JP6406373B2 - Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method - Google Patents
Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method Download PDFInfo
- Publication number
- JP6406373B2 JP6406373B2 JP2017044913A JP2017044913A JP6406373B2 JP 6406373 B2 JP6406373 B2 JP 6406373B2 JP 2017044913 A JP2017044913 A JP 2017044913A JP 2017044913 A JP2017044913 A JP 2017044913A JP 6406373 B2 JP6406373 B2 JP 6406373B2
- Authority
- JP
- Japan
- Prior art keywords
- stator
- compressor
- stator winding
- electric motor
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005057 refrigeration Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000004804 winding Methods 0.000 claims description 204
- 238000003860 storage Methods 0.000 claims description 105
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 90
- 239000003507 refrigerant Substances 0.000 claims description 78
- 239000011347 resin Substances 0.000 claims description 68
- 229920005989 resin Polymers 0.000 claims description 68
- 238000007906 compression Methods 0.000 claims description 45
- 230000006835 compression Effects 0.000 claims description 43
- 239000004020 conductor Substances 0.000 claims description 41
- 230000007246 mechanism Effects 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 238000003466 welding Methods 0.000 claims description 25
- 230000002093 peripheral effect Effects 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 5
- 238000009413 insulation Methods 0.000 description 35
- 239000007789 gas Substances 0.000 description 28
- 238000005304 joining Methods 0.000 description 26
- 230000004907 flux Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 24
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 238000005219 brazing Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 14
- 239000010802 sludge Substances 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 150000002739 metals Chemical class 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000005476 soldering Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 230000003313 weakening effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000010721 machine oil Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000000078 claw Anatomy 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229920006351 engineering plastic Polymers 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Windings For Motors And Generators (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Description
この発明は、圧縮機に組み込まれる圧縮機用電動機に関するものである。 The present invention relates to a compressor motor incorporated in a compressor.
一般的に密閉型圧縮機は、密閉容器内に冷媒を圧縮する圧縮機構と、この圧縮機構を駆動する電動機が組み込まれており、圧縮機構と電動機は回転軸を介して接続されている。
電動機は密閉容器内に固定される固定子と、固定の内側に設けられ磁気作用によって回転する回転子とから構成されている。回転軸は回転子の回転運動を圧縮機構に伝達し、伝達された回転運動を利用して圧縮機構にて冷媒を圧縮する。
固定子は、内周部に沿って複数の磁極歯が所定の間隔で放射状に設けられた固定子鉄心と、この磁極歯に絶縁部材を介して巻装される巻線とから構成されている。巻線は、電動機の外に引き出すリード線に接続され、コネクタを介して、密閉容器に設けられたガラス端子に接続される。巻線とリード線との接続は、半田付けや圧接端子にて接続される(例えば、特許文献1参照)。
Generally, a hermetic compressor includes a compression mechanism that compresses a refrigerant in a hermetic container and an electric motor that drives the compression mechanism, and the compression mechanism and the electric motor are connected via a rotating shaft.
The electric motor is composed of a stator fixed in the hermetic container and a rotor provided inside the fixed body and rotated by a magnetic action. The rotating shaft transmits the rotational motion of the rotor to the compression mechanism, and compresses the refrigerant by the compression mechanism using the transmitted rotational motion.
The stator is composed of a stator core in which a plurality of magnetic pole teeth are radially provided at predetermined intervals along the inner peripheral portion, and a winding wound around the magnetic pole teeth via an insulating member. . The winding is connected to a lead wire drawn out of the electric motor, and is connected to a glass terminal provided in the sealed container via a connector. The winding and the lead wire are connected by soldering or press contact terminals (see, for example, Patent Document 1).
固定子の巻線は、一般的に電気抵抗が低い銅線を用いるが、コスト低減のためアルミニウム線など、銅線に限らず用いられることがある(例えば、特許文献2参照)。 The stator winding is generally a copper wire having a low electrical resistance, but may be used in addition to a copper wire such as an aluminum wire for cost reduction (see, for example, Patent Document 2).
圧縮機構にて圧縮される冷媒は、近年の地球温暖化防止対策のため、地球温暖化係数(Global Warming Potential、以下GWPという)の低いR32冷媒など、目的・用途に応じた冷媒が使用される。
また、ブラシレスDCモータを用いる場合には、モータ端子電圧がインバータ出力電圧となる回転数にてモータ誘起電圧より電流位相を進めて磁石磁束を弱める運転を行い、回転数を増加させる運転範囲を拡大させる制御も使用される(例えば、特許文献3参照)。
As the refrigerant compressed by the compression mechanism, a refrigerant according to the purpose and application, such as R32 refrigerant having a low global warming potential (hereinafter referred to as GWP), is used to prevent global warming in recent years. .
In addition, when using a brushless DC motor, the operation range is increased by increasing the number of rotations by driving the current phase from the motor induced voltage to weaken the magnetic flux at the number of rotations at which the motor terminal voltage becomes the inverter output voltage. Control is also used (see, for example, Patent Document 3).
また、空気調和機用の圧縮機では、回転位置に応じた負荷トルクのパターンに基づき、電動機の出力トルクを回転位置に応じた出力トルクに制御し、低速領域における振動、騒音を低減させる制御も使用される(例えば、特許文献4参照)。 Also, in a compressor for an air conditioner, based on the load torque pattern according to the rotational position, the output torque of the motor is controlled to the output torque according to the rotational position, and control for reducing vibration and noise in the low speed region is also possible. Used (see, for example, Patent Document 4).
従来の密閉型圧縮機では電動機の巻線と電動機から引き出されるリード線は、半田付けやロウ付けあるいは圧接端子のような接続部材にて接続されるのが一般的である。
一方、地球温暖化防止対策のためのR32冷媒は従来のR407C冷媒あるいはR410A冷媒に比べて動作温度が高く、吐出温度で10℃程度高い条件で使用される。電動機は、吐出された高温冷媒によって電動機全体が加熱されるため、従来に比べて高温条件で使用される。
また、巻線にアルミニウム線を使用した場合、銅線に比べて電気抵抗が高く、巻線温度が上昇する。電動機は、巻線によって固定子が加熱されるため、従来に比べて高温条件で使用される。
また、電動機の制御、例えば、圧縮機構の吸入の動作と吐出の動作によって生じる振動を抑制する制振制御や、高速回転領域にて回転子側が発生する逆起電力を抑制して回転数を上げる弱め界磁制御などを行うと、流す電流も大きくなり、巻線温度が上昇する。これにより、電動機は、従来に比べて高温条件で使用される。
これに対し、電動機の動作温度が高くなると、巻線やリード線を接続し固定する圧接端子では、それぞれの部品の素材の熱膨張率の違いから、巻線とリード線の固定状態が緩み、巻線、リード線、圧接端子の電気的接触が低下し、接続部での電気抵抗が増加するという課題があった。そして、接続部での電気抵抗が増加すると、電動機の効率低下を招くとともに、接続部の温度上昇を引き起こし、巻線、リード線、圧接端子の熱膨張が促進され、さらに巻線とリード線の固定状態が緩みを大きくするという課題があった。
特に、部品の素材が、銅材、黄銅材、アルミニウム材のように異なる場合、各素材の熱膨張率の違いが大きいので、緩みが大きく電気抵抗の増加を招き易いという課題があった。
In a conventional hermetic compressor, a winding of an electric motor and a lead wire drawn from the electric motor are generally connected by a connecting member such as soldering, brazing, or a pressure contact terminal.
On the other hand, the R32 refrigerant for preventing global warming has a higher operating temperature than the conventional R407C refrigerant or R410A refrigerant, and is used under conditions where the discharge temperature is about 10 ° C. higher. Since the entire motor is heated by the discharged high-temperature refrigerant, the motor is used under a higher temperature condition than in the past.
Further, when an aluminum wire is used for the winding, the electric resistance is higher than that of the copper wire, and the winding temperature rises. Since the stator is heated by the windings, the electric motor is used under a higher temperature condition than before.
In addition, control of the motor, for example, vibration suppression control that suppresses vibration caused by the suction operation and discharge operation of the compression mechanism, and the counter electromotive force generated on the rotor side in the high-speed rotation region is suppressed to increase the rotation speed. When field-weakening control or the like is performed, the current that flows is increased, and the winding temperature rises. Thereby, an electric motor is used on high temperature conditions compared with the past.
On the other hand, when the operating temperature of the motor becomes high, the crimping terminal that connects and fixes the winding and lead wire loosens the fixing state of the winding and lead wire due to the difference in the coefficient of thermal expansion of the material of each part, There was a problem that the electrical contact between the winding, the lead wire, and the press contact terminal was lowered, and the electrical resistance at the connection portion was increased. And if the electrical resistance at the connecting portion increases, the efficiency of the motor is reduced and the temperature of the connecting portion is increased, and the thermal expansion of the winding, lead wire, and press contact terminal is promoted. There was a problem that the fixed state increased the looseness.
In particular, when the material of parts is different, such as copper material, brass material, and aluminum material, the difference in thermal expansion coefficient of each material is large, so that there is a problem that looseness is large and electrical resistance is likely to increase.
また、巻線とリード線を半田付けやロウ付けすると、巻線とリード線とは、半田やロウ材を介して接続されるので、接続部の電気抵抗は巻線の素材やリード線の素材より高く、電動機の効率低下や、接続部の温度上昇が生じるという課題があった。一般的に半田付けやロウ付けにて接続した接続部は、スリーブなどの保護部材にて他の導線と接触しないように保護するが、制振制御や弱め界磁制御のような大きな電流を流す制御では、接続部の温度上昇も高くなるので、保護部材にも高い耐熱性が必要となるという課題があった。
また、巻線やリード線の表面には酸化膜が生成されており、半田付けやロウ付けは母材と溶融金属とのぬれ現象によるものなので、酸化膜を化学的に除去するためフラックスを使用する。しかし、フラックスが接合部に残留すると、巻線あるいはリード線を腐蝕させたり、冷媒あるいは冷凍機油との化学反応によりスラッジなどの異物が発生し、圧縮機の摺動部の焼きつきや、配管や絞り弁の詰りを招いたりする恐れがある。そのため、洗浄工程を追加する必要があるなど、製造コストの上昇と生産性の低下を招くという課題があった。特に、アルミニウム材のような酸化作用の強い素材は、その酸化膜を除去する溶接フラックスの作用も強力になるので、腐食性も高なり、洗浄の必要性も高くなるという課題があった。
Also, when the winding and lead wire are soldered or brazed, the winding and lead wire are connected via solder or brazing material, so the electrical resistance of the connection part is the material of the winding or lead wire There is a problem that the efficiency of the motor is lowered and the temperature of the connection portion is increased. Generally, the connection part connected by soldering or brazing is protected from contact with other conductors by a protective member such as a sleeve, but in the control of flowing a large current such as vibration suppression control or field weakening control. Further, since the temperature rise of the connecting portion is also increased, there is a problem that the protective member also needs high heat resistance.
In addition, an oxide film is formed on the surface of the winding and lead wires, and soldering and brazing are due to the wetting phenomenon between the base material and the molten metal, so flux is used to chemically remove the oxide film To do. However, if flux remains in the joints, the windings or lead wires are corroded, and foreign substances such as sludge are generated due to chemical reaction with the refrigerant or refrigerating machine oil. There is a risk of clogging the throttle valve. For this reason, there is a problem that an increase in manufacturing cost and a decrease in productivity are caused, for example, it is necessary to add a cleaning process. In particular, a material having a strong oxidizing action such as an aluminum material has a problem in that the action of the welding flux for removing the oxide film becomes strong, so that the corrosiveness becomes high and the necessity for cleaning increases.
この発明は、上記のような課題を解決するためになされたもので、圧縮機用電動機の固定子巻線とリード線の接合において、固定子巻線とリード線とで異なる金属を用いるとともに、酸化膜を除去したり、フラックスを使用したり、接合部の洗浄を行ったりすることなく、接合部からスラッジなどの異物を発生させることを抑制した信頼性が高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることが目的である。 The present invention was made to solve the above problems, and in joining the stator winding and the lead wire of the compressor motor, different metals are used for the stator winding and the lead wire, Highly reliable compressor motor, compressor and compressor that prevent generation of foreign matter such as sludge from the joint without removing the oxide film, using flux, or cleaning the joint The object is to obtain a refrigeration cycle apparatus.
この発明に係る圧縮機用電動機は、円筒形の固定子と固定子の内側に配設された回転子を有する圧縮機用電動機において、固定子に、円筒形のバックヨークとバックヨークから内側に突出した複数のティースを有する固定子鉄心と、固定子鉄心の軸方向の端面に装着された絶縁部材と、ティースに絶縁部材を介して巻き付けられた固定子巻線と、固定子巻線とは異なる金属で構成され外部電源に接続するリード導線と、固定子巻線の端面とリード線の端面とを突き合わせ冷間圧接にて接合された接合部と、を備え、絶縁部材は、接合部を収納する収納室と、導線を係止する溝と、から構成される収納部を有し、接合部には、固定子巻線の端面とリード線の端面とに付着した異物を外周部に押し出したバリが形成されており、固定子巻線およびリード線は溝に係止され、接合部は収納室に収納され、そのバリは、樹脂にて覆ったものである。 An electric motor for a compressor according to the present invention is an electric motor for a compressor having a cylindrical stator and a rotor disposed inside the stator. The electric motor for the compressor has a cylindrical back yoke and an inner side from the back yoke. A stator core having a plurality of protruding teeth, an insulating member attached to an axial end surface of the stator core, a stator winding wound around the teeth via the insulating member, and a stator winding A lead wire made of a different metal and connected to an external power source; and a joint portion where the end face of the stator winding and the end face of the lead wire are abutted and joined by cold welding, and the insulating member has the joint portion It has a storage part composed of a storage chamber for storing and a groove for locking the conducting wire, and in the joint part, foreign matter adhering to the end face of the stator winding and the end face of the lead wire is pushed out to the outer peripheral part. burr is formed, the stator windings and Lead wires are engaged with the groove, the joint is accommodated in the accommodating chamber, the burr is one covered with a resin.
この発明に係る圧縮機用電動機は、円筒形のバックヨークとバックヨークから内側に突出した複数のティースを有する固定子鉄心と、固定子鉄心の軸方向の端面に装着された絶縁部材と、ティースに絶縁部材を介して巻き付けられた固定子巻線と、固定子巻線とは異なる金属で構成され外部電源に接続するリード導線と、固定子巻線の端面とリード線の端面とを突き合わせ冷間圧接にて接合された接合部と、を備え、絶縁部材は、接合部を収納する収納室と、導線を係止する溝と、から構成される収納部を有し、接合部には、固定子巻線の端面とリード線の端面とに付着した異物を外周部に押し出したバリが形成されており、固定子巻線およびリード線は溝に係止され、接合部は収納室に収納され、そのバリは、樹脂にて覆ったので、固定子巻線とリード線とで異なる金属を用いるとともに、酸化膜を除去したり、フラックスを使用したり、接合部の洗浄を行ったりすることなく、接合部からスラッジなどの異物を発生させることを抑制した信頼性が高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることができる。 An electric motor for a compressor according to the present invention includes a cylindrical back yoke, a stator core having a plurality of teeth projecting inwardly from the back yoke, an insulating member attached to an axial end surface of the stator core, and teeth The stator winding wound around the insulation member, the lead wire made of a metal different from the stator winding and connected to the external power source, the end face of the stator winding and the end face of the lead wire are butt cooled The insulating member includes a storage chamber configured to store the bonding portion and a groove for locking the lead wire, and the bonding portion includes: A burr is formed by extruding foreign matter adhering to the end face of the stator winding and the end face of the lead wire to the outer periphery, the stator winding and lead wire are locked in the groove, and the joint is stored in the storage chamber. It is, because the burr is covered with a resin, the stator Using different metals for the wire and lead wire, and suppressing the generation of foreign matter such as sludge from the joint without removing the oxide film, using flux, or cleaning the joint A highly reliable electric motor for compressor, compressor, and refrigeration cycle apparatus can be obtained.
実施の形態1.
ここでは、ロータリ圧縮機を一例に説明する。
図1はこの発明の実施の形態1における密閉型圧縮機の断面図、図2は図1のA−A’で切断した断面図すなわち圧縮機構を上面から見た断面図である。図1にて、1シリンダ型ロータリ圧縮機の一例である密閉型圧縮機の全体構成を説明する。密閉型圧縮機100は、密閉容器10内に、冷媒ガスを圧縮する圧縮機構20と、圧縮機構20を駆動する電動機30とが収納され構成されている。密閉容器10は上部容器11と下部容器12とで構成され、圧縮機構20が密閉容器10の下方に、電動機30が密閉容器10の上方に収納されている。圧縮機構20と電動機30とは、回転軸21で連結され、回転軸21は電動機30の回転運動を圧縮機構20に伝達し、圧縮機構20では伝達された回転力によって冷媒ガスが圧縮され密閉容器10内に吐出される。密閉容器10内は圧縮された高温・高圧の冷媒ガスによって満たされているとともに、密閉容器10の下方すなわち底部には圧縮機構20の潤滑のため冷凍機油が貯留されている。
回転軸21の下部にはオイルポンプが設けられており、オイルポンプは回転軸21の回転とともに密閉容器10の底部に貯留された冷凍機油を汲み上げ、圧縮機構20の各摺動部へ給油される。これにより、圧縮機構20の機械的潤滑作用が確保される。
Embodiment 1 FIG.
Here, a rotary compressor will be described as an example.
1 is a cross-sectional view of a hermetic compressor according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1, that is, a cross-sectional view of a compression mechanism as viewed from above. The overall configuration of a hermetic compressor that is an example of a one-cylinder rotary compressor will be described with reference to FIG. The hermetic compressor 100 includes a hermetic container 10 in which a compression mechanism 20 that compresses refrigerant gas and an electric motor 30 that drives the compression mechanism 20 are housed. The sealed container 10 includes an upper container 11 and a lower container 12, and the compression mechanism 20 is housed below the sealed container 10 and the electric motor 30 is housed above the sealed container 10. The compression mechanism 20 and the electric motor 30 are connected by a rotary shaft 21, and the rotary shaft 21 transmits the rotational motion of the electric motor 30 to the compression mechanism 20, and the refrigerant gas is compressed by the transmitted rotational force in the compression mechanism 20 so that the sealed container is sealed. 10 is discharged. The sealed container 10 is filled with compressed high-temperature and high-pressure refrigerant gas, and refrigerating machine oil is stored below the sealed container 10, that is, at the bottom for lubricating the compression mechanism 20.
An oil pump is provided below the rotary shaft 21, and the oil pump pumps up the refrigerating machine oil stored at the bottom of the sealed container 10 as the rotary shaft 21 rotates, and supplies the oil to each sliding portion of the compression mechanism 20. . Thereby, the mechanical lubrication effect | action of the compression mechanism 20 is ensured.
回転軸21は主軸部21a、偏心軸部21b、副軸部21cから構成され、軸方向に主軸部21a、偏心軸部21b、副軸部21cの順に形成されている。主軸部21aには電動機30が焼嵌または圧入され固定されており、偏心軸部21bには円筒状のローリングピストン22が摺動自在に嵌合されている。 The rotating shaft 21 includes a main shaft portion 21a, an eccentric shaft portion 21b, and a sub shaft portion 21c. The main shaft portion 21a, the eccentric shaft portion 21b, and the sub shaft portion 21c are formed in this order in the axial direction. An electric motor 30 is shrink-fitted or press-fitted and fixed to the main shaft portion 21a, and a cylindrical rolling piston 22 is slidably fitted to the eccentric shaft portion 21b.
図2は圧縮機構20を図1のA−Aで切断し上面側から見た断面図であり、圧縮機構20は、シリンダ23、ローリングピストン22、上軸受24、下軸受25、およびベーン26で構成されている。シリンダ23には、軸方向の両端が開口された円筒状の空間すなわちシリンダ室23aが内部に設けられている。シリンダ室23a内には、シリンダ室23a内で偏心運動を行う回転軸21の偏心軸部21bと、偏心軸部21bに勘合したローリングピストン22と、シリンダ室23aの内周とローリングピストン22の外周にて形成される空間を仕切るベーン26と、が収納されている。 2 is a cross-sectional view of the compression mechanism 20 taken along the line AA in FIG. 1 and viewed from the upper surface side. The compression mechanism 20 includes a cylinder 23, a rolling piston 22, an upper bearing 24, a lower bearing 25, and a vane 26. It is configured. The cylinder 23 is provided with a cylindrical space opened at both ends in the axial direction, that is, a cylinder chamber 23a. In the cylinder chamber 23a, there are an eccentric shaft portion 21b of the rotating shaft 21 that performs an eccentric motion in the cylinder chamber 23a, a rolling piston 22 fitted to the eccentric shaft portion 21b, an inner periphery of the cylinder chamber 23a, and an outer periphery of the rolling piston 22 And a vane 26 for partitioning the space formed by.
シリンダ23には、一方はシリンダ室23a内に開口し、もう一方は背圧室23bが設けられたベーン溝23cが形成されており、そのベーン溝23cにはベーン26が収納されている。ベーン26はベーン溝23c内を径方向に往復運動する。ベーン26の形状は、ベーン溝23cに取付けられた状態でシリンダ室23aの周方向の厚さがシリンダ室23aの径方向およびシリンダ室23aの軸方向の長さよりも小さいほぼ直方体の形状である。ベーン溝23cの背圧室23bには図示しないベーンスプリングが設けられている。通常は、密閉容器10内の高圧の冷媒ガスが背圧室23bに流入し、背圧室23b冷媒ガスの圧力とシリンダ室23aの冷媒ガスの圧力との差圧によりシリンダ室23aの中心に向って径方向にベーン23を動かす力を作り出す。この背圧室23bシリンダ室23aの差圧による力とベーンスプリングが径方向に押圧する力とによって、ベーン23はシリンダ室23aの中心に向って径方向に動かされる。ベーン23を径方向に動かす力はベーン23の一端すなわちシリンダ室23a側の端部をローリングピストン22の円筒状の外周に当接させる。これによって、シリンダ23の内周とローリングピストン22の外周にて形成される空間を仕切ることができる。密閉容器10内の冷媒ガスすなわち背圧室23bの冷媒ガスの圧力とシリンダ室23a内の冷媒ガスの圧力との差圧がベーン23をローリングピストン22の外周に押圧するために十分な圧力ではない場合でも、ベーンスプリングの力でベーン23の一端をローリングピストン22の外周に押圧することができるので、常にベーン23の一端はローリングピストン22の外周に当接することができる。 One of the cylinders 23 is opened in the cylinder chamber 23a, and the other is formed with a vane groove 23c provided with a back pressure chamber 23b. A vane 26 is accommodated in the vane groove 23c. The vane 26 reciprocates in the radial direction in the vane groove 23c. The shape of the vane 26 is a substantially rectangular parallelepiped shape in which the thickness in the circumferential direction of the cylinder chamber 23a is smaller than the length in the radial direction of the cylinder chamber 23a and the axial direction of the cylinder chamber 23a when attached to the vane groove 23c. A vane spring (not shown) is provided in the back pressure chamber 23b of the vane groove 23c. Normally, the high-pressure refrigerant gas in the sealed container 10 flows into the back pressure chamber 23b and moves toward the center of the cylinder chamber 23a due to the differential pressure between the pressure of the back pressure chamber 23b and the refrigerant gas in the cylinder chamber 23a. To produce a force to move the vane 23 in the radial direction. The vane 23 is moved in the radial direction toward the center of the cylinder chamber 23a by the force due to the differential pressure in the back pressure chamber 23b and the force pressed by the vane spring in the radial direction. The force for moving the vane 23 in the radial direction brings one end of the vane 23, that is, the end on the cylinder chamber 23 a side into contact with the cylindrical outer periphery of the rolling piston 22. Thereby, the space formed by the inner periphery of the cylinder 23 and the outer periphery of the rolling piston 22 can be partitioned. The pressure difference between the refrigerant gas in the sealed container 10, that is, the pressure of the refrigerant gas in the back pressure chamber 23 b and the pressure of the refrigerant gas in the cylinder chamber 23 a is not sufficient to press the vane 23 against the outer periphery of the rolling piston 22. Even in this case, one end of the vane 23 can be pressed against the outer periphery of the rolling piston 22 by the force of the vane spring, so that one end of the vane 23 can always abut against the outer periphery of the rolling piston 22.
上軸受24は、回転軸21の主軸部21aに嵌合され主軸部21aを回転自在に支持するとともに、シリンダ室23aの軸方向の一方の開口部を閉塞している。同様に、下軸受25は、回転軸21の副軸部21cに嵌合され副軸部21cを回転自在に支持するとともに、シリンダ室23aの軸方向の一方の開口部を閉塞している。シリンダ23には密閉容器10の外部から冷媒ガスをシリンダ室23a内に吸入する吸入ポートが設けられており、上軸受24には圧縮した冷媒ガスをシリンダ室23a外に吐出する吐出ポートが設けられている。上軸受24は、側面視でほぼ逆T字形状であり、下軸受25は、側面視でほぼT字形状である。 The upper bearing 24 is fitted to the main shaft portion 21a of the rotary shaft 21 and rotatably supports the main shaft portion 21a, and closes one opening portion in the axial direction of the cylinder chamber 23a. Similarly, the lower bearing 25 is fitted to the sub-shaft portion 21c of the rotary shaft 21 so as to rotatably support the sub-shaft portion 21c, and closes one opening in the axial direction of the cylinder chamber 23a. The cylinder 23 is provided with a suction port for sucking refrigerant gas into the cylinder chamber 23a from the outside of the sealed container 10, and the upper bearing 24 is provided with a discharge port for discharging compressed refrigerant gas to the outside of the cylinder chamber 23a. ing. The upper bearing 24 has a substantially inverted T shape in a side view, and the lower bearing 25 has a substantially T shape in a side view.
上軸受24の吐出ポートには、吐出弁が設けられており、シリンダ23から吐出ポートを介して吐出される高温・高圧の冷媒ガスの吐出タイミングを制御する。すなわち、吐出弁は、シリンダ23のシリンダ室23a内で圧縮される冷媒ガスが所定の圧力になるまで閉塞し、所定の圧力以上となると開口して高温・高圧の冷媒ガスをシリンダ室23a外へ吐出させる。 The discharge port of the upper bearing 24 is provided with a discharge valve, and controls the discharge timing of the high-temperature and high-pressure refrigerant gas discharged from the cylinder 23 via the discharge port. In other words, the discharge valve closes until the refrigerant gas compressed in the cylinder chamber 23a of the cylinder 23 reaches a predetermined pressure, and opens when the refrigerant gas reaches a predetermined pressure or higher, and discharges the high-temperature / high-pressure refrigerant gas to the outside of the cylinder chamber 23a. Discharge.
シリンダ室23a内では吸入、圧縮、吐出の動作を繰り返しているため、吐出ポートから吐出される冷媒ガスは間欠的に吐出され脈動音などの騒音となる。これを低減するため、上軸受24の外側すなわち電動機30側には上軸受24を覆うように吐出マフラ27が取付けられている。吐出マフラ27には、吐出マフラ27と上軸受24にて形成される空間と密閉容器10内とを連通する吐出穴が設けられている。シリンダ23から吐出ポートを介して吐出される冷媒ガスは、吐出マフラ27と上軸受24にて形成される空間に、一旦、吐出され、その後、吐出穴から密閉容器10内へ吐出される。 Since the suction, compression, and discharge operations are repeated in the cylinder chamber 23a, the refrigerant gas discharged from the discharge port is intermittently discharged, resulting in noise such as pulsation noise. In order to reduce this, a discharge muffler 27 is attached to the outside of the upper bearing 24, that is, on the electric motor 30 side so as to cover the upper bearing 24. The discharge muffler 27 is provided with a discharge hole that communicates the space formed by the discharge muffler 27 and the upper bearing 24 with the inside of the sealed container 10. The refrigerant gas discharged from the cylinder 23 through the discharge port is once discharged into a space formed by the discharge muffler 27 and the upper bearing 24 and then discharged into the sealed container 10 from the discharge hole.
密閉容器10の横には、液冷媒が直接シリンダ23のシリンダ室23aに吸入されることを抑制する吸入マフラ101が設けられている。一般的に、密閉型圧縮機100は密閉型圧縮機100が接続された外部の回路から、低圧の冷媒ガスと液冷媒が混在して送られてくる。液冷媒がシリンダ23に流入し圧縮機構20で圧縮されると圧縮機構20の故障となるため、吸入マフラ101では、液冷媒と冷媒ガスを分離し、冷媒ガスのみシリンダ室23aに送る。吸入マフラ101はシリンダ23の吸入ポートと吸入連結管にて接続され、吸入マフラ101から送られる低圧の冷媒ガスは吸入連結管を介してシリンダ室23aに吸入される。 A suction muffler 101 that suppresses liquid refrigerant from being directly sucked into the cylinder chamber 23 a of the cylinder 23 is provided beside the sealed container 10. Generally, the hermetic compressor 100 is supplied with a mixture of low-pressure refrigerant gas and liquid refrigerant from an external circuit to which the hermetic compressor 100 is connected. When the liquid refrigerant flows into the cylinder 23 and is compressed by the compression mechanism 20, the compression mechanism 20 fails. Therefore, the suction muffler 101 separates the liquid refrigerant and the refrigerant gas and sends only the refrigerant gas to the cylinder chamber 23a. The suction muffler 101 is connected to the suction port of the cylinder 23 through a suction connection pipe, and the low-pressure refrigerant gas sent from the suction muffler 101 is sucked into the cylinder chamber 23a through the suction connection pipe.
以上のように圧縮機構20は構成されており、回転軸21の回転運動により、シリンダ23のシリンダ室23a内で回転軸21の偏芯軸部21bが回転する。シリンダ室23aの内周と偏芯軸部21bに嵌合されたローリングピストン22の外周とベーン26によって仕切られた作動室は、回転軸21の回転とともに、容積が増加・減少する。先ず初めに、この作動室と吸入ポートが連通し、低圧冷媒ガスが吸入される。次に、吸入ポートの連通が閉鎖され、作動室の容積減少とともに、作動室内の冷媒ガスが圧縮される。最後に、吐出ポートと連通し、作動室内の冷媒ガスが所定の圧力に達した後、吐出ポートに設けられた吐出弁が開き、作動室外すなわちシリンダ室23aの外へ圧縮され高圧・高温となった冷媒ガスが吐出される。
シリンダ室23aから吐出マフラ27を介し、密閉容器10内に吐出された高圧・高温の冷媒ガスは、電動機30内を通過し、密閉容器10内を上昇し、密閉容器10の上部に設けられた吐出管102から、密閉容器10の外部へ吐出される。密閉容器10の外部には冷媒が流れる冷凍回路が構成されており、吐出された冷媒は冷凍回路を循環して、再び吸入マフラ101に戻ってくる。
As described above, the compression mechanism 20 is configured, and the eccentric shaft portion 21 b of the rotary shaft 21 rotates in the cylinder chamber 23 a of the cylinder 23 by the rotary motion of the rotary shaft 21. The volume of the working chamber partitioned by the inner periphery of the cylinder chamber 23a, the outer periphery of the rolling piston 22 fitted to the eccentric shaft portion 21b, and the vane 26 increases / decreases as the rotating shaft 21 rotates. First, the working chamber and the suction port communicate with each other, and low-pressure refrigerant gas is sucked. Next, the communication of the suction port is closed, and the refrigerant gas in the working chamber is compressed as the volume of the working chamber decreases. Finally, after the refrigerant gas in the working chamber reaches a predetermined pressure in communication with the discharge port, the discharge valve provided in the discharge port opens and is compressed outside the working chamber, that is, outside the cylinder chamber 23a, to become high pressure and high temperature. The refrigerant gas discharged is discharged.
The high-pressure and high-temperature refrigerant gas discharged from the cylinder chamber 23 a into the sealed container 10 through the discharge muffler 27 passes through the electric motor 30, rises in the sealed container 10, and is provided above the sealed container 10. The discharge pipe 102 discharges the outside of the sealed container 10. A refrigeration circuit through which refrigerant flows is configured outside the sealed container 10, and the discharged refrigerant circulates in the refrigeration circuit and returns to the suction muffler 101 again.
図3は、密閉型圧縮機100が接続される空気調和機などの冷凍サイクル装置の概略構成図である。冷凍サイクル装置200は、密閉型圧縮機100の吸入側に接続された密閉型圧縮機100の吸入マフラ101、密閉型圧縮機100の吐出側に接続された密閉型圧縮機100からの冷媒の流れを切換える四方切換弁103、室外側熱交換器104、電動膨張等の減圧器105、室内側熱交換器106、を備え、配管を介して順次接続して冷凍回路を形成することで、構成されている。なお、一般的に冷凍空調装置では、室内側熱交換器106は屋内の装置に、残る密閉型圧縮機100、四方切換弁103、室外熱交換器104、減圧器105は屋外の装置に搭載されている。 FIG. 3 is a schematic configuration diagram of a refrigeration cycle apparatus such as an air conditioner to which the hermetic compressor 100 is connected. The refrigeration cycle apparatus 200 includes a suction muffler 101 of the hermetic compressor 100 connected to the suction side of the hermetic compressor 100, and a refrigerant flow from the hermetic compressor 100 connected to the discharge side of the hermetic compressor 100. A four-way switching valve 103, an outdoor heat exchanger 104, a decompressor 105 for electric expansion and the like, and an indoor heat exchanger 106, which are sequentially connected via a pipe to form a refrigeration circuit. ing. In general, in a refrigeration air conditioner, the indoor heat exchanger 106 is mounted on an indoor device, and the remaining hermetic compressor 100, four-way switching valve 103, outdoor heat exchanger 104, and decompressor 105 are mounted on an outdoor device. ing.
例えば、空調機の暖房運転では、四方切換弁103は図3の実線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は室内側熱交換器106に流れ、凝縮し、液化した後、減圧器105で絞られ、低温低圧の二相状態となり、室外側熱交換器104へ流れ、蒸発し、ガス化して四方切換弁103を通って再び密閉型圧縮機100に戻る。すなわち、図3の実線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室外側熱交換器104では外気と熱交換して、室外側熱交換器104に送られてきた冷媒が吸熱し、吸熱した冷媒は凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。 For example, in the heating operation of the air conditioner, the four-way switching valve 103 is connected to the solid line side in FIG. The high-temperature and high-pressure refrigerant compressed by the hermetic compressor 100 flows into the indoor heat exchanger 106, condenses and liquefies, and is then squeezed by the decompressor 105 to become a low-temperature and low-pressure two-phase state. It flows to 104, evaporates, is gasified, returns to the hermetic compressor 100 through the four-way switching valve 103 again. That is, the refrigerant circulates as shown by the solid line arrows in FIG. By this circulation, the outdoor heat exchanger 104 that is an evaporator exchanges heat with the outside air, the refrigerant sent to the outdoor heat exchanger 104 absorbs heat, and the absorbed heat is the indoor heat exchange that is a condenser. It is sent to the vessel 106 to exchange heat with the indoor air and warm the indoor air.
冷房運転の場合には、四方切換弁103は図3の破線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は室外側熱交換器104に流れ、凝縮し、液化した後、減圧器105で絞られ、低温低圧の二相状態となり、室内側熱交換器106へ流れ、蒸発し、ガス化して四方切換弁103再び密閉型圧縮機100に戻る。すなわち、暖房運転から冷房運転に変わると、室内側熱交換器106が凝縮器から蒸発器に変わり、室外側熱交換器104が蒸発器から凝縮器に変わる。よって、図3の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では室内の空気と熱交換を行い、室内の空気から吸熱すなわち室内の空気を冷却し、吸熱した冷媒は凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。 In the case of cooling operation, the four-way switching valve 103 is connected to the broken line side in FIG. The high-temperature and high-pressure refrigerant compressed by the hermetic compressor 100 flows to the outdoor heat exchanger 104, condenses and liquefies, and is then squeezed by the decompressor 105 to become a low-temperature and low-pressure two-phase state. The gas flows to 106, evaporates, gasifies, and returns to the hermetic compressor 100 again. That is, when the heating operation is changed to the cooling operation, the indoor heat exchanger 106 is changed from the condenser to the evaporator, and the outdoor heat exchanger 104 is changed from the evaporator to the condenser. Therefore, the refrigerant circulates as shown by the broken line arrows in FIG. By this circulation, the indoor side heat exchanger 106 that is an evaporator exchanges heat with the indoor air, absorbs heat from the indoor air, that is, cools the indoor air, and the absorbed refrigerant is an outdoor heat exchanger that is a condenser. It is sent to 104, heat exchange with outside air is performed, and heat is radiated to outside air.
このとき、冷媒は、一般的にR407C冷媒あるいはR410A冷媒、R32冷媒などが使われる。 At this time, R407C refrigerant, R410A refrigerant, R32 refrigerant or the like is generally used as the refrigerant.
次に、圧縮機構20に回転力を伝達する電動機30について説明する。
図4は図1のB−B’にて電動機30を切断し上面側から見た断面図であり、電動機30は、密閉容器10の内周に固定されるほぼ円筒状の固定子41と、固定子41の内側に配設されたほぼ円柱状の回転子31を備える。
Next, the electric motor 30 that transmits the rotational force to the compression mechanism 20 will be described.
4 is a cross-sectional view of the electric motor 30 taken along the line BB ′ of FIG. 1 and viewed from the upper surface side. The electric motor 30 includes a substantially cylindrical stator 41 fixed to the inner periphery of the sealed container 10; A substantially columnar rotor 31 is provided inside the stator 41.
回転子31は、薄板電磁鋼板を打抜いた鉄心シートを積層し形成された回転子鉄心32で構成されている。回転子の構成には、ブラシレスDCモータのような永久磁石を用いるものと、誘導電動機のように二次巻線を使用するものがある。例えば、図4のようなブラシレスDCモータの場合は、回転子鉄心32の軸方向に磁石挿入孔33が設けられ、その磁石挿入孔にはフェライト磁石や希土類磁石などの永久磁石34が挿入されている。その永久磁石34によって回転子31上の磁極を形成する。回転子31上の磁極が作る磁束と固定子41の固定子巻線が作る磁束との作用によって、回転子31を回転させる。
図示しない誘導電動機の場合には、回転子鉄心32に永久磁石の代わりに二次巻線が設けられており、固定子41の固定子巻線が回転子側の二次巻線に磁束を誘導して回転力を発生させ、回転子31を回転させる。
The rotor 31 is composed of a rotor core 32 formed by laminating iron core sheets punched from thin electromagnetic steel sheets. There are two types of rotors, one using a permanent magnet such as a brushless DC motor and the other using a secondary winding such as an induction motor. For example, in the case of a brushless DC motor as shown in FIG. 4, a magnet insertion hole 33 is provided in the axial direction of the rotor core 32, and a permanent magnet 34 such as a ferrite magnet or a rare earth magnet is inserted into the magnet insertion hole. Yes. The permanent magnet 34 forms a magnetic pole on the rotor 31. The rotor 31 is rotated by the action of the magnetic flux generated by the magnetic poles on the rotor 31 and the magnetic flux generated by the stator winding of the stator 41.
In the case of an induction motor (not shown), the rotor core 32 is provided with a secondary winding instead of a permanent magnet, and the stator winding of the stator 41 induces magnetic flux to the secondary winding on the rotor side. Thus, a rotational force is generated, and the rotor 31 is rotated.
回転子鉄心32の中心には、回転軸21を通す軸穴が設けられており、回転軸21の主軸部21aが焼き嵌め等により締結されている。これにより、回転子31の回転運動を回転軸21に伝達する。軸穴の周囲には、風穴35が設けられており、電動機30の下方にある圧縮機構20にて圧縮された高圧・高温の冷媒が、風穴35を通過する。なお、圧縮機構20にて圧縮された冷媒は、風穴35以外にも、回転子31と固定子41との間のエアギャップや固定子巻線の間隙も通過する。 A shaft hole through which the rotation shaft 21 is passed is provided at the center of the rotor core 32, and the main shaft portion 21a of the rotation shaft 21 is fastened by shrink fitting or the like. Thereby, the rotational motion of the rotor 31 is transmitted to the rotating shaft 21. An air hole 35 is provided around the shaft hole, and high-pressure and high-temperature refrigerant compressed by the compression mechanism 20 below the electric motor 30 passes through the air hole 35. Note that the refrigerant compressed by the compression mechanism 20 passes through the air gap between the rotor 31 and the stator 41 and the gap between the stator windings in addition to the air holes 35.
固定子41は、固定子鉄心42、絶縁部材43、固定子巻線44から構成され、ほぼ円筒状の形状であり、中心にほぼ円柱状の回転子31が配置をされている。
固定子鉄心42は、回転子31と同様に薄板電磁鋼板を打抜いた鉄心シートを積層して形成されており、固定子鉄心42の外径は下部容器12の中間部分の内径より大きく製作され、下部容器12の内径に焼嵌めによって固定されている。また、固定子鉄心42は、外周側の円筒形部を形成するバックヨーク45と、バックヨーク45から固定子41の径方向の中心側、すなわち回転子31の方向に等間隔に突出した複数の磁極歯すなわちティース46とで構成されている。ティース46には固定子巻線44を施すことにより、磁極を構成する。ティースとティースの間には、固定子巻線44が収容できる空間すなわちスロット47が形成されている。
The stator 41 includes a stator core 42, an insulating member 43, and a stator winding 44. The stator 41 has a substantially cylindrical shape, and a substantially columnar rotor 31 is arranged at the center.
The stator core 42 is formed by laminating core sheets obtained by punching thin magnetic steel sheets in the same manner as the rotor 31, and the outer diameter of the stator core 42 is made larger than the inner diameter of the intermediate portion of the lower container 12. The inner diameter of the lower container 12 is fixed by shrink fitting. The stator core 42 includes a back yoke 45 that forms a cylindrical portion on the outer peripheral side, and a plurality of protrusions protruding from the back yoke 45 at the center side in the radial direction of the stator 41, that is, in the direction of the rotor 31. It consists of magnetic pole teeth or teeth 46. The teeth 46 are provided with stator windings 44 to form magnetic poles. A space that can accommodate the stator winding 44, that is, a slot 47 is formed between the teeth.
固定子巻線44にはリード線48が接続されている。リード線48は密閉容器10に固定されたガラス端子49と接続されており、ガラス端子49から電力が供給される。ガラス端子49にはリード線48を介して固定子巻線44に電力を供給する外部電源が接続される。外部電源は密閉容器10の外に設けられる、例えば、インバータ装置などである。固定子巻線44は、固定子鉄心42に複数設けられたティース46に絶縁部材43を介して固定子41の軸方向すなわち上下方向に巻き付けられた巻線の集合体であり、固定子巻線44はティースとティースの間に形成されるスロット47にほぼ隙間無く収納されている。固定子巻線44に電流を流したとき、これらの固定子巻線44が巻きつけられたティース46が磁極となる。磁極の方向は、固定子巻線44に流す電流の方向によって変わる。 A lead wire 48 is connected to the stator winding 44. The lead wire 48 is connected to a glass terminal 49 fixed to the sealed container 10, and power is supplied from the glass terminal 49. An external power supply that supplies power to the stator winding 44 is connected to the glass terminal 49 via a lead wire 48. The external power source is provided outside the sealed container 10, for example, an inverter device. The stator winding 44 is an assembly of windings wound in the axial direction of the stator 41, that is, in the vertical direction, via the insulating member 43 around a plurality of teeth 46 provided on the stator core 42. 44 is accommodated in a slot 47 formed between the teeth with almost no gap. When a current is passed through the stator winding 44, the teeth 46 around which the stator winding 44 is wound become a magnetic pole. The direction of the magnetic pole varies depending on the direction of the current flowing through the stator winding 44.
図5、6は、一般的な三相電動機の固定子巻線の結線図である。一般的に三相電動機の固定子巻線は、3つの独立した巻線の集合体から構成され、それぞれ、U相固定子巻線、V相固定子巻線、W相固定子巻線と称する。 5 and 6 are connection diagrams of a stator winding of a general three-phase motor. In general, a stator winding of a three-phase motor is composed of an assembly of three independent windings, which are referred to as a U-phase stator winding, a V-phase stator winding, and a W-phase stator winding, respectively. .
例えば、図5、図6の固定子41は、ティース46a〜46rと、固定子巻線44a〜44iを有している。まず、U相の固定子巻線は、図5のように、ティース46a、46b、46cに巻き付けられた固定子巻線44aと、ティース46g、46h、46iに巻き付けられた固定子巻線44bと、ティース46m、46n、46oに巻き付けられた固定子巻線44cと、からなり、固定子巻線44a、固定子巻線44b、固定子巻線44cを図6のように直列に接続して、U相固定子巻線44kを構成している。U相固定子巻線44kの端末の一方は中性点44jに接続され、もう一方はリード線48uに接続され、固定子41のU相を構成する。同様に、V相の固定子巻線は、ティース46e、46f、46gに巻き付けられた固定子巻線44dと、ティース46k、46l、46mに巻き付けられた固定子巻線44eと、ティース46q、46r、46aに巻き付けられた固定子巻線44fと、からなり、固定子巻線44d、固定子巻線44e、固定子巻線44fを直列に接続して、V相固定子巻線44lを構成している。V相固定子巻線44lの端末の一方は中性点44jに接続され、もう一方はリード線48vに接続され、固定子41のV相を構成する。W相の固定子巻線は、ティース46c、46d、46eに巻き付けられた固定子巻線44gと、ティース46i、46j、46kに巻き付けられた固定子巻線44hと、ティース46o、46p、46qに巻き付けられた固定子巻線44iと、からなり、固定子巻線44g、固定子巻線44h、固定子巻線44iを直列に接続して、W相固定子巻線44mを構成している。W相固定子巻線44mの端末の一方は中性点44jに接続され、もう一方はリード線48wに接続され、固定子41のW相を構成する。
U相、V相、W相の固定子巻線に、電流を流すことによって、固定子巻線が励磁され、ティース46a〜46rが磁極となる。
固定子巻線44、リード線48は銅線が使用されるが、アルミニウム線であっても構わない。リード線48に銅線、固定子巻線44にアルミニウム線を使用するように混在した使用方法でも構わない。
ティース46の回転軸21軸に対して円周方向の側面間、すなわちティースとティースの間に形成されるスロット47は、ティース46と固定子巻線44が接触しないように、絶縁部材43が覆っている。
For example, the stator 41 in FIGS. 5 and 6 includes teeth 46a to 46r and stator windings 44a to 44i. First, as shown in FIG. 5, the U-phase stator winding includes a stator winding 44a wound around teeth 46a, 46b, 46c, and a stator winding 44b wound around teeth 46g, 46h, 46i. The stator winding 44c is wound around the teeth 46m, 46n, 46o, and the stator winding 44a, the stator winding 44b, and the stator winding 44c are connected in series as shown in FIG. A U-phase stator winding 44k is configured. One end of the U-phase stator winding 44k is connected to the neutral point 44j, and the other end is connected to the lead wire 48u to constitute the U-phase of the stator 41. Similarly, the V-phase stator winding includes a stator winding 44d wound around the teeth 46e, 46f, 46g, a stator winding 44e wound around the teeth 46k, 46l, 46m, and the teeth 46q, 46r. And a stator winding 44f wound around 46a, and a stator winding 44d, a stator winding 44e, and a stator winding 44f are connected in series to form a V-phase stator winding 44l. ing. One end of the V-phase stator winding 44l is connected to the neutral point 44j, and the other end is connected to the lead wire 48v to constitute the V-phase of the stator 41. The W-phase stator windings are formed on the stator winding 44g wound around the teeth 46c, 46d, and 46e, the stator winding 44h wound around the teeth 46i, 46j, and 46k, and the teeth 46o, 46p, and 46q. The stator winding 44i is wound, and the stator winding 44g, the stator winding 44h, and the stator winding 44i are connected in series to form a W-phase stator winding 44m. One end of the W-phase stator winding 44m is connected to the neutral point 44j, and the other end is connected to the lead wire 48w to constitute the W-phase of the stator 41.
By passing a current through the U-phase, V-phase, and W-phase stator windings, the stator windings are excited, and the teeth 46a to 46r become magnetic poles.
The stator winding 44 and the lead wire 48 are copper wires, but may be aluminum wires. A mixed usage method may be used in which a copper wire is used for the lead wire 48 and an aluminum wire is used for the stator winding 44.
The slot 47 formed between the side surfaces in the circumferential direction with respect to the rotation axis 21 of the tooth 46, that is, between the teeth, is covered by the insulating member 43 so that the teeth 46 and the stator windings 44 do not contact each other. ing.
絶縁部材43は、固定子鉄心42の回転軸21軸方向の端面に装着される絶縁部材43a、43b、43cと、スロット47の内壁すなわちティース46の回転軸21軸に対して円周方向の側面を覆う部分(図示しない)から構成されている。絶縁部材43aと43bは、固定子鉄心42の回転軸21軸方向の端面のうち、リード線48が配置されている側に装着され、絶縁部材43cはその反対側の端面に装着されている。絶縁部材43bに対して、絶縁部材43aには収納部51が設けられている。図7は、その絶縁部材43のうち、43aを示したものである。図7(a)は固定子鉄心42の回転軸21軸方向の端面に装着された状態で、回転軸21軸方向すなわち固定子鉄心42の上面から見た図、図7(b)は固定子鉄心42の外周側から見た図、図7(c)は固定子鉄心42の円周方向すなわち側方から見た図である。図8は、固定子鉄心42に図7の絶縁部材43を装着した状態であり、固定子鉄心42の回転軸21軸方向すなわち上方から見た図である。図9は、固定子鉄心42に絶縁部材43が装着された状態を、固定子鉄心42の円周方向すなわち側方から見た図であり、(a)は固定子巻線44を巻き回す前、(b)は固定子巻線44を巻き回した後、(c)は図8のC−C’にて切断した断面図である。
固定子鉄心42の回転軸21軸方向の端面に装着される部分は、ティース46毎に設けられるので、図7ではティース46毎に分割された絶縁部材43aを示したが、固定子鉄心42の回転軸21軸方向の端面を回転軸21軸を一周するように円環状につながった構成でも構わない。
固定子鉄心42の回転軸21軸方向の端面に装着される部分は、固定子鉄心42のバックヨーク45の回転軸21軸方向の端面に装着されるバックヨーク45の形状に沿ってほぼ円弧状に形成された外壁部43dと、ティース46の先端部の回転軸21軸方向の端面に装着される内壁部43eと、内壁部43eが装着された部分を除く、ティース46の回転軸21軸方向の端面に装着され、その端面を覆うティース被覆部43fと、にて構成されている。すなわち、図9(a)のように絶縁部材43aが固定子鉄心42の回転軸21軸方向の端面に装着された状態において、絶縁部材43aの固定子鉄心42の回転軸21軸方向の端面に装着される部分は、ティース46の回転軸21軸方向の端面に装着され、その端面を覆うティース被覆部43fと、ティース被覆部43fの外周側に設けられバックヨーク45の回転軸21軸方向の端面に装着される外壁部43dと、ティース被覆部43fの内周側に設けられティース46の先端部の回転軸21軸方向の端面に装着される内壁部43eと、を有する構成であり、外壁部43dと内壁部43eの間にティース被覆部43fが設けられている。なお、外壁部43dと内壁部43eは、固定子鉄心42の回転軸21軸方向の端面に立設して設けられ、それぞれ、回転軸21軸方向に延設されている。固定子鉄心42の回転軸21軸方向の端面に装着される部分は、固定子鉄心42の回転軸21軸方向の端面のどちらに装着されるものであっても、同様の構成を有する。
また、外壁部43dと内壁部43eとティース被覆部43fはティース46毎に設けられている。
また、絶縁部材43aには、絶縁部材43aの固定子鉄心42の回転軸21軸方向の端面と接触する側には、43g、43hのような位置決め突起が複数設けられ、固定子鉄心42の回転軸21軸方向の端面には、この位置決め突起対応する穴が設けられている。装着の際には、この位置決め突起が固定子鉄心42の回転軸21軸方向の端面の穴に挿入されることにより、所定の位置に装着することができる。なお、穴と突起は嵌合する形状であっても構わない。図示しないが、絶縁部材43b、43cには、同様の構成を設け、所定の位置に装着することができるような構成となっている。
スロット47の内壁を覆う部分と、固定子鉄心42の回転軸21軸方向の端面に装着される部分とは、一体化されたものであっても、別体のものであっても構わない。
The insulating member 43 is a side surface in the circumferential direction with respect to the insulating member 43a, 43b, 43c attached to the end surface of the stator core 42 in the axial direction of the rotating shaft 21 and the inner wall of the slot 47, that is, the rotating shaft 21 of the tooth 46. It is comprised from the part (not shown) which covers. The insulating members 43a and 43b are mounted on the side where the lead wire 48 is disposed on the end surface of the stator core 42 in the axial direction of the rotating shaft 21, and the insulating member 43c is mounted on the opposite end surface. The insulating member 43a is provided with a storage 51 for the insulating member 43b. FIG. 7 shows 43 a among the insulating members 43. FIG. 7A shows a state where the stator core 42 is attached to the end surface of the stator core 42 in the axial direction of the rotary shaft 21, and is a view seen from the axial direction of the rotary shaft 21, that is, the top surface of the stator core 42. FIG. 7C is a diagram viewed from the outer peripheral side of the iron core 42, and FIG. 7C is a diagram viewed from the circumferential direction of the stator core 42, that is, from the side. FIG. 8 shows a state in which the insulating member 43 of FIG. 7 is attached to the stator core 42, and is a view seen from the axial direction of the rotation axis 21 of the stator core 42, that is, from above. FIG. 9 is a view of the state in which the insulating member 43 is mounted on the stator core 42 as viewed from the circumferential direction of the stator core 42, that is, from the side, and (a) is before winding the stator winding 44. (B) is sectional drawing cut | disconnected by CC 'of FIG. 8, after winding the stator coil | winding 44, (c).
Since the portion attached to the end surface of the stator core 42 in the axial direction of the rotary shaft 21 is provided for each tooth 46, FIG. 7 shows the insulating member 43 a divided for each tooth 46. The end surface of the rotating shaft 21 in the axial direction may be connected in an annular shape so as to go around the rotating shaft 21 axis.
The portion mounted on the end surface of the stator core 42 in the axial direction of the rotating shaft 21 is substantially arc-shaped along the shape of the back yoke 45 mounted on the end surface of the back yoke 45 of the stator core 42 in the axial direction of the rotating shaft 21. The outer wall 43d formed on the teeth 46, the inner wall 43e attached to the end surface of the tip end portion of the tooth 46 in the direction of the rotation axis 21 and the portion where the inner wall 43e is attached are removed in the axial direction of the rotation axis 21 of the tooth 46. And a teeth covering portion 43f that covers the end surface. That is, in the state where the insulating member 43a is attached to the end surface of the stator core 42 in the axial direction of the rotating shaft 21 as shown in FIG. 9A, the end surface of the stator core 42 of the insulating member 43a in the axial direction of the rotating shaft 21 The portion to be mounted is mounted on the end surface of the tooth 46 in the axial direction of the rotating shaft 21, the tooth covering portion 43 f covering the end surface, and provided on the outer peripheral side of the tooth covering portion 43 f in the axial direction of the rotating shaft 21 of the back yoke 45. An outer wall portion 43d attached to the end surface, and an inner wall portion 43e provided on the inner peripheral side of the tooth covering portion 43f and attached to the end surface of the tip end portion of the tooth 46 in the axial direction of the rotary shaft 21; A teeth covering portion 43f is provided between the portion 43d and the inner wall portion 43e. The outer wall portion 43d and the inner wall portion 43e are provided upright on the end surface of the stator core 42 in the axial direction of the rotating shaft 21, and each extend in the axial direction of the rotating shaft 21. The portion mounted on the end surface of the stator core 42 in the axial direction of the rotating shaft 21 has the same configuration regardless of whether the portion is mounted on the end surface of the stator core 42 in the axial direction of the rotating shaft 21.
Further, the outer wall portion 43d, the inner wall portion 43e, and the tooth covering portion 43f are provided for each tooth 46.
The insulating member 43 a is provided with a plurality of positioning projections 43 g and 43 h on the side of the insulating member 43 a that contacts the end surface of the stator core 42 in the axial direction of the rotating shaft 21. A hole corresponding to the positioning protrusion is provided on an end surface of the shaft 21 in the axial direction. At the time of mounting, this positioning projection can be mounted at a predetermined position by being inserted into the hole in the end surface of the stator core 42 in the axial direction of the rotating shaft 21. Note that the hole and the protrusion may have a fitting shape. Although not shown, the insulating members 43b and 43c have the same configuration and can be mounted at predetermined positions.
The portion covering the inner wall of the slot 47 and the portion attached to the end surface of the stator core 42 in the axial direction of the rotating shaft 21 may be integrated or separate.
スロット47の内壁を覆う部分と、固定子鉄心42の回転軸21軸方向の端面に装着される部分とが一体化された絶縁部材の場合、固定子鉄心42の回転軸21軸方向の一方の端面側から、スロット47の内壁を覆う部分にてティース46を挟み込むように、スロット47の内壁を覆う部分をスロット47に挿入し嵌合させる。スロット47に挿入されたスロット47の内壁を覆う部分が固定子鉄心42の回転軸21軸方向のもう一方の端面側まで達し、スロット47の内壁を覆い隠したところで、固定子鉄心42の回転軸21軸方向の端面に装着する部分が固定子鉄心42の回転軸21軸方向の一方の端面に接し、スロット47への挿入が完了する。そして、固定子鉄心42の回転軸21軸方向の端面に係止される。固定子鉄心42の回転軸21軸方向のもう一方の端面側には、スロット47の内壁を覆う部分を有しない固定子鉄心42の回転軸21軸方向の端面に装着される部分が装着され、固定子鉄心42の回転軸21軸方向の一方の端面側からスロット47に挿入したスロット47の内壁を覆う部分を、固定子鉄心42の回転軸21軸方向のもう一方の端面側から係止あるいは嵌合する。これによって、スロット47の内壁を覆う部分はスロット47内に係止されるとともに、固定子鉄心42の回転軸21軸方向の端面に装着される部分も、固定子鉄心42の回転軸21軸方向の端面上に係止される。 In the case of an insulating member in which the portion covering the inner wall of the slot 47 and the portion mounted on the end surface of the stator core 42 in the axial direction of the rotating shaft 21 are integrated, one of the stator cores 42 in the axial direction of the rotating shaft 21 From the end face side, the portion covering the inner wall of the slot 47 is inserted into the slot 47 and fitted so that the teeth 46 are sandwiched by the portion covering the inner wall of the slot 47. The portion of the slot 47 that covers the inner wall of the slot 47 reaches the other end surface in the axial direction of the rotation axis 21 of the stator core 42 and covers the inner wall of the slot 47. A portion attached to the end surface in the 21-axis direction is in contact with one end surface of the stator core 42 in the axial direction of the rotating shaft 21, and the insertion into the slot 47 is completed. And it is latched by the end surface of the rotating shaft 21 axial direction of the stator core 42. On the other end surface side of the stator core 42 in the axial direction of the rotating shaft 21, a portion mounted on the end surface of the stator core 42 in the axial direction of the rotating shaft 21 that does not have a portion covering the inner wall of the slot 47 is mounted. The portion covering the inner wall of the slot 47 inserted into the slot 47 from one end surface side of the stator core 42 in the axial direction of the rotating shaft 21 is locked or locked from the other end surface side of the stator core 42 in the axial direction of the rotating shaft 21. Mating. As a result, the portion covering the inner wall of the slot 47 is locked in the slot 47, and the portion attached to the end surface of the stator core 42 in the axial direction of the rotational axis 21 is also in the axial direction of the rotational axis 21 of the stator core 42. It is latched on the end face of.
スロット47の内壁を覆う部分と、固定子鉄心42の回転軸21軸方向の端面に取付けられる部分とが別体のものは、先にスロット47の内壁を覆う部分をスロット47に挿入し、次に、固定子鉄心42の回転軸21軸方向の端面に取付けられる部分を両端面に装着する。固定子鉄心42の回転軸21軸方向の端面に取付けられる部分は、それぞれの方向からスロット47の内壁を覆う部分と係止あるいは嵌合し、スロット47の内壁を覆う部分をスロット47内に係止あるいは固定する。例えば、固定子鉄心42の回転軸21軸方向の端面に取付けられる部分に、爪を設け、その爪とスロット47の内壁との間で、スロット47の内壁を覆う部分を挟み込み、スロット47内に係止する。このとき、爪がスロット47の内壁を押圧する力によって、固定子鉄心42の回転軸21軸方向の端面に取付けられる部分も固定子鉄心42の回転軸21軸方向の端面上に係止される。 If the portion that covers the inner wall of the slot 47 and the portion that is attached to the end surface of the stator core 42 in the axial direction of the rotary shaft 21 are separate, the portion that covers the inner wall of the slot 47 is first inserted into the slot 47, In addition, a portion that is attached to the end surface of the stator iron core 42 in the axial direction of the rotary shaft 21 is attached to both end surfaces. The portion attached to the end surface of the stator core 42 in the axial direction of the rotating shaft 21 is engaged or fitted with the portion covering the inner wall of the slot 47 from each direction, and the portion covering the inner wall of the slot 47 is engaged in the slot 47. Stop or fix. For example, a claw is provided in a portion attached to the end surface of the stator iron core 42 in the axial direction of the rotary shaft 21, and a portion covering the inner wall of the slot 47 is sandwiched between the claw and the inner wall of the slot 47. Lock. At this time, the portion attached to the end surface of the stator core 42 in the axial direction of the rotating shaft 21 is also locked on the end surface of the stator core 42 in the axial direction of the rotating shaft 21 by the force with which the claw presses the inner wall of the slot 47. .
なお、絶縁部材43の少なくとも固定子鉄心42の回転軸21軸方向の端面に取付けられる部分43a、43b、43cは、LCP(液晶ポリマー)などのエンジニアリングプラスチックなどの絶縁性樹脂にて形成されており、スロット47を覆う部分が、一体化されたものについては、同じエンジニアリングプラスチックなどの絶縁性樹脂にて形成されている。スロット47を覆う部分が、別体の場合は、エンジニアリングプラスチックなどの絶縁性樹脂である以外に、PET(ポリエチレンテレフタレート)のような絶縁フィルムで構成されていても構わない。 The portions 43a, 43b and 43c attached to at least the end surface of the stator core 42 in the axial direction of the rotating shaft 21 of the insulating member 43 are formed of an insulating resin such as engineering plastic such as LCP (liquid crystal polymer). In the case where the portion covering the slot 47 is integrated, it is formed of an insulating resin such as the same engineering plastic. When the portion covering the slot 47 is a separate body, it may be made of an insulating film such as PET (polyethylene terephthalate) in addition to an insulating resin such as engineering plastic.
固定子巻線44は、スロット47の内壁すなわちティース46のスロット47の内壁を構成する面に絶縁部材43のスロット47の内壁を覆う部分が装着されるとともに、図9(a)のように固定子鉄心42の回転軸21軸方向の端面を構成するティース46の回転軸21軸方向の端面にティース被覆部43fが装着され、ティース46の回転軸21軸方向の端面とスロット47の内壁を構成する面を絶縁部材43が覆った状態で、その絶縁部材43上から図9(b)のようにティース46に巻き回される。これにより、固定子巻線44とティース46とが絶縁される(例えば、図9(c))。なお、固定子巻線44は、外壁部43dと内壁部43eの間に巻き回されるとともに、ティース46上に積層上に巻き回されていく固定子巻線44は外壁部43dと内壁部43eによって保持され、外壁部43dより外周側に、内壁部43eにより内周側に崩れることなく、巻き回すことができる。
なお、固定子鉄心42に装着される絶縁部材43は、固定子巻線44が巻き付けられることによって、装着した位置に固定される。
A portion of the stator winding 44 that covers the inner wall of the slot 47 of the insulating member 43 is attached to the inner wall of the slot 47, that is, the surface constituting the inner wall of the slot 47 of the tooth 46, and is fixed as shown in FIG. The teeth covering portion 43f is attached to the end surface of the teeth 46 constituting the end surface in the axial direction of the rotating shaft 21 of the core 42 and the end surface of the teeth 46 in the axial direction of the rotating shaft 21 constitutes the inner wall of the slot 47. In a state where the surface to be covered is covered with the insulating member 43, the insulating member 43 is wound around the tooth 46 as shown in FIG. 9B. As a result, the stator winding 44 and the teeth 46 are insulated (for example, FIG. 9C). The stator winding 44 is wound between the outer wall portion 43d and the inner wall portion 43e, and the stator winding 44 wound on the teeth 46 in a laminated manner is the outer wall portion 43d and the inner wall portion 43e. The outer wall 43d can be wound on the outer circumferential side without collapsing to the inner circumferential side by the inner wall 43e.
The insulating member 43 attached to the stator core 42 is fixed at the attached position by winding the stator winding 44.
絶縁部材43aの外壁部43dには、固定子巻線44とリード線48の接続部分を収納する収納部51が設けられている。例えば、図10は、絶縁部材43aが固定子鉄心42の回転軸21軸方向の端面に装着された状態で、絶縁部材43aの外壁部43dに固定子鉄心42の円周方向の溝を設け、その溝を収納部51とし、固定子巻線44とリード線48の接合部を収納部51に収納する。収納部51は、固定子鉄心42の回転軸21軸方向で固定子鉄心42と反対側すなわち上方と、固定子鉄心42の円周方向に、それぞれ開放されている。なお、図10(a)は固定子鉄心42の回転軸21軸方向すなわち上方から見た絶縁部材43aの外観図で、(b)は固定子鉄心42の外周側から見た絶縁部材43aの外観と収納部51の内部を表した図と、(c)は固定子鉄心42aの円周方向すなわち側方から見た絶縁部材43aが固定子鉄心42に装着され固定子巻線44を巻き回された外観図である。
なお、収納部51は、各相に設けられており、例えば、図5、6では、U相、V相、W相毎に、接合部56u、56v、56wを有するので、収納部51u、51v、51wが設けられ、各接合部を収納する。
The outer wall 43d of the insulating member 43a is provided with a storage 51 for storing a connection portion between the stator winding 44 and the lead wire 48. For example, FIG. 10 shows that a circumferential groove of the stator core 42 is provided in the outer wall portion 43d of the insulating member 43a in a state where the insulating member 43a is mounted on the end surface of the stator core 42 in the axial direction of the rotation shaft 21. The groove is used as the storage portion 51, and the joint between the stator winding 44 and the lead wire 48 is stored in the storage portion 51. The storage 51 is opened on the opposite side of the stator core 42 in the direction of the axis of rotation 21 of the stator core 42, that is, on the opposite side, ie, in the circumferential direction of the stator core 42. 10A is an external view of the insulating member 43a viewed from the axial direction of the rotation axis 21 of the stator core 42, that is, from above, and FIG. 10B is an external view of the insulating member 43a viewed from the outer peripheral side of the stator core 42. FIG. 4C shows the inside of the storage portion 51, and FIG. 5C shows that the insulating member 43 a viewed from the circumferential direction, that is, the side of the stator core 42 a is attached to the stator core 42 and wound around the stator winding 44. FIG.
The storage unit 51 is provided in each phase. For example, in FIGS. 5 and 6, each of the U phase, the V phase, and the W phase includes the joint portions 56 u, 56 v, and 56 w. , 51w are provided and each joint portion is accommodated.
以上のような構成によって、電動機30は、回転子31が作る磁束と固定子41の固定子巻線44が作る磁束との作用によって、回転子31を回転させ、回転力を回転軸21へ伝達し、回転軸21を介して圧縮機構20へ伝達する。
電動機30が発生する回転力すなわち発生トルクは、圧縮機構20の吸入、圧縮、吐出の工程に必要な負荷量に従う。すなわち、圧縮機構20の負荷量が大きくなると電動機30が発生するトルクも大きくする必要がある。電動機30の発生トルクは、固定子巻線44に流す電流によって発生する磁束と、回転子31に設けられた永久磁石や二次巻線の磁束の作用によって発生する。その発生トルクの大きさは、固定子41と回転子31が発生する磁束の大きさによって決められる。一般的には、回転子31側の磁束の大きさは搭載する永久磁石や二次巻線の設計によって設計時におおよそ決められ、固定子41の磁束の大きさを決める要素のうち固定子巻線44を巻き回す回数も設計時に決められるので、電動機30の発生トルクの大きさは、固定子巻線44に流す電流の増減によって制御する。すなわち、電動機30の発生トルクを大きくするためには固定子巻線44に流す電流を増加させ、発生トルクを小さくしたい場合には固定子巻線44に流す電流を減少させる。固定子巻線44に流す電流は、リード線48とガラス端子49を解して接続された外部電源、例えば、インバータ装置によって、制御することができ、インバータ装置によって、圧縮機構20の負荷量に合わせて電動機30に必要な発生トルクを発生させることができる。インバータ装置は、電動機30のU相巻線、V相巻線、W相巻線にそれぞれ、120°毎位相が異なる交流を印加させ、電動機30を駆動する。
With the configuration as described above, the electric motor 30 rotates the rotor 31 by the action of the magnetic flux generated by the rotor 31 and the magnetic flux generated by the stator winding 44 of the stator 41, and transmits the rotational force to the rotating shaft 21. Then, it is transmitted to the compression mechanism 20 via the rotating shaft 21.
The rotational force generated by the electric motor 30, that is, the generated torque, depends on the load amount required for the suction, compression, and discharge processes of the compression mechanism 20. That is, it is necessary to increase the torque generated by the electric motor 30 as the load amount of the compression mechanism 20 increases. The generated torque of the electric motor 30 is generated by the action of the magnetic flux generated by the current flowing through the stator winding 44 and the magnetic flux of the permanent magnet and the secondary winding provided in the rotor 31. The magnitude of the generated torque is determined by the magnitude of the magnetic flux generated by the stator 41 and the rotor 31. In general, the magnitude of the magnetic flux on the rotor 31 side is roughly determined at the time of design by the design of the permanent magnet or secondary winding to be mounted, and the stator winding is one of the factors that determine the magnitude of the magnetic flux of the stator 41. Since the number of turns 44 is determined at the time of design, the magnitude of the torque generated by the electric motor 30 is controlled by increasing or decreasing the current flowing through the stator winding 44. That is, in order to increase the generated torque of the electric motor 30, the current flowing through the stator winding 44 is increased, and when the generated torque is desired to be decreased, the current flowing through the stator winding 44 is decreased. The current flowing through the stator winding 44 can be controlled by an external power source connected through the lead wire 48 and the glass terminal 49, for example, an inverter device, and the inverter device can control the load amount of the compression mechanism 20. In addition, a necessary torque can be generated in the electric motor 30. The inverter device drives the electric motor 30 by applying alternating currents having different phases every 120 ° to the U-phase winding, the V-phase winding, and the W-phase winding of the electric motor 30.
ここで、固定子巻線44は、銅線が使用されることが一般的であるが、コスト削減のため、アルミニウム線が使用されたものもある。しかし、アルミニウム線を使用した場合、同じ線径の導線でも、銅線の1.6倍程度の電気抵抗を有する。圧縮機構20の負荷量が変わらなければ、必要とする負荷トルクの大きさも同じであり、固定子巻線44に流す電流も変わらない。したがって、固定子巻線44にアルミニウム線を用いた場合でも銅線を用いた場合と同じ電流量を流す必要がある。必要な電流を流すと銅線を用いた固定子巻線に比べアルミニウム線を用いた固定子巻線が発生するジュール熱は増加するので、銅線に比べアルミニウム線は動作温度が高くなる。すなわち、固定子巻線44の温度上昇の上限値が上昇する。固定子巻線44の温度上昇を抑えるために、固定子巻線44の線径を太くし電気抵抗を下げる方法もある。しかし、圧縮機構20が必要とする負荷トルクの大きさは変わらないので、固定子41に発生する磁束量を同じだけ確保するためにはティース46に巻き回す回数も同数必要であり、固定子巻線44を収納するスロット47の断面積には限界があるので、固定子巻線44の線径を太くし電気抵抗を下げ温度上昇を抑制する方法にも限界がある。よって、銅線でもアルミニウム線でも動作温度は同じ程度として用いていくには課題がある。 Here, a copper wire is generally used for the stator winding 44, but an aluminum wire is also used for cost reduction. However, when an aluminum wire is used, a conductive wire having the same wire diameter has an electric resistance of about 1.6 times that of a copper wire. If the load amount of the compression mechanism 20 does not change, the required load torque is the same, and the current flowing through the stator winding 44 does not change. Therefore, even when an aluminum wire is used for the stator winding 44, it is necessary to flow the same amount of current as when a copper wire is used. When a necessary current is passed, Joule heat generated by a stator winding using an aluminum wire increases compared to a stator winding using a copper wire, so that the operating temperature of the aluminum wire is higher than that of the copper wire. That is, the upper limit value of the temperature rise of the stator winding 44 is increased. In order to suppress the temperature rise of the stator winding 44, there is a method of increasing the wire diameter of the stator winding 44 and reducing the electrical resistance. However, since the magnitude of the load torque required by the compression mechanism 20 does not change, the same number of times of winding around the teeth 46 is necessary to secure the same amount of magnetic flux generated in the stator 41, and the stator winding Since there is a limit to the cross-sectional area of the slot 47 that accommodates the wire 44, there is a limit to the method of increasing the wire diameter of the stator winding 44 and reducing the electrical resistance to suppress the temperature rise. Therefore, there is a problem in using the copper wire and the aluminum wire at the same operating temperature.
また、密閉型圧縮機では、近年の地球温暖化防止対策のため、従来のR407C冷媒あるいはR410A冷媒に比べて、GWPの低い冷媒を使用していく計画がある。しかし、GWPの低い冷媒の中には、従来と同じ冷凍サイクル装置の構成にて、従来のR407C冷媒あるいはR410A冷媒と同等の熱交換能力を引き出すためには、R407C冷媒あるいはR410A冷媒の動作温度より高い動作温度条件で動作させる必要があるものがある。例えば、低GWP冷媒として注目されているR32冷媒は吐出温度で10℃程度高い条件で動作させなければ、R407C冷媒あるいはR410A冷媒と同等の熱交換能力が発揮されない。このような条件で密閉型圧縮機100を動作させた場合、圧縮機構20で圧縮された高圧・高温冷媒は、電動機30を通過して密閉容器10の上方の吐出管102から密閉容器10の外へ吐出されるが、高温の冷媒が電動機30を通過することによって電動機30の温度も上昇させられる。 Further, in the hermetic compressor, there is a plan to use a refrigerant having a lower GWP than conventional R407C refrigerant or R410A refrigerant in order to prevent global warming in recent years. However, some refrigerants with low GWP have the same refrigeration cycle apparatus configuration as the conventional one, and in order to bring out the heat exchange capability equivalent to the conventional R407C refrigerant or R410A refrigerant, the operating temperature of the R407C refrigerant or R410A refrigerant Some need to operate at high operating temperature conditions. For example, an R32 refrigerant that is attracting attention as a low GWP refrigerant does not exhibit the heat exchange capability equivalent to that of an R407C refrigerant or an R410A refrigerant unless operated at a discharge temperature that is about 10 ° C. higher. When the hermetic compressor 100 is operated under such conditions, the high-pressure / high-temperature refrigerant compressed by the compression mechanism 20 passes through the electric motor 30 and is discharged from the discharge pipe 102 above the hermetic container 10 to the outside of the hermetic container 10. However, when the high-temperature refrigerant passes through the electric motor 30, the temperature of the electric motor 30 is also raised.
また、図1に示す密閉型圧縮機100は、圧縮機構20が1組のシリンダとローリングピストンとベーンによって構成されたシングルロータリ形式のもので、ローリングピストンが1回転する間に吸入工程、圧縮工程、吐出工程を行うものである。ローリングピストンの1回する間で圧縮機構20が必要とする負荷量すなわち負荷トルクは図11の実線のように工程によって変わる。吸入工程が最もトルクを必要とせず、圧縮工程から吐出工程に移るときが最も大きなトルクを必要とする。これに対し、電動機30の発生トルクは、ほぼ一定のため、負荷トルクと発生トルクと違いにより、角速度が上昇、下降が生じ、電動機30は回転むらを発生させ、回転脈動が生じ、振動が発生する。
この振動を抑制するために、密閉型圧縮機100に電力を供給する外部電源すなわちインバータ装置では、圧縮機構20の回転位置に応じた負荷トルクに基づき、電動機の発生トルクを圧縮機構20の回転位置に応じて必要な発生トルクに制御し、図11の破線のように、回転むらを小さくし、回転脈動を抑制することで、振動を抑制する制振制御を行うものがある。しかしながら、このような制御を行うと、圧縮機構20の平均負荷トルクが小さくても、その最大負荷トルクは3倍程度に達することもある。固定子巻線44に流す電流量は、電動機30の発生トルクに比例するので、圧縮機構20の回転位置に応じて必要な電流量に増減、制御される。よって、巻線には所定の回転位置で大電流が流れるとともに、所定の回転位置の巻線の動作温度が著しく上昇する。
Further, the hermetic compressor 100 shown in FIG. 1 is a single rotary type in which the compression mechanism 20 is constituted by a pair of cylinders, a rolling piston, and a vane, and a suction process and a compression process are performed while the rolling piston makes one rotation. The discharge process is performed. The load amount, that is, the load torque required by the compression mechanism 20 during one rotation of the rolling piston varies depending on the process as shown by the solid line in FIG. The suction process does not require the most torque, and the greatest torque is required when moving from the compression process to the discharge process. On the other hand, since the generated torque of the electric motor 30 is almost constant, the angular velocity increases and decreases due to the difference between the load torque and the generated torque, the electric motor 30 generates rotation unevenness, rotational pulsation, and vibration. To do.
In order to suppress this vibration, in the external power source that supplies power to the hermetic compressor 100, that is, the inverter device, the generated torque of the motor is reduced based on the load torque corresponding to the rotational position of the compression mechanism 20. Depending on the frequency, the required torque is controlled, and as shown by the broken line in FIG. 11, the vibration unevenness is controlled by reducing the rotation unevenness and suppressing the rotation pulsation. However, when such control is performed, even if the average load torque of the compression mechanism 20 is small, the maximum load torque may reach about three times. Since the amount of current flowing through the stator winding 44 is proportional to the torque generated by the electric motor 30, the amount of current is increased / decreased and controlled according to the rotational position of the compression mechanism 20. Therefore, a large current flows through the winding at a predetermined rotational position, and the operating temperature of the winding at the predetermined rotational position rises remarkably.
また、回転子32に永久磁石を用いるブラシレスDCモータの形式では、電動機30に電源供給するインバータ装置の出力電圧の周波数を可変させ、電動機30の可変速制御を行う。近年の省エネ・高効率化によって、回転数の低い低速領域での効率が重視され、固定子41の巻線の巻き回し回数を増加させたり、回転子31に使用する永久磁石34を高磁力の希土類磁石などを使用したりしている。そのため、回転数の高い高速領域では回転子32の永久磁石34が発生する逆起電力が、インバータ装置から印加される電圧を越え、電動機30に電流が流せなくなり、それよりも回転数を上げることができなくなる。これを防ぐために、固定子巻線44の電流位相を制御し、永久磁石34とは逆向きの磁束を固定子の磁極すなわちティースに発生させて永久磁石34の磁束すなわち永久磁石34の逆起電力を低減させる弱め界磁制御を行う場合が多い。
しかしながら、弱め界磁制御も必要な発生トルク以外の逆起電力を低減させる電流を流すので、大電流となり、巻線の動作温度が著しく上昇する。
In the brushless DC motor using a permanent magnet for the rotor 32, the frequency of the output voltage of the inverter device that supplies power to the electric motor 30 is varied to perform variable speed control of the electric motor 30. Due to recent energy saving and higher efficiency, the efficiency in the low speed region where the rotation speed is low is emphasized, the number of windings of the stator 41 is increased, or the permanent magnet 34 used for the rotor 31 is made to have a high magnetic force. Rare earth magnets are used. Therefore, in the high speed region where the rotational speed is high, the counter electromotive force generated by the permanent magnet 34 of the rotor 32 exceeds the voltage applied from the inverter device, so that no current can flow through the motor 30, and the rotational speed is increased further. Can not be. In order to prevent this, the current phase of the stator winding 44 is controlled, and a magnetic flux in the direction opposite to that of the permanent magnet 34 is generated in the magnetic pole of the stator, that is, the teeth, so that the magnetic flux of the permanent magnet 34, that is, the counter electromotive force of the permanent magnet 34. In many cases, field-weakening control is performed to reduce the above.
However, since a current for reducing the counter electromotive force other than the necessary generated torque is supplied in the field weakening control, a large current is generated, and the operating temperature of the winding is remarkably increased.
以上のように、コスト、環境、効率などの要因により、改善が施されるほど、固定子巻線44の動作温度が上昇し、高い温度条件での使用が必要になる。従来、例えば、絶縁部は、絶縁種をE種・120℃で実現できていたが、冷媒をR32化した場合、電動機全体の温度上昇上限の上昇に伴い、絶縁種を155℃・F種程度に変更することで、実現可能である。また、巻線のアルミニウム線化を行い、従来と同じ出力を得る場合も、制振制御や弱め界磁制御によって運転範囲拡大を図る場合も同じく、絶縁種の変更で、実現可能である。一方、巻線の温度上昇が高くなると、固定子巻線44とリード線48とを圧接端子の押圧力よって接続し固定する一般的な方法では、固定子巻線44、リード線48、圧接端子に使用する金属の熱膨張率の違いから接続固定部が変形し、固定子巻線44やリード線48の固定状態が緩み、電気的接触状態が劣化し、電気抵抗が増加する。したがって、従来の温度条件では問題ではなかったが、温度条件の上限拡大が必要な要素を導入し、それに応じて絶縁種を高温のランクに変更したとしても、固定子巻線44とリード線48の接続部に課題があり、十分な能力を発揮することができない。
固定子巻線44とリード線48を半田付けやロウ付け方法もあるが、固定子巻線44とリード線48とは、半田やロウ材を介して接続されるので、接続部の電気抵抗は巻線の素材やリード線の素材より高く、電動機30の効率低下や、接続部の温度上昇が生じる。固定子巻線44やリード線48の表面には酸化膜が生成されており、半田付けやロウ付けする場合には、フラックスにて酸化膜を化学的に除去する。しかし、フラックスが接合部に残留すると、固定子巻線44あるいはリード線48を腐蝕させたり、冷媒あるいは冷凍機油との化学反応によりスラッジなどの異物が発生し、圧縮機の摺動部の焼きつきや、配管や絞り弁の詰りを招いたりする恐れがある。そのため、洗浄工程が必要となり、課題が多い。
固定子巻線44とリード線48は温度変化に対して接続状態が変わらない冷間圧接を用いる方法があるが、接続部分である接合部でバリが発生するため、バリの除去が必要である。しかしながら、バリは完全に除去することは難しく、残ったバリの先端部が他の固定子巻線の絶縁用被覆や他のリード線の絶縁用被覆を傷つけ固定子巻線の絶縁耐力を低下させたり、残ったバリの先端部の薄い部分が折れたり砕けたりして飛散しスラッジとなる。そこで、絶縁部材43に図10のような収納部51を設け、冷間圧接による接合部を収納部51に収納し絶縁樹脂にて覆うことで、密閉型圧縮機100への適用を図った。
As described above, the operating temperature of the stator winding 44 increases as the improvement is made due to factors such as cost, environment, and efficiency, and it is necessary to use the stator winding 44 under high temperature conditions. Conventionally, for example, the insulating part has been able to realize the insulation type E type / 120 ° C. However, when the refrigerant is changed to R32, the insulation type is increased to about 155 ° C./F type with the increase in the temperature rise upper limit of the entire motor. It can be realized by changing to. In addition, when the winding is made of aluminum and the same output as before is obtained, or when the operating range is expanded by vibration suppression control or field weakening control, it can be realized by changing the insulation type. On the other hand, when the temperature rise of the winding increases, in a general method of connecting and fixing the stator winding 44 and the lead wire 48 by the pressing force of the press contact terminal, the stator winding 44, the lead wire 48, the press contact terminal Due to the difference in coefficient of thermal expansion of the metal used for this, the connection fixing portion is deformed, the fixing state of the stator winding 44 and the lead wire 48 is loosened, the electrical contact state is deteriorated, and the electric resistance is increased. Therefore, even though the conventional temperature condition is not a problem, even if an element that requires an expansion of the upper limit of the temperature condition is introduced and the insulation type is changed to a high-temperature rank accordingly, the stator winding 44 and the lead wire 48 There is a problem in the connection part of, and can not demonstrate sufficient ability.
There is a method of soldering or brazing the stator winding 44 and the lead wire 48, but the stator winding 44 and the lead wire 48 are connected via solder or brazing material. It is higher than the material of the winding and the material of the lead wire, and the efficiency of the electric motor 30 is reduced and the temperature of the connection portion is increased. Oxide films are formed on the surfaces of the stator windings 44 and the lead wires 48. When soldering or brazing, the oxide films are chemically removed with a flux. However, if the flux remains in the joint, the stator winding 44 or the lead wire 48 is corroded, and foreign matters such as sludge are generated due to a chemical reaction with the refrigerant or the refrigerating machine oil, and the sliding portion of the compressor is seized. There is also a risk of clogging the piping and throttle valve. Therefore, a cleaning process is necessary and there are many problems.
There is a method of using cold pressure welding in which the connection state of the stator winding 44 and the lead wire 48 does not change with temperature change. However, since burrs are generated at the connecting portion, which is a connecting portion, it is necessary to remove the burrs. . However, it is difficult to completely remove burrs, and the tip of the remaining burrs damages the insulation coating of other stator windings and other lead insulation, reducing the dielectric strength of the stator windings. Or the remaining thin part of the tip of the burr breaks or breaks up and becomes sludge. Therefore, the housing member 51 as shown in FIG. 10 is provided in the insulating member 43, and the joint portion by cold pressure welding is housed in the housing portion 51 and covered with an insulating resin, thereby being applied to the hermetic compressor 100.
図12は、2本の導線(第1導線と第2導線)を冷間圧接した接合部の説明図である。ここで、第1の導線、第2の導線とは、固定子巻線44、リード線48のことである。なお、図12の(a)は接合前の状態で、(b)は接合中、(c)は接合完了の状態である。
冷間圧接とは、金属材料を加圧・変形させる事により相互の金属間で原子結合を起こした接合状態である。通常、金属の内部は、原子核を回る電子の働きにより規則正しく並んで結合された状態であるが、金属の表面に並ぶ原子は、外側につなぐ相手が無く不安定な状態(活性化状態)となるため、空気中の酸素原子と結合して安定な状態すなわち酸化被膜を形成した状態となる。通常は、金属材料どうしを接触させても、酸化被膜があるので、金属間で原子結合を起こすような接合状態は起きないが、表面の金属から酸素原子を取り除き(酸化被膜を取り除く)、金属材料の表面を活性化状態にした金属どうしを接触させると、例え異なる種類の金属であっても、原子核を回る電子の働きにより原子結合を起こし、接合される。
これに対して、圧接端子は、圧接端子を形成する金属片に導線を挟む溝を設け、溝に導線を挟み込み、金属片の弾性力を利用し押圧し続けることで、圧接端子と導線の接触を維持するものである。しかし、圧接端子と導線のそれぞれの表面には酸化被膜が形成されており、酸化被膜を除去した接合ではないので、金属材料の表面が活性化し原子結合することは無く、冷間圧接の接合状態とは異なる。また、半田付けやロウ付けのように別の金属が溶融した接合とは、接合しようとしている金属材料の間に別の金属入ることと、接合しようとしている金属材料の表面が活性化し原子結合したものではないので、冷間圧接の接合状態とは異なる。
なお、本願の冷間圧接では、導線の端面どうしを接合するため、接合面積が小さく、酸化被膜を除去して冷間圧接をする方法をとらず、酸化被膜を残したまま導線の端面どうしを端面が変形するまで連続して押し込むことにより、端面にある酸化被膜を含めた全ての異物を導線の外周部より外側に押し出す方法をとる。したがって、押し出された異物がバリとなる。
例えば、図12のように第1導線52の端末と第2導線53の端末をそれぞれの端面52aと端面53aにて接合する場合で説明すると、先ず、図12(a)のように第1導線52と第2導線53を専用治具54でクランプし、第1導線52の端末部の端面52aと第2導線53の端末部の端面53aを突合せ、第1導線52を端面52aの方向に、第2導線53を端面53aの方向にそれぞれ押し付け、押圧する。端面52aと端面53aは図12(b)のように変形を開始し、端面52aと端面53aを構成する金属は第1導線52、第2導線53の半径方向かつ外周面より外側に押し出される。これにより、端面52a、53a上にある異物も第1導線52、第2導線53の外周面より外側に追い出される。さらに、第1導線52、第2導線53を押圧し、押し込んでいくことにより、第1導線52と第2導線53は相互の金属間で原子結合を起し接合される。同時に、図12(c)のように第1導線52、第2導線53の外周面より外側に追い出された金属と異物は、バリ55となる。
FIG. 12 is an explanatory diagram of a joint portion in which two conductors (first conductor and second conductor) are cold-welded. Here, the first conductive wire and the second conductive wire are the stator winding 44 and the lead wire 48. 12A shows a state before joining, FIG. 12B shows a state during joining, and FIG. 12C shows a state where joining is completed.
Cold welding is a bonding state in which atomic bonding is caused between the metals by pressurizing and deforming the metal material. Normally, the inside of a metal is in a state of being regularly aligned and bonded by the action of electrons that travel around the nucleus, but the atoms that are aligned on the surface of the metal are in an unstable state (activated state) with no partner on the outside. For this reason, it is combined with oxygen atoms in the air to form a stable state, that is, an oxide film. Normally, even if metal materials are brought into contact with each other, since there is an oxide film, a bonding state that causes an atomic bond between the metals does not occur, but oxygen atoms are removed from the surface metal (oxide film is removed) When metals whose surfaces are activated are brought into contact with each other, even if different types of metals are brought into contact with each other, atomic bonds are caused by the action of electrons around the nucleus and bonded.
On the other hand, the press contact terminal is provided with a groove for sandwiching the lead wire in the metal piece forming the press contact terminal, sandwiching the lead wire in the groove, and continuing to press using the elastic force of the metal piece, thereby contacting the press contact terminal and the lead wire. Is to maintain. However, an oxide film is formed on each surface of the pressure contact terminal and the conductive wire, and since it is not a bond with the oxide film removed, the surface of the metal material is not activated and does not bond atomically. Is different. In addition, when another metal is melted, such as soldering or brazing, another metal is inserted between the metal materials to be joined, and the surface of the metal material to be joined is activated and atomically bonded. Since it is not a thing, it differs from the joining state of cold pressure welding.
In the cold welding of the present application, since the end faces of the conducting wires are joined together, the joining area is small, and there is no method of cold welding by removing the oxide film, and the end faces of the conducting wires are left with the oxide film remaining. By continuously pushing in until the end face is deformed, a method is adopted in which all foreign matter including the oxide film on the end face is pushed out from the outer peripheral portion of the conducting wire. Therefore, the extruded foreign matter becomes a burr.
For example, the case where the terminal of the first conductor 52 and the terminal of the second conductor 53 are joined at the end surfaces 52a and 53a as shown in FIG. 12 will be described. First, the first conductor as shown in FIG. 52 and the second conducting wire 53 are clamped with a dedicated jig 54, the end surface 52a of the terminal portion of the first conducting wire 52 and the end surface 53a of the terminal portion of the second conducting wire 53 are butted, and the first conducting wire 52 is directed in the direction of the end surface 52a. The second conducting wire 53 is pressed and pressed in the direction of the end face 53a. The end surface 52a and the end surface 53a start to deform as shown in FIG. 12B, and the metal constituting the end surface 52a and the end surface 53a is pushed out in the radial direction of the first conductive wire 52 and the second conductive wire 53 and outside the outer peripheral surface. As a result, the foreign matter on the end surfaces 52 a and 53 a is also expelled from the outer peripheral surfaces of the first conductor 52 and the second conductor 53. Further, by pressing and pushing the first conducting wire 52 and the second conducting wire 53, the first conducting wire 52 and the second conducting wire 53 are joined by causing an atomic bond between the mutual metals. At the same time, as shown in FIG. 12 (c), the metal and foreign matter driven out from the outer peripheral surfaces of the first conducting wire 52 and the second conducting wire 53 become burrs 55.
冷間圧接による接合は導線の端面にある全ての異物をバリ55として外部に押し出すので、接合部56の電気特性は第1導線52・第2導線53の母材と差異が生じず、他の接続方法と比べて電気的損失が小さい。接合部56は相互の金属間で原子結合を起こした状態であるため、接続した導線に張力をかけても、接合部56が離れる事はない。結合させる金属は、銅と銅のように同種の金属でも、銅とアルミニウムのように異種の金属でも可能である。
冷間圧接による接合を行った導線は、接合部の前後すなわち両側で金属種が変わっても、巻線とリード線と仕様が変わっても、一本の連続した導線として使用することができるので、取り扱いも容易である。
また、この発明の方法では、接合する導線の端面上の異物はバリ55として除去されるので、酸化被膜を除去してもしなくても構わないし、一般的な冷間圧接と同様に導線の酸化被膜を除去した後に行っても構わない。
In the joining by cold welding, all foreign matters on the end face of the conducting wire are pushed out as burrs 55 to the outside, so that the electrical characteristics of the joining portion 56 are not different from the base materials of the first conducting wire 52 and the second conducting wire 53. Electrical loss is small compared to the connection method. Since the bonding portion 56 is in a state in which an atomic bond is generated between the metals, the bonding portion 56 is not separated even when tension is applied to the connected conductive wire. The metals to be bonded may be the same type of metal such as copper and copper, or different types of metals such as copper and aluminum.
Conductive wires joined by cold welding can be used as a single continuous wire, regardless of whether the metal type changes before or after the joint, that is, on both sides, even if the winding, lead wire, and specifications change. It is easy to handle.
Further, in the method of the present invention, the foreign matter on the end face of the conducting wire to be joined is removed as the burr 55, so it is not necessary to remove the oxide film, and oxidation of the conducting wire is performed as in general cold welding. You may perform after removing a film.
第1導線52と第2導線53の接合部56すなわち接続部を収納部51に収納させた状態を、図10を使用して説明していく。
図10は、絶縁部材43が固定子鉄心42の回転軸21軸方向の端面に装着された状態で、絶縁部材43aの外壁部43dに固定子鉄心42の円周方向の溝を設け、その溝を収納部51としたものである。その収納部51は、外壁部43dの回転軸21軸方向の中央部から固定子鉄心42と接する側とは反対方向すなわち上方に向かって形成され、上方と固定子鉄心42の円周方向とに、それぞれ開放されている。溝は、円周方向の中央部の収納室51aとその両側の溝部51bから構成されている。円周方向の両側の溝部51bは、第1導線52あるいは第2導線53を係止するため、第1導線52あるいは第2導線53の線径とほぼ同じ幅に形成され、円周方向の中央部の収納室51aは、バリ55が溝の内壁に接触しないように、溝の幅を溝部51bの幅より広げた形状に形成されている。収納室51aは、溝部51bより、固定子鉄心42側にも広げられている。第1導線52および第2導線53は、冷間圧接され他接合部56が収納部51の収納室51aに位置するように、収納部51の開口部から、第1導線52および第2導線53を、溝部51bに挿入し固定子鉄心42に向かって下方に押し込む。そして、第1導線52および第2導線53を溝部51bに係止する。これにより、接合部56が、収納室51aに収納される。
なお、図10(a)では、収納室51aは円筒形状に広げているが、図10(d)のように直方体形状でも構わない。
このとき、接合部56のバリ55は除去した状態でも、除去しない状態でも、構わない。バリ55を除去しない状態で収納部51に収納すると、バリ55を除去する工程が省略でき生産効率が良くできる。
A state in which the joint portion 56 of the first conducting wire 52 and the second conducting wire 53, that is, the connecting portion is housed in the housing portion 51 will be described with reference to FIG.
FIG. 10 shows a state in which a groove in the circumferential direction of the stator core 42 is provided on the outer wall 43d of the insulating member 43a in a state where the insulating member 43 is mounted on the end surface of the stator core 42 in the axial direction of the rotary shaft 21. Is the storage portion 51. The storage portion 51 is formed from the center portion of the outer wall portion 43d in the axial direction of the rotating shaft 21 in the direction opposite to the side in contact with the stator core 42, that is, upward, in the upper direction and the circumferential direction of the stator core 42. , Each is open. The groove is composed of a storage chamber 51a in the central portion in the circumferential direction and groove portions 51b on both sides thereof. The grooves 51b on both sides in the circumferential direction are formed to have the same width as the diameter of the first conducting wire 52 or the second conducting wire 53 in order to lock the first conducting wire 52 or the second conducting wire 53. The storage chamber 51a of the part is formed in a shape in which the width of the groove is wider than the width of the groove part 51b so that the burr 55 does not contact the inner wall of the groove. The storage chamber 51a is also extended from the groove 51b to the stator core 42 side. The first conductive wire 52 and the second conductive wire 53 are cold-welded and the first conductive wire 52 and the second conductive wire 53 are opened from the opening of the storage portion 51 so that the other joint portion 56 is located in the storage chamber 51 a of the storage portion 51. Is inserted into the groove 51b and pushed downward toward the stator core 42. And the 1st conducting wire 52 and the 2nd conducting wire 53 are latched by the groove part 51b. Thereby, the junction part 56 is accommodated in the storage chamber 51a.
In FIG. 10A, the storage chamber 51a is expanded in a cylindrical shape, but may be a rectangular parallelepiped shape as shown in FIG.
At this time, the burr 55 of the joint portion 56 may be removed or not removed. When the burr 55 is not removed, the burr 55 is stored in the storage unit 51, so that the step of removing the burr 55 can be omitted and the production efficiency can be improved.
収納室51aには接合部56を収納した状態で収納部51の開口部から絶縁性樹脂を流し込み、絶縁性樹脂を充填する。接合部56とバリ55を絶縁性樹脂に埋没させ絶縁性樹脂で覆う。充填する樹脂は、収納部51を形成する溝全体に充填しても、収納室51aにのみ充填しても構わない。
充填する樹脂は、熱硬化性あるいは紫外線硬化性あるいはその両方の特性を有するアクリル系あるいはエポキシ系の絶縁性樹脂を使用する。収納部51に樹脂が充填された後、加熱工程あるいは紫外線照射工程あるいはその両方にて充填した樹脂を硬化させる。例えば、熱硬化性樹脂の場合は、固定子41の組立時の乾燥工程にて、樹脂の硬化が可能であり、新たな工程の追加は少ない。紫外線硬化性樹脂の場合、1分程度の紫外線照射にて硬化することができ、工程時間にロスは少ない。熱硬化性と紫外線硬化性の両方の特性を兼ね揃えた樹脂であれば、収納室51aに樹脂が充填した後、紫外線照射によって硬化させるが、紫外線が当たらず、完全硬化しなかった場合、すなわち、樹脂がゲル状の状態にて留まっても、後の乾燥工程にて、硬化が可能であり、工程の信頼性も高い。樹脂の粘度は、収納部51に充填した後、硬化させるまで収納部51の開口部などから流出しない0.5Pa・s以上5.0Pa・s以下の粘度が好ましく、樹脂は硬化したとき、収納室51aの内壁に固着することが望ましい。
以上のように収納室51aに接合部56を収納した状態で絶縁性樹脂を充填し硬化させることにより、接合部56とバリ55が絶縁性樹脂に覆われ収納室51a内に固定される。これにより、振動などで、第1導線52、第2導線53、および接合部56が収納部51から外れることは無く、バリ55が砕けても、絶縁性樹脂の中から外へは飛び出せないので、バリ55の破片が密閉容器10中に飛散することも無くなる。
An insulating resin is poured into the storage chamber 51a from the opening of the storage portion 51 in a state where the joint portion 56 is stored, and is filled with the insulating resin. The joining portion 56 and the burr 55 are buried in an insulating resin and covered with the insulating resin. The resin to be filled may be filled in the entire groove forming the storage portion 51 or only in the storage chamber 51a.
As the resin to be filled, an acrylic or epoxy insulating resin having thermosetting and / or ultraviolet curable characteristics is used. After the container 51 is filled with the resin, the resin filled in the heating process and / or the ultraviolet irradiation process is cured. For example, in the case of a thermosetting resin, the resin can be cured in the drying process at the time of assembling the stator 41, and there is little addition of a new process. In the case of an ultraviolet curable resin, it can be cured by irradiation with ultraviolet rays for about 1 minute, and there is little loss in process time. If the resin has both thermosetting and ultraviolet curable properties, the resin is filled in the storage chamber 51a and then cured by ultraviolet irradiation. However, when the resin is not irradiated with ultraviolet rays and is not completely cured, Even if the resin stays in a gel state, it can be cured in the subsequent drying step, and the reliability of the step is high. The viscosity of the resin is preferably 0.5 Pa · s or more and 5.0 Pa · s or less, which does not flow out from the opening of the storage unit 51 until it is cured after the storage unit 51 is filled. It is desirable to adhere to the inner wall of the chamber 51a.
As described above, by filling and curing the insulating resin in a state where the joint portion 56 is stored in the storage chamber 51a, the joint portion 56 and the burr 55 are covered with the insulating resin and fixed in the storage chamber 51a. As a result, the first conducting wire 52, the second conducting wire 53, and the joining portion 56 are not detached from the housing portion 51 due to vibration or the like, and even if the burr 55 is broken, it cannot jump out of the insulating resin. The debris of the burr 55 is not scattered in the sealed container 10.
このような構成により、密閉容器内で第1導線と第2導線を冷間圧接にて接合したものを使用しても、その接合部を固定子鉄心に設けた絶縁部材上の収納部に収納し絶縁性樹脂で覆ったので、接合部に形成されるバリが砕けて密閉容器内に破片が飛散し、スラッジになることが防止できる。また、その破片が固定子巻線やリード線と接触して、電極を短絡や漏電を起こすことも防止できる。また、収納部内に接合部が固定されるので、接合部のバリの先端部によって、他の固定子巻線の絶縁用被覆や他のリード線の絶縁用被覆を損傷させ、絶縁耐力が低下するようなことも防止できる。
なお、圧接端子を使用した場合、圧接端子と導線を絶縁性樹脂で埋没させ固定することは行わない。なぜなら、圧接端子と導線を絶縁性樹脂で埋没させると、絶縁性樹脂が硬化したとき圧接端子の弾性力が抑制され圧接端子と導線との押圧力が減少し電気抵抗が増加したり、圧接端子と導線の接触部に絶縁性樹脂が侵入して電気的接触状態を阻害したりする。したがって、圧接端子と導線の接触はそれらの押圧力によるため、温度上昇や振動などにより、接合が緩みやすい。これに対して、冷間圧接の場合、導線を構成する金属どうしが原子結合にて接合しているので、絶縁性樹脂に埋没させ覆っても、導線を構成する金属どうしの原子結合力が減少したり、接合部分に絶縁性樹脂が侵入して電気的接触状態を阻害したりすることは無く、接合部分を絶縁樹脂で覆う構成をとることができる。これにより、より信頼性の高い接合とその接合部の固定ができる構成とすることができる。
With such a configuration, even if the first conductor and the second conductor are joined by cold pressure welding in a sealed container, the joint is stored in the storage portion on the insulating member provided on the stator core. Since it is covered with the insulating resin, it is possible to prevent the burrs formed at the joint portion from being broken and the fragments from being scattered in the sealed container to become sludge. Further, it is possible to prevent the fragments from coming into contact with the stator windings or the lead wires, causing the electrodes to be short-circuited or leaked. In addition, since the joint is fixed in the storage part, the insulation coating of other stator windings and insulation of other lead wires are damaged by the tip of the burr of the joint, and the dielectric strength is reduced. This can also be prevented.
In addition, when a press contact terminal is used, the press contact terminal and the conductive wire are not buried and fixed with an insulating resin. Because, if the insulation contact resin and the lead wire are buried with an insulating resin, the elastic force of the pressure contact terminal is suppressed when the insulation resin is cured, the pressing force between the pressure contact terminal and the lead wire is reduced, and the electrical resistance is increased. Insulating resin enters the contact portion of the lead wire and obstructs the electrical contact state. Therefore, since the contact between the press contact terminal and the conductive wire depends on the pressing force thereof, the joining is likely to be loosened due to a temperature rise or vibration. On the other hand, in the case of cold welding, the metals constituting the conducting wire are joined by atomic bonds, so even if they are buried in an insulating resin and covered, the atomic bonding force between the metals constituting the conducting wire is reduced. In other words, the insulating resin does not enter the bonded portion and the electrical contact state is not hindered, and the bonded portion can be covered with the insulating resin. Thereby, it can be set as the structure which can fix more reliable joining and its junction part.
また、収納部すなわち絶縁部材の外壁部の収納部は、リード線をガラス端子近傍まで、固定子鉄心の回転軸21軸方向の端面の外周側すなわちバックヨーク上を通るように導く誘導路も兼ねており、これによって、配線が絡まり、損傷したりすることも防止できる。 In addition, the storage portion, that is, the storage portion of the outer wall portion of the insulating member, also serves as a guide path that leads the lead wire to the vicinity of the glass terminal so as to pass through the outer peripheral side of the end surface of the stator core in the axial direction of the rotating shaft 21, that is, on the back yoke. As a result, the wiring can be prevented from being tangled and damaged.
以上により、電動機に使用する第1導線と第2導線すなわち固定子巻線とリード線を冷間圧接にて接続し、絶縁部材に設けた収納部に冷間圧接された接合部を収納し絶縁性樹脂で覆ったので、巻線とリード線の接合部の電気抵抗を増加させことなく接合させ、その接合部からスラッジなどの異物を発生させることも抑制した効率が高く信頼性も高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることができる。
また、冷媒のR32化や、巻線のアルミニウム線化、制振制御や弱め界磁制御によって運転範囲拡大のような、電動機の温度上昇上限を上昇させ実現を図る場合、例えば、従来、絶縁種がE種・120℃で実現できていたものをF種・155℃にとすることで実現しても、固定子巻線とリード線の接合部の課題は発生せず、実現可能である。
As described above, the first conductive wire and the second conductive wire used in the electric motor, that is, the stator winding and the lead wire are connected by cold pressure welding, and the joint portion cold-welded to the storage portion provided in the insulating member is stored and insulated. Compressor with high efficiency and high reliability that prevents the generation of sludge and other foreign matter from the joints without increasing the electrical resistance of the joints between the winding and the lead wire. An electric motor, a compressor, and a refrigeration cycle apparatus can be obtained.
In addition, when an attempt is made to increase the upper limit of the temperature rise of the motor, such as by expanding the operating range by using R32 refrigerant, aluminum wire winding, vibration suppression control or field weakening control, for example, conventionally, the insulation type is E Even if what is realized at the seed / 120 ° C. is changed to F / 155 ° C., the problem of the joint portion between the stator winding and the lead wire does not occur and can be realized.
接合部に形成されるバリは、収納部に収納され絶縁性樹脂で覆われているので、電動機の動作中にバリが砕け、その破片が電動機を収納する容器すなわち圧縮機の容器内に飛散して、スラッジなどの異物となることを防止できる。また、その破片が固定子巻線やリード線と接触して、電極を短絡させたり、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させたりすることも防止できる。
また、接合部に形成されるバリは、絶縁性樹脂で覆われているので、接合部のバリの先端部が他の固定子巻線やリード線に接触し、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させることを防止できる。
Since the burr formed at the joint is housed in the housing and covered with an insulating resin, the burr is broken during the operation of the electric motor, and the fragments are scattered in the container for housing the motor, that is, the container of the compressor. Therefore, it is possible to prevent foreign matter such as sludge. In addition, the debris may come into contact with the stator windings and lead wires to short-circuit the electrodes, damage the insulation coating of the stator windings and the insulation coating of the lead wires, and It is also possible to prevent the dielectric strength from being lowered.
Also, since the burr formed at the joint is covered with an insulating resin, the tip of the burr at the joint comes into contact with other stator windings and lead wires, and the insulation coating for the stator windings It is possible to prevent the insulation strength of the stator winding and the lead wire from being reduced by damaging the insulation for the lead wire and the lead wire.
また、半田付け、ロウ付けのようにフラックスを使用することなく接合できるので、フラックスの残渣が固定子巻線やリード線を腐蝕させたり、冷媒や冷凍機油との化学反応によりスラッジなどの異物が発生し、圧縮機の摺動部の焼きつきや、配管や絞り弁の詰りなどを発生させたりすることも抑制することができる。
また、固定子巻線とリード線が異種の金属どうし、例えば、アルミニウム線と銅線であっても圧着端子や半田付け、ロウ付けを使用することなく、冷間圧接にて接合ができるので、フラックスの残渣による腐蝕やスラッジなどの異物の発生の心配は無い。
また、固定子巻線とリード線は冷間圧接にて接合されることにより、接合部の電気特性は母材と差異が生じず、他の接続方法と比べて接合部での電気的損失が小さくできるので、電動機の効率改善にも貢献できる。すなわち、部品の素材の熱膨張率の違いから、巻線とリード線の固定状態が緩み、接合部の電気抵抗が増加したり、半田やロウ材を介して接続することで接合部の電気抵抗が増加したりすることは無い。接合部の電気抵抗の増加が抑制されていることから、接合部の温度上昇も低く抑制され、接合部を収納する収納部は高い耐熱性を考慮する必要なく構成できる。
また、バリは除去せず、収納部に収納する方法でも構わず、バリを除去する工程を省略でき、生産効率も向上できる。
In addition, since soldering and brazing can be used without using flux, foreign matter such as sludge is generated by the residue of the flux corroding the stator windings and lead wires, or by chemical reaction with refrigerant or refrigeration oil. It is possible to suppress the occurrence of seizure of the sliding portion of the compressor and the clogging of the piping and the throttle valve.
In addition, since the stator winding and the lead wire are dissimilar metals, for example, aluminum wire and copper wire can be joined by cold pressure welding without using crimp terminals, soldering, brazing, There is no concern about the generation of foreign matter such as corrosion and sludge due to flux residues.
In addition, the stator winding and the lead wire are joined by cold welding, so that the electrical characteristics of the joint do not differ from the base material, and the electrical loss at the joint is lower than other connection methods. Since it can be made smaller, it can also contribute to improving the efficiency of the motor. That is, due to the difference in the coefficient of thermal expansion of the component material, the fixed state of the winding and the lead wire is loosened, the electrical resistance of the joint increases, or the electrical resistance of the joint is increased by connecting via solder or brazing material. Will not increase. Since the increase in the electrical resistance of the joint portion is suppressed, the temperature rise of the joint portion is also suppressed to a low level, and the storage portion for storing the joint portion can be configured without having to consider high heat resistance.
Moreover, the method of storing in the storage unit without removing the burr may be used, and the step of removing the burr can be omitted, and the production efficiency can be improved.
また、固定子巻線やリード線にアルミニウム線を使用することによって、電動機の温度上昇が促されても、冷間圧接にて接合されているので、接合部の接合状態が変化することはない。したがって、接合部の電気抵抗が増加し電動機の効率を低下させることなく、接合部の信頼性を向上させた電動機を得ることができる。また、接合部の電気抵抗の増加が抑制されることにより、電動機としての温度上昇も改善できる。
また、冷凍サイクル装置の動作上、吐出温度が10℃程度高い条件で使用し、電動機の温度上昇が促されても、冷間圧接にて接合されているので、接合部の接合状態が変化することはない。したがって、接合部の電気抵抗が増加し電動機の効率を低下させることなく、接合部の信頼性を向上させた電動機を得ることができる。さらに、高温かつ流速の速い冷媒ガスが電動機を通過しても、冷間圧接の接合部は絶縁部材の収納部に収納され絶縁性樹脂にて覆われているので、冷媒ガスによってバリが砕かれ、バリの破片が密閉容器内に飛散することはない。
また、密閉型圧縮機はシングルロータリ形式であっても構わず、振動が大きくても、冷間圧接の接合部は絶縁部材の収納部に収納されているので、振動によりバリの先端部が固定子巻線やリード線に接触し、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させることはない。さらに、シングルロータリ形式にて用いられる制振制御を実施し、電動機の温度上昇が促されても、冷間圧接にて接合されているので、接合部の接合状態が変化することはない。したがって、接合部の電気抵抗が増加し電動機の効率を低下させることなく、接合部の信頼性を向上させた電動機を得ることができる。
また、密閉型圧縮機において、ブラシレスDCモータを用い、上限回転数を上昇させるため、弱め界磁制御などの制御を行い、電動機の温度上昇が促されても、冷間圧接にて接合されているので、接合部の接合状態が変化することはない。したがって、接合部の電気抵抗が増加し電動機の効率を低下させることなく、接合部の信頼性を向上させた電動機を得ることができる。
In addition, by using aluminum wires for the stator windings and lead wires, even if the temperature rise of the motor is promoted, since it is joined by cold pressure welding, the joined state of the joined portion does not change . Therefore, it is possible to obtain a motor with improved joint reliability without increasing the electrical resistance of the joint and reducing the efficiency of the motor. Moreover, the temperature rise as an electric motor can also be improved by suppressing the increase in the electrical resistance of a junction part.
In addition, the operation of the refrigeration cycle apparatus is used under conditions where the discharge temperature is about 10 ° C. high, and even if the temperature rise of the electric motor is promoted, since it is joined by cold pressure welding, the joining state of the joint changes. There is nothing. Therefore, it is possible to obtain a motor with improved joint reliability without increasing the electrical resistance of the joint and reducing the efficiency of the motor. Furthermore, even if high-temperature and fast-flowing refrigerant gas passes through the motor, the cold-welded joint is housed in the insulating member housing and covered with insulating resin, so that the burrs are crushed by the refrigerant gas. , Burr debris will not fly into the sealed container.
In addition, the hermetic compressor may be a single rotary type, and even if the vibration is large, the cold welded joint is housed in the insulation member housing, so the burr tip is fixed by vibration. It does not contact the stator winding or lead wire, damage the insulation coating of the stator winding or the insulation coating of the lead wire, and does not reduce the dielectric strength of the stator winding and lead wire. Furthermore, even if the vibration suppression control used in the single rotary type is performed and the temperature rise of the electric motor is promoted, since it is joined by cold pressure welding, the joining state of the joining portion does not change. Therefore, it is possible to obtain a motor with improved joint reliability without increasing the electrical resistance of the joint and reducing the efficiency of the motor.
In addition, in a hermetic compressor, a brushless DC motor is used to increase the upper limit rotational speed, and thus control such as field weakening control is performed, and even if the temperature rise of the motor is promoted, it is joined by cold welding. The joined state of the joined portion does not change. Therefore, it is possible to obtain a motor with improved joint reliability without increasing the electrical resistance of the joint and reducing the efficiency of the motor.
実施の形態2.
実施の形態1では、リード線と固定子巻線の接合に冷間圧接を用いた場合に使用する構成として説明したが、リード線と固定子巻線の接合に半田付けあるいはロウ付けを用いた場合であっても、この構成は使用可能である。接合前に塗布したフラックスは、長時間、残留するとリード線と固定子巻線を腐蝕させるので、洗浄する必要があるが、洗浄後、絶縁部材に設けた収納部にその接合部を収納し絶縁性樹脂で覆うことで、他の導線や固定子鉄心などと接触して短絡させたり、他の導線を損傷させ絶縁耐力を低下させたりすることを防ぐことができる。
Embodiment 2. FIG.
The first embodiment has been described as a configuration used when the cold pressure welding is used for joining the lead wire and the stator winding. However, soldering or brazing is used for joining the lead wire and the stator winding. Even in this case, this configuration can be used. If the flux applied before joining remains for a long time, it corrodes the lead wires and the stator windings, so it must be cleaned. After cleaning, the joint is stored in the storage part provided in the insulating member and insulated. By covering with a conductive resin, it is possible to prevent a short circuit from coming into contact with other conductors or a stator core, or damage to other conductors and a decrease in dielectric strength.
例えば、図10の形態を用いて説明すると、実施の形態1同様に、第1導線52および第2導線53は、半田付けあるいはロウ付けされた接合部56が収納部51の収納室51aに位置するように、収納部51の開口部から、第1導線52および第2導線53を、溝部51bに挿入し固定子鉄心42に向かって下方に押し込む。そして、第1導線52および第2導線53を溝部51bに係止する。これにより、接合部56が、収納室51aに収納される。次に、接合部56を収納した状態で、収納室51aに収納部51の開口部から収納部51を形成する溝全体あるいは収納室51aにのみに絶縁性樹脂を流し込み、絶縁性樹脂を充填する。接合部56を絶縁性樹脂に埋没させ絶縁性樹脂で覆う。 For example, referring to the embodiment shown in FIG. 10, as in the first embodiment, the first conductor 52 and the second conductor 53 are soldered or brazed with a joint 56 positioned in the storage chamber 51 a of the storage 51. As described above, the first conductive wire 52 and the second conductive wire 53 are inserted into the groove portion 51 b and pushed downward toward the stator core 42 from the opening of the storage portion 51. And the 1st conducting wire 52 and the 2nd conducting wire 53 are latched by the groove part 51b. Thereby, the junction part 56 is accommodated in the storage chamber 51a. Next, in a state in which the joining portion 56 is stored, the insulating resin is poured into the entire storage chamber 51a from the opening of the storage portion 51 or into only the groove forming the storage portion 51 or only into the storage chamber 51a. . The joining portion 56 is buried in an insulating resin and covered with the insulating resin.
以上により、電動機に使用する第1導線と第2導線すなわち固定子巻線とリード線を冷間圧接にて接続し、絶縁部材に設けた収納部に冷間圧接の接合部を収納し絶縁性樹脂で覆ったので、巻線とリード線の接合部の電気抵抗を増加させことなく接合させ、その接合部からスラッジなどの異物を発生させることも抑制した効率が高く信頼性も高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることができる。
また、冷媒のR32化や、巻線のアルミニウム線化、制振制御や弱め界磁制御によって運転範囲拡大のような、電動機の温度上昇上限を上昇させ実現を図る場合、例えば、従来、絶縁種がE種・120℃で実現できていたものをF種・155℃に変更することで実現しても、固定子巻線とリード線の接合部の課題は発生せず、実現可能である。
As described above, the first conductive wire and the second conductive wire used in the motor, that is, the stator winding and the lead wire are connected by cold pressure welding, and the cold pressure welding joint portion is housed in the housing portion provided in the insulating member for insulation. Because it is covered with resin, it can be joined without increasing the electrical resistance of the joint between the winding and the lead wire, and it is also highly efficient and highly reliable for suppressing the generation of foreign matter such as sludge from the joint. An electric motor, a compressor, and a refrigeration cycle apparatus can be obtained.
In addition, when an attempt is made to increase the upper limit of the temperature rise of the motor, such as by expanding the operating range by using R32 refrigerant, aluminum wire winding, vibration suppression control or field weakening control, for example, conventionally, the insulation type is E Even if it can be realized by changing the type that can be realized at 120 ° C. to the type F / 155 ° C., the problem of the joint portion between the stator winding and the lead wire does not occur, and it can be realized.
接合部に形成されるバリは、収納部に収納され絶縁性樹脂で覆われているので、電動機の動作中にバリが砕け、その破片が電動機を収納する容器すなわち圧縮機の容器内に飛散して、スラッジなどの異物となることを防止できる。また、その破片が固定子巻線やリード線と接触して、電極を短絡させたり、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させたりすることも防止できる。
また、接合部に形成されるバリは、絶縁性樹脂で覆われているので、接合部のバリの先端部が他の固定子巻線やリード線に接触し、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させることを防止できる。
Since the burr formed at the joint is housed in the housing and covered with an insulating resin, the burr is broken during the operation of the electric motor, and the fragments are scattered in the container for housing the motor, that is, the container of the compressor. Therefore, it is possible to prevent foreign matter such as sludge. In addition, the debris may come into contact with the stator windings and lead wires to short-circuit the electrodes, damage the insulation coating of the stator windings and the insulation coating of the lead wires, and It is also possible to prevent the dielectric strength from being lowered.
Also, since the burr formed at the joint is covered with an insulating resin, the tip of the burr at the joint comes into contact with other stator windings and lead wires, and the insulation coating for the stator windings It is possible to prevent the insulation strength of the stator winding and the lead wire from being reduced by damaging the insulation for the lead wire and the lead wire.
実施の形態3.
実施の形態1では、絶縁部材が固定子鉄心の回転軸方向の端面に装着された状態で、絶縁部材の外壁部に固定子鉄心の円周方向に溝を設け、その溝を収納部とし、リード線と固定子巻線の接合部を収納部に収納した例を示した。しかしながら、固定子巻線が固定子鉄心の外周側すなわちバックヨーク側に崩れないように支えているので、外壁部の径方向の厚さを薄くし溝状の収納部を設けると、強度が弱くなる可能性がある。強度を維持し収納部を設けるためには、外壁部に溝状の収納部を設けるのではなく、外壁部に箱形あるいは円筒形の形状の収納部を設けることが望ましく、その例を説明する。
Embodiment 3 FIG.
In the first embodiment, in a state where the insulating member is mounted on the end surface in the rotation axis direction of the stator core, a groove is provided in the circumferential direction of the stator core on the outer wall portion of the insulating member, and the groove is used as a storage portion. The example which accommodated the junction part of a lead wire and a stator coil | winding in the accommodating part was shown. However, since the stator winding is supported so as not to collapse toward the outer peripheral side of the stator core, that is, the back yoke side, the strength is weakened by reducing the thickness of the outer wall in the radial direction and providing a groove-shaped storage portion. There is a possibility. In order to maintain strength and provide a storage portion, it is desirable not to provide a groove-shaped storage portion on the outer wall portion, but to provide a box-shaped or cylindrical storage portion on the outer wall portion, and an example will be described. .
図13は、絶縁部材43aの外壁部43dの回転軸21軸方向の端面に収納部51を設けたものである。図13(a)(b)(c)の収納部51は、上方すなわち外壁部43dが固定子鉄心と接する側と反対方向に開放された箱形の形状としたもので、内部に収納室51aが設けられている。図13(a)は回転軸21軸方向すなわち固定子鉄心42の上面から見た図、図13(b)は固定子鉄心42の外周側から見た図、図13(c)は固定子鉄心42の円周方向すなわち側面から見た図である。上方の開放された開口部は、収納室51aと連通している。収納室51aの下面は、外壁部43dの回転軸21軸方向の端面によって構成され、収納室51aの側面すなわち側壁は、外壁部43dの回転軸21軸方向の端面に立設され、固定子鉄心42の円周方向の2面と、固定子鉄心42の内周側の面と、固定子鉄心42の外周側の面と、で構成されている。収納部51の円周方向の側壁には、冷間圧接された第1導線52および第2導線53を係止する導線案内溝が設けられており、側壁の一方には導線案内溝57が、側壁のもう一方には導線案内溝58が、お互いに収納室51aを挟んで対向するように設けられている。導線案内溝57、58は第1導線52、第2導線53を係止ため、導線の線径とほぼ同じ幅で形成されている。導線案内溝57、58は、収納室51aと連通しており、それぞれの側壁の中央部から始まり、上方に開放されており、収納部51の上方の開口部と繋がっている。
なお、外壁部43dは隣接する外壁部43dどうしと繋がっていて、円環状に形成されていても構わない。
収納部51は、図10(d)のように上方すなわち外壁部43dが固定子鉄心と接する側と反対方向に開放された円筒形の形状としたものでも構わない。接合部56のバリ55が突出した方向のみ、収納部51の内壁とバリ55の先端との間に接触を防止する距離が取れれば良いので、収納室51aを円筒形状とし無駄なスペースを無くして収納室51aを小さくできる。
FIG. 13 shows a case in which a storage portion 51 is provided on the end surface of the outer wall portion 43d of the insulating member 43a in the axial direction of the rotary shaft 21. 13 (a), 13 (b), and 13 (c) has a box-like shape in which the outer wall 43d is opened in the direction opposite to the side in contact with the stator core, that is, the storage chamber 51a is provided inside. Is provided. 13A is a view seen from the axial direction of the rotating shaft 21, that is, the top surface of the stator core 42, FIG. 13B is a view seen from the outer peripheral side of the stator core 42, and FIG. 13C is a stator core. It is the figure seen from the circumferential direction of 42, ie, the side. The upper open opening communicates with the storage chamber 51a. The lower surface of the storage chamber 51a is configured by an end surface of the outer wall portion 43d in the axial direction of the rotating shaft 21, and the side surface, that is, the side wall of the storage chamber 51a is erected on the end surface of the outer wall portion 43d in the axial direction of the rotating shaft. 42, two circumferential surfaces, a surface on the inner peripheral side of the stator core 42, and a surface on the outer peripheral side of the stator core 42. On the side wall in the circumferential direction of the storage portion 51, a conductor guide groove for locking the first conductor 52 and the second conductor 53 that are cold-welded is provided, and a conductor guide groove 57 is provided on one of the sidewalls. A conductive wire guide groove 58 is provided on the other side of the side wall so as to face each other with the storage chamber 51a interposed therebetween. The conducting wire guide grooves 57 and 58 are formed with substantially the same width as the wire diameter of the conducting wire in order to lock the first conducting wire 52 and the second conducting wire 53. The conducting wire guide grooves 57 and 58 communicate with the storage chamber 51 a, start from the center of each side wall, open upward, and are connected to the opening above the storage 51.
The outer wall portion 43d is connected to the adjacent outer wall portions 43d and may be formed in an annular shape.
As shown in FIG. 10 (d), the storage portion 51 may have a cylindrical shape opened upward, that is, in a direction opposite to the side where the outer wall portion 43d is in contact with the stator core. Since the distance between the inner wall of the storage portion 51 and the tip of the burr 55 need only be secured only in the direction in which the burr 55 of the joint portion 56 protrudes, the storage chamber 51a is formed in a cylindrical shape to eliminate wasted space. The storage chamber 51a can be made small.
第1導線52および第2導線53は、その接合部56が収納室51aに位置するように、上方の開口部から、導線案内溝57に第1導線52を、導線案内溝58に第2導線53を挿入し、第1導線52および第2導線53を、固定子鉄心42側に向かって下方に押し込み、第1導線52および第2導線53を導線案内溝57および導線案内溝58に係止する。これによって、接合部56が収納室51aに収納される。第1導線52、53を導線案内溝57、58に係止した後、収納室51aに接合部56を収納した状態で収納部51の開口部から絶縁性樹脂を充填する。樹脂は、実施の形態1同様、熱硬化性あるいは紫外線硬化性あるいはその両方の特性を有するアクリル系あるいはエポキシ系の絶縁性樹脂であり、加熱工程、紫外線照射工程などで硬化させ、収納室51a内に固着させる。これによって、接合部56とバリ55は収納室51a内に固定される。なお、収納部51は、絶縁部材43と同じ樹脂にて形成されている。 The first conductive wire 52 and the second conductive wire 53 are connected to the first conductive wire 52 in the conductive wire guide groove 57 and the second conductive wire in the conductive wire guide groove 58 from the upper opening so that the joint portion 56 is located in the storage chamber 51a. 53 is inserted, the first conductor 52 and the second conductor 53 are pushed downward toward the stator core 42 side, and the first conductor 52 and the second conductor 53 are locked to the conductor guide groove 57 and the conductor guide groove 58. To do. Thereby, the joining part 56 is accommodated in the storage chamber 51a. After the first conductors 52 and 53 are engaged with the conductor guide grooves 57 and 58, an insulating resin is filled from the opening of the storage part 51 in a state where the joint part 56 is stored in the storage chamber 51a. As in the first embodiment, the resin is an acrylic or epoxy insulating resin having thermosetting and / or ultraviolet curable properties, and is cured in a heating process, an ultraviolet irradiation process, etc., and is stored in the storage chamber 51a. Secure to. Thereby, the joining part 56 and the burr | flash 55 are fixed in the storage chamber 51a. The storage 51 is made of the same resin as the insulating member 43.
絶縁部材43aの外壁部43dの回転軸21軸方向の端面に収納部51を設けた例で説明したが、絶縁部材43aの外壁部43dの外周側すなわち密閉容器10側に設けても構わない。その場合、収納部51は、外壁部43dの外周側の側面に設けられ、収納室51aの側面すなわち側壁は、外壁部43dの外周側の側面と、その側面に立設された円周方向の2面と、密閉容器10側の側壁で構成され、固定子鉄心42側に下面が設けられている。収納部51の上方すなわち外壁部43dが固定子鉄心と接する側と反対方向には収納室51aと連通する開口部を有する。収納部51の円周方向の側壁には、一方に導線案内溝57が、もう一方に導線案内溝58が、お互いに収納室51aを挟んで対向するように設けられており、導線案内溝57、58は、図10(a)〜(c)と同じく、収納室51aと連通しており、それぞれの側面の中央部から始まり、上方に開放されており、収納部51の上方の開口部と繋がっている。
第1導線52および第2導線53を導線案内溝57および導線案内溝58に挿入、押し込み、係止し、接合部56を収納室51aへの収納し、絶縁性樹脂を充填、硬化させ、収納室51a内に固着し、接合部56とバリ55は収納室51a内に固定する方法、収納部51が絶縁部材43と同じ樹脂にて形成されてことなどは、図10(a)〜(c)と同じである。
Although the example which provided the accommodating part 51 in the end surface of the rotating shaft 21 axial direction of the outer wall part 43d of the insulating member 43a demonstrated, you may provide in the outer peripheral side of the outer wall part 43d of the insulating member 43a, ie, the airtight container 10 side. In that case, the storage portion 51 is provided on the outer peripheral side surface of the outer wall portion 43d, and the side surface of the storage chamber 51a, that is, the side wall, is the outer peripheral side surface of the outer wall portion 43d and the circumferential direction provided on the side surface. It is composed of two surfaces and a side wall on the closed container 10 side, and a lower surface is provided on the stator core 42 side. An opening that communicates with the storage chamber 51a is provided above the storage 51, that is, in a direction opposite to the side where the outer wall 43d is in contact with the stator core. On the side wall in the circumferential direction of the storage portion 51, a conductor guide groove 57 is provided on one side and a conductor guide groove 58 is provided on the other side so as to face each other with the storage chamber 51a interposed therebetween. , 58 are in communication with the storage chamber 51a as in FIGS. 10 (a) to 10 (c), starting from the center of each side surface and open upward. It is connected.
The first conducting wire 52 and the second conducting wire 53 are inserted into, pushed into, and locked in the conducting wire guide groove 57 and the conducting wire guide groove 58, and the joining portion 56 is housed in the housing chamber 51a, filled with insulating resin, cured, and housed. 10 (a) to 10 (c) in which the bonding portion 56 and the burr 55 are fixed in the storage chamber 51a, the storage portion 51 is formed of the same resin as the insulating member 43, and the like. ).
また、図14は、収納部として、外壁部43dに回転軸21軸の径方向に第1の側壁51cと第2の側壁51dとを、側壁どうしが対向するように設けるとともに、第1の側壁51cと第2の側壁51dとの間に間隙51eを設け、その間隙51eにリード線48と固定子巻線44の接合部56を配置するものである。図14も図13同様、図14(a)は回転軸21軸方向すなわち固定子鉄心42の上面から見た図、図14(b)は固定子鉄心42の外周側から見た図、図14(c)は固定子鉄心42の円周方向すなわち側面から見た図である。第1の側壁51cと第2の側壁51dとの間隔すなわち間隙51eの幅は、接合部56とバリ55が収められる幅に設けられている。第1の側壁51cには導線案内溝57が、第2の側壁51dには導線案内溝58が設けられており、それぞれの側面の中央部から始まり、上方に開放するように形成されている。導線案内溝57、58は、図13同様、第1導線52および第2導線53を係止するため、導線の線径とほぼ同じ幅に設けられている。収納部51は、樹脂の粘性が1.0Pa・s以上5.0Pa・s以下程度あれば、充填する絶縁性樹脂が硬化するまで、間隙からの流出は抑えることができ、周囲の残りの面が無くても構わない。
第1導線52および第2導線53は、その接合部56が間隙51dに位置するように、導線案内溝57に第1導線52を、導線案内溝58に第2導線53を挿入し、第1導線52および第2導線53を、固定子鉄心42側に向かって下方に押し込み、第1導線52および第2導線53を導線案内溝57および導線案内溝58に係止する。これによって、接合部56は間隙51dに配置すなわち収容される。第1導線52、53を導線案内溝57、58に係止した後、間隙51dに接合部56を収容した状態で、接合部56を覆うように間隙51dに絶縁性樹脂を充填する。その後、樹脂を硬化させ、間隙51d内に固着させる。これによって、接合部56とバリ55は間隙51d内に固定される。
Further, FIG. 14 shows that the first side wall 51c and the second side wall 51d are provided on the outer wall portion 43d as the storage portion in the radial direction of the rotation shaft 21 so that the side walls face each other. A gap 51e is provided between 51c and the second side wall 51d, and the joint portion 56 of the lead wire 48 and the stator winding 44 is disposed in the gap 51e. 14A is similar to FIG. 13, FIG. 14A is a view seen from the axial direction of the rotating shaft 21, that is, the top surface of the stator core 42, and FIG. 14B is a view seen from the outer peripheral side of the stator core 42. (C) is the figure seen from the circumferential direction, ie, side surface, of the stator core 42. The distance between the first side wall 51c and the second side wall 51d, that is, the width of the gap 51e is set to a width in which the joint portion 56 and the burr 55 can be accommodated. The first side wall 51c is provided with a conductive wire guide groove 57, and the second side wall 51d is provided with a conductive wire guide groove 58. The first side wall 51c starts from the center of each side surface and is open upward. Similarly to FIG. 13, the conductive wire guide grooves 57 and 58 are provided with substantially the same width as the wire diameter of the conductive wire in order to lock the first conductive wire 52 and the second conductive wire 53. If the viscosity of the resin is about 1.0 Pa · s or more and 5.0 Pa · s or less, the storage portion 51 can suppress outflow from the gap until the insulating resin to be filled is cured, and the remaining surface of the surrounding area There is no problem.
The first conducting wire 52 and the second conducting wire 53 are inserted into the conducting wire guide groove 57 and the second conducting wire 53 is inserted into the conducting wire guide groove 58 so that the joint portion 56 is positioned in the gap 51d. The conducting wire 52 and the second conducting wire 53 are pushed downward toward the stator core 42 side, and the first conducting wire 52 and the second conducting wire 53 are locked to the conducting wire guide groove 57 and the conducting wire guide groove 58. As a result, the joining portion 56 is disposed or accommodated in the gap 51d. After the first conductors 52 and 53 are locked to the conductor guide grooves 57 and 58, the gap 51d is filled with an insulating resin so as to cover the joint 56 in a state where the joint 56 is accommodated in the gap 51d. Thereafter, the resin is cured and fixed in the gap 51d. As a result, the joint 56 and the burr 55 are fixed in the gap 51d.
なお、導線案内溝57、58は、上方に開放した例で説明したが、固定子鉄心42の径方向すなわち固定子鉄心42の内周方向あるいは外周方向に開放されていても構わない。さらに、導線案内溝57は内周方向に開放させ、導線案内溝58は外周方向に開放させるというように、導線案内溝57、58の開放方向をお互いに反対方向に構成されていても構わない。導線案内溝57、58の開放方向をお互いに反対方向に構成することによって、導線案内溝57、58から導線が外れにくくなる。 In addition, although the conducting wire guide grooves 57 and 58 were demonstrated in the example opened upwards, you may open | release to the radial direction of the stator core 42, ie, the inner peripheral direction or the outer peripheral direction of the stator core 42. Furthermore, the conducting wire guide grooves 57 may be opened in the inner circumferential direction, and the conducting wire guide grooves 58 may be opened in the outer circumferential direction. . By configuring the opening directions of the conductor guide grooves 57 and 58 to be opposite to each other, the conductors are less likely to be detached from the conductor guide grooves 57 and 58.
以上のように、収納室51aに接合部56を収納した状態あるいは間隙51e内に接合部56を収容した状態で、収納室51aあるいは間隙51eに絶縁性樹脂を充填し硬化させることにより、接合部56とバリ55が絶縁性樹脂に覆われ収納室51a内あるいは間隙51e内に固定されるとともに、第1導線52と第2導線53も収納部51に固定され、振動などで、第1導線52、第2導線53、および接合部56が収納部51から外れることは無くなる。バリ55が砕けても、絶縁性樹脂の中から外へは飛び出せないので、バリ55の破片が密閉容器10中に飛散することも無い。
絶縁部材の外壁部に直方体形状あるいは円筒形状の収納部を設けることにより、外壁部の強度を低下させること無く、収納部を設けることができ、電動機を小型化のため、絶縁部材の薄肉化を行っても、外壁部の強度を落とすことなく、実現できる。
収納室51aを円筒形状とすることによって、バリに対する収納室51aの無駄なスペースを無くし、収納部自体を小さくできる。
また、収納部として回転軸21軸の径方向に第1の側壁51cと第2の側壁51dを設けるとともに、第1の側壁51cと第2の側壁51dとの間に間隙51eを形成して、間隙51eに接合部56を収めるようにすることで、直方体形状あるいは円筒形状の収納部に比べて、収納部を簡素な構成で実現でき、安価にすることができる。
As described above, in a state where the joint portion 56 is housed in the storage chamber 51a or in a state where the joint portion 56 is housed in the gap 51e, the housing portion 51a or the gap 51e is filled with an insulating resin and cured, thereby joining the joint portion. 56 and burrs 55 are covered with insulating resin and fixed in the storage chamber 51a or in the gap 51e, and the first conductive wire 52 and the second conductive wire 53 are also fixed to the storage portion 51. The second conductive wire 53 and the joining portion 56 are not detached from the storage portion 51. Even if the burr 55 is crushed, the burr 55 cannot jump out of the insulating resin, so that the debris of the burr 55 does not scatter into the sealed container 10.
By providing a rectangular parallelepiped or cylindrical storage part on the outer wall part of the insulating member, the storage part can be provided without reducing the strength of the outer wall part, and the insulation member can be made thinner in order to reduce the size of the motor. Even if it goes, it can be realized without reducing the strength of the outer wall.
By making the storage chamber 51a cylindrical, useless space of the storage chamber 51a with respect to burrs can be eliminated and the storage section itself can be made smaller.
In addition, a first side wall 51c and a second side wall 51d are provided in the radial direction of the rotary shaft 21 as a storage portion, and a gap 51e is formed between the first side wall 51c and the second side wall 51d. By accommodating the joint portion 56 in the gap 51e, the storage portion can be realized with a simple configuration and can be made cheaper than the storage portion having a rectangular parallelepiped shape or a cylindrical shape.
以上により、電動機に使用する第1導線と第2導線すなわち固定子巻線とリード線を冷間圧接にて接続し、絶縁部材に設けた収納部に冷間圧接された接合部を収納し絶縁性樹脂で覆ったので、巻線とリード線の接合部の電気抵抗を増加させことなく接合させ、その接合部からスラッジなどの異物を発生させることも抑制した効率が高く信頼性も高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることができる。
また、冷媒のR32化や、巻線のアルミニウム線化、制振制御や弱め界磁制御によって運転範囲拡大のような、電動機の温度上昇上限を上昇させ実現を図る場合、例えば、従来、絶縁種がE種・120℃で実現できていたものをF種・155℃に変更することで実現しても、固定子巻線とリード線の接合部の課題は発生せず、実現可能である。
As described above, the first conductive wire and the second conductive wire used in the electric motor, that is, the stator winding and the lead wire are connected by cold pressure welding, and the joint portion cold-welded to the storage portion provided in the insulating member is stored and insulated. Compressor with high efficiency and high reliability that prevents the generation of sludge and other foreign matter from the joints without increasing the electrical resistance of the joints between the winding and the lead wire. An electric motor, a compressor, and a refrigeration cycle apparatus can be obtained.
In addition, when an attempt is made to increase the upper limit of the temperature rise of the motor, such as by expanding the operating range by using R32 refrigerant, aluminum wire winding, vibration suppression control or field weakening control, for example, conventionally, the insulation type is E Even if it can be realized by changing the type that can be realized at 120 ° C. to the type F / 155 ° C., the problem of the joint portion between the stator winding and the lead wire does not occur, and it can be realized.
接合部に形成されるバリは、収納部に収納され絶縁性樹脂で覆われているので、電動機の動作中にバリが砕け、その破片が電動機を収納する容器すなわち圧縮機の容器内に飛散して、スラッジなどの異物となることを防止できる。また、その破片が固定子巻線やリード線と接触して、電極を短絡させたり、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させたりすることも防止できる。
また、接合部に形成されるバリは、絶縁性樹脂で覆われているので、接合部のバリの先端部が他の固定子巻線やリード線に接触し、固定子巻線の絶縁用被覆やリード線の絶縁用被覆を損傷させ、固定子巻線とリード線の絶縁耐力を低下させることを防止できる。
Since the burr formed at the joint is housed in the housing and covered with an insulating resin, the burr is broken during the operation of the electric motor, and the fragments are scattered in the container for housing the motor, that is, the container of the compressor. Therefore, it is possible to prevent foreign matter such as sludge. In addition, the debris may come into contact with the stator windings and lead wires to short-circuit the electrodes, damage the insulation coating of the stator windings and the insulation coating of the lead wires, and It is also possible to prevent the dielectric strength from being lowered.
Also, since the burr formed at the joint is covered with an insulating resin, the tip of the burr at the joint comes into contact with other stator windings and lead wires, and the insulation coating for the stator windings It is possible to prevent the insulation strength of the stator winding and the lead wire from being reduced by damaging the insulation for the lead wire and the lead wire.
なお、実施の形態2と同様に、実施の形態3の構成において、リード線と固定子巻線の接合に半田付けあるいはロウ付けを用いた場合にも、使用可能である。
実施の形態2と同様に、固定子巻線とリード線を半田付けあるいはロウ付けにて接続し、絶縁部材に設けた収納部に半田付けあるいはロウ付けされた接合部を収納し絶縁性樹脂で覆ったので、他の導線や固定子鉄心などと接触して短絡させたり、他の導線を損傷させ絶縁耐力を低下させたりすることを防止した効率が高く信頼性も高い圧縮機用電動機、圧縮機及び冷凍サイクル装置を得ることができる。
したがって、冷媒のR32化や、巻線のアルミニウム線化、制振制御や弱め界磁制御によって運転範囲拡大のような、電動機の温度上昇上限を上昇させ実現を図る場合、例えば、従来、絶縁種がE種・120℃で実現できていたものをF種・155℃に変更することで実現しても、固定子巻線とリード線の接合部の課題は発生せず、実現可能である。
Similar to the second embodiment, the configuration of the third embodiment can also be used when soldering or brazing is used for joining the lead wire and the stator winding.
As in the second embodiment, the stator winding and the lead wire are connected by soldering or brazing, and the soldered or brazed joint is accommodated in the accommodating portion provided in the insulating member, and the insulating resin is used. Covered, highly efficient and reliable motor for compressors, compression that prevents other conductors and stator cores from coming into contact and short-circuiting, and damaging other conductors and reducing dielectric strength. And a refrigeration cycle apparatus can be obtained.
Therefore, when an attempt is made to increase the upper limit of the temperature rise of the motor, such as by expanding the operating range by using R32 refrigerant, aluminum wire winding, vibration suppression control or field weakening control, for example, conventionally, the insulation type is E Even if it can be realized by changing the type that can be realized at 120 ° C. to the type F / 155 ° C., the problem of the joint portion between the stator winding and the lead wire does not occur, and it can be realized.
10 密閉容器、11 上部容器、12 下部容器、20 圧縮機構、21 回転軸、21a 主軸部、21b 偏心軸部、21c 副軸部、22 ローリングピストン、23 シリンダ、23a シリンダ室、23b 背圧室、23c ベーン溝、24 上軸受、25 下軸受、26 ベーン、27 吐出マフラ、30 電動機、31 回転子、32 回転子鉄心、33 磁石挿入孔、34 永久磁石、35 風穴、41 固定子、42 固定子鉄心、43 絶縁部材、 43a 絶縁部材1、43b 絶縁部材2、43c 絶縁部材2、 43d 絶縁部材の外壁部、43e 絶縁部材の内壁部、43f ティース被覆部、43g 位置決め突起1、43h 位置決め突起2、44 固定子巻線、44a〜44i 固定子巻線、44j 中性点、44k U相固定子巻線、44l V相固定子巻線、44m W相固定子巻線、45 バックヨーク、46 ティース、46a〜46r ティース、47 スロット、48 リード線、48u U相リード線、48v V相リード線、48w W相リード線、49 ガラス端子、51 収納部、51u U相収納部、51v V相収納部、51w W相収納部、51a 収納室、51b 溝部、51c 第1の側壁、51d 第2の側壁、51e 間隙、52 第1導線、52a 第1導線の端面、53 第2導線、53a 第2導線の端面、54 専用治具、55 バリ、56 接合部、56u U相接合部、56v V相接合部、56w W相接合部、57 導線案内溝、58 導線案内溝、100 密閉型圧縮機、101 吸入マフラ、102 吐出管、103 四方切換弁、104 室外側熱交換器、105 減圧器、106 室内側熱交換器、200 冷凍サイクル装置。 DESCRIPTION OF SYMBOLS 10 Sealing container, 11 Upper container, 12 Lower container, 20 Compression mechanism, 21 Rotating shaft, 21a Main shaft part, 21b Eccentric shaft part, 21c Countershaft part, 22 Rolling piston, 23 Cylinder, 23a Cylinder chamber, 23b Back pressure chamber, 23c Vane groove, 24 Upper bearing, 25 Lower bearing, 26 Vane, 27 Discharge muffler, 30 Electric motor, 31 Rotor, 32 Rotor core, 33 Magnet insertion hole, 34 Permanent magnet, 35 Air hole, 41 Stator, 42 Stator Iron core, 43 Insulating member, 43a Insulating member 1, 43b Insulating member 2, 43c Insulating member 2, 43d Outer wall part of insulating member, 43e Inner wall part of insulating member, 43f Teeth covering part, 43g Positioning protrusion 1, 43h Positioning protrusion 2, 44 Stator winding, 44a-44i Stator winding, 44j Neutral point, 44k U-phase stator Wire, 44l V-phase stator winding, 44m W-phase stator winding, 45 back yoke, 46 teeth, 46a-46r teeth, 47 slots, 48 lead wire, 48u U-phase lead wire, 48v V-phase lead wire, 48w W phase lead wire, 49 glass terminal, 51 storage portion, 51u U phase storage portion, 51v V phase storage portion, 51w W phase storage portion, 51a storage chamber, 51b groove portion, 51c first side wall, 51d second side wall, 51e Gap, 52 First Conductor, 52a End Surface of First Conductor, 53 Second Conductor, 53a End Surface of Second Conductor, 54 Dedicated Jig, 55 Burr, 56 Joint, 56u U Phase Joint, 56v V Phase Joint , 56w W-phase joint, 57 lead guide groove, 58 lead guide groove, 100 hermetic compressor, 101 suction muffler, 102 discharge pipe, 103 four-way switching valve, 104 Outdoor heat exchanger, 105 decompressor, 106 indoor heat exchanger, 200 refrigeration cycle apparatus.
Claims (9)
前記固定子は、円筒形のバックヨークと前記バックヨークから内側に突出した複数のティースを有する固定子鉄心と、前記固定子鉄心の軸方向の端面に装着された絶縁部材と、前記ティースに前記絶縁部材を介して巻き付けられた固定子巻線と、前記固定子巻線とは異なる金属で構成され外部電源に接続するリード線と、前記固定子巻線の端面と前記リード線の端面とを突き合わせ冷間圧接にて接合された接合部と、を備え、
前記絶縁部材は、前記接合部を収納する収納室と、導線を係止する溝と、から構成される収納部を有し、
前記接合部には、前記固定子巻線の端面と前記リード線の端面とに付着した異物を外周部に押し出したバリが形成されており、
前記固定子巻線および前記リード線は前記溝に係止され、前記接合部は前記収納室に収納され、前記バリは樹脂にて覆ったことを特徴とする圧縮機用電動機。 In an electric motor for a compressor having a cylindrical stator and a rotor disposed inside the stator,
The stator includes a cylindrical back yoke, a stator core having a plurality of teeth projecting inwardly from the back yoke, an insulating member attached to an axial end surface of the stator core, and the teeth on the teeth. A stator winding wound through an insulating member, a lead wire made of a metal different from the stator winding and connected to an external power source, an end face of the stator winding, and an end face of the lead wire And a joined portion joined by butt cold welding,
The insulating member includes a storage portion configured to include a storage chamber that stores the joint portion, and a groove that locks the conductor.
In the joint portion, a burr is formed by extruding foreign matter adhering to the end face of the stator winding and the end face of the lead wire to the outer peripheral portion,
The motor for a compressor, wherein the stator winding and the lead wire are locked in the groove, the joint portion is housed in the housing chamber, and the burr is covered with resin.
前記外壁部に前記収納部を設けたことを特徴とする請求項1に記載の圧縮機用電動機。 The insulating member has an outer wall portion that holds the stator winding on an axial end surface of the back yoke,
Compressor motor according to claim 1, characterized in that the housing part digits set in the outer wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017044913A JP6406373B2 (en) | 2017-03-09 | 2017-03-09 | Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017044913A JP6406373B2 (en) | 2017-03-09 | 2017-03-09 | Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013071386A Division JP2014195384A (en) | 2013-03-29 | 2013-03-29 | Motor for compressor, compressor, and refrigeration cycle device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017123780A JP2017123780A (en) | 2017-07-13 |
JP6406373B2 true JP6406373B2 (en) | 2018-10-17 |
Family
ID=59305926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017044913A Expired - Fee Related JP6406373B2 (en) | 2017-03-09 | 2017-03-09 | Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6406373B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118100477B (en) * | 2024-04-22 | 2024-06-21 | 广东美芝制冷设备有限公司 | Stator structure, compressor and refrigeration equipment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR7603989A (en) * | 1975-06-30 | 1977-03-22 | Gen Electric | TRANSITION PIECE FROM ALUMINUM TO COPPER FOR ENGINES WINDING WITH ALUMINUM AND THE SAME PRODUCTION PROCESS |
JPS5653525Y2 (en) * | 1977-08-29 | 1981-12-14 | ||
JP3491510B2 (en) * | 1997-12-05 | 2004-01-26 | 国産電機株式会社 | Stator for magnet generator |
JPH11285861A (en) * | 1998-04-01 | 1999-10-19 | Sumiden Asahi Seiko Kk | Cold press-contacting die |
JP3589105B2 (en) * | 1999-08-06 | 2004-11-17 | 株式会社デンソー | Stator winding of rotating electric machine and method for manufacturing the same |
JP2002136023A (en) * | 2000-10-20 | 2002-05-10 | Matsushita Electric Ind Co Ltd | Motor, full-sealed freezer compressor and freezing cycle |
JP2007159192A (en) * | 2005-12-01 | 2007-06-21 | Matsushita Electric Ind Co Ltd | Brushless motor, and sealed compressor equipped with it |
-
2017
- 2017-03-09 JP JP2017044913A patent/JP6406373B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017123780A (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101096353B1 (en) | Hermetic compressor and refrigerating cycle apparatus | |
WO2015166726A1 (en) | Electric motor, hermetic compressor, and refrigerating cycle device | |
KR102068991B1 (en) | Electric motors, compressors, and refrigeration cycle units | |
JPWO2017208290A1 (en) | Stator, electric motor, compressor, and refrigeration air conditioner | |
CN105553137A (en) | Compressor and method for manufacturing compressor | |
JPWO2018138866A1 (en) | Stator, electric motor, compressor, and refrigeration air conditioner | |
WO2009084245A1 (en) | Electric motor for compressor, compressor, and freezing cycle device | |
JP6406373B2 (en) | Compressor motor, compressor, refrigeration cycle apparatus, and compressor motor manufacturing method | |
JP2014195384A (en) | Motor for compressor, compressor, and refrigeration cycle device | |
CN103715805B (en) | Electric motor stator, electric motor, sealed compressor and rotary machine | |
US12040680B2 (en) | Compressor and air conditioner | |
KR102328761B1 (en) | Compressors and refrigeration cycle units | |
KR102024839B1 (en) | Method of manufacturing electric motors, compressors, refrigeration cycle units and electric motors | |
JP3900994B2 (en) | Electric motor for hermetic compressor | |
CN110366809B (en) | Rotating electric machine, compressor, and refrigeration cycle device | |
JP7511759B2 (en) | Compressor motor, compressor, refrigeration cycle device, and method for manufacturing compressor motor | |
CN106981935B (en) | Stator core, compressor, and refrigeration cycle device | |
CN205105013U (en) | Compressor | |
WO2023181238A1 (en) | Stator, electric motor, compressor, and refrigeration cycle device | |
EP4361439A1 (en) | Method for manufacturing compressor | |
WO2016181445A1 (en) | Compressor | |
JP2004245227A (en) | Compressor | |
JP2018078796A (en) | Compressor manufacturing device and compressor manufacturing method | |
JP2006087153A (en) | Stator of motor, compressor and refrigerating cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180903 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6406373 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |