JP5224442B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP5224442B2
JP5224442B2 JP2007341042A JP2007341042A JP5224442B2 JP 5224442 B2 JP5224442 B2 JP 5224442B2 JP 2007341042 A JP2007341042 A JP 2007341042A JP 2007341042 A JP2007341042 A JP 2007341042A JP 5224442 B2 JP5224442 B2 JP 5224442B2
Authority
JP
Japan
Prior art keywords
coil
power transmission
coils
primary
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007341042A
Other languages
Japanese (ja)
Other versions
JP2009164293A (en
Inventor
忠邦 佐藤
潤 宮森
泰之 角張
文博 佐藤
英敏 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokin Corp
Original Assignee
Tohoku University NUC
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Tokin Corp filed Critical Tohoku University NUC
Priority to JP2007341042A priority Critical patent/JP5224442B2/en
Publication of JP2009164293A publication Critical patent/JP2009164293A/en
Application granted granted Critical
Publication of JP5224442B2 publication Critical patent/JP5224442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非接触電力伝送装置に関し、詳しくは、携帯電子機器、携帯電気機器、及び電子装置に用いられる非接触電力伝送装置に関する。   The present invention relates to a contactless power transmission device, and more particularly, to a contactless power transmission device used in portable electronic devices, portable electrical devices, and electronic devices.

近年、電源から電子機器へ非接触で電力を伝送する方法に一つとして、相対させたコイル間の電磁誘導作用を利用することによって、非接触で電力を伝送するシステム、コードレスパワーステーション(Cordless Power Station)又はコンタクトレスパワーステーション(Contactless Power Station)である略称をCLPSと称する方式が提案されている。   In recent years, as one method for transmitting power from a power source to an electronic device in a non-contact manner, a cordless power station (Cordless Power Station) that transmits power in a non-contact manner by using an electromagnetic induction action between opposed coils is used. A scheme that abbreviates CLPS as an abbreviation for “Station” or “Contactless Power Station” has been proposed.

このような非接触電力伝送システムの送電側励磁機器の構成を検討したものとして非特許文献1及び2に記載されたものがある。   Non-Patent Documents 1 and 2 describe the configuration of the power transmission side excitation device of such a non-contact power transmission system.

非特許文献1に開示された非接触電力伝送において、構成法の相異による得失、コンデンサ挿入による特性改善、伝送電力量及び伝送効率改善に与えるフェライトの効果、1次側−2次側の位置ずれによる伝送特性の改善について検討を行ったものである。   In the non-contact power transmission disclosed in Non-Patent Document 1, the effect of ferrite on the advantages and disadvantages due to the difference in the configuration method, the improvement of characteristics by inserting a capacitor, the amount of transmission power and the improvement of the transmission efficiency This study examined improvements in transmission characteristics due to misalignment.

具体的には、1次側−2次側ともにドーナッツ状の空心コイルを配置し、隣接するコイルの磁束の向きが、逆になる接続方法を用いて行っている。その理由は、隣接するコイルの磁束の向きが、逆になる接続方法の方が、発生する磁束が全て同じ方向になる接続方法よりも、互いに磁束を強め合い、また外部へのもれ磁束が少ないという利点を有するからである。   Specifically, a donut-shaped air core coil is arranged on both the primary side and the secondary side, and a connection method is used in which the directions of magnetic fluxes of adjacent coils are reversed. The reason for this is that the connection method in which the directions of the magnetic fluxes of adjacent coils are opposite to each other intensifies the magnetic flux and the leakage magnetic flux to the outside is greater than the connection method in which the generated magnetic fluxes are all in the same direction. This is because it has the advantage of being less.

非特許文献1では、1次側、2次側ともに、空心コイル数を増加させると、最大伝送電力P2max及び最大伝送効率ηmaxは、ともに増加すること及び円板状のフェライトコアを用いた場合には、さらに、伝送電力の増加が測れ、伝送効率の向上が図れることが開示されている。 In Non-Patent Document 1, when the number of air-core coils is increased on both the primary side and the secondary side, the maximum transmission power P2 max and the maximum transmission efficiency η max both increase and a disc-shaped ferrite core is used. In this case, it is disclosed that transmission power can be increased and transmission efficiency can be improved.

さらに、非特許文献1では、2次コイルと負荷抵抗との間に、2次コイルの自己インダクタンスとの共振条件から求めた容量を有するコンデンサを直列に挿入すると損失が減少し、伝送効率が約1割向上することが述べられている。   Furthermore, in Non-Patent Document 1, when a capacitor having a capacity obtained from the resonance condition of the secondary coil and the self-inductance of the secondary coil is inserted in series between the secondary coil and the load resistance, the loss is reduced and the transmission efficiency is reduced to about It is stated that it will improve by 10%.

また、非特許文献1では、フェライトコアへの形状、種類への損失量及び伝送効率の依存性は、フェライトコアの厚さには、依存せず、フェライトの種類にも依存しないので、システムの薄型化には、フェライトコアは薄型の方が有利であることが示されている。さらに、非特許文献1において、面に対して垂直な磁束成分のみを利用するようなコイル形状の場合には、中心軸を一致させた方が良いことが判明している。   Further, in Non-Patent Document 1, the dependence on the shape, loss amount and transmission efficiency of the ferrite core does not depend on the thickness of the ferrite core, and does not depend on the type of ferrite. It has been shown that a thin ferrite core is more advantageous for thinning. Further, in Non-Patent Document 1, it has been found that in the case of a coil shape that uses only a magnetic flux component perpendicular to the surface, it is better to match the central axes.

しかしながら、非特許文献1に開示された非接触電力伝送装置では、1次側及び2次側のコイルは同一寸法のもので構成しているので、位置ズレによる変化が大きく、広範囲な面での任意の伝送には不都合となる欠点を有した。   However, in the non-contact power transmission device disclosed in Non-Patent Document 1, since the primary side and secondary side coils have the same dimensions, there is a large change due to misalignment, and in a wide range of aspects. It had the disadvantage of being inconvenient for any transmission.

また、非特許文献2に開示された非接触電力伝送システムは、受電側に1つのスパイラルコイルを配し、送電側に複数の並列したスパイラルコイルを配置し、夫々のスパイラルコイルの対向面と反対側にそれぞれ磁性体薄板又はシートを配置した構成である。このような構成の非特許文献2による非接触電力伝送システムにおいて、受電側においては、内径、外径比(D/D)が0.65のとき最大伝送電力約70W、コイル間効率約65%が得られている。また、伝送特性に、結合係数kが大きく関与しており、D/D=0.65は中央に位置する送電コイルと受電コイルとの相互インダクタンスMcと外側に位置するに送電コイルと受電コイルとの相互インダクタンスM0とほぼ等しくなる点で伝送特性が向上することが示されている。 In the non-contact power transmission system disclosed in Non-Patent Document 2, one spiral coil is arranged on the power reception side, and a plurality of parallel spiral coils are arranged on the power transmission side, opposite to the opposing surface of each spiral coil. It is the structure which has arrange | positioned the magnetic body thin plate or sheet | seat on the side, respectively. In the non-contact power transmission system according to Non-Patent Document 2 having such a configuration, on the power receiving side, when the inner diameter / outer diameter ratio (D i / D o ) is 0.65, the maximum transmission power is about 70 W and the inter-coil efficiency is about 65% is obtained. Further, the coupling coefficient k is greatly involved in the transmission characteristics, and D i / D o = 0.65 is the mutual inductance Mc between the power transmission coil and the power reception coil located in the center and the power transmission coil and the power reception power located outside. It is shown that the transmission characteristics are improved in that it is almost equal to the mutual inductance M0 with the coil.

また、非特許文献2においては、図9に示すように、非接触電力伝送装置50は、相対する1次側、2次側コイル1,2間の電磁誘導を用い、空隙3を介して1次側コイル1から2次側コイル2に非接触にて電力を伝送する。1次側コイル1に複数の平面巻線型コイル1a,1b,・・・,1i、2次側コイル2に1個以上の平面巻線型コイル2aを備えている。1次コイル1の背面(外側面)には、軟磁性材の板またはシート4が貼り付けられている。また、2次コイル側2の背面(外側面)にも同様の軟磁性材の板またはシート4を貼り付けることも出来る。   Further, in Non-Patent Document 2, as shown in FIG. 9, the non-contact power transmission device 50 uses electromagnetic induction between the opposing primary side and secondary side coils 1 and 2, and 1 through the gap 3. Electric power is transmitted from the secondary coil 1 to the secondary coil 2 in a non-contact manner. The primary coil 1 includes a plurality of planar winding coils 1a, 1b,..., 1i, and the secondary coil 2 includes one or more planar winding coils 2a. A soft magnetic material plate or sheet 4 is attached to the back surface (outer surface) of the primary coil 1. Also, a similar soft magnetic material plate or sheet 4 can be attached to the back surface (outer surface) of the secondary coil side 2.

このような非特許文献2の非接触電力伝送装置50においては、受電コイル側に並列にコイルの誘導性リアクタンスを打ち消すようにコンデンサC2を負荷に並列に挿入すると、より効率の改善が見られること及び受電コイルの裏側の磁性体の形状を漏れをさらに防ぐ形状とすることで、伝送効率の変動幅を改善することができることが示されている。   In such a non-contact power transmission device 50 of Non-Patent Document 2, when the capacitor C2 is inserted in parallel with the load so as to cancel out the inductive reactance of the coil in parallel with the receiving coil side, improvement in efficiency can be seen. In addition, it is shown that the fluctuation range of the transmission efficiency can be improved by making the shape of the magnetic body on the back side of the power receiving coil further prevent leakage.

しかしながら、非特許文献2に開示された非接触電力伝送装置50では、1次側コイルは平面に配列し、隣接するコイルによる伝送の面内には伝送不能な死点が存在する。そのため、2次側コイルは1次側コイルよりも大きくする必要がある。そのため、2次側の小型化には不都合な構成となる。   However, in the non-contact power transmission device 50 disclosed in Non-Patent Document 2, the primary side coils are arranged in a plane, and there is a dead point that cannot be transmitted in the plane of transmission by adjacent coils. Therefore, the secondary side coil needs to be larger than the primary side coil. Therefore, the configuration is inconvenient for downsizing of the secondary side.

村上 純一、松木 英敏、菊地 新喜:「フェライトを用いたコードレスパワーステーションによる非接触電力伝送特性」、電気学会研究資料、マグネティックス研究会、MAG−93−138、第63−70頁、1993年8月2日社団法人電気学会発行Junichi Murakami, Hidetoshi Matsuki, Shinki Kikuchi: “Non-contact power transmission characteristics with cordless power station using ferrite”, IEICE Technical Report, Magnetics Study Group, MAG-93-138, pp. 63-70, 1993 August 2 Published by The Institute of Electrical Engineers of Japan 畠中 紘一、佐藤 文博、松木 英敏、菊地 新喜、村上 純一、川瀬 誠、佐藤 忠邦:「位置決め不要な非接触電力伝送システムの送電側励磁構成に関する検討」、日本応用磁気学会誌、26巻、第580−584頁(2002年)Junichi Hatanaka, Fumihiro Sato, Hidetoshi Matsuki, Shinki Kikuchi, Junichi Murakami, Makoto Kawase, Tadakuni Sato: “Study on the configuration of excitation on the transmission side of contactless power transmission system without positioning”, Journal of Japan Society of Applied Magnetics, Vol. 26, No. 1 580-584 (2002)

したがって、非特許文献1および2に開示された非接触電力伝送システムにおいて、結合係数を低減し、伝送不能な点を縮小、低減し、また、調節すること及び隣接するコイル間の励磁電流の位相差を調整したり、周波数調整により、磁界のうなりを形成することで、広い範囲で高い出力と安定した電力伝送ができるようにさらに、改善する必要があった。   Therefore, in the non-contact power transmission systems disclosed in Non-Patent Documents 1 and 2, the coupling coefficient is reduced, the point where transmission is impossible is reduced, reduced, and the level of excitation current between adjacent coils is adjusted. It was necessary to further improve so that a high output and stable power transmission could be achieved in a wide range by adjusting the phase difference or by forming the beat of the magnetic field by adjusting the frequency.

そこで、本発明の技術的課題は、1次側コイル間の相互作用を低減(結合係数の低減)し、伝送不能な死点を縮小、低減する。そのため、広い範囲での安定した電力伝送が実現できる非接触電力伝送装置を提供することにある。   Therefore, the technical problem of the present invention is to reduce the interaction between the primary side coils (reduction of the coupling coefficient), and reduce and reduce dead points that cannot be transmitted. Therefore, an object of the present invention is to provide a non-contact power transmission device that can realize stable power transmission in a wide range.

また、本発明の技術的課題は、隣接するコイル間の結合係数を調節することにより、広い範囲で高い出力と安定した電力伝送が実現できる非接触電力伝送装置を提供することにある。   Another object of the present invention is to provide a non-contact power transmission device that can realize high output and stable power transmission in a wide range by adjusting the coupling coefficient between adjacent coils.

また、本発明の技術的課題は、隣接する1次側コイルの励磁電流の位相差を調節することで、移動磁界を形成し、広い範囲で高い出力と安定した電力伝送が実現できる非接触電力伝送装置を提供することにある。   In addition, the technical problem of the present invention is that non-contact power that can form a moving magnetic field by adjusting the phase difference between the exciting currents of adjacent primary coils to realize high output and stable power transmission over a wide range. It is to provide a transmission apparatus.

さらに、本発明の技術的課題は、隣接する1次側コイルの励磁周波数を異ならせることにより、磁界のうなりを形成し、広い範囲で高い出力と安定した電力伝送が実現できる非接触電力伝送装置を提供することにある。   Furthermore, the technical problem of the present invention is that a non-contact power transmission device can form a magnetic field beat by changing the excitation frequency of adjacent primary side coils, and can realize high output and stable power transmission over a wide range. Is to provide.

本発明によれば、相対するコイル間の電磁誘導を用い、空隙を介して1次側コイルから2次側コイルに非接触にて電力を伝送する電力伝送装置に於いて、前記1次側コイル複数の同形状の平面型コイル、前記2次側コイルを1以上の平面型コイルで夫々構成し、前記2次側コイルの外径を、前記1次側コイルの内径よりも小に形成し、前記1次側平面型コイルの外径をD、内径をDとし、隣接する二つの前記1次側平面型コイル間の中心間距離をXとした場合、(D−D)÷2≦X<Dとなるようなコイル配置としたことを特徴とする非接触電力伝送装置が得られる。

According to the present invention, using electromagnetic induction between opposing coils, in the power transmission apparatus for transmitting power in a non-contact from the primary coil to the secondary coil via an air gap, said primary coil the planar coils of a plurality of the same shape, said secondary coil and respectively constituted by one or more planar coils, the outer diameter of the secondary coil, is formed in the small than the inner diameter of the primary coil the outer diameter D o of the previous SL primary planar coil, an inner diameter and D i, if the center-to-center distance between two adjacent said primary planar coil was X, (D o -D i ) ÷ 2 ≦ X <D o is obtained, so that a non-contact power transmission device can be obtained.

また、本発明によれば、前記非接触電力伝送装置において、複数の1次側平面型コイルを並べる構成に於いて、隣接するコイル間で発生する磁束の向きが並行若しくは反並行となるコイル配置とすることを特徴とする非接触電力伝送装置が得られる。   According to the present invention, in the non-contact power transmission device, in the configuration in which a plurality of primary side planar coils are arranged, the coil arrangement in which the direction of the magnetic flux generated between adjacent coils is parallel or anti-parallel Thus, a non-contact power transmission device can be obtained.

また、本発明によれば、前記いずれか一つの非接触電力伝送装置において、対向する1次側平面型コイルと2次側平面型コイルの何れか一方、または双方の外側部に、軟磁性材料を貼付配置することを特徴とする非接触電力伝送装置が得られる。   According to the present invention, in any one of the non-contact power transmission devices, a soft magnetic material is provided on one or both of the opposing primary side planar coil and secondary side planar coil. A non-contact power transmission device characterized in that is attached and disposed.

また、本発明によれば、前記いずれか一つの非接触電力伝送装置において、1次側コイルと2次側コイルとの間の磁気結合係数が0.05〜0.95となるようなコイル配置とすることを特徴とする非接触電力伝送装置が得られる。   According to the present invention, in any one of the non-contact power transmission devices, the coil arrangement is such that the magnetic coupling coefficient between the primary side coil and the secondary side coil is 0.05 to 0.95. Thus, a non-contact power transmission device can be obtained.

また、本発明によれば、前記いずれか一つの非接触電力伝送装置に於いて、隣接する二つの1次側コイル間に流れる励磁電流の位相差を30°〜150°とすることを特徴とする非接触電力伝送装置が得られる。   According to the present invention, in any one of the non-contact power transmission devices, a phase difference between exciting currents flowing between two adjacent primary coils is set to 30 ° to 150 °. Thus, a non-contact power transmission device is obtained.

本発明によれば、1次側コイルの配列を重ね合わせることにより、1次側コイル間の相互作用を低減(結合係数の低減)し、伝送不能な死点を縮小、低減する。そのため、広い範囲での安定した電力伝送が実現できる。本発明は隣接するコイル間の磁気結合係数を0.5以下となるように重複することにより、広い範囲で高い出力と安定した電力伝送が実現できる。   According to the present invention, by overlapping the arrangement of the primary side coils, the interaction between the primary side coils is reduced (reduction of the coupling coefficient), and dead centers that cannot be transmitted are reduced or reduced. Therefore, stable power transmission in a wide range can be realized. In the present invention, by overlapping the magnetic coupling coefficients between adjacent coils so as to be 0.5 or less, high output and stable power transmission can be realized in a wide range.

また、本発明によれば、隣接する1次側コイルの励磁電流の位相差を30〜150°とすることで、移動磁界を形成し、広い範囲で高い出力と安定した電力伝送が実現できる。   Further, according to the present invention, by setting the phase difference between the exciting currents of adjacent primary coils to 30 to 150 °, a moving magnetic field is formed, and high output and stable power transmission can be realized in a wide range.

さらに、本発明によれば、隣接する1次側コイルの励磁周波数を0.01〜10%の範囲で異ならせることにより、磁界のうなりを形成し、広い範囲で高い出力と安定した電力伝送が実現できる。   Furthermore, according to the present invention, the exciting frequency of adjacent primary coils is varied within a range of 0.01 to 10%, thereby forming a magnetic field beat, and a high output and stable power transmission over a wide range. realizable.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の非接触電力伝送装置は、相対するコイル間の電磁誘導を用い、空隙を介して1次側コイルから2次側コイルに非接触にて電力を伝送する。この電力伝送装置において、1次側を複数の平面型コイル、2次側を一以上の平面型コイルで構成するものである。平面型コイルは、平面型であれば、円形に限らず、多角形であっても良いが、平面型巻線コイルであることが好ましい。   The non-contact power transmission device of the present invention uses electromagnetic induction between opposing coils to transmit power from the primary coil to the secondary coil in a non-contact manner via a gap. In this power transmission device, the primary side is constituted by a plurality of planar coils, and the secondary side is constituted by one or more planar coils. The planar coil is not limited to a circular shape as long as it is a planar type, but may be a polygonal shape, but is preferably a planar winding coil.

本発明の非接触電力伝送装置において、複数の1次側平面型コイルを並べる構成において、コイル配置は、隣接する平面型コイル間で発生する磁束の向きが並行若しくは反並行とすることが好ましい。   In the non-contact power transmission device of the present invention, in the configuration in which a plurality of primary planar coils are arranged, the coil arrangement is preferably such that the direction of magnetic flux generated between adjacent planar coils is parallel or antiparallel.

また、本発明の前記いずれか一つの非接触電力伝送装置において、対向する1次側平面型コイルと2次側平面型コイルの何れか一方、または双方の外側部に、軟磁性材料を貼付配置することで、発生磁界の収束効果によって、1次側コイル1と2次側コイル2の磁気結合を向上し、出力の向上に寄与するものである。   Further, in any one of the non-contact power transmission devices according to the present invention, a soft magnetic material is pasted and disposed on one or both of the opposing primary side planar coil and secondary side planar coil. Thus, the magnetic coupling between the primary side coil 1 and the secondary side coil 2 is improved by the convergence effect of the generated magnetic field, which contributes to the improvement of the output.

また、本発明の前記いずれか一つの非接触電力伝送装置において、1次側コイルと2次側コイルとの間の磁気結合係数が0.05〜0.95となるようなコイル配置とすることで、コイル間の位置ズレによる出力の変動を抑え、広い範囲での安定した電力伝送が実現できる。   Further, in any one of the contactless power transmission devices of the present invention, the coil arrangement is such that the magnetic coupling coefficient between the primary coil and the secondary coil is 0.05 to 0.95. Therefore, it is possible to suppress output fluctuation due to positional deviation between the coils, and to realize stable power transmission in a wide range.

また、本発明の前記いずれか一つの非接触電力伝送装置において、構成する1次側平面型コイルの外径をD、内径をDとし、隣接する二つの1次側平面巻線コイル間の中心間距離をXとした場合、(D−D)÷2≦X<Dとなるコイル配置とすることで、同様にコイル間の位置ズレによる出力の変動を抑え、広い範囲での安定した電力伝送が実現できる。 In the non-contact power transmission device wherein the one of the present invention, the outer diameter of the primary-side planar coil constituting D o, an inner diameter and D i, between two adjacent primary plane winding coil When the distance between centers of X is X, by setting the coil arrangement so that (D o −D i ) ÷ 2 ≦ X <D o , the output fluctuation due to the positional deviation between the coils is similarly suppressed, and the range is wide. Stable power transmission can be realized.

また、本発明の前記いずれか一つの非接触電力伝送装置において、隣接する二つの1次側コイル間に流れる励磁電流の位相差を30°〜150°とすることで、移動磁界を形成し、広い範囲で高い出力と安定した電力伝送が実現できる。   Further, in any one of the non-contact power transmission devices of the present invention, a moving magnetic field is formed by setting a phase difference between excitation currents flowing between two adjacent primary coils to 30 ° to 150 °, High output and stable power transmission can be realized in a wide range.

また、本発明の前記いずれか一つの非接触電力伝送装置において、1次側の隣接するコイルを異なる周波数で励磁し、一方のコイルの励磁周波数をfとし他方をfiとし、その周波数差を△f=|fi−f|とし、その比△f/fを0.01%〜10%の範囲とする。隣接する1次側コイルの励磁周波数を0.01〜10%の範囲で異ならせることにより、磁界のうなりを形成し、広い範囲で高い出力と安定した電力伝送が実現できる。   Further, in any one of the non-contact power transmission devices of the present invention, the adjacent coil on the primary side is excited at different frequencies, the excitation frequency of one coil is f, the other is fi, and the frequency difference is Δ f = | fi−f |, and the ratio Δf / f is in the range of 0.01% to 10%. By varying the excitation frequency of the adjacent primary coil within a range of 0.01 to 10%, a magnetic field beat can be formed, and high output and stable power transmission can be realized over a wide range.

尚、本実施例では、2次側コイルを1ヶ、1次側コイルを2ヶで実施しているが、本発明は、これらを面方向にも拡張する構成にできるものであって、2次側コイルは1ヶ以上、1次側コイルは複数での構成となる。   In this embodiment, one secondary side coil is used and two primary side coils are used. However, the present invention can be configured to extend these in the surface direction. There are one or more secondary coils and a plurality of primary coils.

以下、本発明の実施例について図面を参照しながら、説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本発明の実施例1では、非接触電力伝送装置の基本構成について説明する。
Example 1
In Embodiment 1 of the present invention, a basic configuration of a non-contact power transmission apparatus will be described.

図1は、本発明の実施例1による非接触電力伝送装置のコイルの配置の一例を主に示す斜視図である。   FIG. 1 is a perspective view mainly showing an example of the arrangement of coils of the non-contact power transmission apparatus according to the first embodiment of the present invention.

図1(a)に示すように、非接触電力伝送装置10は、相対する1次側、2次側コイル1,2間の電磁誘導を用い、空隙3を介して1次側コイル1から2次側コイル2に非接触にて電力を伝送する。1次側コイル1に複数の平面巻線型コイル1a,1b,・・・,1f、2次側コイル2に1個以上の平面巻線型コイル2aを備えている。1次コイル1の背面(外側面)には、軟磁性材の板またはシート4が貼り付けられている。また、2次コイル側2の背面(外側面)にも同様の軟磁性材の板またはシート4を貼り付けることも出来る。また、上記例においては、1次側コイルおよび2次側コイルの形状を平面巻線型コイルとしたが、円形の平面コイルに限定されるものでなく、多角形コイルであれば本発明の効果が得られることは勿論である。   As shown in FIG. 1A, the non-contact power transmission device 10 uses electromagnetic induction between the opposing primary side and secondary side coils 1 and 2, and uses the primary side coils 1 to 2 via the gap 3. Electric power is transmitted to the secondary coil 2 in a non-contact manner. The primary coil 1 includes a plurality of planar winding coils 1a, 1b,..., 1f, and the secondary coil 2 includes one or more planar winding coils 2a. A soft magnetic material plate or sheet 4 is attached to the back surface (outer surface) of the primary coil 1. Also, a similar soft magnetic material plate or sheet 4 can be attached to the back surface (outer surface) of the secondary coil side 2. In the above example, the shape of the primary side coil and the secondary side coil is a planar winding type coil. However, the shape is not limited to a circular planar coil, and the effect of the present invention can be achieved if it is a polygonal coil. Of course, it can be obtained.

また、上記例においては、対向するコイル背面へ軟磁性材からなる板またはシート4を配置しているが、この磁性材は、発生磁界を収束させる効果があり、1次側コイル1と2次側コイル2の磁気結合を向上し、出力の向上に寄与するものである。   In the above example, the plate or sheet 4 made of a soft magnetic material is disposed on the opposite coil back surface. However, this magnetic material has an effect of converging the generated magnetic field, and the primary coil 1 and the secondary coil 1 are secondary. This improves the magnetic coupling of the side coil 2 and contributes to an improvement in output.

図1に示す非接触電力伝送装置10は、1次側コイル1に複数の平面巻線型コイル1a,1b,・・・,1f、2次側コイル2に1個以上の平面巻線型コイル2bを備えている。そして、この2次側コイル2の外径(2次側コイル外径)は1次側コイル1の外径(1次側コイル外径)よりも小さい。この非接触電力伝送装置10は、図9に示す従来技術による非接触電力伝送装置50とは、1次側コイル1の平面巻線型コイル1a,1b,・・・,1fの個数が異なり、2次側コイルの平面巻線型コイル2aの2次側コイル外径は1次側コイル外径より大きく形成されている。   1, the primary coil 1 has a plurality of planar winding coils 1a, 1b,..., 1f, and the secondary coil 2 has one or more planar winding coils 2b. I have. The outer diameter of the secondary coil 2 (secondary coil outer diameter) is smaller than the outer diameter of the primary coil 1 (primary coil outer diameter). This non-contact power transmission apparatus 10 differs from the non-contact power transmission apparatus 50 according to the prior art shown in FIG. 9 in that the number of planar winding coils 1a, 1b,. The secondary coil outer diameter of the planar coil 2a of the secondary coil is formed larger than the primary coil outer diameter.

(実施例2)
本発明の実施例2では、非接触電力伝送装置の1次側コイルの発生する磁束の向きについて説明する。
(Example 2)
In the second embodiment of the present invention, the direction of the magnetic flux generated by the primary coil of the non-contact power transmission apparatus will be described.

図2(a)及び図2(b)は図1に示す非接触電力伝送装置10を適用した例を示し、図2(a)は、図1に示された1次側、2次側コイルの配置において、隣接する1次側コイルで発生する磁束の向きが並行、図2(b)は隣接する1次側コイルで発生する磁束の向きが反並行の場合を示している。   2A and 2B show an example in which the non-contact power transmission apparatus 10 shown in FIG. 1 is applied, and FIG. 2A shows the primary side and secondary side coils shown in FIG. In this arrangement, the direction of the magnetic flux generated in the adjacent primary coil is parallel, and FIG. 2B shows the case where the direction of the magnetic flux generated in the adjacent primary coil is antiparallel.

図2(a)に示すように、非接触電力伝送装置10において、複数の1次側平面巻線型コイル1a,1bを並べる構成に於いて、隣接するコイル1a,1bで発生する磁束の向きが並行となる構成である。   As shown in FIG. 2A, in the non-contact power transmission device 10, in the configuration in which a plurality of primary side planar winding coils 1a and 1b are arranged, the direction of the magnetic flux generated in the adjacent coils 1a and 1b is This is a parallel configuration.

また、図2(b)に示すように、非接触電力伝送装置10において、複数の1次側平面巻線型コイル1a,1bを並べる構成に於いて、隣接するコイル1a,1b間で発生する磁束の向きが反並行となる構成である。   In addition, as shown in FIG. 2B, in the non-contact power transmission device 10, in the configuration in which a plurality of primary side planar winding coils 1a and 1b are arranged, the magnetic flux generated between the adjacent coils 1a and 1b. This is a configuration in which the directions are antiparallel.

(実施例3)
本発明の実施例3では、軟磁性材を配置したときの非接触電力伝送装置の具体的特性の測定について説明する。
(Example 3)
In Example 3 of the present invention, measurement of specific characteristics of a non-contact power transmission device when a soft magnetic material is disposed will be described.

図3は図1及び図2(a)、図2(b)の非接触電力伝送装置の具体的特性の測定例を示している。   FIG. 3 shows a measurement example of specific characteristics of the non-contact power transmission apparatus of FIGS. 1, 2 (a), and 2 (b).

図3(a)は軟磁性部材4をそれぞれに配置した時の1次コイルL1の中心からの位置ずれXにおける結合係数特性を示している。図3(b)は、軟磁性部材4をそれぞれに配置した時の1次コイルL1の2次コイルL2の中心からの位置ずれ量(X)で位置ずれした状態を示す斜視図である。   FIG. 3A shows the coupling coefficient characteristic at the positional deviation X from the center of the primary coil L1 when the soft magnetic members 4 are arranged respectively. FIG. 3B is a perspective view showing a state in which the primary coil L1 is displaced by the amount of displacement (X) from the center of the secondary coil L2 when the soft magnetic members 4 are arranged.

図3(b)に示すように、コイル形状は外径84[mm]、内径40[mm]の1次コイル1と外径30[mm]、内径15[mm]の2次コイル2を用いた。測定方法はコイル間gap1[mm]、周波数120[kHz]、定電流50[mA]と設定しLCRメータよりインダクタンスを測定後、磁気結合係数を算出した。   As shown in FIG. 3B, the primary coil 1 having an outer diameter of 84 [mm] and an inner diameter of 40 [mm] and the secondary coil 2 having an outer diameter of 30 [mm] and an inner diameter of 15 [mm] are used. It was. The measuring method was set as gap 1 [mm] between coils, frequency 120 [kHz], constant current 50 [mA], and after measuring the inductance from an LCR meter, the magnetic coupling coefficient was calculated.

測定は、空心時、軟磁性材料4を対向するコイル背面に配置し、1次側のみ、2次側のみ、両方、配置なしの4パターンである。軟磁性材料4にはMnZnフェライト板をコイル面よりやや大きめに配置している。   In the measurement, the soft magnetic material 4 is arranged on the opposite coil back surface in the air-centered state, and there are four patterns in which only the primary side and only the secondary side are not arranged. In the soft magnetic material 4, a MnZn ferrite plate is arranged slightly larger than the coil surface.

コイル中心軸合致時から面方向に移動して、1次コイル1と2次コイル2との間の結合係数kを測定した。   The coupling coefficient k between the primary coil 1 and the secondary coil 2 was measured by moving in the plane direction from the time when the coil center axis matched.

図3(a)の結果から軟磁性部材4の配置において、対向するコイルの背面に磁性体板またはシートを配置することにより、広い範囲で磁気結合係数特性kが向上し、より広い範囲で高い出力が向上することが分かる。   From the result of FIG. 3A, in the arrangement of the soft magnetic member 4, the magnetic coupling coefficient characteristic k is improved in a wide range by arranging a magnetic body plate or sheet on the back surface of the opposing coil, and is high in a wider range. It can be seen that the output is improved.

(実施例4)
次に、本発明の非接触電力伝送装置の1次側コイル1と2次側コイル2との間の磁気結合係数kを低減したことについて説明する。
Example 4
Next, the reduction of the magnetic coupling coefficient k between the primary side coil 1 and the secondary side coil 2 of the non-contact power transmission apparatus of the present invention will be described.

外径600[mm]、内径300[mm]の平面巻線型コイル2枚をコイル間ギャップ0[mm]にて向かい合わせたとき、磁気結合係数kは0.96となる。   When two flat-winding coils having an outer diameter of 600 [mm] and an inner diameter of 300 [mm] face each other with a gap between coils of 0 [mm], the magnetic coupling coefficient k is 0.96.

これより小さなコイルを用いた場合または、2つのコイルに大きさの差がある場合、またコイルの中心同士がずれた場合は磁気結合係数kの値は更に減少する。   When a coil smaller than this is used, when there is a difference in size between the two coils, or when the centers of the coils are shifted from each other, the value of the magnetic coupling coefficient k further decreases.

このような低結合状態のコイルにおいて具体的に非接触電力伝送を行い、外径84[mm]、内径40[mm]の1次コイルと外径30[mm]、内径15[mm]の2次コイルを用いて、磁気結合係数が0.05となる状況下で15V入力のとき2V出力を得、非接触電力伝送が可能であることを確認した。   In such a low-coupled coil, non-contact power transmission is specifically performed, and a primary coil having an outer diameter of 84 [mm] and an inner diameter of 40 [mm], an outer diameter of 30 [mm], and an inner diameter of 2 [15]. Using the secondary coil, it was confirmed that 2V output was obtained at 15V input under the situation where the magnetic coupling coefficient was 0.05, and non-contact power transmission was possible.

ただし、磁気結合係数kが0.05より低いときコイル間伝送効率は非常に悪いため,有用な非接触伝送はほぼ行えなくなった。   However, when the magnetic coupling coefficient k is lower than 0.05, the inter-coil transmission efficiency is very poor, so that useful non-contact transmission is almost impossible.

尚、対向する1次側、及び2次側コイル1の背面に磁性体4を配置し、コイル間ギャップを0mmとした場合、磁気結合係数は0.98以上となるが、コイル間の位置ズレXによる出力の変動が顕著となり、有用な状態とは云えない。   In addition, when the magnetic body 4 is arranged on the back side of the opposing primary side and secondary side coil 1 and the gap between the coils is set to 0 mm, the magnetic coupling coefficient becomes 0.98 or more, but the positional deviation between the coils. The fluctuation of the output due to X becomes remarkable, and it cannot be said that it is a useful state.

したがって、1次側、2次側コイル1,2間の磁気結合係数kは0.05〜0.95が好ましいと云える。   Therefore, it can be said that the magnetic coupling coefficient k between the primary side and secondary side coils 1 and 2 is preferably 0.05 to 0.95.

即ち、本発明による非接触電力伝送装置10において、1次側コイル1と2次側コイル2との間の磁気結合係数が0.05〜0.95となるようなコイル配置としている。このように磁気結合係数が0.05〜0.95の範囲のものは、従来のトランスとは異なっている。すなわち、従来のトランスは、出力を重視するため、整磁鋼やフェライトで閉磁路鉄心を構成し、1次側巻き線と2次側巻き線の結合が高くなる構成としている。これを結合係数kでいえば、いかにして1に限りなく近づけるかが重要となり、結合係数kは0.99を越える領域が常識となる。しかしながら、これらの構成は1次側コイルと2次側コイルの位置ズレの許容度は無いに等しい選択となる。   That is, in the non-contact power transmission apparatus 10 according to the present invention, the coil arrangement is such that the magnetic coupling coefficient between the primary coil 1 and the secondary coil 2 is 0.05 to 0.95. Thus, the thing of the range whose magnetic coupling coefficient is 0.05-0.95 is different from the conventional transformer. That is, in order to place importance on the output, the conventional transformer has a configuration in which a closed magnetic circuit core is formed of magnetic shunt steel or ferrite and the coupling between the primary winding and the secondary winding is increased. In terms of the coupling coefficient k, it is important how to approach 1 as much as possible, and a region where the coupling coefficient k exceeds 0.99 is common sense. However, these configurations are the same selection with no allowance for positional deviation between the primary coil and the secondary coil.

これに対して、本発明の実施例4においては、電力伝送に利便性を持たせるため、広い位置範囲で電力伝送ができるように構成している。1次側コイル1と2次側コイル2の結合係数を0.05〜0.95とすることにより、広い範囲で高い出力と安定した電力伝送が実現できる。   On the other hand, the fourth embodiment of the present invention is configured so that power can be transmitted in a wide position range in order to provide convenience for power transmission. By setting the coupling coefficient between the primary coil 1 and the secondary coil 2 to 0.05 to 0.95, high output and stable power transmission can be realized in a wide range.

(実施例5)
本発明の実施例5では、非接触電力伝送装置の中心間の位置ズレ量(距離)Xと隣接するコイル間の結合係数kとの関係について説明する。
(Example 5)
In the fifth embodiment of the present invention, the relationship between the positional deviation amount (distance) X between the centers of the non-contact power transmission devices and the coupling coefficient k between adjacent coils will be described.

図4(a)は本発明による非接触電力伝送装置の1次側コイル1a,1bの中心間の位置ズレ量(距離)Xと結合係数kとの関係を示す図で、図4(b)は位置すれ量Xを示す斜視図、図4(c)は位置ズレ量Xが(D)÷2である状態を示す平面図、図4(d)は位置ズレ量XがDである状態を示す平面図である。 FIG. 4A is a diagram showing the relationship between the amount of positional deviation (distance) X between the centers of the primary side coils 1a and 1b of the contactless power transmission apparatus according to the present invention and the coupling coefficient k, and FIG. Is a perspective view showing the displacement amount X, FIG. 4C is a plan view showing a state in which the displacement amount X is (D o D i ) / 2, and FIG. 4D is a position displacement amount X that is D o. It is a top view which shows the state which is.

1次側コイル1a,1bの形状は外径84[mm]、内径40[mm]のものを使用した。隣接する1次側コイル同士の磁気結合係数kを評価し、互いの電気的干渉度合を調べた。   The primary side coils 1a and 1b used were those having an outer diameter of 84 [mm] and an inner diameter of 40 [mm]. The magnetic coupling coefficient k between adjacent primary coils was evaluated, and the degree of mutual electrical interference was examined.

磁気結合係数kの測定方法は、実施例3と同様にした。ただし、コイル間gap(ギャップ)0[mm]、1次側コイルの裏面に軟磁性材4を貼付して、測定した。その結果、図4(a)に示すように、磁気結合係数kが0.5以下において隣接するコイル間の相互作用が減少し、安定した電力伝送が出来ることが確認された。ここで1次コイルの外径をD、内径をDと定義するとコイル中心間距離Xが図4(c)で示す(D−D)÷2以上で、図4(d)に示すようにDよりも小さな場合、即ち、下記数1式で示す範囲で1次側コイルを重ね合わせることで、1次側コイル間の磁気的干渉を低減した配置が可能になることが分かる。これにより、伝送不能な死点を縮小、低減できることになる。 The method for measuring the magnetic coupling coefficient k was the same as in Example 3. However, the gap (coil) between coils 0 [mm] was measured by attaching the soft magnetic material 4 to the back surface of the primary coil. As a result, as shown in FIG. 4 (a), it was confirmed that when the magnetic coupling coefficient k is 0.5 or less, the interaction between adjacent coils decreases, and stable power transmission can be performed. If the outer diameter of the primary coil is defined as D o and the inner diameter is defined as D i , the distance X between the coil centers is (D o −D i ) / 2 or more as shown in FIG. If smaller than D o as shown, i.e., by superimposing the primary coil in the range shown by equation (1) below, it can be seen that it is possible to place with reduced magnetic interference between the primary coil . As a result, dead points that cannot be transmitted can be reduced or reduced.

Figure 0005224442
Figure 0005224442

したがって、非接触電力伝送装置10a,10bのいずれかにおいて、構成する1次側平面巻線型コイル1a,1bの外径をD、内径をDとし、隣接する二つの1次側コイル1a,1b間の中心間距離をXとした場合、上記数1式で示す範囲となるようにコイル配置とすることが好ましいことが判明した。 Therefore, the non-contact power transmission apparatus 10a, in any of the 10b, the primary-side planar wire-wound coils 1a constituting the outer diameter of 1b D o, an inner diameter and D i, two adjacent primary coil 1a, When the distance between the centers between 1b is X, it has been found that it is preferable to arrange the coils so as to be in the range represented by the above equation (1).

(実施例6)
本発明の実施例6では、非接触電力伝送装置の1次側コイル1a,1b間の位相差と、出力電圧特性との関係について説明する。
(Example 6)
In the sixth embodiment of the present invention, the relationship between the phase difference between the primary coils 1a and 1b of the non-contact power transmission apparatus and the output voltage characteristic will be described.

図5は本発明の実施例6による非接触電力伝送装置の測定回路の構成例を示す回路図である。図6(a)は図5の測定によって求められた各位相差(0度、60度、90度、120度、180度)における中心位置ズレ量Xと出力電圧との関係を示す図である。図6(b)は測定位置概要を示す図である。図5に示すように、使用したコイル形状は実施例3および実施例5と同様である。ただし、1次、2次側に軟磁性材料4を貼付とし、1次側コイル1配置は実施例5の中から磁気結合係数が最も低い50[mm]とした。測定条件は入力電圧を一定に設定し隣接するコイル間に流れる電流の位相差を0°〜180°とし、ギャップ(gap)1[mm]、周波数120[kHz]で測定を行った。また、測定範囲はコイル中心間距離50[mm]である。   FIG. 5 is a circuit diagram showing a configuration example of a measurement circuit of a non-contact power transmission apparatus according to Embodiment 6 of the present invention. FIG. 6A is a diagram showing the relationship between the center position deviation amount X and the output voltage at each phase difference (0 degree, 60 degrees, 90 degrees, 120 degrees, and 180 degrees) obtained by the measurement of FIG. FIG. 6B is a diagram showing an outline of the measurement position. As shown in FIG. 5, the coil shape used is the same as in the third and fifth embodiments. However, the soft magnetic material 4 was pasted on the primary and secondary sides, and the primary coil 1 was placed at 50 [mm], the lowest magnetic coupling coefficient in the fifth embodiment. The measurement conditions were such that the input voltage was set constant, the phase difference of the current flowing between adjacent coils was 0 ° to 180 °, and the measurement was performed with a gap 1 [mm] and a frequency 120 [kHz]. The measurement range is a coil center distance of 50 [mm].

図6(b)に示すように、1次側平面巻線型コイル1a,1b間のコイル中心間距離を50mmにして一つ1次側平面巻線型コイル1aから他方の1次側平面巻線型コイル1bへ向かって、2次側平面巻線型コイル2aを移動させ、一方の1次側平面巻線型コイル1aの中心から、もう一つの1次側平面巻線型コイル1bの中心に向かって、2次側平面巻線型コイル2aの中心の1次側平面巻線型コイル1aの中心からの位置ずれ量(移動量)Xと出力電圧との関係を求めた。   As shown in FIG. 6B, the distance between the coil centers of the primary side planar winding type coils 1a and 1b is set to 50 mm, and the primary side planar winding type coil 1a to the other primary side planar winding type coil. The secondary side planar winding type coil 2a is moved toward 1b, and the secondary side planar winding type coil 1a is moved toward the center of the other primary side planar winding type coil 1b. The relationship between the positional deviation amount (movement amount) X from the center of the primary planar coil 1a at the center of the side planar coil 2a and the output voltage was determined.

図6(a)に示すように、励磁電流の位相差αを60°〜120°に設定して隣接する1次コイルを駆動すると、位相差が0°のとき(同相駆動)および180°のとき(逆相駆動)に比較して、位置ずれ量Xによる出力電圧変動は著しく低減している。   As shown in FIG. 6A, when the adjacent primary coil is driven with the phase difference α of the excitation current set to 60 ° to 120 °, the phase difference is 0 ° (in-phase drive) and 180 °. Compared to the time (reverse phase drive), the output voltage fluctuation due to the positional deviation amount X is remarkably reduced.

また、位相差が30°及び150°では、位置変動への低減効果はこれらに比較し小さくなるが、出力電圧特性はそれぞれ20%以上(位置ずれ5mm点にて)、33%以上(位置ずれ25mm点にて)改善されることが確認できた。   In addition, when the phase difference is 30 ° and 150 °, the reduction effect on the position fluctuation is smaller than these, but the output voltage characteristics are 20% or more (at a position deviation of 5 mm) and 33% or more (position deviation). It was confirmed that it was improved (at 25 mm point).

このように、実施例6においては、隣り合う1次側平面巻線型コイル1a,1bに流れる励磁電流に位相差30°〜150°を設けることにより、1次側平面巻線型コイル1aの平面上に移動磁界を形成し不感地点を改善するため、平面上に2次側平面巻線型コイル2aが位置した場合、全面において受電電力が得られるようになる。   Thus, in the sixth embodiment, the phase difference of 30 ° to 150 ° is provided in the excitation current flowing in the adjacent primary side planar winding type coils 1a and 1b, so that the primary side planar winding type coil 1a is on the plane. In order to improve the dead point by forming a moving magnetic field, when the secondary planar winding coil 2a is positioned on the plane, the received power can be obtained on the entire surface.

(実施例7)
本発明の実施例7では、隣接する1次側コイルに夫々異なる励磁周波数で励磁したときに特性の変化について説明する。
(Example 7)
In the seventh embodiment of the present invention, changes in characteristics when adjacent primary coils are excited at different excitation frequencies will be described.

図7は、本発明の非接触電力伝送装置の1次側コイルを異なる励磁周波数で励磁する際の特性測定回路の構成例を示す回路図である。図8(a)は図7の測定によって求められた励磁周波数差(0Hz、10Hz、1kHz、10kHz)における中心位置ズレ量Xと出力電圧との関係を示す図である。図8(b)は測定位置概要を示す図である。   FIG. 7 is a circuit diagram showing a configuration example of a characteristic measurement circuit when exciting the primary side coil of the contactless power transmission apparatus of the present invention at different excitation frequencies. FIG. 8A is a diagram showing the relationship between the center position deviation amount X and the output voltage in the excitation frequency difference (0 Hz, 10 Hz, 1 kHz, 10 kHz) obtained by the measurement of FIG. FIG. 8B is a diagram showing an outline of the measurement position.

図7及び図8(b)を参照すると、使用するコイル形状、測定条件および測定範囲は図6の例と同様に行った。ただし一方の1次側コイルの励磁周波数は140[kHz]で固定とし、他方のコイルの励磁周波数は140[kHz]を中心に0[Hz]〜10[kHz]の範囲でずらして設定した。同一周波数になるときはコイル間に位相差は設定していない(逆相駆動)。   Referring to FIGS. 7 and 8B, the coil shape, measurement conditions, and measurement range used were the same as in the example of FIG. However, the excitation frequency of one primary side coil was fixed at 140 [kHz], and the excitation frequency of the other coil was set to be shifted in the range of 0 [Hz] to 10 [kHz] around 140 [kHz]. When the frequency is the same, no phase difference is set between the coils (reverse phase drive).

図8(b)に示すように、励磁周波数の差を10[Hz]〜10[kHz]とした場合、顕著な安定性の改善を確認した。異なる周波数を用い1次側コイル平面上にうなり磁界を形成すると不感地点を改善するため、平面上に2次コイルが位置した場合、全面において受電電力が得られるようになることが分かる。片方のコイルの励磁周波数fとし、他方のコイルの励磁周波数をfiとし、それらの周波数差△f=|fi−f|とし、fに対するfiの周波数変化率として、△f/fという値を定義した。この値が0.01%以上のとき上記の改善が顕著に認められる。尚、図8(a)からは、励磁周波数の差を5Hzとしても、明らかな出力電圧の改善が図られると推定できる。また電力伝送装置を具現化する際、それぞれの1次コイルで励磁周波数が10%以上異なることは、伝送系にLCの共振フィルタ回路を用いている点から現実的ではなくなる。よって、△f/fの好ましい範囲を0.005〜10%と定めた。   As shown in FIG. 8B, when the difference in excitation frequency was 10 [Hz] to 10 [kHz], significant improvement in stability was confirmed. It can be seen that when a beat magnetic field is formed on the primary coil plane using different frequencies, the dead point is improved, so that when the secondary coil is positioned on the plane, the received power can be obtained on the entire surface. The excitation frequency f of one coil is set to fi, the excitation frequency of the other coil is set to fi, the frequency difference Δf = | fi−f |, and the value Δf / f is defined as the frequency change rate of fi with respect to f. did. When this value is 0.01% or more, the above improvement is noticeable. From FIG. 8A, it can be estimated that the output voltage is clearly improved even if the difference in excitation frequency is 5 Hz. Further, when realizing the power transmission device, it is not realistic that the excitation frequency differs by 10% or more in each primary coil from the point of using an LC resonance filter circuit in the transmission system. Therefore, the preferable range of Δf / f is set to 0.005 to 10%.

本発明の非接触電力伝送装置は、携帯電子機器、携帯電子機器等への電力伝送に適用される。   The contactless power transmission device of the present invention is applied to power transmission to portable electronic devices, portable electronic devices, and the like.

本発明の実施例1による非接触電力伝送装置のコイルの配置の一例を主に示す斜視図である。It is a perspective view which mainly shows an example of arrangement | positioning of the coil of the non-contact electric power transmission apparatus by Example 1 of this invention. (a)は、図1(a)に示された1次側、2次側コイルの配置を示す図で、1次側コイルで発生する磁束の向きが並行の場合を示している図である。(b)は、図1(a)に示された1次側、2次側コイルの配置を示す図で、1次側コイルで発生する磁束の向きが反並行の場合を示している図である。(A) is a figure which shows arrangement | positioning of the primary side secondary coil shown by Fig.1 (a), and is a figure which shows the case where the direction of the magnetic flux generated by a primary side coil is parallel. . (B) is a figure which shows arrangement | positioning of the primary side secondary coil shown by Fig.1 (a), and is a figure which shows the case where the direction of the magnetic flux which generate | occur | produces in a primary side coil is antiparallel. is there. (a)は軟磁性部材4をそれぞれに配置した時の1次コイルL1の中心からの位置ずれXにおける1次側コイルと2次側コイルとの結合係数特性を示している。(b)は、軟磁性部材4をそれぞれに配置した時の1次コイルL1の2次コイルL2の中心からの位置ズレ量(X)で位置ズレした状態を示す斜視図である。(A) has shown the coupling coefficient characteristic of the primary side coil and secondary side coil in the position shift X from the center of the primary coil L1 when the soft-magnetic member 4 is each arrange | positioned. (B) is a perspective view showing a state in which the primary coil L1 is displaced by a positional deviation amount (X) from the center of the secondary coil L2 when the soft magnetic members 4 are respectively disposed. (a)は本発明による非接触電力伝送装置の1次側コイル1a,1bの中心間の位置ズレ量(距離)Xと隣接する1次側コイル間の結合係数kとの関係を示す図である。(b)は位置ズレ量Xを示す斜視図である。(c)は位置ズレ量Xが(D−D)÷2である状態を示す平面図である。(d)は位置ズレ量XがDである状態を示す平面図である。(A) is a figure which shows the relationship between the positional offset amount (distance) X between the center of the primary side coils 1a and 1b of the non-contact electric power transmission apparatus by this invention, and the coupling coefficient k between adjacent primary side coils. is there. (B) is a perspective view showing a positional deviation amount X. FIG. (C) is a plan view showing a state in which the positional deviation amount X is (D o −D i ) / 2. (D) is a plan view showing a state in which the positional deviation amount X is Do. 本発明の実施例6による非接触電力伝送装置の測定回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the measuring circuit of the non-contact electric power transmission apparatus by Example 6 of this invention. (a)は図5の測定によって求められた各位相差(0度、60度、90度、120度、180度)における中心位置ズレ量Xと出力電圧との関係を示す図である。(b)は測定位置の概要を示す図である。(A) is a figure which shows the relationship between center position deviation | shift amount X and output voltage in each phase difference (0 degree, 60 degree | times, 90 degree | times, 120 degree | times, 180 degree | times) calculated | required by the measurement of FIG. (B) is a figure which shows the outline | summary of a measurement position. 本発明の非接触電力伝送装置の1次側コイルを異なる励磁周波数で励磁する際の特性測定回路の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the characteristic measurement circuit at the time of exciting the primary side coil of the non-contact electric power transmission apparatus of this invention with a different excitation frequency. (a)は図7の測定によって求められた励磁周波数差(0Hz、10Hz、1kHz、10kHz)における中心位置ズレ量Xと出力電圧との関係を示す図である。(b)は測定位置の概要を示す図である。(A) is a figure which shows the relationship between the center position shift | offset | difference amount X and the output voltage in the excitation frequency difference (0 Hz, 10 Hz, 1 kHz, 10 kHz) calculated | required by the measurement of FIG. (B) is a figure which shows the outline | summary of a measurement position. 従来例(非特許文献2)による非接触電力伝送装置のコイルの配置を主に示す斜視図である。It is a perspective view which mainly shows arrangement | positioning of the coil of the non-contact electric power transmission apparatus by a prior art example (nonpatent literature 2).

符号の説明Explanation of symbols

1 1次側コイル
1a,1b,1c,1d,1e,1f,1g,1h,1i 平面巻線型コイル
2 2次側コイル
2a 平面巻線型コイル
3 空隙
4 軟磁性材からなる板またはシート
10,50 非接触電力伝送装置
DESCRIPTION OF SYMBOLS 1 Primary side coil 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i Planar winding type coil 2 Secondary side coil 2a Planar winding type coil 3 Air gap 4 Plate or sheet made of soft magnetic material 10, 50 Non-contact power transmission device

Claims (5)

相対するコイル間の電磁誘導を用い、空隙を介して1次側コイルから2次側コイルに非接触にて電力を伝送する電力伝送装置に於いて、前記1次側コイル複数の同形状の平面型コイル、前記2次側コイルを1以上の平面型コイルで夫々構成し、前記2次側コイルの外径を、前記1次側コイルの内径よりも小に形成し、前記1次側平面型コイルの外径をD、内径をDとし、隣接する二つの前記1次側平面型コイル間の中心間距離をXとした場合、(D−D)÷2≦X<Dとなるようなコイル配置としたことを特徴とする非接触電力伝送装置。 Using electromagnetic induction between opposing coils, in the power transmission apparatus for transmitting power in a non-contact from the primary coil to the secondary coil via an air gap, said primary coil to a plurality of same shape planar coil, said secondary coil and respectively constituted by one or more planar coils, the outer diameter of the secondary coil, is formed in the small than the inner diameter of the primary coil, before Symbol primary When the outer diameter of the planar coil is D o , the inner diameter is D i, and the center-to-center distance between two adjacent primary side planar coils is X, (D o −D i ) ÷ 2 ≦ X < non-contact power transmission device being characterized in that the coil arrangement such that the D o. 請求項1に記載の非接触電力伝送装置において、前記複数の1次側平面型コイルを並べる構成に於いて、隣接するコイルで発生する磁束の向きが並行若しくは反並行となるコイル配置とすることを特徴とする非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein in the configuration in which the plurality of primary side planar coils are arranged, a coil arrangement in which directions of magnetic fluxes generated in adjacent coils are parallel or antiparallel is adopted. A non-contact power transmission device characterized by the above. 請求項1又は2に記載の非接触電力伝送装置において、対向する前記1次側平面型コイルと前記2次側平面型コイルの何れか一方、または双方の外側部に、軟磁性材料を配置することを特徴とする非接触電力伝送装置。   3. The non-contact power transmission device according to claim 1, wherein a soft magnetic material is disposed on an outer portion of one or both of the primary planar coil and the secondary planar coil facing each other. A non-contact power transmission device. 請求項1〜3の内のいずれか一項に記載される非接触電力伝送装置において、前記1次側コイルと前記2次側コイルとの間の磁気結合係数が0.05〜0.95となるようなコイル配置とすることを特徴とする非接触電力伝送装置。   The contactless power transmission device according to any one of claims 1 to 3, wherein a magnetic coupling coefficient between the primary side coil and the secondary side coil is 0.05 to 0.95. A non-contact power transmission device characterized by having a coil arrangement as described above. 請求項1〜4のいずれか一項に記載の非接触電力伝送装置において、1次側の隣接コイルに流れる励磁電流の位相差を30°〜150°とすることを特徴とする非接触電力伝送装置。   5. The non-contact power transmission apparatus according to claim 1, wherein a phase difference between excitation currents flowing through adjacent coils on the primary side is set to 30 ° to 150 °. 6. apparatus.
JP2007341042A 2007-12-28 2007-12-28 Non-contact power transmission device Expired - Fee Related JP5224442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341042A JP5224442B2 (en) 2007-12-28 2007-12-28 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341042A JP5224442B2 (en) 2007-12-28 2007-12-28 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2009164293A JP2009164293A (en) 2009-07-23
JP5224442B2 true JP5224442B2 (en) 2013-07-03

Family

ID=40966582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341042A Expired - Fee Related JP5224442B2 (en) 2007-12-28 2007-12-28 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5224442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027384A (en) * 2013-01-30 2015-11-04 富士通株式会社 Power transmitter, wireless power transfer system, and wireless power transfer method
KR101741776B1 (en) 2015-10-26 2017-05-31 한국과학기술원 Apparatus for Transmitting Wireless Power of Magnetic Resonance Based on Structure of Segmentation

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625750B (en) * 2009-08-07 2015-04-15 奥克兰联合服务有限公司 Roadway powered electric vehicle system
WO2011145953A1 (en) * 2010-05-19 2011-11-24 Auckland Uniservices Limited Inductive power transfer system primary track topologies
WO2011148291A1 (en) * 2010-05-28 2011-12-01 Koninklijke Philips Electronics N.V. Improved receiver coil
JP5488210B2 (en) * 2010-06-02 2014-05-14 株式会社豊田自動織機 Resonance type non-contact power receiving apparatus positioning support apparatus and resonance type non-contact power receiving apparatus positioning method
KR101134625B1 (en) * 2010-07-16 2012-04-09 주식회사 한림포스텍 Core assembly for wireless power transmission, power supplying apparatus for wireless power transmission having the same, and method for manufacturing core assembly for wireless power transmission
JP2012039691A (en) * 2010-08-04 2012-02-23 Yazaki Corp Noncontact power transmission apparatus and power reception coil used for the same
EP2601723B1 (en) * 2010-08-06 2020-04-22 Auckland UniServices Limited Inductive power receiver apparatus
CN103081293B (en) * 2010-09-03 2016-02-03 富士通株式会社 Wireless power transmission device
JP2012175806A (en) * 2011-02-22 2012-09-10 Panasonic Corp Non-contact type feeding device
JP2012186949A (en) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd Non-contact power transmission device utilizing magnetic field resonance
EP2705521B1 (en) 2011-05-03 2021-06-23 Phoenix Contact GmbH & Co. KG Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils
EP2524834A1 (en) 2011-05-18 2012-11-21 Brusa Elektronik AG Device for inductive charging of at least one electrical energy storage device of an electric car
KR101213090B1 (en) * 2011-07-14 2012-12-18 유한회사 한림포스텍 Core assembly for wireless power transmission apparatus and wireless power transmission apparatus having the same
KR101880030B1 (en) 2011-08-25 2018-07-23 삼성전자주식회사 Sauce apparatus and method that control magnetic field using two sauce resonators in Wireless Resonant Power Transfer system
JP5954698B2 (en) * 2011-10-17 2016-07-20 パナソニックIpマネジメント株式会社 Non-contact power feeder and primary coil block of non-contact power feeder
US9697952B2 (en) 2011-10-27 2017-07-04 Toyota Jidosha Kabushiki Kaisha Non-contact electric power reception device, non-contact electric power transmission device, and non-contact electric power transmission and reception system
US9270342B2 (en) 2011-12-16 2016-02-23 Qualcomm Incorporated System and method for low loss wireless power transmission
KR20140129172A (en) * 2012-02-16 2014-11-06 오클랜드 유니서비시즈 리미티드 Multiple coil flux pad
JP6083652B2 (en) 2012-05-28 2017-02-22 パナソニックIpマネジメント株式会社 Contactless connector system
JP6100502B2 (en) * 2012-10-31 2017-03-22 トヨタ自動車株式会社 Power receiving device and power transmission system
KR101369157B1 (en) 2013-03-29 2014-03-06 한국과학기술원 Wireless power transfer apparatus by using magnetic induction
JP2015053751A (en) * 2013-09-05 2015-03-19 Tdk株式会社 Non-contact power transmission device
JP6824737B2 (en) 2013-11-13 2021-02-03 アップル インコーポレイテッドApple Inc. Transmitter for inductive power transmission system
JP2015123334A (en) * 2013-12-27 2015-07-06 オリンパス株式会社 Radio transmitter and biological information acquisition system
JP6410287B2 (en) * 2014-02-10 2018-10-24 国立大学法人埼玉大学 Contactless power supply system
JP6432366B2 (en) * 2014-03-31 2018-12-05 Tdk株式会社 Coil for wireless power transmission and wireless power transmission device
EP3180835A4 (en) 2014-08-12 2017-09-13 PowerbyProxi Limited System and method for power transfer
JP6841760B2 (en) * 2014-09-11 2021-03-10 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Flux coupling structure with controlled flux cancellation
JP6358098B2 (en) * 2015-01-08 2018-07-18 Tdk株式会社 Power feeding device and non-contact power transmission device
US10110070B2 (en) * 2016-04-01 2018-10-23 Intel Corporation Wireless power transmitter with array of transmit coils
JP6531712B2 (en) * 2016-04-28 2019-06-19 株式会社村田製作所 Composite inductor
WO2017204663A1 (en) 2016-05-25 2017-11-30 Powerbyproxi Limited A coil arrangement
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150275A (en) * 1998-11-12 2000-05-30 Alps Electric Co Ltd Non-contact signal transmitter
US6650213B1 (en) * 2000-06-02 2003-11-18 Yamatake Corporation Electromagnetic-induction coupling apparatus
GB2398176B (en) * 2002-05-13 2006-03-08 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
AU2003240999A1 (en) * 2002-05-13 2003-11-11 Splashpower Limited Improvements relating to the transfer of electromagnetic power
JP2004229406A (en) * 2003-01-23 2004-08-12 Sony Corp Isolation transformer
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
CN101263636B (en) * 2005-09-12 2012-06-27 皇家飞利浦电子股份有限公司 Device for recharging batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027384A (en) * 2013-01-30 2015-11-04 富士通株式会社 Power transmitter, wireless power transfer system, and wireless power transfer method
CN105027384B (en) * 2013-01-30 2018-01-26 富士通株式会社 Electrical appliance, Wireless power transmission system and wireless power transmission method
KR101741776B1 (en) 2015-10-26 2017-05-31 한국과학기술원 Apparatus for Transmitting Wireless Power of Magnetic Resonance Based on Structure of Segmentation

Also Published As

Publication number Publication date
JP2009164293A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5224442B2 (en) Non-contact power transmission device
JP5682992B2 (en) Non-contact power transmission device
JP2009188131A (en) Non-contact power transmission device
US10218222B2 (en) Non-contact charging module having a wireless charging coil and a magnetic sheet
US8963490B2 (en) Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
US9525302B2 (en) Noncontact power feeding apparatus and noncontact power feeding method
JP4835794B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
US11431196B2 (en) Misalignment tolerant hybrid wireless power transfer system
JP4835795B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP2012170195A (en) Non-contact power supply device
WO2012132535A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
JP2012143106A (en) Non-contact power feeding device of magnetic field resonance type
JP2012099644A (en) Variable inductance type non-contact power supply device
JP4835796B1 (en) Receiving side non-contact charging module and receiving side non-contact charging device
JP2013208012A (en) Antenna coil unit and magnetic field resonance power supply system
Lin et al. A comparison of multi-coil pads in IPT systems for EV charging
JP6305728B2 (en) Coil unit and power transmission system
JP6541425B2 (en) Wireless power supply system
JP2014023262A (en) Noncontact power supply unit
KR101595774B1 (en) Composite Coil Module for Transmitting Wireless Power
JP2019013144A (en) Power supply device and method, power reception device and method, and computer program
JP2012039692A (en) Noncontact power transmission apparatus
JP5923908B2 (en) Reactor
Yao et al. A comparison study between flat solenoid coupler and planar square coupler for WPT systems
JP5845407B2 (en) Receiving side non-contact charging module and receiving side non-contact charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

R150 Certificate of patent or registration of utility model

Ref document number: 5224442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees