JP6408068B2 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
JP6408068B2
JP6408068B2 JP2017107413A JP2017107413A JP6408068B2 JP 6408068 B2 JP6408068 B2 JP 6408068B2 JP 2017107413 A JP2017107413 A JP 2017107413A JP 2017107413 A JP2017107413 A JP 2017107413A JP 6408068 B2 JP6408068 B2 JP 6408068B2
Authority
JP
Japan
Prior art keywords
battery
signal transmission
battery monitoring
control circuit
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107413A
Other languages
Japanese (ja)
Other versions
JP2017168453A (en
Inventor
光 三浦
光 三浦
睦 菊地
睦 菊地
彰彦 工藤
彰彦 工藤
金井 友範
友範 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017107413A priority Critical patent/JP6408068B2/en
Publication of JP2017168453A publication Critical patent/JP2017168453A/en
Application granted granted Critical
Publication of JP6408068B2 publication Critical patent/JP6408068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池システムに関する。   The present invention relates to a battery system.

従来、複数の電池セルを直列接続した組電池ブロックごとに監視回路を設け、マイコンから各監視回路へ所定の指示信号を出力することにより、組電池の状態監視を行う電池システムが知られている。このような電池システムでは、マイコンと監視回路の間を絶縁するために、絶縁素子としてのフォトカプラが設けられている(特許文献1参照)。   2. Description of the Related Art Conventionally, a battery system that monitors a state of an assembled battery by providing a monitoring circuit for each assembled battery block in which a plurality of battery cells are connected in series and outputting a predetermined instruction signal from a microcomputer to each monitoring circuit is known. . In such a battery system, in order to insulate between the microcomputer and the monitoring circuit, a photocoupler as an insulating element is provided (see Patent Document 1).

特開2007−278913号公報JP 2007-278913 A

特許文献1に開示されたような絶縁方法では、フォトカプラが高電圧である組電池に接続されている。したがって、たとえばマイコンと監視回路の間が離れている場合などは、高電圧の配線を長距離に渡って引き回す必要があるため、安全上の問題を生じる可能性がある。そこで、こうした課題に鑑みて、本発明の主な目的は、安全で信頼性の高い電池システムを提供することにある。   In the insulation method disclosed in Patent Document 1, the photocoupler is connected to a battery pack having a high voltage. Therefore, for example, when the microcomputer and the monitoring circuit are separated from each other, a high voltage wiring needs to be routed over a long distance, which may cause a safety problem. In view of these problems, a main object of the present invention is to provide a safe and highly reliable battery system.

本発明による電池システムの一態様は、複数の電池セルを有する組電池が複数接続された電池モジュールと、前記電池モジュールの各組電池に対応してそれぞれ設けられ、前記組電池の各電池セルの状態をそれぞれ監視する複数の電池監視回路と、複数の基板と、を備え、複数の前記電池監視回路は、互いに異なる前記基板にそれぞれ設けられており、複数の前記基板は、コンデンサをそれぞれ有し、複数の前記電池監視回路は、複数の前記コンデンサおよび一対の中継信号伝送路を介して互いに接続されており、前記一対の中継信号伝送路の電位は、前記電池監視回路の電位に対してそれぞれ浮動電位であり、前記一対の中継信号伝送路は、互いに電気的に独立している
本発明による電池システムの他の一態様は、複数の電池セルを有する組電池が複数接続された電池モジュールと、前記電池モジュールの各組電池に対応して設けられ、前記組電池の各電池セルの状態を監視する電池監視回路と、前記電池監視回路の動作を制御するための制御回路と、前記電池監視回路と前記制御回路の間で入出力される信号を伝送するための第1信号伝送路と、前記制御回路に接続された第1絶縁素子と、前記電池監視回路に接続された第2絶縁素子と、前記制御回路および前記電池監視回路から絶縁された電源を前記第1絶縁素子に供給するための絶縁電源と、前記制御回路の制御に応じて、前記絶縁電源の動作状態を切り替える切替回路と、を備え、前記第1信号伝送路は、前記第1絶縁素子によって前記制御回路から絶縁されると共に、前記第2絶縁素子によって前記電池監視回路から絶縁されており、前記第1信号伝送路の電位は、前記制御回路の電位および前記電池監視回路の電位に対して浮動電位であり、前記第1絶縁素子は、入力側が前記制御回路に接続されて出力側が前記第1信号伝送路に接続された送信用絶縁素子と、入力側が前記第1信号伝送路に接続されて出力側が前記制御回路に接続された受信用絶縁素子とを含み、前記絶縁電源は、前記送信用絶縁素子の出力側および前記受信用絶縁素子の入力側に前記電源を供給する。
One aspect of the battery system according to the present invention includes a battery module in which a plurality of battery packs each having a plurality of battery cells are connected, and a battery module corresponding to each battery pack of the battery module. A plurality of battery monitoring circuits each for monitoring a state; and a plurality of substrates, wherein the plurality of battery monitoring circuits are provided on different substrates, respectively, and the plurality of substrates each have a capacitor. The plurality of battery monitoring circuits are connected to each other via the plurality of capacitors and a pair of relay signal transmission paths, and the potentials of the pair of relay signal transmission paths are respectively with respect to the potential of the battery monitoring circuit floating potential der is, the pair of relay signal transmission path, are electrically independent of each other.
Another aspect of the battery system according to the present invention includes a battery module in which a plurality of battery packs each having a plurality of battery cells are connected, and each battery cell of the battery pack provided corresponding to each battery pack of the battery module. A battery monitoring circuit for monitoring the state of the battery, a control circuit for controlling the operation of the battery monitoring circuit, and a first signal transmission for transmitting signals input / output between the battery monitoring circuit and the control circuit A first insulating element connected to the control circuit, a second insulating element connected to the battery monitoring circuit, and a power source insulated from the control circuit and the battery monitoring circuit to the first insulating element And an insulating power source for supplying and a switching circuit for switching an operating state of the insulating power source according to the control of the control circuit, wherein the first signal transmission line is separated from the control circuit by the first insulating element. And is insulated from the battery monitoring circuit by the second insulating element, and the potential of the first signal transmission path is a floating potential with respect to the potential of the control circuit and the potential of the battery monitoring circuit. The first insulating element includes a transmitting insulating element whose input side is connected to the control circuit and whose output side is connected to the first signal transmission path, and whose input side is connected to the first signal transmission path and whose output side is the output side. A receiving insulating element connected to a control circuit, and the insulating power supply supplies the power to the output side of the transmitting insulating element and the input side of the receiving insulating element.

本発明によれば、安全で信頼性の高い電池システムを提供することができる。   According to the present invention, a safe and highly reliable battery system can be provided.

本発明の第1の実施形態による電池システムの構成を示す図である。It is a figure which shows the structure of the battery system by the 1st Embodiment of this invention. 本発明の第2の実施形態による電池システムの構成を示す図である。It is a figure which shows the structure of the battery system by the 2nd Embodiment of this invention. 本発明の第3の実施形態による電池システムの構成を示す図である。It is a figure which shows the structure of the battery system by the 3rd Embodiment of this invention. 本発明の第4の実施形態による電池システムの構成を示す図である。It is a figure which shows the structure of the battery system by the 4th Embodiment of this invention.

(第1の実施形態)
図1は、本発明の第1の実施形態による電池システムの構成を示す図である。本電池システムは、電池モジュール1、電池監視基板2、電池監視基板3、および上位制御基板5を備える。電池監視基板2、3は、電池監視回路21、31と、通信用コンデンサ23、33とをそれぞれ有する。上位制御基板5は、絶縁素子50、絶縁素子60、絶縁電源8、マイコン9、および電源部10を有する。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a battery system according to a first embodiment of the present invention. The battery system includes a battery module 1, a battery monitoring board 2, a battery monitoring board 3, and a host control board 5. The battery monitoring boards 2 and 3 have battery monitoring circuits 21 and 31 and communication capacitors 23 and 33, respectively. The upper control board 5 includes an insulating element 50, an insulating element 60, an insulated power supply 8, a microcomputer 9, and a power supply unit 10.

電池監視基板2と上位制御基板5は、送信信号伝送路41を介して互いに接続されている。送信信号伝送路41は、上位制御基板5内のマイコン9と電池監視基板2内の電池監視回路21の間で入出力される信号を伝送するための信号伝送路である。また、電池監視基板3と上位制御基板5は、受信信号伝送路42を介して互いに接続されている。受信信号伝送路42は、電池監視基板3内の電池監視回路31と上位制御基板5内のマイコン9の間で入出力される信号を伝送するための信号伝送路である。なお、図1では、送信信号伝送路41および受信信号伝送路42を2線式の差動信号伝送路としてそれぞれ図示しているが、単線式の信号伝送路としてこれらを構成してもよい。   The battery monitoring board 2 and the upper control board 5 are connected to each other via a transmission signal transmission path 41. The transmission signal transmission path 41 is a signal transmission path for transmitting a signal input / output between the microcomputer 9 in the host control board 5 and the battery monitoring circuit 21 in the battery monitoring board 2. Further, the battery monitoring board 3 and the host control board 5 are connected to each other via a reception signal transmission path 42. The reception signal transmission path 42 is a signal transmission path for transmitting a signal input / output between the battery monitoring circuit 31 in the battery monitoring board 3 and the microcomputer 9 in the host control board 5. In FIG. 1, the transmission signal transmission path 41 and the reception signal transmission path 42 are illustrated as two-wire differential signal transmission paths, respectively, but may be configured as a single-wire signal transmission path.

電池モジュール1は、複数の電池セル10をそれぞれ有する組電池11および12が直列に接続されて構成されている。組電池11は電池監視基板2と接続され、組電池12は電池監視基板3と接続されている。   The battery module 1 is configured by connecting assembled batteries 11 and 12 each having a plurality of battery cells 10 in series. The assembled battery 11 is connected to the battery monitoring board 2, and the assembled battery 12 is connected to the battery monitoring board 3.

電池監視基板2は、組電池11に対応して設けられた電池監視回路21を有している。電池監視回路21は、上位制御基板5に設けられたマイコン9からの指令に応じて、組電池11の各電池セル10の電圧等を測定し、その測定結果を基に、組電池11の各電池セル10の状態を監視する。電池監視回路21には内部電源22が内蔵されている。この内部電源22は、組電池11の各電池セル10から供給される電力を用いて、電池監視回路21の動作電源を生成する。   The battery monitoring board 2 has a battery monitoring circuit 21 provided corresponding to the assembled battery 11. The battery monitoring circuit 21 measures the voltage and the like of each battery cell 10 of the assembled battery 11 in accordance with a command from the microcomputer 9 provided on the host control board 5, and each of the assembled batteries 11 is based on the measurement result. The state of the battery cell 10 is monitored. The battery monitoring circuit 21 includes an internal power supply 22. The internal power supply 22 generates an operating power supply for the battery monitoring circuit 21 using the power supplied from each battery cell 10 of the assembled battery 11.

電池監視基板3は、組電池12に対応して設けられた電池監視回路31を有している。電池監視回路31は、上位制御基板5に設けられたマイコン9からの指令に応じて、組電池12の各電池セル10の電圧等を測定し、その測定結果を基に、組電池12の各電池セル10の状態を監視する。電池監視回路31には内部電源32が内蔵されている。この内部電源32は、組電池12の各電池セル10から供給される電力を用いて、電池監視回路31の動作電源を生成する。   The battery monitoring board 3 has a battery monitoring circuit 31 provided corresponding to the assembled battery 12. The battery monitoring circuit 31 measures the voltage and the like of each battery cell 10 of the assembled battery 12 in response to a command from the microcomputer 9 provided on the host control board 5, and based on the measurement result, each of the assembled batteries 12 The state of the battery cell 10 is monitored. The battery monitoring circuit 31 has an internal power supply 32 built therein. The internal power supply 32 generates an operating power supply for the battery monitoring circuit 31 using power supplied from each battery cell 10 of the assembled battery 12.

電池監視基板2と電池監視基板3は、中継信号伝送路43を介して互いに接続されている。中継信号伝送路43は、電池監視回路21と電池監視回路31の間で入出力される中継信号を伝送するための伝送路である。この中継信号伝送路43は、電池監視基板2においては、通信用コンデンサ23を介して電池監視回路21に接続されており、電池監視基板3においては、通信用コンデンサ33を介して電池監視回路31に接続されている。すなわち、中継信号伝送路43は、通信用コンデンサ23、33によって電池監視回路21、31からそれぞれ絶縁されている。これにより、電池監視回路21、31の各電位に対して、中継信号伝送路43の電位は浮動電位となっている。さらに、中継信号伝送路43は、上位制御基板5内のマイコン9の電位に対しても浮動電位となっている。この中継信号伝送路43を介して、電池監視回路21と電池監視回路31の間で、組電池11、12の状態をそれぞれ監視するために用いられる中継信号が互いに送受信される。なお、図1では、中継信号伝送路43を2線式の差動信号伝送路としてそれぞれ図示しているが、単線式の信号伝送路として構成してもよい。   The battery monitoring board 2 and the battery monitoring board 3 are connected to each other via a relay signal transmission path 43. The relay signal transmission path 43 is a transmission path for transmitting a relay signal input / output between the battery monitoring circuit 21 and the battery monitoring circuit 31. The relay signal transmission path 43 is connected to the battery monitoring circuit 21 via the communication capacitor 23 in the battery monitoring board 2, and the battery monitoring circuit 31 via the communication capacitor 33 in the battery monitoring board 3. It is connected to the. That is, the relay signal transmission path 43 is insulated from the battery monitoring circuits 21 and 31 by the communication capacitors 23 and 33, respectively. Thereby, the potential of the relay signal transmission path 43 is a floating potential with respect to each potential of the battery monitoring circuits 21 and 31. Further, the relay signal transmission path 43 is also at a floating potential with respect to the potential of the microcomputer 9 in the upper control board 5. Via the relay signal transmission path 43, relay signals used for monitoring the states of the assembled batteries 11 and 12 are transmitted and received between the battery monitoring circuit 21 and the battery monitoring circuit 31. In FIG. 1, the relay signal transmission path 43 is illustrated as a two-wire differential signal transmission path, but may be configured as a single-wire signal transmission path.

上位制御基板5において、マイコン9は、電池監視回路21および31の動作を制御するための回路であり、絶縁素子50と送信信号伝送路41を介して、電池監視回路21および31に対して所定の指令信号を送信する。この指令信号を受信することで、電池監視回路21、31は、マイコン9からの指令内容に応じた動作をそれぞれ実行する。なお、マイコン9から電池監視回路31への指令信号は、電池監視回路21において一端受信された後、中継信号伝送路43を介した中継信号として電池監視回路31に送信される。   In the host control board 5, the microcomputer 9 is a circuit for controlling the operation of the battery monitoring circuits 21 and 31, and is predetermined for the battery monitoring circuits 21 and 31 via the insulating element 50 and the transmission signal transmission path 41. The command signal is sent. By receiving this command signal, the battery monitoring circuits 21 and 31 each perform an operation according to the command content from the microcomputer 9. Note that the command signal from the microcomputer 9 to the battery monitoring circuit 31 is once received by the battery monitoring circuit 21 and then transmitted to the battery monitoring circuit 31 as a relay signal via the relay signal transmission path 43.

また、マイコン9は、電池監視回路21および31から受信信号伝送路42と絶縁素子60を介して送信される測定信号を受信する。この測定信号は、電池監視回路21、31による組電池21、31の各電池セル10の電圧等の測定結果を示す信号を含んでいる。なお、電池監視回路21からマイコン9への測定信号は、中継信号伝送路43を介した中継信号として電池監視回路31に一端送信された後、電池監視回路31からマイコン9に送信される。   Further, the microcomputer 9 receives measurement signals transmitted from the battery monitoring circuits 21 and 31 via the reception signal transmission path 42 and the insulating element 60. The measurement signal includes a signal indicating a measurement result of the voltage of each battery cell 10 of the assembled batteries 21 and 31 by the battery monitoring circuits 21 and 31. A measurement signal from the battery monitoring circuit 21 to the microcomputer 9 is transmitted to the battery monitoring circuit 31 as a relay signal via the relay signal transmission path 43 and then transmitted from the battery monitoring circuit 31 to the microcomputer 9.

電源部10には鉛蓄電池11が接続されている。電源部10は、鉛蓄電池11から供給される電力を用いて、一次側電源Vccを出力する。この一次側電源Vccは、マイコン9において入力され、マイコン9の動作電源として利用される。また、絶縁素子50および60と、絶縁電源8にも入力される。   A lead storage battery 11 is connected to the power supply unit 10. The power supply unit 10 outputs the primary side power supply Vcc using the power supplied from the lead storage battery 11. The primary power supply Vcc is input to the microcomputer 9 and used as an operating power supply for the microcomputer 9. Further, it is also input to the insulating elements 50 and 60 and the insulating power supply 8.

絶縁電源8は、電源部10から供給される一次側電源Vccを用いて、マイコン9から絶縁された二次側電源Vsを生成する。この二次側電源Vsは、絶縁電源8から、絶縁素子50の出力側(送信信号伝送路41側)および絶縁素子60の入力側(受信信号伝送路42側)に供給される。なお、二次側電源Vsは、電池監視回路21および31からも絶縁されている。   The insulated power supply 8 generates a secondary power supply Vs insulated from the microcomputer 9 by using the primary power supply Vcc supplied from the power supply unit 10. The secondary power supply Vs is supplied from the insulated power supply 8 to the output side (transmission signal transmission path 41 side) of the insulation element 50 and the input side (reception signal transmission path 42 side) of the insulation element 60. The secondary power source Vs is also insulated from the battery monitoring circuits 21 and 31.

絶縁素子50は、マイコン9と送信信号伝送路41の間を絶縁するための素子であり、たとえばフォトカプラ等を用いて構成されている。絶縁素子50には、内部電源51および52が内蔵されている。内部電源51は、電源部10から供給される一次側電源Vccを用いて、絶縁素子50の入力側、すなわちマイコン9側の動作電源を生成する。一方、内部電源52は、絶縁電源8から供給される二次側電源Vsを用いて、絶縁素子50の出力側、すなわち送信信号伝送路41側の動作電源を生成する。   The insulating element 50 is an element for insulating between the microcomputer 9 and the transmission signal transmission path 41, and is configured using, for example, a photocoupler. The insulating element 50 contains internal power supplies 51 and 52. The internal power supply 51 uses the primary power supply Vcc supplied from the power supply unit 10 to generate an operation power supply on the input side of the insulating element 50, that is, on the microcomputer 9 side. On the other hand, the internal power supply 52 uses the secondary power supply Vs supplied from the insulating power supply 8 to generate an operating power supply on the output side of the insulating element 50, that is, on the transmission signal transmission path 41 side.

送信信号伝送路41は、上位制御基板5においては、絶縁素子50を介してマイコン9に接続されている。また、電池監視基板2においては、通信用コンデンサ23を介して電池監視回路21に接続されている。すなわち、送信信号伝送路41は、絶縁素子50によってマイコン9から絶縁されると共に、通信用コンデンサ23によって電池監視回路21から絶縁されている。これにより、マイコン9の電位および電池監視回路21の電位に対して、送信信号伝送路41の電位は浮動電位となっている。   The transmission signal transmission path 41 is connected to the microcomputer 9 via the insulating element 50 in the host control board 5. The battery monitoring board 2 is connected to the battery monitoring circuit 21 via the communication capacitor 23. That is, the transmission signal transmission path 41 is insulated from the microcomputer 9 by the insulating element 50 and is insulated from the battery monitoring circuit 21 by the communication capacitor 23. Thereby, the potential of the transmission signal transmission path 41 is a floating potential with respect to the potential of the microcomputer 9 and the potential of the battery monitoring circuit 21.

絶縁素子60は、マイコン9と受信信号伝送路42の間を絶縁するための素子であり、たとえばフォトカプラ等を用いて構成されている。絶縁素子60には、内部電源61および62が内蔵されている。内部電源61は、電源部10から供給される一次側電源Vccを用いて、絶縁素子60の出力側、すなわちマイコン9側の動作電源を生成する。一方、内部電源62は、絶縁電源8から供給される二次側電源Vsを用いて、絶縁素子60の入力側、すなわち受信信号伝送路42側の動作電源を生成する。   The insulating element 60 is an element for insulating between the microcomputer 9 and the reception signal transmission path 42, and is configured using, for example, a photocoupler. The insulating element 60 contains internal power supplies 61 and 62. The internal power supply 61 uses the primary power supply Vcc supplied from the power supply unit 10 to generate an operating power supply on the output side of the insulating element 60, that is, the microcomputer 9 side. On the other hand, the internal power source 62 uses the secondary power source Vs supplied from the insulating power source 8 to generate an operating power source on the input side of the insulating element 60, that is, on the reception signal transmission path 42 side.

受信信号伝送路42は、上位制御基板5においては、絶縁素子60を介してマイコン9に接続されている。また、電池監視基板3においては、通信用コンデンサ33を介して電池監視回路31に接続されている。すなわち、受信信号伝送路42は、絶縁素子60によってマイコン9から絶縁されると共に、通信用コンデンサ33によって電池監視回路31から絶縁されている。これにより、マイコン9の電位および電池監視回路31の電位に対して、受信信号伝送路42の電位は浮動電位となっている。   The reception signal transmission path 42 is connected to the microcomputer 9 via the insulating element 60 in the host control board 5. The battery monitoring board 3 is connected to the battery monitoring circuit 31 via the communication capacitor 33. That is, the reception signal transmission path 42 is insulated from the microcomputer 9 by the insulating element 60 and is insulated from the battery monitoring circuit 31 by the communication capacitor 33. Thereby, the potential of the reception signal transmission path 42 is a floating potential with respect to the potential of the microcomputer 9 and the potential of the battery monitoring circuit 31.

以上説明したように、本発明の第1の実施形態による電池システムでは、電池監視回路21、31とマイコン9から、送信信号伝送路41、受信信号伝送路42および中継信号伝送路43をそれぞれ電気的に切り離した構成としている。これにより、高電圧駆動回路である電池監視回路21、31の各電位および低電圧駆動回路であるマイコン9の電位に対して、各伝送路の電位をそれぞれ浮動電位としている。そのため、これらの伝送路が高電圧になるのを防いで、安全な電池システムを実現することができる。   As described above, in the battery system according to the first embodiment of the present invention, the transmission signal transmission path 41, the reception signal transmission path 42, and the relay signal transmission path 43 are electrically connected from the battery monitoring circuits 21 and 31 and the microcomputer 9, respectively. The structure is separated. As a result, the potential of each transmission line is set to a floating potential with respect to each potential of the battery monitoring circuits 21 and 31 which are high voltage driving circuits and the potential of the microcomputer 9 which is a low voltage driving circuit. Therefore, it is possible to prevent these transmission lines from becoming a high voltage and to realize a safe battery system.

以上説明した本発明の第1の実施形態によれば、次のような作用効果を奏する。   According to the 1st Embodiment of this invention demonstrated above, there exist the following effects.

(1)送信信号伝送路41および受信信号伝送路42は、絶縁素子50、60によってマイコン9からそれぞれ絶縁されると共に、通信用コンデンサ23、33によって電池監視回路21、31からそれぞれ絶縁されている。これにより、送信信号伝送路41および受信信号伝送路42の電位は、マイコン9の電位および電池監視回路21、31の電位に対して浮動電位である。このようにしたので、安全で信頼性の高い電池システムを提供することができる。 (1) The transmission signal transmission path 41 and the reception signal transmission path 42 are insulated from the microcomputer 9 by the insulating elements 50 and 60, respectively, and are insulated from the battery monitoring circuits 21 and 31 by the communication capacitors 23 and 33, respectively. . Thereby, the potential of the transmission signal transmission path 41 and the reception signal transmission path 42 is a floating potential with respect to the potential of the microcomputer 9 and the potentials of the battery monitoring circuits 21 and 31. Since it did in this way, a safe and reliable battery system can be provided.

(2)中継信号伝送路43は、通信用コンデンサ23、33によって電池監視回路21、31からそれぞれ絶縁されている。これにより、中継信号伝送路43の電位は、マイコン9の電位および電池監視回路21、31の電位に対して浮動電位である。このようにしたので、さらに安全で信頼性の高い電池システムを提供することができる。 (2) The relay signal transmission path 43 is insulated from the battery monitoring circuits 21 and 31 by the communication capacitors 23 and 33, respectively. Thereby, the potential of the relay signal transmission path 43 is a floating potential with respect to the potential of the microcomputer 9 and the potentials of the battery monitoring circuits 21 and 31. Since it did in this way, a safer and more reliable battery system can be provided.

(3)絶縁素子50は、入力側がマイコン9に接続されて出力側が送信信号伝送路41に接続されており、絶縁素子60は、入力側が受信信号伝送路42に接続されて出力側がマイコン9に接続されている。絶縁電源8は、絶縁素子50の出力側および絶縁素子60の入力側に、マイコン9および電池監視回路21、31から絶縁された二次側電源Vsを供給する。このようにしたので、マイコン9および電池監視回路21、31から絶縁された状態で、絶縁素子50の出力側および絶縁素子60の入力側をそれぞれ動作させることができる。そのため、動作電源が必要なフォトカプラ等の素子を絶縁素子50、60として用いた場合に、送信信号伝送路41および受信信号伝送路42の電位を、マイコン9および電池監視回路21、31に対して浮動電位とすることができる。また、高電圧駆動回路側から絶縁素子50および60に対して二次側電源Vsを供給する必要がないため、電池モジュール1の各電池セル10の消費電流を抑制すると共に、各電池セル10間での消費電流のばらつきを低減することができる。さらに、電池監視基板2および3と上位制御基板5との間の配線を高電圧駆動回路から電気的に切り離すことができるため、さらなる安全性の向上を図ることができる。 (3) The insulating element 50 has an input side connected to the microcomputer 9 and an output side connected to the transmission signal transmission path 41, and the insulating element 60 has an input side connected to the reception signal transmission path 42 and the output side connected to the microcomputer 9. It is connected. The insulated power supply 8 supplies the secondary power supply Vs insulated from the microcomputer 9 and the battery monitoring circuits 21 and 31 to the output side of the insulating element 50 and the input side of the insulating element 60. Since it did in this way, the output side of the insulation element 50 and the input side of the insulation element 60 can each be operated in the state insulated from the microcomputer 9 and the battery monitoring circuits 21 and 31. Therefore, when an element such as a photocoupler that requires an operating power supply is used as the insulating elements 50 and 60, the potentials of the transmission signal transmission path 41 and the reception signal transmission path 42 are set to the microcomputer 9 and the battery monitoring circuits 21 and 31, respectively. The floating potential can be obtained. Further, since it is not necessary to supply the secondary power source Vs to the insulating elements 50 and 60 from the high voltage drive circuit side, the current consumption of each battery cell 10 of the battery module 1 is suppressed, and between the battery cells 10 Variations in current consumption can be reduced. Furthermore, since the wiring between the battery monitoring boards 2 and 3 and the upper control board 5 can be electrically disconnected from the high voltage drive circuit, further improvement in safety can be achieved.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態による電池システムの構成を示す図である。この電池システムは、第1の実施形態で説明した電池システムと比べて、電池監視基板3と上位制御基板5の間に受信信号伝送路42が設けられていない点が異なっている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 2 is a diagram showing a configuration of a battery system according to the second embodiment of the present invention. This battery system is different from the battery system described in the first embodiment in that the reception signal transmission path 42 is not provided between the battery monitoring board 3 and the upper control board 5.

本実施形態の電池システムでは、送信信号伝送路41は、上位制御基板5において、絶縁素子50に加えて、絶縁素子60にも接続されている。これにより、電池監視回路21および31から送信された測定信号を、送信信号伝送路41および絶縁素子60を介して、マイコン9において受信することができる。   In the battery system of this embodiment, the transmission signal transmission path 41 is connected to the insulating element 60 in addition to the insulating element 50 in the upper control board 5. Thereby, the measurement signal transmitted from the battery monitoring circuits 21 and 31 can be received by the microcomputer 9 via the transmission signal transmission path 41 and the insulating element 60.

以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明したのと同様の作用効果を奏することができる。   According to the second embodiment of the present invention described above, the same effects as those described in the first embodiment can be achieved.

(第3の実施形態)
次に、本発明の第3の実施形態について説明する。図3は、本発明の第3の実施形態による電池システムの構成を示す図である。この電池システムは、第1の実施形態で説明した電池システムと比べて、絶縁電源8が絶縁素子60の中に内蔵されている点が異なっている。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 3 is a diagram showing a configuration of a battery system according to the third embodiment of the present invention. This battery system is different from the battery system described in the first embodiment in that the insulated power supply 8 is built in the insulating element 60.

以上説明した本発明の第3の実施形態によれば、絶縁電源8を絶縁素子60に内蔵することにより、上位制御基板5の部品点数を削減すると共に配線構造を簡略化することができる。これにより、低コスト化を図ることができる。なお、絶縁電源8を絶縁素子60ではなく絶縁素子50に内蔵してもよい。また、絶縁電源8を絶縁素子50と絶縁素子60の両方に内蔵してもよい。   According to the third embodiment of the present invention described above, the number of components of the upper control board 5 can be reduced and the wiring structure can be simplified by incorporating the insulated power supply 8 in the insulating element 60. Thereby, cost reduction can be achieved. The insulated power supply 8 may be built in the insulating element 50 instead of the insulating element 60. Further, the insulated power supply 8 may be built in both the insulating element 50 and the insulating element 60.

(第4の実施形態)
次に、本発明の第4の実施形態について説明する。図4は、本発明の第4の実施形態による電池システムの構成を示す図である。この電池システムは、第1の実施形態で説明した電池システムと比べて、電源部10と絶縁電源8の間にスイッチ12が設けられている点が異なっている。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a diagram showing a configuration of a battery system according to the fourth embodiment of the present invention. This battery system is different from the battery system described in the first embodiment in that a switch 12 is provided between the power supply unit 10 and the insulated power supply 8.

スイッチ12は、マイコン9の制御に応じて、電源部10から絶縁電源8への一次側電源Vccの供給をオンまたはオフすることにより、絶縁電源8の動作状態を切り替える。たとえば、マイコン9と電池監視回路21、31の間で通信を行うタイミングに合わせて、スイッチ12を導通状態として絶縁電源8を動作させ、絶縁電源8から絶縁素子50および60に二次側電源Vsを供給する。これ以外のときには、スイッチ12を遮断状態に切り替えて絶縁電源8の動作を停止させる。このようにすれば、絶縁電源8を必要なときにのみ動作させることができる。   The switch 12 switches the operating state of the insulated power supply 8 by turning on or off the supply of the primary power supply Vcc from the power supply unit 10 to the insulated power supply 8 according to the control of the microcomputer 9. For example, in accordance with the timing of communication between the microcomputer 9 and the battery monitoring circuits 21 and 31, the switch 12 is turned on to operate the insulated power supply 8, and the insulated power supply 8 to the insulating elements 50 and 60 are connected to the secondary power supply Vs. Supply. In other cases, the switch 12 is switched to the cut-off state to stop the operation of the insulated power supply 8. In this way, the insulated power supply 8 can be operated only when necessary.

以上説明した本発明の第4の実施形態によれば、マイコン9の制御に応じて、スイッチ12により絶縁電源8の動作状態を切り替えることができる。これにより、絶縁電源8を必要なときにのみ動作させて低消費電力化を図ることができる。   According to the fourth embodiment of the present invention described above, the operating state of the insulated power supply 8 can be switched by the switch 12 in accordance with the control of the microcomputer 9. As a result, it is possible to reduce the power consumption by operating the insulated power supply 8 only when necessary.

なお、以上説明した第1〜第4の各実施形態では、絶縁電源8から供給される二次側電源Vsを受けて絶縁素子50および60が動作する例を説明したが、電源供給を受けずに動作可能な素子を絶縁素子50および60として用いてもよい。たとえば、コンデンサやパルストランス等の受動素子を絶縁素子50および60として用いることができる。この場合、上位制御基板5において、絶縁電源8は不要となる。また、電池監視基板2内の通信用コンデンサ23や、電池監視基板3内の通信用コンデンサ33を、他の絶縁素子、たとえばパルストランスやフォトカプラ等に置き換えてもよい。   In each of the first to fourth embodiments described above, the example in which the insulating elements 50 and 60 operate by receiving the secondary power supply Vs supplied from the insulated power supply 8 has been described. However, the power supply is not received. Elements that can be operated in isolation may be used as the insulating elements 50 and 60. For example, passive elements such as capacitors and pulse transformers can be used as the insulating elements 50 and 60. In this case, the insulated power supply 8 is not required in the host control board 5. Further, the communication capacitor 23 in the battery monitoring board 2 and the communication capacitor 33 in the battery monitoring board 3 may be replaced with other insulating elements such as a pulse transformer or a photocoupler.

以上説明した各実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。
Each embodiment and modification described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.

Claims (6)

複数の電池セルを有する組電池が複数接続された電池モジュールと、
前記電池モジュールの各組電池に対応してそれぞれ設けられ、前記組電池の各電池セルの状態をそれぞれ監視する複数の電池監視回路と、
複数の基板と、を備え、
複数の前記電池監視回路は、互いに異なる前記基板にそれぞれ設けられており、
複数の前記基板は、コンデンサをそれぞれ有し、
複数の前記電池監視回路は、複数の前記コンデンサおよび一対の中継信号伝送路を介して互いに接続されており、
前記一対の中継信号伝送路の電位は、前記電池監視回路の電位に対してそれぞれ浮動電位であり、
前記一対の中継信号伝送路は、互いに電気的に独立している電池システム。
A battery module in which a plurality of assembled batteries having a plurality of battery cells are connected;
A plurality of battery monitoring circuits that are respectively provided corresponding to the respective assembled batteries of the battery module and monitor the state of each battery cell of the assembled battery;
A plurality of substrates, and
The plurality of battery monitoring circuits are respectively provided on the different substrates,
The plurality of substrates each have a capacitor,
The plurality of battery monitoring circuits are connected to each other via the plurality of capacitors and a pair of relay signal transmission paths,
Potential of the pair of relay signal transmission path, Ri floating potential der respectively the potential of the battery monitoring circuit,
The battery system in which the pair of relay signal transmission paths are electrically independent from each other .
請求項1に記載の電池システムにおいて、
複数の前記電池監視回路の動作をそれぞれ制御するための制御回路と、
複数の前記電池監視回路と前記制御回路の間でそれぞれ入出力される信号を伝送するための送受信信号伝送路と、
前記制御回路に接続された絶縁素子と、をさらに備え、
前記送受信信号伝送路は、前記絶縁素子によって前記制御回路から絶縁されると共に、前記コンデンサによって前記電池監視回路から絶縁されており、
前記送受信信号伝送路の電位は、前記制御回路の電位および前記電池監視回路の電位に対して浮動電位である電池システム。
The battery system according to claim 1,
A control circuit for controlling the operation of each of the plurality of battery monitoring circuits;
A transmission / reception signal transmission path for transmitting signals input / output between the plurality of battery monitoring circuits and the control circuit;
An insulating element connected to the control circuit,
The transmission / reception signal transmission path is insulated from the control circuit by the insulating element, and is insulated from the battery monitoring circuit by the capacitor,
The battery system in which the potential of the transmission / reception signal transmission path is a floating potential with respect to the potential of the control circuit and the potential of the battery monitoring circuit.
請求項2に記載の電池システムにおいて、
前記制御回路および前記電池監視回路から絶縁された電源を前記絶縁素子に供給するための絶縁電源をさらに備え、
前記絶縁素子は、入力側が前記制御回路に接続されて出力側が前記送受信信号伝送路に接続された送信用絶縁素子と、入力側が前記送受信信号伝送路に接続されて出力側が前記制御回路に接続された受信用絶縁素子とを含み、
前記絶縁電源は、前記送信用絶縁素子の出力側および前記受信用絶縁素子の入力側に前記電源を供給する電池システム。
The battery system according to claim 2,
An insulation power supply for supplying the insulation element with a power supply insulated from the control circuit and the battery monitoring circuit;
The insulating element includes a transmitting insulating element whose input side is connected to the control circuit and whose output side is connected to the transmission / reception signal transmission path, and whose input side is connected to the transmission / reception signal transmission path and whose output side is connected to the control circuit. Including a receiving isolation element,
The insulated power supply is a battery system that supplies the power to the output side of the transmitting insulating element and the input side of the receiving insulating element.
請求項3に記載の電池システムにおいて、
前記絶縁電源は、前記絶縁素子に内蔵されている電池システム。
The battery system according to claim 3,
The insulated power supply is a battery system built in the insulated element.
請求項3に記載の電池システムにおいて、
前記制御回路の制御に応じて、前記絶縁電源の動作状態を切り替える切替回路をさらに備える電池システム。
The battery system according to claim 3,
A battery system further comprising a switching circuit that switches an operating state of the insulated power source in accordance with control of the control circuit.
複数の電池セルを有する組電池が複数接続された電池モジュールと、
前記電池モジュールの各組電池に対応して設けられ、前記組電池の各電池セルの状態を監視する電池監視回路と、
前記電池監視回路の動作を制御するための制御回路と、
前記電池監視回路と前記制御回路の間で入出力される信号を伝送するための第1信号伝送路と、
前記制御回路に接続された第1絶縁素子と、
前記電池監視回路に接続された第2絶縁素子と、
前記制御回路および前記電池監視回路から絶縁された電源を前記第1絶縁素子に供給するための絶縁電源と、
前記制御回路の制御に応じて、前記絶縁電源の動作状態を切り替える切替回路と、を備え、
前記第1信号伝送路は、前記第1絶縁素子によって前記制御回路から絶縁されると共に、前記第2絶縁素子によって前記電池監視回路から絶縁されており、
前記第1信号伝送路の電位は、前記制御回路の電位および前記電池監視回路の電位に対して浮動電位であり、
前記第1絶縁素子は、入力側が前記制御回路に接続されて出力側が前記第1信号伝送路に接続された送信用絶縁素子と、入力側が前記第1信号伝送路に接続されて出力側が前記制御回路に接続された受信用絶縁素子とを含み、
前記絶縁電源は、前記送信用絶縁素子の出力側および前記受信用絶縁素子の入力側に前記電源を供給する電池システム。
A battery module in which a plurality of assembled batteries having a plurality of battery cells are connected;
A battery monitoring circuit that is provided corresponding to each assembled battery of the battery module and monitors the state of each battery cell of the assembled battery;
A control circuit for controlling the operation of the battery monitoring circuit;
A first signal transmission path for transmitting signals input and output between the battery monitoring circuit and the control circuit;
A first insulating element connected to the control circuit;
A second insulating element connected to the battery monitoring circuit;
An insulated power source for supplying the first insulating element with a power source insulated from the control circuit and the battery monitoring circuit;
A switching circuit that switches the operating state of the insulated power source according to the control of the control circuit,
The first signal transmission line is insulated from the control circuit by the first insulation element, and is insulated from the battery monitoring circuit by the second insulation element,
The potential of the first signal transmission path is a floating potential with respect to the potential of the control circuit and the potential of the battery monitoring circuit,
The first insulating element includes a transmitting insulating element whose input side is connected to the control circuit and whose output side is connected to the first signal transmission path, and whose input side is connected to the first signal transmission path and whose output side is the control A receiving isolation element connected to the circuit,
The insulated power supply is a battery system that supplies the power to the output side of the transmitting insulating element and the input side of the receiving insulating element.
JP2017107413A 2017-05-31 2017-05-31 Battery system Active JP6408068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107413A JP6408068B2 (en) 2017-05-31 2017-05-31 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107413A JP6408068B2 (en) 2017-05-31 2017-05-31 Battery system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015512212A Division JPWO2014170942A1 (en) 2013-04-15 2013-04-15 Battery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018175024A Division JP6649447B2 (en) 2018-09-19 2018-09-19 Battery system

Publications (2)

Publication Number Publication Date
JP2017168453A JP2017168453A (en) 2017-09-21
JP6408068B2 true JP6408068B2 (en) 2018-10-17

Family

ID=59910258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107413A Active JP6408068B2 (en) 2017-05-31 2017-05-31 Battery system

Country Status (1)

Country Link
JP (1) JP6408068B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7004140B2 (en) * 2017-09-01 2022-01-21 株式会社三洋物産 Pachinko machine
JP2019042121A (en) * 2017-09-01 2019-03-22 株式会社三洋物産 Game machine
JP2019042120A (en) * 2017-09-01 2019-03-22 株式会社三洋物産 Game machine
JP2019042123A (en) * 2017-09-01 2019-03-22 株式会社三洋物産 Game machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516781B2 (en) * 1987-10-16 1996-07-24 株式会社高見沢サイバネティックス Centralized communication control method for electronic loader
JP5301081B2 (en) * 2006-03-14 2013-09-25 日置電機株式会社 Double-insulated electrical measuring instrument
US8878492B2 (en) * 2010-10-19 2014-11-04 Sanyo Electric Co., Ltd. Power source apparatus, vehicle and power storage system using the power source apparatus
JP5632723B2 (en) * 2010-11-26 2014-11-26 株式会社ケーヒン Cell balance control device
JP5561239B2 (en) * 2011-05-20 2014-07-30 三菱自動車工業株式会社 Automatic numbering device
JP5696593B2 (en) * 2011-06-07 2015-04-08 株式会社デンソー Battery monitoring device
US8907625B2 (en) * 2011-07-15 2014-12-09 O2Micro, Inc. Battery management systems with vertical bus circuits
JP2013153596A (en) * 2012-01-25 2013-08-08 Hitachi Ulsi Systems Co Ltd Charge/discharge monitoring device and battery pack

Also Published As

Publication number Publication date
JP2017168453A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
US10132871B2 (en) Battery system
JP6408068B2 (en) Battery system
US7709975B2 (en) Redundant power supply system
JP5438542B2 (en) Voltage detector
US7495356B2 (en) Dual power supply system
US10564225B2 (en) Battery monitoring system, signal transmission method, and semiconductor device for monitoring batteries
JP2013030312A (en) Battery cell state notification unit, bus bar module, battery pack and battery cell state monitoring system
JP2015079649A (en) Battery state monitoring system
US9679726B2 (en) Anti-interference switch signal transmission circuit
JP2018510481A5 (en)
US9069335B2 (en) Emergency stop module arrangement
JP2015114223A (en) Battery pack monitoring unit and battery pack monitoring apparatus
JP4575830B2 (en) Battery module control system
JP2015079585A (en) Battery monitoring device, and power supply device having the same
JP6649447B2 (en) Battery system
RU2596620C1 (en) Solid-state switch and load controller
WO2018146980A1 (en) Power supply system, power supply system control method, and circuit board
US10209699B2 (en) Machine control panel
JP5910538B2 (en) Battery monitoring device
JP5327845B2 (en) Secondary battery pack and power supply
CN104685750B (en) Reliable apparatus for protecting transformer
KR102281632B1 (en) Apparatus for protecting inverter
JP2012080623A (en) Vehicle charger
JP6405771B2 (en) Power saving device
JP2009268300A (en) Slave station for switch control

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R150 Certificate of patent or registration of utility model

Ref document number: 6408068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250