the double-sided winding coil using an H type core 二つのコイル単体から成る一次側コイル及び二次側コイルを示す図The figure which shows the primary side coil and secondary side coil which consist of two coil single-piece | units 図22の一次側コイル及び二次側コイルの間の磁束の流れを示す図The figure which shows the flow of the magnetic flux between the primary side coil and secondary side coil of FIG. 図22の一次側コイル及び二次側コイルを備える非接触給電システムの回路構成を示す図The figure which shows the circuit structure of the non-contact electric power feeding system provided with the primary side coil and secondary side coil of FIG.

図1(a)は、本発明の実施形態に係る非接触給電システムの一次側コイル及び二次側コイルを示している。
一次側コイルは、H型コア構造のコイル単体の4個から成り、4個のコイル単体が、磁極の長手方向の辺を接して縦列している。二次側コイルは、H型コア構造のコイル単体の2個から成り、2個のコイル単体が、磁極の長手方向の辺を接して、一次側コイルの縦列方向と同一方向に縦列している。一次側コイル及び二次側コイルを構成するコイル単体は同一形状を有している。
一次側コイルの二次側コイルに対向する側の反対側(裏面側)には、裏面側への漏洩磁束を遮断するアルミ板10が配置され、同様に、二次側コイルの裏面側にも漏洩磁束を遮断するアルミ板11が配置されている。
Fig.1 (a) has shown the primary side coil and secondary side coil of the non-contact electric power feeding system which concern on embodiment of this invention.
The primary coil is composed of four single coils having an H-shaped core structure, and the four single coils are vertically arranged in contact with the sides in the longitudinal direction of the magnetic poles. The secondary coil is composed of two single coils having an H-shaped core structure, and the two single coils are arranged in the same direction as the primary coil in the longitudinal direction with the sides in the longitudinal direction of the magnetic poles in contact with each other. . A single coil constituting the primary side coil and the secondary side coil has the same shape.
On the opposite side (back side) of the primary side coil to the secondary side coil, an aluminum plate 10 for blocking the leakage magnetic flux to the back side is arranged, and similarly on the back side of the secondary side coil. An aluminum plate 11 that blocks leakage magnetic flux is disposed.

図2(a)は、一次側コイルの平面図を示し、図2(b)は、二次側コイルの平面図を示している。
ここでは、一次側コイルの4個のコイル単体をA、B、C、Dで表し、二次側コイルの2個のコイル単体をE、Fで表すことにする。
このシステムでは、一次側コイルのA、B、C、Dのコイル単体の内から、連続する二つのコイル単体(AとB、BとC、または、CとD)、あるいは、一つのコイル単体の両側に位置する二つのコイル単体(AとC、または、BとD)を選択する選択手段を備えている。選択手段は、選択した二つのコイル単体の駆動時におけるコア部分の磁束の向きが互いに逆向きになるように、選択した二つのコイル単体を高周波交流源(図24のインバータ44)に接続する。
FIG. 2A shows a plan view of the primary side coil, and FIG. 2B shows a plan view of the secondary side coil.
Here, four single coils of the primary coil are represented by A, B, C, and D, and two single coils of the secondary coil are represented by E and F.
In this system, two continuous coils (A and B, B and C, or C and D) or one coil is selected from the primary coils A, B, C, and D. Selection means for selecting two single coils (A and C, or B and D) positioned on both sides of the coil. The selection means connects the selected two coils to a high-frequency alternating current source (inverter 44 in FIG. 24) so that the directions of the magnetic fluxes in the core portion when driving the selected two coils are opposite to each other.

図3(a)は、この選択手段13の構成を示している。選択手段13は、一次側コイルの各コイル単体とインバータ44との間のスイッチを、図3(b)に示すように、開放(未接続)、正方向接続、または逆方向接続のいずれかに切換えて、二つのコイル単体を選択し、選択した二つのコイル単体をインバータ44に接続する。
また、このシステムでは、SP方式の一次側直列コンデンサの接続数を減らすため、直列コンデンサを分割せずに共用化している。この場合、連続する二つのコイル単体を選択したときと、一つのコイル単体の両側に位置する二つのコイル単体を選択したときとで一次側直列コンデンサの値が変わる場合も生じる。
そのため、このシステムでは、選択手段13が一次側直列コンデンサの切換えを併せて行うようにしている。
FIG. 3A shows the configuration of the selection unit 13. As shown in FIG. 3 (b), the selection means 13 switches the switch between each coil of the primary side coil and the inverter 44 to either open (not connected), forward direction connection, or reverse direction connection. By switching, two single coils are selected, and the two selected single coils are connected to the inverter 44.
In this system, in order to reduce the number of SP-type primary side series capacitors connected, the series capacitors are shared without being divided. In this case, there are cases where the value of the primary side series capacitor changes between when two continuous single coils are selected and when two single coils located on both sides of one single coil are selected.
For this reason, in this system, the selection means 13 also switches the primary side series capacitor.

例えば、図4に示すように、コイル単体A及びコイル単体Dの電線の巻回方向が同一で、コイル単体B及びコイル単体Cの電線の巻回方向がコイル単体Aの巻回方向と逆向きであるとする。
選択手段13は、連続するコイル単体Aとコイル単体Bとを選択する場合、図4に示すように、コイル単体A及びコイル単体Bをインバータに正方向接続する。この接続で、駆動時のコイル単体Aとコイル単体Bの磁束の向きは逆向きになる。
なお、連続する二つのコイル単体を駆動する場合を"隣接駆動”と呼ぶことにする。
For example, as shown in FIG. 4, the winding directions of the coils A and D are the same, and the winding directions of the coils B and C are opposite to the winding direction of the coil A. Suppose that
When the selection unit 13 selects the continuous coil unit A and the coil unit B, as illustrated in FIG. 4, the selection unit 13 connects the coil unit A and the coil unit B to the inverter in the positive direction. With this connection, the directions of the magnetic fluxes of the coil A and the coil B during driving are reversed.
The case where two continuous coils are driven is called “adjacent drive”.

図5に示すように、コイル単体Cとコイル単体Dとを選択して隣接駆動する場合も、同様に、コイル単体C及びコイル単体Dをインバータに正方向接続することで、隣接駆動時の両者の磁束の向きが逆向きになる。
図6に示すように、コイル単体Bとコイル単体Cとを選択して隣接駆動する場合は、コイル単体B及びコイル単体Cの巻回方向が同一であるため、一方を正方向接続し、他方を逆方向接続する。この接続で、コイル単体Bとコイル単体Cの隣接駆動時の磁束の向きは逆向きになる。
As shown in FIG. 5, when the coil unit C and the coil unit D are selected and adjacently driven, the coil unit C and the coil unit D are connected to the inverter in the positive direction in the same manner. The direction of the magnetic flux is reversed.
As shown in FIG. 6, when the coil unit B and the coil unit C are selected and adjacently driven, the winding directions of the coil unit B and the coil unit C are the same. Connect in the reverse direction. With this connection, the direction of the magnetic flux when the coil B and the coil C are adjacently driven is reversed.

また、図7に示すように、コイル単体Bの両側のコイル単体Aとコイル単体Cとを選択する場合は、コイル単体Aとコイル単体Cの巻回方向が逆であるため、両者をインバータに正方向接続する。この接続で、駆動時のコイル単体Aとコイル単体Cの磁束の向きは逆向きになる。
なお、一つのコイル単体を飛ばした二つのコイル単体を駆動する場合を“スキップ駆動”と呼ぶことにする。
図8に示すように、コイル単体Bとコイル単体Dとを選択してスキップ駆動する場合も、コイル単体Bとコイル単体Dの巻回方向が逆であるため、両者をインバータに正方向接続する。この接続で、スキップ駆動時のコイル単体Bとコイル単体Dの磁束の向きは逆向きになる。
Further, as shown in FIG. 7, when the coil unit A and the coil unit C on both sides of the coil unit B are selected, the winding directions of the coil unit A and the coil unit C are opposite, so that both are used as an inverter. Connect in the positive direction. With this connection, the directions of the magnetic fluxes of the coil A and the coil C during driving are reversed.
Note that the case of driving two single coils obtained by skipping one single coil is referred to as “skip driving”.
As shown in FIG. 8, when the coil single B and the coil single D are selected and skip driven, the winding directions of the coil single B and the coil single D are opposite, so both are connected to the inverter in the forward direction. . With this connection, the directions of the magnetic fluxes of the coil B and the coil D during skip driving are reversed.

一方、二次側コイルの二個のコイル単体E、Fは、図9に示すように、電線の巻回方向が逆向きになるように接続する。二次側は、図24の二次側の回路構成と同様にしても良いし、また、図10や図11に示す二次側回路の構成を採用しても良い。   On the other hand, the two single coils E and F of the secondary side coil are connected so that the winding direction of the electric wire is reversed as shown in FIG. The secondary side may have the same circuit configuration as that of the secondary side in FIG. 24, or the secondary side circuit configuration shown in FIGS. 10 and 11 may be employed.

図12は、このように構成された一次側コイル及び二次側コイルを駆動したときの磁束の流れを示している。
図12(a)は、二次側コイルのコイル単体E、Fが、一次側コイルのコイル単体B、Cと対向しているとき(二次側コイルの中心点Oが一次側コイルのコイル単体B、Cの中心磁極PBC付近にあるとき)に、コイル単体B、Cを隣接駆動した場合の磁束の流れを示している。
図12(b)は、二次側コイルのコイル単体E、Fが、一次側コイルのコイル単体A、Bと対向しているとき(二次側コイルの中心点Oが一次側コイルのコイル単体A、Bの中心磁極PAB付近にあるとき)に、コイル単体A、Bを隣接駆動した場合の磁束の流れを示している。なお、二次側コイルのコイル単体E、Fが、一次側コイルのコイル単体C、Dと対向しているときに、コイル単体C、Dを隣接駆動した場合も同様である。
FIG. 12 shows the flow of magnetic flux when the primary side coil and the secondary side coil configured as described above are driven.
FIG. 12A shows the case where the coil E and F of the secondary coil are opposed to the coils B and C of the primary coil (the center point O of the secondary coil is the coil of the primary coil). B, and sometimes) in the vicinity of the center pole P BC and C, it shows the flow of magnetic flux in a case where adjacent driving coils alone B, and C.
FIG. 12B shows a case where the single coils E and F of the secondary coil are opposed to the single coils A and B of the primary coil (the center point O of the secondary coil is the single coil of the primary coil). The magnetic flux flows when the single coils A and B are driven adjacent to each other in the vicinity of the central magnetic poles P AB of A and B). The same applies to the case where the coil units C and D are driven adjacently when the coil units E and F of the secondary side coil are opposed to the coil units C and D of the primary side coil.

また、図12(c)は、二次側コイルの中心点Oが、一次側コイルのコイル単体Bの中心PB付近にあるときに、コイル単体Aとコイル単体Cをスキップ駆動した場合の磁束の流れを示している。なお、二次側コイルの中心点Oが、一次側コイルのコイル単体Cの中心付近にあるときに、コイル単体Bとコイル単体Dをスキップ駆動した場合も同様である。
図12(c)に示すように、スキップ駆動では、二つのコイル単体から成る二次側コイルに対して左右対称な磁界が形成される。その結果、一次側コイルと二次側コイルとの間で高い磁気結合が維持され、給電効率の低下が避けられる。
FIG. 12C shows the magnetic flux when the coil A and the coil C are skip-driven when the center point O of the secondary coil is near the center P B of the coil B of the primary coil. Shows the flow. The same applies to the case where the single coil B and the single coil D are skip-driven when the center point O of the secondary coil is near the center of the single coil C of the primary coil.
As shown in FIG. 12 (c), in skip driving, a magnetic field that is bilaterally symmetrical is formed with respect to a secondary coil that is formed of two single coils. As a result, high magnetic coupling is maintained between the primary side coil and the secondary side coil, and a reduction in power supply efficiency is avoided.

これに対し、一次側コイルと二次側コイルとが図12(c)に示す位置ずれ状態に在るとき、コイル単体B、Cを隣接駆動すると、コイル単体Bが、コイル単体Eだけでなく、コイル単体Fとも磁気的に結合し、磁束の乱れが生じる。その結果、一次側コイルと二次側コイルとの間の磁気結合が低下し、給電効率が低下する。
この点は、実験により確かめられている。
On the other hand, when the primary coil and the secondary coil are in the misalignment state shown in FIG. 12C, when the coil units B and C are driven adjacently, the coil unit B is not only the coil unit E. The coil unit F is also magnetically coupled and magnetic flux disturbance occurs. As a result, the magnetic coupling between the primary side coil and the secondary side coil is lowered, and the power feeding efficiency is lowered.
This point has been confirmed by experiments.

図13は、図1(a)に示すモデルを用い、コイル単体の縦列方向の位置ずれに対して、隣接駆動だけで対処したときの給電効率の変化を求めた給電効率実験の結果を示している。
この実験装置の仕様を図14に示している。図13の横軸は、図12(a)に示すように、二次側コイルの中心点Oが一次側コイルのコイル単体B、Cの中心磁極PBCの位置にあるときをx=0として、x方向の位置ずれの大きさを表している。図13の縦軸は、非接触給電トランスの給電効率ηTRを表している。
図13から明らかなように、二次側コイルのコイル単体E、Fがコイル単体B、Cに対向している状態でコイル単体B、Cを隣接駆動したときの給電効率は97.6%であり、また、二次側コイルのコイル単体E、Fがコイル単体A、Bに対向している状態でコイル単体A、Bを隣接駆動したときの給電効率も97.6%であり、極めて高い。しかし、コイル単体B、Cの隣接駆動からコイル単体A、Bの隣接駆動に切り替えた点(x=190mm)では、給電効率が大幅に低下している。
FIG. 13 shows the result of a power feeding efficiency experiment in which the model shown in FIG. 1A is used and the change in power feeding efficiency is calculated when only the adjacent drive is used for the positional deviation in the column direction of a single coil. Yes.
The specifications of this experimental apparatus are shown in FIG. The horizontal axis in FIG. 13 indicates that x = 0 when the center point O of the secondary coil is at the position of the central magnetic pole PBC of the single coils B and C of the primary coil, as shown in FIG. , Represents the magnitude of the positional deviation in the x direction. The vertical axis in FIG. 13 represents the power supply efficiency η TR of the non-contact power supply transformer.
As is apparent from FIG. 13, the power feeding efficiency is 97.6% when the coil units B and C are driven adjacently while the coil units E and F of the secondary side coil are opposed to the coil units B and C, respectively. In addition, the power supply efficiency when the coils A and B are adjacently driven in a state where the coils E and F of the secondary coil face the coils A and B is 97.6%, which is extremely high. . However, at the point (x = 190 mm) where the adjacent drive of the coil units A and B is switched to the adjacent drive of the coil units A and B (x = 190 mm), the power supply efficiency is greatly reduced.

図15は、図13の実験結果とともに、x=190mm付近でコイル単体A、Cのスキップ駆動を行った場合の実験結果を表している。
図15から明らかなように、スキップ駆動により、隣接駆動の最大効率よりは2.4%程度低いものの、x=190mm付近で、かなり高い給電効率を得ることができる。
FIG. 15 shows the experimental results when the single coils A and C are skip-driven in the vicinity of x = 190 mm together with the experimental results of FIG.
As can be seen from FIG. 15, the skip drive can obtain a considerably high power supply efficiency in the vicinity of x = 190 mm, although it is approximately 2.4% lower than the maximum efficiency of the adjacent drive.

なお、図14に示すように、一次側コイルの両端に位置するコイル単体A、Dの巻数を、縦列の中間に位置するコイル単体B、Cの巻数より多少増やしている。
これは、段落0020で述べた理由によるものであり、隣接するコイル単体のコアの影響でインダクタンスが上昇する中間位置のコイル単体B、Cと、両端のコイル単体A、Dとのインダクタンスのバランスを取り、選択した二つのコイル単体の一方がAまたはDで、他方がBまたはCであっても、それらのインダクタンスを等しくして、一次側の直列コンデンサの種類を削減できるようにしている。
As shown in FIG. 14, the number of turns of the single coils A and D located at both ends of the primary coil is slightly increased from the number of turns of the single coils B and C located in the middle of the column.
This is due to the reason described in paragraph 0020. The balance of the inductance between the coil units B and C at the intermediate position where the inductance increases due to the influence of the core of the adjacent coil unit and the coil units A and D at both ends is balanced. Even if one of the two selected coils is A or D and the other is B or C, the inductances are made equal to reduce the type of the series capacitor on the primary side.

また、この非接触給電トランスの給電効率は、二次側コイルを構成するコイル単体E、Fの中央に位置する中央磁極の磁極幅を増やすことでさらに改善できる。
図12(c)に示すスキップ駆動では、図12(a)(b)と比較して明らかなように、磁束の磁路長が隣接駆動に比べて長くなる。そのため、磁気抵抗が増加し、給電効率が隣接駆動より低くなると考えられる。
二次側コイルの中央の磁極幅を増やせば、相対的に主磁束の磁路長、つまり磁気抵抗が小さくなり、結合係数が大きくなり、給電効率の向上が期待できる。
In addition, the power supply efficiency of the non-contact power supply transformer can be further improved by increasing the magnetic pole width of the central magnetic pole located at the center of the single coils E and F constituting the secondary coil.
In the skip drive shown in FIG. 12C, the magnetic path length of the magnetic flux becomes longer than that in the adjacent drive, as is clear as compared with FIGS. 12A and 12B. Therefore, it is considered that the magnetic resistance increases and the power feeding efficiency is lower than that of the adjacent drive.
If the magnetic pole width at the center of the secondary coil is increased, the magnetic path length of the main magnetic flux, that is, the magnetic resistance is relatively reduced, the coupling coefficient is increased, and improvement in power supply efficiency can be expected.

図16は、図1(b)に示すように、二次側コイルを構成するコイル単体E、Fの中央側の磁極幅を2倍に増やしたモデルを用いて、隣接駆動及びスキップ駆動で位置ずれに対処した給電効率実験の結果を示している。
二次側コイルの中央側の磁極幅を拡大することにより、給電効率が、コイル単体B、Cの隣接駆動区間では平均で0.8%、コイル単体A、Cのスキップ駆動区間では平均で1.2%、コイル単体A、Bの隣接駆動区間では平均で0.6%向上した。
二次側コイルの中央側磁極幅の拡大により、スキップ駆動区間での給電効率が顕著に向上している。また、この中央側磁極幅の拡大により、隣接駆動時の斜め方向の不要なコイル単体間の磁気結合(例えば、図12(c)の状態でコイル単体B、Cの隣接駆動を行ったときのコイル単体Bとコイル単体Fの磁気結合)が抑制され、磁束の乱れが改善されるため、隣接駆動時の給電効率も改善している。
FIG. 16 shows a position in adjacent drive and skip drive using a model in which the magnetic pole width on the center side of the coil single bodies E and F constituting the secondary side coil is doubled as shown in FIG. The result of the feeding efficiency experiment which coped with the deviation is shown.
By enlarging the magnetic pole width on the center side of the secondary side coil, the power feeding efficiency is 0.8% on average in the adjacent drive sections of the single coils B and C, and 1 on average in the skip drive sections of the single coils A and C. .2%, an improvement of 0.6% on average in the adjacent drive sections of the coils A and B.
The power supply efficiency in the skip drive section is remarkably improved by increasing the center side magnetic pole width of the secondary side coil. In addition, this enlargement of the magnetic pole width at the center side allows magnetic coupling between unnecessary coils in an oblique direction during adjacent drive (for example, when adjacent drive of coils B and C is performed in the state of FIG. 12C). The magnetic coupling between the coil unit B and the coil unit F) is suppressed, and the disturbance of the magnetic flux is improved. Therefore, the power supply efficiency at the time of adjacent driving is also improved.

この非接触給電トランスでは、一次側コイルと二次側コイルとが実際に対向する状況のもとで、一次側コイルを構成するコイル単体の隣接駆動とスキップ駆動とを試行して、いずれの駆動において高い給電効率が得られるかを確認し、高い給電効率が得られる方の駆動を選択するようにすれば、縦列方向の位置ずれに関わらず、高い給電効率での非接触給電が可能になる。
あるいは、事前の測定により、一次側コイル及び二次側コイルの位置ずれと、高い給電効率が得られる駆動との関係を示すデータを把握して記憶・保持し、保持した関係を示すデータをもとに、隣接駆動またはスキップ駆動を選択することも可能である。
In this non-contact power supply transformer, in the situation where the primary side coil and the secondary side coil are actually opposed to each other, the adjacent drive and skip drive of the single coil constituting the primary side coil are tried, and any drive is performed. If it is confirmed that high power supply efficiency can be obtained and the drive that provides high power supply efficiency is selected, contactless power supply with high power supply efficiency can be achieved regardless of the positional deviation in the column direction. .
Alternatively, by pre-measurement, the data indicating the relationship between the displacement of the primary side coil and the secondary side coil and the drive capable of obtaining high power supply efficiency is grasped and stored and retained, and the data indicating the retained relationship is also stored. It is also possible to select adjacent drive or skip drive.

図17は、この非接触給電トランスにおいて、一次側コイルと二次側コイルとが前後左右に位置ずれしたときの給電効率の変化を示している。ここでは、前後方向(x方向)を横軸で表し、左右方向(y方向)を縦軸で表している。図17では、前後方向の位置ずれによる給電効率の低下を解消するため、隣接駆動とスキップ駆動とを実施している。
ここでは、非接触給電トランスの位置ずれ許容範囲での効率の目標を、ηTR≧92%とし、その範囲を点線で示している。
FIG. 17 shows a change in power supply efficiency when the primary side coil and the secondary side coil are displaced from front to back and left and right in this non-contact power supply transformer. Here, the front-rear direction (x direction) is represented by a horizontal axis, and the left-right direction (y direction) is represented by a vertical axis. In FIG. 17, adjacent driving and skip driving are performed in order to eliminate a decrease in power supply efficiency due to a positional shift in the front-rear direction.
Here, the target of efficiency in the position shift allowable range of the non-contact power supply transformer is η TR ≧ 92%, and the range is indicated by a dotted line.

一方、図18は、前後方向の位置ずれによる給電効率の低下を解消するため、隣接駆動のみを実施した場合の前後左右の位置ずれと給電効率との関係を示しており、ηTR≧92%の範囲を点線で示している。
図18から、隣接駆動だけでは、前後方向位置ずれが160mm<x<200mmの範囲で効率が92%以下となることが分かる。
しかし、図17から、隣接駆動にスキップ駆動を加えると、x=±500mmの範囲で効率が92%以上となることが分かる。この範囲での最低効率は93.5%、平均効率は96.0%であり、高い効率を得ることができる。
一方、左右方向(y方向)の位置ずれがy=±250mmの範囲では、スキップ駆動により効率が低下するコイル切替え点付近においても効率92.1%が達成できている。
On the other hand, FIG. 18 shows the relationship between the positional deviation in the front-rear and left-right directions and the power feeding efficiency when only adjacent driving is performed in order to eliminate the decrease in power feeding efficiency due to the positional deviation in the front-rear direction, and η TR ≧ 92% The range is indicated by a dotted line.
From FIG. 18, it can be seen that the efficiency is 92% or less in the range where the positional deviation in the front-rear direction is 160 mm <x <200 mm with adjacent driving alone.
However, FIG. 17 shows that when skip driving is added to adjacent driving, the efficiency is 92% or more in the range of x = ± 500 mm. The minimum efficiency in this range is 93.5%, and the average efficiency is 96.0%, so that high efficiency can be obtained.
On the other hand, when the positional deviation in the left-right direction (y direction) is in the range of y = ± 250 mm, an efficiency of 92.1% can be achieved even near the coil switching point where the efficiency is reduced by skip driving.

このように、この非接触給電トランスでは、前後±500mm、左右250mmの範囲内において、92.1%以上の効率で給電を行うことができる。
そのため、一次側コイルに含まれる複数のコイル単体を、その縦列方向が移動体の進行方向と一致するように地上側に設置し、二次側コイルに含まれる二つのコイル単体を、その縦列方向が移動体の前後方向と一致するように移動体に搭載することにより、電気バスや電気トラック等の大型車両に対する、位置ずれの許容範囲が大きい非接触給電が可能になる。
Thus, with this non-contact power supply transformer, power can be supplied with an efficiency of 92.1% or more within the range of ± 500 mm in the front and rear and 250 mm in the left and right.
Therefore, a plurality of single coils included in the primary coil are installed on the ground side so that the column direction thereof coincides with the traveling direction of the moving body, and the two single coils included in the secondary coil are arranged in the column direction. Is mounted on the moving body so as to coincide with the front-rear direction of the moving body, it is possible to perform non-contact power feeding with a large allowable range of displacement for large vehicles such as electric buses and electric trucks.

なお、ここでは、コイル単体としてH型コア構造のコイル単体を用いる場合について説明したが、図20に示す角型コアのコイル単体を用いても良い。
また、ここでは、4個のコイル単体から成る一次側コイルを示したが、一次側コイルを構成するコイル単体の数は、3以上であれば良い。
また、ここでは、二次側コイルのコイル単体の個数が2個(一対)の場合について説明したが、二次側コイルのコイル単体の個数を2n個(nは整数)に増やしても良い。このように二次側コイルを構成するコイル単体の対を二以上にする場合は、スキップ駆動が支障なく実施できるように、二次側コイルの対(2個のコイル単体)毎にコイル単体1個分の間隔をあけることが望ましい。
図19に、二次側コイルの単体個数が4個(二対)の場合を示している。
Here, the case where a single coil having an H-shaped core structure is used as the single coil has been described, but a single coil having a square core shown in FIG. 20 may be used.
In addition, here, the primary side coil including four single coils is shown, but the number of single coils constituting the primary coil may be three or more.
Although the case where the number of single coils of the secondary coil is two (a pair) has been described here, the number of single coils of the secondary coil may be increased to 2n (n is an integer). In this way, when the number of pairs of single coils constituting the secondary coil is two or more, the single coil 1 for each pair of the secondary coils (two single coils) so that skip driving can be performed without any problem. It is desirable to leave an interval.
FIG. 19 shows a case where the number of single secondary side coils is four (two pairs).

本発明の非接触給電システムは、非接触給電トランスの容量が大きく、広い位置ずれの許容範囲を有しており、バッテリーを搭載する大型車両や普通車両、無人搬送車など、各種移動体の非接触給電等に広く利用することができる。   The non-contact power feeding system of the present invention has a large capacity of the non-contact power feeding transformer and has a wide allowable range of misalignment. It can be widely used for contact power feeding and the like.

10 アルミ板
11 アルミ板
41 商用電源
42 直流供給部
43 平滑コンデンサ
44 インバータ
45 直列コンデンサ
46 コイル単体
47 直列コンデンサ
48 コイル単体
51 コイル単体
52 コイル単体
53 並列コンデンサ
54 並列コンデンサ
55 整流回路
56 平滑コンデンサ
57 負荷抵抗
110 角型フェライトコア
111 巻線
112 磁極部
DESCRIPTION OF SYMBOLS 10 Aluminum plate 11 Aluminum plate 41 Commercial power supply 42 DC supply part 43 Smoothing capacitor 44 Inverter 45 Series capacitor 46 Coil single-piece 47 Series capacitor 48 Coil single-piece 51 Coil single-piece 52 Coil single-piece 53 Parallel capacitor 54 Parallel capacitor 55 Rectification circuit 56 Smoothing capacitor 57 Load Resistance 110 Square ferrite core 111 Winding 112 Magnetic pole part

Claims (7)

一次側コイルから、空隙を隔てて対向する二次側コイルに電磁誘導作用により電力を給電する非接触給電システムであって、
前記一次側コイル及び二次側コイルは、複数のコイル単体から成り、
前記コイル単体の各々は、長手方向の辺が互いに並行する二つの磁極と、前記磁極の間を繋ぐコア部分と、該コア部分に巻回された電線と、を備え、
前記一次側コイルは、前記磁極の長手方向の辺を互いに接して縦列する少なくとも三個の前記コイル単体を有し、
前記二次側コイルは、前記磁極の長手方向の辺を互いに接して縦列する二個の前記コイル単体から成る対を少なくとも一対有し、
さらに、
前記一次側コイルに高周波交流を供給する高周波交流源と、
前記一次側コイルが有する前記コイル単体の内で、前記高周波交流源から高周波交流が供給されるコイル単体を選択するとともに、選択した前記コイル単体と前記高周波交流源との接続形態を選択する選択手段と、
を備え、
前記選択手段は、前記一次側コイルのコイル単体と前記二次側コイルのコイル単体とが対向する状況において、前記二次側コイルの前記対を構成する二つのコイル単体の磁極同士が接する位置が、前記一次側コイルに含まれる一つのコイル単体の中心付近に対向している場合には、該一つのコイル単体の両側に位置する二つのコイル単体を選択し、その他の場合には、前記二次側コイルの前記二つのコイル単体が主に対向する前記一次側コイルの連続する二つのコイル単体を選択し、
前記選択手段は、さらに、選択した前記二つのコイル単体に対して、前記コア部分を通過する磁束の向きが互いに逆向きになるように前記高周波交流源を接続する、
ことを特徴とする非接触給電システム。
A non-contact power feeding system that feeds power by electromagnetic induction from a primary coil to a secondary coil that is opposed across a gap,
The primary side coil and the secondary side coil are composed of a plurality of single coils,
Each of the coils alone includes two magnetic poles whose longitudinal sides are parallel to each other, a core part connecting the magnetic poles, and an electric wire wound around the core part,
The primary coil may have at least three of said single coil to column against a longitudinal side of the magnetic poles,
Said secondary coil, at least a pair of pairs of two of the single coil of tandem against a longitudinal side of the magnetic poles,
further,
A high-frequency alternating current source for supplying high-frequency alternating current to the primary coil;
Among the single coil of the primary coil has, the with high frequency alternating current from the high-frequency AC source selecting coil only supplied, selection means for selecting a connection form between said high-frequency AC source and the coil only the selected When,
With
Said selection means Oite a situation where a single coil of the primary coil and the coil only the secondary coil are opposed, the magnetic poles of the two single coil constituting the pair of the secondary coil contact In the case where the position faces the vicinity of the center of one single coil included in the primary coil, two single coils positioned on both sides of the single coil are selected, and in other cases, Select the two continuous coils of the primary coil that the two single coils of the secondary coil mainly face each other,
The selection means further connects the high-frequency alternating current source so that directions of magnetic fluxes passing through the core portion are opposite to each other with respect to the selected two coils alone.
A non-contact power feeding system characterized by that.
請求項1に記載の非接触給電システムであって、
前記選択手段は、前記二つのコイル単体を選択するに際して、一つのコイル単体の両側にある二つのコイル単体に前記高周波交流源を接続する選択と、連続する二つのコイル単体に前記高周波交流源を接続する選択とを切り替えた後、給電効率の高い方の二つのコイル単体を選択する、
ことを特徴とする非接触給電システム。
The contactless power supply system according to claim 1,
The selection means, when selecting the two single coils, the selection of connecting the high frequency AC source to two single coils on both sides of the single coil, and the high frequency AC source to two consecutive coils After switching the connection selection, select the two coils with higher power supply efficiency.
A non-contact power feeding system characterized by that.
請求項1に記載の非接触給電システムであって、
前記二次側コイルの前記対を構成する二つのコイル単体の各々は、前記磁極の長手方向と直交する方向の磁極幅が異なる前記二つの磁極を有し、
前記二次側コイルの前記二つのコイル単体は、前記磁極幅の広い方の磁極同士が互いに接するように縦列している、
ことを特徴とする非接触給電システム。
The contactless power supply system according to claim 1,
The two respective single coil constituting the pair of the secondary coil has the two magnetic poles direction of the magnetic pole width perpendicular to the longitudinal direction are different for the pole,
The two single coils of the secondary coil are arranged in series so that the magnetic poles having the wider magnetic pole width are in contact with each other.
A non-contact power feeding system characterized by that.
請求項1または3に記載の非接触給電システムであって、
前記二次側コイルの前記対が、一つ分のコイル単体の間隔を空けて、複数対縦列している、
ことを特徴とする非接触給電システム。
The contactless power supply system according to claim 1 or 3,
The pairs of the secondary side coils are arranged in a plurality of pairs at intervals of one coil unit,
A non-contact power feeding system characterized by that.
請求項1に記載の非接触給電システムであって、
前記一次側コイルの縦列するコイル単体の両端に位置するコイル単体は、コア部分に巻回された電線の巻数が、前記一次側コイルの他のコイル単体のコア部分に巻回された電線の巻数より多い、
ことを特徴とする非接触給電システム。
The contactless power supply system according to claim 1,
The coil unit positioned at both ends of the coil unit arranged in tandem with the primary side coil is such that the number of turns of the electric wire wound around the core part is the number of turns of the electric wire wound around the core part of the other coil unit of the primary side coil. is more than,
A non-contact power feeding system characterized by that.
請求項1に記載の非接触給電システムであって、
前記コイル単体は、前記磁極の長手方向の長さが、同一方向の前記コア部分の長さよりも長いH型構造を有する、
ことを特徴とする非接触給電システム。
The contactless power supply system according to claim 1,
The single coil has an H-shaped structure in which the length of the magnetic pole in the longitudinal direction is longer than the length of the core portion in the same direction.
A non-contact power feeding system characterized by that.
請求項1から6のいずれかに記載の非接触給電システムであって、
前記一次側コイルに含まれる複数のコイル単体は、縦列方向が移動体の進行方向と一致するように地上側に設置され、
前記二次側コイルに含まれる前記対を構成する二つのコイル単体は、縦列方向が移動体の前後方向と一致するように該移動体に搭載される、
ことを特徴とする非接触給電システム。
It is a non-contact electric power feeding system in any one of Claim 1 to 6,
The plurality of single coils included in the primary side coil are installed on the ground side so that the column direction coincides with the traveling direction of the moving body,
The two coils constituting the pair included in the secondary coil are mounted on the moving body so that the column direction coincides with the front-rear direction of the moving body.
A non-contact power feeding system characterized by that.
JP2014023701A 2014-02-10 2014-02-10 Contactless power supply system Active JP6410287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023701A JP6410287B2 (en) 2014-02-10 2014-02-10 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023701A JP6410287B2 (en) 2014-02-10 2014-02-10 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2015153773A JP2015153773A (en) 2015-08-24
JP6410287B2 true JP6410287B2 (en) 2018-10-24

Family

ID=53895775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023701A Active JP6410287B2 (en) 2014-02-10 2014-02-10 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP6410287B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439878B1 (en) * 2017-04-12 2022-09-05 삼성전자주식회사 Wireless power transmitting device, electronic device for wirelessly receiving power and operation method thereof
WO2018190581A1 (en) 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Wireless power transmitter, wireless power receiving electronic device, and method for operating the same
WO2020175582A1 (en) * 2019-02-27 2020-09-03 パナソニックIpマネジメント株式会社 Wireless power supply unit and power reception module
CN112721672B (en) * 2020-12-30 2023-10-20 哈尔滨宇龙自动化有限公司 Leakage magnetic field regulation and control system and method for dynamic wireless power supply system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
JP5224442B2 (en) * 2007-12-28 2013-07-03 Necトーキン株式会社 Non-contact power transmission device
CN102468692A (en) * 2010-11-20 2012-05-23 孙善骏 Electromagnetic charging electric automobile with magnet vane
JP5885837B2 (en) * 2012-05-21 2016-03-16 株式会社テクノバ Contactless power transformer for moving objects
JP2015053751A (en) * 2013-09-05 2015-03-19 Tdk株式会社 Non-contact power transmission device
JP6291208B2 (en) * 2013-10-10 2018-03-14 株式会社東芝 Mobile object, wireless power transmission system, and wireless power transmission method
JP6156115B2 (en) * 2013-12-13 2017-07-05 トヨタ自動車株式会社 Power transmission equipment

Also Published As

Publication number Publication date
JP2015153773A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP5240786B2 (en) Non-contact power feeding device
US11869707B2 (en) Double conductor single phase inductive power transfer tracks
JP5885837B2 (en) Contactless power transformer for moving objects
CN105720695B (en) Inductive wireless power transfer system
US10250071B2 (en) Wireless power supply coil
JP5437650B2 (en) Non-contact power feeding device
US20130313912A1 (en) Contactless power transfer apparatus
JP6410287B2 (en) Contactless power supply system
JP2011200052A (en) Power supply device
CN107710357B (en) Primary and secondary side arrangement of a winding structure, system for inductive power transfer and method for inductively supplying power to a vehicle
JP6300107B2 (en) Non-contact power transmission device
JPWO2015189976A1 (en) Inductor unit, wireless power transmission device, and electric vehicle
Zaheer et al. A comparative study of various magnetic design topologies for a semi-dynamic EV charging application
WO2012001758A1 (en) Non-contact electric power feeding device
JP2015115434A (en) Magnetic coupling inductor and multiport converter
CN105720699B (en) Inductive wireless power transfer system
JP2016181960A (en) Noncontact power supply system
US10483030B2 (en) Coil unit, power transmission device, and power reception device
JP2016220353A (en) Non-contact power supply system
JP2014170876A (en) Coil unit and power supply system
Chen et al. Comparison of meander track primary topologies for EV roadway charging
JP2017212302A (en) Coil device, non-contact power supply device and non-contact power reception device
US9406431B2 (en) Transformer and voltage transforming apparatus comprising the same
JP2018166394A (en) Inductive power supply device
WO2016131766A1 (en) Winding structure of a system for inductive power transfer, method of operating the winding structure and system of inductive power transfer with the winding structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6410287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250