はじめに、本実施の形態から抽出され得る発明群を手段n(n=1,2,3…)として区分して示し、それらを必要に応じて効果等を示しつつ説明する。なお以下においては、理解の容易のため、本実施の形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。
(手段1)「複数の回胴を回転させた後、これら回胴を停止させることにより遊技を行う遊技機において、
上記回胴の駆動モータとして多相構造のステッピングモータが使用され、
上記駆動モータを停止させるときは、全相以外の励磁相を用いると共に、上記駆動モータに加える駆動電圧よりも低いブレーキ電圧が印加されることを特徴とする遊技機。」
この遊技機によれば、回胴停止モードつまり回胴に対する駆動モータの停止時には、全相以外の励磁相(1相以上であって、全相を除く励磁相)を用いてブレーキをかけると共に、そのときに使用するブレーキ電圧としては、通常この駆動モータに加える駆動電圧よりも低い電圧とする。これによって、回胴の停止をスムーズに行うことができる。ブレーキ電圧と相俟って、全相以外の励磁相(2相ステッピングモータであれば、3相励磁以下の励磁相)を用いるので、さらに滑らかな停止を実現できる。
(手段2)「手段1において、回胴駆動モータの停止時は2相以上の多相同時励磁モードに切り替えられることを特徴とする請求項1記載の遊技機。」
この遊技機によれば、回胴停止モードつまり回胴に対する駆動モータの停止時には、多相同時励磁モードに切り替えると共に、通常この駆動モータに加える駆動電圧よりも低い電圧をブレーキ電圧として印加することによって、駆動モータに適切なブレーキ力が加わるので、より自然で、滑らかに停止させることができる。ブレーキが加わるたびに不自然な回転停止とはならないために、安定して停止状態を具現できるから、ゲームへの集中力が増し、遊技者の興趣を増進させることができる。多相同時励磁モードとは、2相ステッピングモータにあっては、4相未満、つまり3相以下で同時に励磁するモード(2相同時励磁あるいは3相同時励磁モード)を言う。
(手段3)「手段1において、上記駆動モータを停止させるタイミングと同じ時点から上記ブレーキ電圧が印加されることを特徴とする遊技機。」
この遊技機によれば、駆動モータを停止させるタイミングと同じ時点でブレーキをかけることで、目的の回胴回転位置でこの回胴を停止させることができる。モータ停止タイミングとは、ストップボタンが押されたときから所定時間経過後に到来する停止タイミングか、若しくはストップボタンが押されていなくても到来する強制停止タイミングの何れかである。
(手段4)「手段1において、上記駆動モータを停止させるタイミングよりも若干時間的に先行する時点から上記ブレーキ電圧が印加されることを特徴とする遊技機。」
この遊技機によれば、目的の回胴停止タイミングよりも僅かに先行させて駆動モータにブレーキをかけるようにしたので、より正確に目的の図柄の停止位置でこの回胴を停止させることができる。
(手段5)「手段1において、上記駆動モータに対するブレーキ電圧は、遊技機内部において使用される駆動電圧であって、上記駆動モータに対する駆動電圧よりも低い電圧が使用されることを特徴とする遊技機。」
ブレーキ電圧として、遊技機内部に設けられた電源部の出力電圧(駆動電圧)を利用できれば、ブレーキ電圧専用の電源部を増設する必要がなくなり、それだけコストの面および設備面で得策である。
(手段6)「手段5において、上記ブレーキ電圧は上記遊技機において使用される最低の駆動電圧に設定されることを特徴とする遊技機。」
遊技機において使用される駆動電圧は、この例では最高が24ボルトで、最低(最小)が5ボルトの安定化された電圧である。機種によってはこれ以外の電圧を利用する場合があるが、いずれにせよその機器において用意された最小の駆動電圧をブレーキ電圧として利用する。例えば、対象となる遊技機の最低駆動電圧が5ボルト程度であるときにはこの電圧がブレーキ電圧として利用される。
駆動モータに印加する通常のモータ駆動電圧が24ボルト程度であるとき、このような最低の駆動電圧をブレーキ電圧として用いることでも、後述するようにより安定したスムーズな回転停止を実現できる。
(手段7)「手段5において、上記ブレーキ電圧は上記駆動電圧のほぼ1/2以下の出力電圧が利用されることを特徴とする遊技機。」
この遊技機によれば、ブレーキ電圧を駆動電圧のほぼ半分以下の出力電圧(駆動電圧)とすることで、適切なブレーキ力とすることができ、これによって回胴が不自然な状態で停止することがなくなる。駆動電圧として24ボルト(安定化電圧)を使用する場合には例えば、15ボルト以下となる電圧をブレーキ電圧として設定することもできる。つまり、ブレーキ電圧は遊技機で使用される駆動電圧を併用する場合、そのうちの最低の駆動電圧に制限されるものではない。
遊技機に装備された電源部から出力される駆動電圧として24ボルトの他に、12ボルトや5ボルトが出力されるポートが存在するときには、この12ボルトの出力電圧をそのままブレーキ電圧として併用できる。因みに、12ボルトの駆動電圧は、LEDランプ点灯用などとして使用されており、またこれ以外の駆動電圧として電源部からは10ボルトの電圧が出力される。10ボルトの電圧はスピーカなどの音響機器を駆動するための電圧として使用され、また上述した5ボルトの電圧はCPUを含む制御回路などに対する駆動電圧として使用されている。
(手段8)「手段5において、上記ブレーキ電圧は上記駆動電圧のほぼ1/6以下であることを特徴とする遊技機。」
この遊技機によれば、ブレーキ電圧を駆動電圧のほぼ半分以下、特に駆動電圧のほぼ6分の1とすることもできる。(手段7)でブレーキ電圧を駆動電圧の半分に設定した場合よりも若干弱まるが、実験によると駆動電圧の6分の1以下のブレーキ電圧である方が最適なブレーキ力とすることができ、これによって回胴が不自然な状態で停止することがなくなり、よりスムーズな回転停止を実現できる。駆動電圧として上述したように電源部から出力される12ボルト以外の出力電圧を使用する場合には、上述したように5ボルトの出力電圧が最適なブレーキ電圧として設定できる。
(手段9)「手段1において、ブレーキ電圧は階段状に変化させることを特徴とする遊技機。」
この遊技機によれば、ブレーキ電圧を階段状に弱くすることで、最初は強いブレーキ力でブレーキをかけ、段階的にブレーキ力を弱めることで、より一層スムーズに回胴を停止させることができる。
(手段10)「手段9において、ブレーキ電圧は上記駆動電圧よりも低い第1のブレーキ電圧と、この第1のブレーキ電圧よりも低い第2のブレーキ電圧の2段階に分けることを特徴とする遊技機。」
第1のブレーキ電圧による強めのブレーキ力(第1のブレーキ力)でブレーキをかけ、次の段階で第1のブレーキ力よりも弱いブレーキ力(第2のブレーキ力)でブレーキをかけることで、よりスムーズな回胴停止を実現し得る。
(手段11)「手段9において、第1のブレーキ電圧は上記駆動電圧のほぼ1/2以下であり、第2のブレーキ電圧は上記駆動電圧のほぼ1/6であることを特徴とする遊技機。」
この遊技機によれば、第1のブレーキ電圧を駆動電圧のほぼ半分とし、第2のブレーキ電圧を駆動電圧のほぼ1/6とすることで、適切なブレーキ力が維持されるように順次弱めることができ、スムーズな回胴停止を達成できる。駆動電圧として24ボルト(安定化電圧)を使用する場合には第1のブレーキ電圧は12ボルトが適切であり、第2のブレーキ電圧は5ボルトが適切である。これらのブレーキ電圧は何れも電源部からの出力電圧をそのまま利用できる。
(手段12)「手段1において、上記ステッピングモータが1−2相励磁方式による2相ステッピングモータであるとき、ブレーキモードでは4相以外の励磁相を用いて上記回胴を停止させるようにしたことを特徴とする遊技機。」
この遊技機によれば、1相以上であって全相を除く励磁相を用いてブレーキをかけることで、ある程度強いブレーキ力が発生するので、これによって回胴を急速停止させることができる。
(手段13)「手段12において、全相以外の多相同時励磁によってブレーキがかけられることを特徴とする遊技機。」
1−2相励磁方式による2相ステッピングモータを使用する場合、全相(4相)以外の多相同時励磁モードに切り替えることでブレーキをかければ、よりスムーズな回転停止を実現できる。
(手段14)「手段13において、回胴停止モードでは、3相同時励磁又は2相同時励磁によって上記回胴にブレーキをかけることを特徴とする遊技機。」
この遊技機によれば、4相同時励磁時よりも3相同時励磁あるいは2相同時励磁の方がより強いブレーキ力が発生するので、これによって回胴を急速停止させることができると共に、そのときのブレーキ電圧は駆動電圧よりも低いので、振動などを伴って停止するような不自然な止まり方を防止できる。3相同時励磁あるいは2相同時励磁とすることで、回胴の停止位置も特定できる。
(手段15)「手段1から手段14の何れかにおいて、遊技機はパチンコ機である。」
ここに、パチンコ機はその基本構成として操作ハンドルを備えると共に、この操作ハンドルの操作に応じて遊技球を所定の遊技領域に発射させ、遊技球が遊技領域内の所定の位置に配置された作動口に入賞することを必要条件として表示装置における図柄の変動表示が開始するようになされたものであり、また特別遊技状態発生中には、遊技領域内の所定の位置に配置された入賞口が所定の態様で開放されることによって遊技球を入賞可能として、その入賞個数に応じた有価価値が付与されるようになされた遊技機である。有価価値は景品球として還元することもできれば、磁気カードなどのカード状記録媒体を利用して有価価値に相当する有価情報を書き込むことでもよい。
パチンコ機には、少なくとも多数個の遊技球を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技球を消費する遊技者に不利な状態である通常遊技状態との2種類の遊技態様が存在する。
(手段16)「手段1から手段14の何れかにおいて、遊技機はスロットマシンであること。」
ここに、スロットマシンはその基本構成として、遊技状態に応じてその遊技状態を識別させるための複数の図柄からなる図柄列を変動表示した後に図柄を確定表示する表示装置を備えており、始動用操作手段(例えば操作レバー)の操作に起因して図柄の変動が開始されると共に、停止用操作手段(例えばストップボタン)の操作に起因して、或いは所定時間経過することにより図柄の変動が停止されるようになされ、停止時の確定図柄が特定図柄であることを必要条件として遊技者に有利な特別遊技状態を発生させる特別遊技状態発生手段を備えた遊技機である。
上述した遊技機には、少なくとも多数個の遊技媒体を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技媒体を消費する遊技者に不利な状態である通常遊技状態の2種類の遊技態様が存在する。この種遊技機において使用される遊技媒体はコイン、メダル等がその代表例として挙げられる。
(手段17)「手段1から手段14の何れかにおいて、遊技機はパチンコ機とスロットマシンとを融合させた遊技機であること。」
このような遊技機(複合機)はその基本構成として、遊技状態に応じてその遊技状態を識別させるための複数の識別情報からなる図柄列を変動表示した後に図柄を確定表示する表示装置を備えており、さらに操作レバーなどの始動用操作手段の操作に起因して図柄の変動が開始されると共に、ストップボタンなどの停止用操作手段の操作に起因して、或いは所定時間経過することにより図柄の変動が停止され、その停止時の確定図柄が特定図柄であることを必要条件として遊技者に有利な特別遊技状態を発生させる特別遊技状態発生手段を備え、遊技媒体として遊技球を使用するとともに、識別情報の変動開始に際しては所定数の遊技球を必要とし、特別遊技状態の発生に際しては多くの遊技球が払い出されるように構成された遊技機である。
上述した遊技機には、少なくとも多数個の遊技球を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技球を消費する遊技者に不利な状態である通常遊技状態の2種類の遊技態様が存在する。
次に、本発明の実施の形態を実施例を用いて説明する。図1は本発明の一実施形態であるスロットマシン10の前面扉を閉じた状態の斜視図、図2はスロットマシン10の前面扉を開いた状態の斜視図、図3はスロットマシン10の電気的接続を例示するブロック図である。
この実施の形態として適用したスロットマシン10は、前面扉12がその左側を回動軸として本体11に回動自在に取り付けられ、前面扉12を閉じると施錠装置20により前面扉12が施錠される。
前面扉12には、遊技の進行に伴い点灯したり点滅したりする上部ランプ13と、遊技の進行に伴い種々の効果音を鳴らしたり、遊技者に遊技状態を報知したりするスピーカ14,14と、機種名などが表示された上段プレート15と、左回胴Lと中回胴Mと右回胴Rをそれぞれ透視可能な遊技パネル30と、略中段付近にて各種ボタン51,53〜56,61〜63やスタートレバー52やメダル投入口57が設けられた操作部50と、機種名や遊技に関わるキャラクタなどが表示された下段プレート16と、メダル払出口17から払い出されたメダルを受けるメダル受け皿18とが装着されている。スロットマシン10の本体内部には、電源ボックス85(図3参照)や、制御装置70(図3参照)が装着されている。
遊技パネル30は、左回胴L、中回胴M、右回胴Rの停止中または回転中の様子を外部に露出する露出窓31L,31M,31Rと、露出窓31Lの左側に配置された5つのベットランプ32,33,33,34,34と、この露出窓31L,31M,31Rの下側に配設された3つの表示部(クレジット枚数表示部35、ゲーム数表示部36および払出枚数表示部37)とを備えている。
露出窓31L,31M,31Rは、それぞれ停止中の左回胴L、中回胴M、右回胴Rにつき縦に3つの図柄を露出可能な大きさに形成されている。このため、各回胴L,M,Rがすべて停止している状態では、3×3=9(図柄)が遊技者に表示される。そして、図1にて一点鎖線で表示した上段、中段、下段の水平ラインおよび一対の対角ラインの合計5本のラインが、ベットされるメダル数に応じて適宜有効化される。露出窓31L、31M、31Rは1つにまとめて、共通の露出窓とすることもできる。
なお、有効化されたラインを「有効ライン」といい、予め定められた賞を付与する組合せが有効ラインに揃うことを「入賞」という。但し、停止した左回胴Lの3つの図柄のうち有効ライン上の図柄に「チェリー」が存在するとき、これも「入賞」という。
左回胴L、中回胴M、右回胴Rは同様のユニットにより構成されているため、ここでは左回胴Lを例に挙げて図4および図5に基づいて説明する。図4は左回胴Lの組立斜視図、図5は左回胴Lに巻かれたシール47の展開図である。左回胴Lは、円筒状のかごを形成する円筒骨格部材40の外周面に21個の図柄(識別要素)が等間隔ごとに描かれたシール47が巻かれたものであり、円筒骨格部材40のボス部41が円盤状のボス補強板42を介して左回胴用ステッピングモータ71Lの駆動軸に取り付けられている。
左回胴用ステッピングモータ71Lは、図2に示す本体11の内部に垂設されたモータプレート43にねじ43aで固定されており、このモータプレート43には発光素子と受光素子とが一対となった回胴インデックスフォトセンサ(回転位置検出センサ)44が設置されている。回胴インデックスセンサ44を構成する一対のフォトセンサ(図示はしない)は、所定の間隔を保持してその上下に配される。
左回胴Lと一体化されたボス補強板42には、半径方向に延び出したセンサカットバン45の基端部45bがねじ45cで固定されている。このセンサカットバン45の先端部45aは、略90°屈曲されて回胴インデックスフォトセンサ44の両素子の間隙を通過できるように位置合わせがなされている。そして、左回胴Lが1回転するごとにセンサカットバン45の先端部45aの通過を回胴インデックスフォトセンサ44が検出し、検出の都度制御装置70に検出信号を出力するため、制御装置70はこの検出信号に基づいて左回胴Lの角度位置を1回転ごとに確認し補正できる。なお、各回胴に巻かれたシール47は、それぞれに描かれた図柄の順序や発生頻度が異なったものが使用される。
ステッピングモータ71Lは、504パルスの駆動信号(励磁信号)により左回胴Lが1周するように設定されており、このパルスによって回転位置が制御される。すなわち、左回胴Lが1周すると21図柄が順々に露出窓31Lから露出するため、ある図柄から次の図柄へ切り替えるには24パルス(=504パルス÷21図柄)を要する。そして、回胴インデックスフォトセンサ44の検出信号が出力された時点からのパルス数により、どの図柄が露出窓31Lから露出しているかを認識したり任意の図柄を露出窓31Lから露出させたりすることができる。
図3に示すステッピングモータ71(71L、71M、71R)には、後述するようにモータドライバ712や、電圧切り替え手段713なども含まれるものとする。電圧切り替え手段713は、回胴停止時に出力される入出力処理回路80からの切り替え制御信号に基づいて制御される。
図6はステッピングモータ71Lの動作原理を示す接続図である。ステッピングモータ71Lとしてこの実施の形態では、1−2相励磁方式を採用したハイブリッド(HB)型の2相ステッピングモータを使用した場合である。ステッピングモータはハイブリッド型や2相に限らず、4相あるいは5相のステッピングモータなど、種々のステッピングモータを使用することができる。
ハイブリッド型のステッピングモータ71Lは周知のように中央に配置されたロータ(回転子)60と、このロータ60の周囲に配された第1〜第4ポール601〜604から構成される。
ロータ60は、N極に着磁された手前側ロータ60aと、S極に着磁された奥側ロータ60bとで構成され、手前側ロータ60aの周囲に設けられた歯(小歯)と歯の間に、奥側ロータ60bの周囲に設けられた歯が位置するように1/2ピッチだけ相対的にずらされた状態で回転軸に取り付けられている。そして、手前側ロータ60aと奥側ロータ60bとの間には筒状磁石(図示はしない)が取着されている。
第1と第3ポール601,602には図7に示すように、励磁コイルL0とL2がバイファイラ巻きされ、励磁コイルL0の巻き終わり端と励磁コイルL2の巻き始め端とが結線されて、ここに端子714を介して所定の直流電圧が印加される。詳細は後述する。同じく、第2と第4ポール602,604にも、励磁コイルL1とL3がバイファイラ巻きされ、励磁コイルL1の巻き終わり端と励磁コイルL3の巻き始め端とが結線されて、ここに上述した直流電圧が印加される。
ここで、上述したように第1の励磁コイルL0に励磁信号を印加して、第1ポール601をS極に励磁すると共に、第3ポール603をN極に例示する相をA相とし、第3の励磁コイルL2に励磁信号を印加して、第1ポール601をN極に励磁すると共に、第3ポール603をS極に励磁する相をA−相とし、さらに第2の励磁コイルL1に励磁信号を印加して、第2ポール602をS極に励磁すると共に、第4ポール604をN極に励磁する相をB相とし、第4の励磁コイルL3に励磁信号を印加して、第2ポール602をN極に励磁すると共に、第4ポール604をS極に励磁する相をB−相と称する。
そして、1相励磁駆動方式の場合、A相、B相、A−相およびB−相に対して順次励磁信号を印加することでロータ60を時計方向(又は反時計方向)に回転駆動することができる。
つまり、例えばまずA相に通電すると、S極になった第1ポール601の突起と手前側ロータ60aの歯、N極になった第3ポール603の突起と奥側ロータ60bの歯とがそれぞれ吸引力により向き合い、次にB相に通電すると、S極になった第2ポール602の突起と手前側ロータ60aの歯、N極になった第4ポール604の突起と奥側ロータ60bの歯とがそれぞれ吸引力により向き合い、次にA−相に通電すると、N極になった第1ポール601の突起と奥側ロータ60bの歯、S極になった第3ポール603の突起と手前側ロータ60aの歯とがそれぞれ吸引力により向き合い、次にB−相に通電すると、N極になった第2ポール602の突起と奥側ロータ60bの歯、S極になった第4ポール604の突起と手前側ロータ60aの歯とがそれぞれ吸引力により向き合う。この順序で励磁することにより、ロータ60は図6において時計方向に回転する(1相励磁駆動)。
これに対して、この実施の形態では、1相励磁と2相励磁とを交互に行う1−2相励磁駆動が採用されている。1−2相励磁駆動では以下の(1)〜(8)の励磁シーケンス(励磁順序)に従って励磁が行われる。
すなわち、図8にも示すように、1−2相励磁駆動は、(1)A相に通電し(1相励磁)、(2)A相とB相の両方に通電し(2相励磁)、以下同様に(3)B相に通電し、(4)B相とA−相の両方に通電し、(5)A−相に通電し、(6)A−相とB−相の両方に通電し、(7)B−相に通電し、(8)B−相とA相の両方に通電し、その後(1)に戻るような駆動方式である。この1−2相励磁駆動を採用することにより、1ステップあたりの角度変化は、1相励磁駆動の1ステップあたり約0.714°となる。
ステッピングモータ71L、71M、71Rに対する駆動信号は、図8に示すように励磁相を決定する励磁相パターンデータ(以下励磁データという)としてモータドライバー712に与えられる。この励磁データは図3に示すRAM76に格納されており、後述する回胴制御処理ルーチン内で、タイマー割り込み処理によってCPU72からの指令に基づいて入出力処理回路80に出力されることになる。この励磁データによってステッピングモータ71(71L、71M、71R)に対する励磁相が定まり、その励磁相に対して励磁信号(電流)が通電される。
上述した励磁コイルL0〜L3に対しては、モータ駆動時とブレーキをかける回胴停止時とでは異なる電圧が供給される。通常のモータ駆動時(加速時および定速時)は何れもこの例では安定化された24ボルトの直流電圧が駆動電圧として印加される。これに対して回胴停止時つまりステッピングモータ71にブレーキをかけるときは、この駆動電圧よりも低い電圧(以下、ブレーキ電圧という)が印加される。
通常の駆動電圧よりも低いブレーキ電圧の値としては、1/2以下の駆動電圧が好ましい。ブレーキ電圧は独自に設定した電圧を利用することもできれば、装置本体つまり遊技機本体内部で使用される各種の駆動電圧をブレーキ電圧として利用することもできる。この実施の形態では後者を例示する。遊技機で使用される駆動電圧を併用する場合、遊技機で使用される最低の駆動電圧をブレーキ電圧として設定することも可能である。実施の形態では、最高値が24ボルトで、最低値が5ボルトの安定化電圧を出力することのできる電源部85を使用した場合を例示する。
そのため、図7のように電源部85より出力された値の異なる複数の出力電圧のうち、この例では24ボルトと5ボルトの安定化直流電圧がそれぞれ電圧切り替え手段713に供給され、この電圧切り替え手段713で選択された電圧が、駆動電圧として、あるいはブレーキ電圧としてそれぞれの励磁コイルL0〜L3に印加される。どのようなタイミングにどの電圧が選択されるかについては後述する。因みに、5ボルトの電圧は図3に示す制御回路70に対する駆動電圧として使用されたり、音声用あるいは表示用制御回路84,94などの駆動電圧として使用されている。
図1に示すように1枚ベットランプ32は、中段水平ラインの左横に配設され、2枚ベットランプ33,33は上段水平ラインおよび下段水平ラインの左横に配設され、3枚ベットランプ34,34は一対の対角ラインの左横に配設されている。各ベットランプ32,33,33,34,34が点灯する時期については、後述するメダルをベットする手順の中で説明する。
クレジット枚数表示部35は、後述するクレジット機能が有効なときにスロットマシン内部に貯留されている枚数を表示するものであり、ゲーム数表示部36は、例えばビッグボーナス時にあと何回JAC(ジャック)インできるかとかJACゲーム時にあと何回JAC図柄成立が残っているかといった回数を表示するものであり、払出枚数表示部37は、有効ライン上に同じ図柄が揃って入賞したときに払い出された枚数を表示するものである。
操作部50は、前面部に設けられたクレジットボタン51、スタートレバー52、左回胴用ストップボタン53、中回胴用ストップボタン54、右回胴用ストップボタン55および返却ボタン56と、水平段部に設けられたメダル投入口57、1枚ベットボタン61、2枚ベットボタン62およびマックスベットボタン63とを備えている。
クレジットボタン51は、1度押されるとオン状態になり、もう1度押されるとオフ状態になり、その後押しボタン操作が行われるごとにオンオフが切り替わるトグル式に構成されている。クレジットボタン51がオフ状態のときには、クレジット枚数表示部35の表示が消え、メダル投入口57から投入されたメダルや入賞したときに払い出されるメダルはメダル払出口17からメダル受け皿18へ払い出される。また、クレジットボタン51がオン状態のときには、クレジット枚数表示部35に数字(オンからオフになったときには「0」)が表示され、クレジット機能が有効となる。ここで、クレジット機能とは、メダル投入口57から投入された枚数がマックスベット数(ここでは3枚)を越えたときにその越えた枚数分をスロットマシン内部に貯留する機能であり、貯留枚数がクレジット枚数表示部35に表示される。クレジット枚数表示部35に1枚以上表示されているときにクレジットボタン51を押してオフ状態にすると、表示されていた枚数分のメダルがメダル払出口17からメダル受け皿18へ払い出され、メダルが払い出されるごとにクレジット枚数表示部35の数値が1ずつディクリメントされ、その数値がゼロになったあと表示が消える。
スタートレバー52は、遊技者がゲームを開始するときに手で押し操作するレバーであり、手が離れたあと元の位置に自動復帰する。メダルがベットされているときにこのスタートレバー52が操作されると、スタートスイッチ52a(図3参照)がオンされてスタート指令が発生し、このスタート指令によって各回胴L,M,Rが一斉に回転し始める。
左回胴用ストップボタン53、中回胴用ストップボタン54、右回胴用ストップボタン55は、それぞれ回転中の左回胴L、中回胴M、右回胴Rを停止させるときに遊技者が指で押すためのボタンであり、各ボタン53,54,55が押されるとそれに連動して左回胴用ストップスイッチ53a、中回胴用ストップスイッチ54a、右回胴用ストップスイッチ55a(図3参照)がオンされて停止指令が発生する。各ストップボタン53,54,55は、各回胴が等速回転している間、図示しないランプにより点灯表示され、回転が停止すると消灯される。
返却ボタン56は、メダル投入口57に投入されたメダルが詰まったときに押されるボタンであり、このボタンが押されると詰まったメダルがメダル払出口17から返却される。メダル投入口57は、メダルを投入するための入口であり、投入されたメダルは内部に設けられたホッパ86へ通じる貯留用通路91か、メダル払出口17へ通じる払出用通路92のいずれかへ導かれる。貯留用通路91と払出用通路92の切替はメダル通路切替ソレノイド66によって行われる。
各ベットボタン61,62,63は、ゲームスタート前にそのゲームでベットするメダル枚数を決めるためのボタンである。ここで、メダルをベットする手順について説明する。クレジットボタン51がオフ状態のとき(クレジット枚数表示部35が消灯しているとき)か、クレジットボタン51がオン状態で貯留枚数もベット枚数もゼロのとき(クレジット枚数表示部35に「0」が表示されているとき)に、メダル投入口57からメダルが投入されるとベットされる。
すなわち、1枚目のメダルがメダル投入口57に投入されると、1枚ベットランプ32が点灯しこれに対応する中段水平のラインが有効ラインとなり、2枚目のメダルがメダル投入口57に投入されると、更に2枚ベットランプ33,33が点灯しこれに対応する上段水平および下段水平のラインを含む合計3本のラインが有効ラインとなり、3枚目のメダルがメダル投入口57に投入されると、更に3枚ベットランプ34,34が点灯しこれに対応する一対の対角ラインを含む合計5本のラインが有効ラインとなる。
4枚以上のメダルがメダル投入口57に投入されると、クレジットボタン51がオフのときつまりクレジット機能が有効でないときには、メダル払出口17からメダル受け皿18へメダルが返却されるが、クレジットボタン51がオンのときつまりクレジット機能が有効なときには、有効ラインはそのままで投入されたメダルの枚数分だけスロットマシン内部に貯留され、クレジット枚数表示部35に貯留枚数が表示される。このクレジット枚数は上限枚数が決められており(例えば50枚)、それを越える枚数のメダルが投入されたときにはメダル払出口17からメダル受け皿18へ返却される。
メダルが3枚以上貯留されているときに、1枚ベットボタン61が押されるとクレジット枚数表示部35に表示されている数値が1つディクリメントされると共に1枚ベットランプ32が点灯して中段水平のラインが有効ラインとなり、2枚ベットボタン62が押されるとクレジット枚数表示部35に表示されている数値が2つディクリメントされると共に1枚ベットランプ32および2枚ベットランプ33,33が点灯して合計3本のラインが有効化され、マックスベットボタン63が押されるとクレジット枚数表示部35に表示されている数値が3つディクリメントされると共に全ベットランプ32,33,33,34,34が点灯して合計5本の有効ラインが有効化される。
一方、メダルが2枚貯留されているときに、1枚ベットボタン61や2枚ベットボタン62が押されると先ほどと同様に動作するが、マックスベットボタン63が押されると2枚ベットボタン62が押されたときと同様に動作し、メダルが1枚だけ貯留されているときに、1枚ベットボタン61が押されると先ほどと同様に動作するが、2枚ベットボタン62やマックスベットボタン63が押されると1枚ベットボタン61が押されたときと同様に動作する。
図2に示すように電源ボックス85は、電源スイッチ81やリセットスイッチ82や設定キー挿入孔83などを備えている。電源スイッチ81は、オンされるとCPU72を始めとする各部に電源を供給する。リセットスイッチ82は、オンされた状態で電源スイッチ81がオンされるとRAM76の内容がリセットされ、単にオンされるとエラー状態がリセットされる。設定キー挿入孔83は、図示しない設定キーを挿入することにより設定キースイッチ83a(図3参照)がオン状態となり、スロットマシン10の設定状態を「設定1」から「設定6」まで変更できる。
ホッパ86は、メダルを貯留する補助タンク87と、補助タンク87内のメダルを払出用通路92に通じる開口93を介してメダル払出口17へ払い出す払出装置88とから構成されている。この払出装置88は、ホッパ駆動モータ65(図3参照)によって図示しないメダル送出用回転板を回転させながらメダルを開口93へ送り出す。
図3に示すように制御装置70は、CPU72を中心とするマイクロコンピュータとして構成されており、CPU72には電源を供給する電源部(電源ボックス)85や所定周波数の矩形波を出力するクロック回路78が接続されている他に、処理プログラムを記憶するROM74や、一時的にデータを記憶するRAM76や、入出力処理回路80がバス79によって接続されている。
カウンタ77は、回胴L、M、Rの回転状態を検出するために使用されるもので、1回転ごとにリセットされ、24ステップごとにインクリメントされる図柄カウンタと、1ステップごとにインクリメントされ、24ステップでリセットされる図柄オフセットカウンタとで構成されている。
制御装置70には、回胴インデックスフォトセンサ44からの検出信号、リセットスイッチ82からのリセット信号、設定キースイッチ83aからのオンオフ信号、ベットボタン61,62,63に連動する各ベットスイッチ61a,62a,63aからのベット信号、クレジットボタン51に連動するクレジットスイッチ51aからのオンオフ信号、スタートレバー52に連動するスタートスイッチ52aからのスタート指令信号、左、中、右回胴用ストップボタン53,54,55に連動する左、中、右回胴用ストップスイッチ53a,54a,55aからの停止指令信号、ホッパ86から払い出されるメダルを検出する払出センサ64からの検出信号、左回胴L,中回胴M,右回胴Rを駆動する左、中、右回胴用ステッピングモータ71L,71M,71Rからの位置検出信号などが入出力処理回路80を介して入力される。
制御装置70からは、上部ランプ13や1枚〜3枚ベットランプ32,33,34への点灯信号、クレジット枚数表示部35やゲーム数表示部36や払出枚数表示部37への表示信号、払出装置88に払出動作を行わせるホッパ駆動モータ65への駆動信号、左回胴L、中回胴M、右回胴Rを駆動する左、中、右回胴用ステッピングモータ71L,71M,71Rへの駆動信号、メダル投入口57に投入されたメダルをホッパ86へ導くかメダル払出口17へ導くかを制御するメダル通路切替ソレノイド66への駆動信号、スピーカ14から発生する効果音などを制御する音声用制御装置84へのコマンド信号、液晶ディスプレイ15の表示内容を制御する表示用制御装置94へのコマンド信号などが入出力処理回路80を介して出力される。なお、制御装置70はクレジット枚数をカウントするクレジットカウンタなどの各種カウンタを備えている。
ところで、スロットマシンの回胴駆動モータとして上述したステッピングモータ71(71L、71M、71R)を使用する場合にあっては、図9に示すような駆動特性が要求される。この駆動特性は、スタートボタン(スタート用操作レバーでもよい)が操作されてからステッピングモータ71が回転を始め、一定の定速回転に至るまでの加速期間Taと、定速回転期間Tbと、ストップボタン53〜55の操作に関連して所定のすべり(図柄調整用として使用されるすべり)を含めた停止期間Tcに分けられる。加速期間Taをいくらにしなければならないかという規制はないのに対して、ストップボタン53〜55が操作されていないときは、加速期間Taに定速期間Tbを加えた時間は30秒以上でなければならないという規制がある。停止期間Tcもストップボタン53〜55を操作してから最大約190msec以内に駆動モータに対する励磁相を固定することが要求されている。
加速期間Taにあっては、できるだけ早く定速回転状態に移行させる必要があり、そのためにはステッピングモータ71に対する励磁相への割り込み(励磁相である1相励磁から2相励磁への切り替えおよび2相励磁から1相励磁への切り替えを言う)を早めればよいが、そうすると脱調や回転の不安定性を助長することにもなりかねない。したがって脱調や回転の不安定性をもたらさないで最短の加速処理を実現する最適な割り込み処理を行う必要がある。
割り込み処理によって励磁信号を励磁コイルに印加するに当たり、励磁相への適切な割り込みタイミングを設定する必要があり、そのためには特にモータ加速時、少なくともロータ60の回転揺れが抑えられるまでの間は、励磁信号を印加する初期励磁相に対する励磁状態をホールドしておく必要がある。
基本的には、回転始動時の回転トルクの大きさと、脱調や回転の不安定性による影響をできるだけ回避できるように考慮する。初期励磁によって発生する吸引力によって、ロータ60の歯がポール601〜604の歯側に吸引されるときに発生するロータ60の回転揺れ(微少減衰振動)の収束程度が相違する。回胴L、M、Rのイナーシャーなどによっても相違するが、実験によれば、30msecで1往復(サイクル)する揺れが5〜6往復位繰り返してからロータ60が停止したので、回転揺れによる影響をできるだけ回避するには、最小割り込みタイミングの10倍程度必要である。したがってこの期間は、少なくとも同一励磁相に固定(ホールド)する。ただし、ステッピングモータとしては、1−2相励磁方式を採用したハイブリッド(HB)型の2相ステッピングモータを使用した場合である。
ここで、上述したCPU72に対する最小の割り込み時間が1.49msecに設定されているときには、初期励磁保持時間として、この例では1.49msec×10割り込み=14.9msecに設定した。これより長く設定することは勿論差し支えない。
10割り込みの期間は連続して励磁されるように、図8に示す励磁信号用の励磁データがモータドライバ712に出力される。加速期間として図8の例では138msec程度に設定されているが、その値は任意である。
初期励磁からの加速期間であっても1相励磁と2相励磁を交互に繰り返すが、励磁相への割り込みタイミング、換言すれば相励磁の保持期間としては、例えば図10のように励磁保持期間が順次短くなるように細かく制御される。ステッピングモータとして1−2相励磁方式を採用したハイブリッド(HB)型の2相ステッピングモータでは、図示の例では1回目の励磁(初期励磁)は10割り込み分行われ、したがって10割り込み分の相励磁保持が行われ、2回目の励磁は8割り込み分だけ行われ、以下図10に示すように割り込みが漸次短くなるように設定して励磁時間を短縮すると共に、最後には最小の割り込み間隔で励磁相が順次切り替わる通常の1−2相励磁(定速回転期間)に遷移できるような割り込みに設定されている。
したがって図10のように、加速期間の最後の励磁相が2相励磁であって、これが1割り込みであったときには、次の定速回転期間の最初の励磁相は1相励磁であって、しかも最小の割り込み間隔である1割り込みとなる。このように加速期間での割り込み処理タイミングを、定速回転に近づくにつれ順次短くすることで、高速な加速処理を短時間で実現することができると共に、定速回転へのスムーズな移行が可能になる。
図10に示す加速期間は、全体の加速期間がほぼ138.57msecに設定されているときの例であるので、全体の加速期間がこれとは異なる値に設定されているときには、その値に応じて割り込み処理タイミングが選定され、それに応じて図10に示す割り込み処理とは異なった割り込み処理が行われることは言うまでもない。
回胴に対する駆動制御処理は、後述する図16に示すようにCPU72に対するタイマー割り込み処理ルーチン内で行われ、この駆動制御処理ルーチンも各種の処理ルーチンのループ内で処理され、全ての処理が終了した段階で処理結果を示す情報が図3に示す入出力処理回路(入出力ポート)80に与えられる。しかし、割り込み処理によるこれらの処理時間は発生する事象によって相違するものであるから、回胴を駆動するための励磁信号の出力タイミングもこの割り込み処理時間による影響を受けることになる。
その結果、最小割り込み時間(1.49msec)ごとに割り込みを行って、1相励磁あるいは2相励磁に必要な励磁信号用のデータ(例えば図8に示すような8ビットデータ(ヘキサデシマル表示))を入出力処理回路80を経由してモータドライバ712に出力しようとしても、その出力間隔を均一にすることができない。つまり出力間隔が、他の割り込み処理時間の長短によって僅かに変動してしまう。これではより安定した回胴回転を実現できない。
これを解決するには、他のタイマー割り込み処理の処理時間を待たずに、入出力処理回路80側に励磁信号用のデータを出力することで、データ出力間隔の均一化を図る。こうすれば、他の割り込み処理時間の多少に拘わらず、常に一定の間隔で励磁信号用データをモータドライバ712側に出力することができる。これによって相励磁タイミングが一定となり、ステッピングモータ71L、71M、71Rの回転が安定するから回胴L、M、Rの安定回転によって、遊技者を遊技に集中させることができるようになる。
続いて、回胴L、M、Rの停止処理(ブレーキ処理)について説明する。上述したようにストップボタン53,54,55の何れかが操作されると、予め定められた図柄でそれぞれの回胴L、M、Rが停止するタイミングに、駆動モータ71L、71M、71Rに対してブレーキがかけられる。ストップボタン53〜55が操作されてからは、すべり処理(後述するように1〜4図柄分の回転処理)を含め、図11に示す規定時間Ts(=190msec)以内に回胴L、M、Rを停止させなければならない。ストップボタンが押されない状態が所定時間以上続いたときには、制御部からの指示によって対応する回胴を強制的に停止させる。
上述したように回胴駆動モータとして2相ステッピングモータを使用する場合、ステッピングモータにブレーキをかけるときは通常4相同時励磁(A相、A−相、B相およびB−相)である。この4相の励磁相を同時に励磁する場合にはスムーズに停止はするが、その反面ブレーキ力が弱いために回胴停止位置がずれるおそれがある。つまり、停止位置精度が悪い。その結果、次に回転させるときの励磁すべき励磁相が特定できず、上述したように加速初期にロータ60の回転揺れが発生してしまう。
この問題を解決するには、4相同時励磁によってブレーキをかけるのではなく、4相未満の同時励磁を行えばよい。つまり、3相同時励磁か、2相同時励磁である。もちろん1相励磁でもよい。4相同時励磁よりも4相未満による同時励磁の方が、励磁相が特定し易いため、回胴停止位置のずれが少なくなる。その結果、次の回胴回転時における回転揺れを少なくできる。
一方、このような4相未満による同時励磁を行うと、4相同時励磁よりも4相未満による同時励磁の方がブレーキ力が大きくなるので、新たな問題が発生する。それは、回胴停止時における回転方向に対する振動である。この振動は減衰振動であるが、回胴停止時のこのような回転揺れはない方が好ましい。特に、遊技に没頭している遊技者には僅かな回転揺れでも気になることがあり、興趣を大いに逸らしてしまうことにもなり兼ねない。
そのため、ブレーキに対する強制処理を含めてブレーキをかけるタイミングになったときには、駆動モータ71に供給される電圧が、通常の駆動電圧よりも低めに設定された電圧(ブレーキ電圧)が駆動モータ71に供給される。4相未満による多相励磁によってブレーキ力が増えた分、励磁コイルL0〜L3に加えるブレーキ電圧を落とし、発生する電磁力を弱めることで、総合的なブレーキ力を最適化する。こうすることで、4相未満による多相励磁による弊害が除去されることになる。
ブレーキ電圧は駆動電圧のほぼ半分以下であるのが好ましい。ブレーキ電圧は独自に設定した電圧を利用することもできれば、装置本体つまり遊技機本体内部で使用される各種の駆動電圧をブレーキ電圧として利用することもできる。図3に示す電源部85で生成された出力電圧をそのままブレーキ電圧としても利用できれば、コストダウンや装置の簡略化等の観点からなお好ましい。電源部85では、少なくとも24ボルトの出力電圧の他に、ソレノイドなどの制御系や、LEDランプなどの表示系の動作電圧として使用される12ボルトおよび制御回路70などの処理回路用動作電圧として使用される5ボルトの各安定化された直流電圧がそれぞれ得られるように構成されているからである。
この発明による実施の形態を図7および図12を参照して説明する。
図7において、電源部85から出力された24ボルトおよび5ボルトの電圧がそれぞれ電圧切り替え手段(SW)713に供給され、この電圧切り替え手段713で選択された電圧(24ボルト/5ボルト)が励磁コイルL0〜L3に対する電圧供給端子714に印加される。ここに、駆動モータ71を駆動するときに使用する駆動電圧は24ボルトであり、回胴を停止させるときにこの駆動モータ71に印加されるブレーキ電圧が5ボルトである。
入出力処理回路80からは電圧切り替え手段713に対して電圧切り替え信号VSが供給され、所望のタイミングで電圧の選択処理が行われる。電圧選択信号VSはCPU72で生成される。
図12はブレーキをかけるタイミングを示すもので、図12Aにおいて、ストストップボタン53〜55の何れかが押された時点をtaとしたときには、すべりなどの図柄調整処理を経た所定時間経過後の時点tbで駆動モータ71に対し実際にブレーキ電圧が印加される。このブレーキ電圧の印加によって駆動モータ71の回転が止まることで、予め指定された図柄が露出窓31L、31M、31R内に停止する。ブレーキモードつまり多相の励磁相を使用したブレーキモードとして、多相同時励磁モードでは3相同時励磁若しくは2相同時励磁である。ブレーキ電圧が低いので、1相励磁でブレーキをかけることもできる。
ここで、例えば3相同時励磁であるときには、予め定められた特定の励磁相例えば励磁コイルL0、L1およびL2にそれぞれ駆動電圧よりも低い、この例ではほぼ1/6程度となるブレーキ電圧が印加される。
このように比較的低電圧のブレーキ電圧であっても、3相同時励磁であるため比較的大きな吸引力が得られるから、回胴L、M、R付きロータ60を回転揺れを伴うことなく急速停止させることができる。つまりブレーキ電圧を抑えることで3相同時励磁することによって発生し易い回転揺れを防止している。
実験によれば、駆動電圧の半分以下のブレーキ電圧であれば、不自然な回転揺れを伴うことなく回胴を停止させることが判明した。したがってブレーキ電圧としては駆動電圧のほぼ半分である12ボルトや10ボルトを使用しても差し支えない。
しかし、さらなる実験によってブレーキ電圧を下げ、5ボルト程度でも十分な効果が得られることが確認された。ブレーキ電圧を下げることによって、余分な電力消費を改善できる。これは遊戯中は、回胴に対する回転および停止を頻繁に行うものであるから、ブレーキ電圧はできるだけ低い方が、トータル電力の面で得策であるからである。なお、上述した10ボルトの電圧は電源部85より出力される安定化された出力電圧であって、これはスピーカ14などの音響機器などを駆動するときに使用される駆動電圧である。
3相を同時励磁するときには、ロータ停止時の位置が特定されるので、次に回転させるときの励磁相の特定が容易になり、励磁相の不連続性に伴う回転初期の回転揺れを効果的に抑制することができる。ブレーキ電圧として既存の電圧を利用することで、既存の電源部85の構成を改変することなく、そのまま利用できる実益を有する。
回胴が停止した後は、ブレーキ電圧の供給を停止するか、若しくは次の回胴回転までブレーキ電圧をそのまま連続して印加しておく。後者の場合には遊技機に対し不意に、大きな振動が加えられたようなときでも回胴の停止位置を固定できる。
図12Bはブレーキ電圧をかけるタイミングを、実際にブレーキをかけるタイミング(時点tb)よりもΔtxだけ僅かに先行させて行った例である。どれだけ先行させるかは、回胴やロータ60のイナーシャーなどの関係から設定されるものであるが、例えば10から数10msec先行させる。こうすることでも、回転揺れを伴うことなく予め決められた図柄を露出窓内で停止させることができる。図12Bの場合でも図12Aと同様な効果が得られることは容易に理解できる。
図12の実施の形態は、ブレーキモードになったときには、駆動電圧から一挙にブレーキ電圧まで電圧を降下させた場合である。換言するならば、ブレーキ電圧は一種類であるが、このブレーキ電圧は特に一種類に限られるものではない。徐々にブレーキ電圧を下げることでも、目障りとなるような回転揺れを伴うことなく極く自然に回胴を停止させることができる。
図13および図14は、ブレーキ電圧を可変する例として、階段状、特に2段階に分けてブレーキ電圧を変化させながら印加するようにしたときの実施の形態である。ブレーキ電圧としては電源部85からの電圧をそのまま使用するため、第1のブレーキ電圧として12ボルトを使用し、第2のブレーキ電圧として5ボルトを使用した場合である。
そのため、図13に示すように、電源部85で生成された3種類の電圧(24ボルト/12ボルトおよび5ボルト)が電圧切り替え手段(SW)713に供給され、入出力処理回路80からの電圧切り替え信号VSによって何れかの電圧が選択される。選択された電圧が電源端子714を介して所望の励磁コイルL0〜L3に印加される。
ここに、24ボルトの電圧は上述したように駆動モータ71用であり、12ボルトの電圧はメダル通路切り替え用ソレノイド66などに対する駆動電圧として利用され、また5ボルトの電圧は、上述したように制御回路70や、音声用あるいは表示用制御装置84、94などの処理回路に対する駆動電圧として利用されているものである。
図14はブレーキをかけるタイミングを示すもので、図14Aにおいて、ストストップボタン53〜55の何れかが押された時点taから、すべりなどの処理を経た所定時間経過後の時点tbで駆動モータ71に対し第1のブレーキ電圧(12ボルト)が印加される。第1のブレーキ電圧の印加してから所定時間Δty経過後に、第1のブレーキ電圧よりも低い第2のブレーキ電圧(5ボルト)が印加される。所定時間Δtyとは極く僅かな時間に設定されており、例えば10〜数10msecである。励磁相としては上述したと同じく3相同時励磁または2相同時励磁を示す。
このように、ブレーキ電圧を2段階に分けて印加することで、最初は比較的強めの第1のブレーキ力が得られ、その後これよりも弱い第2のブレーキ力が加わるので、非常にスムーズなロータ停止を実現できる。もちろん、遊技者が目障りとなるような回転揺れを伴うことはなく、自然でスムーズな停止処理を実現できる。その他の作用効果については、前述した実施の形態の場合と同様である。
図14Bは第1のブレーキ電圧をかけるタイミングを、実際にブレーキをかけるタイミング(時点tb)よりもΔtyだけ僅かに先行させて行った例である。どれだけ先行させるかは、回胴やロータ60のイナーシャーなどの関係から設定されるものであるが、例えば10から数10msec先行させる。その後、第2のブレーキ電圧を印加する。こうすることでも、回転揺れを伴うことなく予め決められた図柄を露出窓内で停止させることができる。図14Bの場合でも図12Aと同様な効果が得られることは容易に理解できる。
上述した実施の形態では、何れも遊技者がストップボタン53〜55の何れかを操作したときの説明であるが、これらストップボタン53〜55を押さないで規定時間が経過したときの強制停止モードの場合でも、上述したと同様な処理が実行されることになる。この場合には特に図12Aあるいは図14Aの処理となる。ブレーキ電圧として、この実施の形態では既存の電源部85の出力電圧を考慮して設定されているが、この出力電圧に拘泥されるものではなく、実施の形態のブレーキ電圧はあくまでも一例である。したがって、駆動電圧のほぼ半分以下であれば、任意の電圧をブレーキ電圧として利用することができる。例えば、第1のブレーキ電圧を15ボルトに、第2のブレーキ電圧を7ボルトに設定したりすることができる。
以上説明した回転制御処理および停止制御処理は何れも後述するように回胴制御処理ルーチンS230(図16参照)内で行われることになる。
次に、この実施の形態であるスロットマシン10の動作について説明する。制御装置70のCPU72は、電源オフの状態から電源オンの状態になると、図15に示す電源投入処理を開始する。この電源投入処理ではまず、電源ボックス85のリセットスイッチ82が押された状態で電源スイッチ81がオンされたか否かを判定する(ステップS100)。リセットスイッチ82が押された状態で電源スイッチ81がオンされたときには、それまでのRAM76の内容をクリアし(ステップS110)、復電フラグをリセット(=0)する(ステップS120)。この復電フラグは、電源オフ時にセット(=1)されるフラグである。すなわち、電源オフ時には復電フラグがセットされ、そのときの状態が停電発生情報としてRAM76に記憶され、その停電発生情報はバックアップ電源によって保持される。
ステップS120で復電フラグをリセットしたあと、あるいは、ステップS100でリセットスイッチ82が押されずに電源スイッチ81がオンされたときには、電源ボックス85の設定キー挿入孔83に図示しない設定キーが挿入されて設定キースイッチ83aがオンされたか否かを判定する(ステップS130)。設定キースイッチ83aがオンされたときには、この設定スイッチ83aによって6段階の設定状態(「設定1」〜「設定6」)のいずれかを選択できるため、どの設定状態が選択されたかを判定した上で、選択された設定状態に応じた内部処理を実行する(ステップS140)。その後、RAM76に記憶されていた内容をクリアし(ステップS150)、復電フラグをリセットする(ステップS160)。
ステップS160で復電フラグをリセットしたあとか、あるいは、ステップS130で設定キースイッチ83aがオンされなかったときには、復電フラグがセットされているか否かを判定し(ステップS170)、復電フラグがセットされているときにはRAM76に保存されている停電発生情報に基づいて電源がオフになる前の状態に復帰させる復電処理を行い(ステップS180)、その後本ルーチンを終了する。
一方、ステップ170で復電フラグがセットされていなかったときには、そのままこの電源処理ルーチンを終了する。この復電処理により、例えば停電して電源がオフになったとしても復電したときに電源がオフになる前の状態に復帰する。
[メインフロー]
続いて、スロットマシン10のメインフローについて説明する。制御装置70のCPU72は、電源投入処理終了後に図16に示すメインフローを開始する。このメインフローでは、まず、メダルがベットされているか否かを判定する(ステップS200)。メダルがベットされているときには、続いてスタートレバー52が操作されてスタートスイッチ52aがオンとなりスタート指令が発生したか否かを判定し(ステップS210)、スタート指令が発生したときには、図17の抽選処理ルーチン(ステップS220)、図18の回胴制御処理ルーチン(ステップS230)、図19のメダル払出処理ルーチン(ステップS240)、図20の特別状態処理ルーチン(ステップS245)を順に実行したあと、それぞれの処理で生成されたデータを入出力処理回路80に出力する(ステップS247)。ただし、回胴制御処理ルーチンS230おいて処理されたデータは、他の処理ルーチンの結果を待たずに入出力処理回路80に出力される。
入出力処理回路80への出力処理が終了するとステップS200に戻る。一方、ステップS200でメダルがベットされていないときや、ステップS210でスタート指令が発生していないときには、ステップS200に戻る。
[抽選処理ルーチン]
抽選処理ルーチンでは、図17に示すように、制御装置70のCPU72は、まず、ベットされたメダルの枚数やスロットマシン10の現在の設定状態や小役確率の高低などに基づいて、当否決定用乱数テーブルを選択する(ステップS250)。ここで、ベットされたメダルの枚数は、1〜3枚のいずれかであり、枚数が多いほど役の抽選確率が高くなるような乱数テーブルが選択され、例えば3枚ベットされたときの確率は1枚ベットされたときの確率の3倍よりも高くなるような乱数テーブルが選択される。
また、スロットマシン10の設定状態は、図示しない設定キーを用いてセットされた「設定1」〜「設定6」のいずれかであり、「設定1」のときに役の抽選確率が最も低い乱数テーブルが選択され、「設定6」のときに役の抽選確率が最も高い乱数テーブルが選択される。さらに、小役確率については高低2種類存在し、現在の出玉率が所定の期待値を下回っているときには高い方の乱数テーブルが選択され、所定の期待値を上回っているときには低い方の乱数テーブルが選択される。
続いて、このようにして選択された乱数テーブルに、今回スタートスイッチ52aがオンされたときに乱数カウンタよりラッチした乱数を照らして役の抽選を行う(ステップS260)。そして、役に当選したか否かを判定し(ステップS270)、役に当選していないときにはそのままこのルーチンを終了し、役に当選したときにはその役に応じた当選フラグをセットすると共に図柄を揃えるべき有効ラインを決定し(ステップS280)、回胴停止制御用のスベリテーブルを決定してこれをRAM76のスベリテーブル格納エリアに記憶する(ステップS290)。ここでスベリテーブルとは、ストップボタンが押されたタイミングにおける所定の有効ライン上の図柄と、その有効ライン上に停止されるべき図柄(予め選択決定された役などに応じた図柄)とが異なる場合に、その停止させるべき図柄を所定の有効ライン上で止まるように回胴をどれだけ滑らせるかを定めたテーブルである。
[回胴制御処理ルーチン]
回胴制御処理ルーチンでは、図18に示すように、制御装置70のCPU72は、まず、ウエイト処理を行う(ステップS300)。このウエイト処理は、前回のゲームにおいて回胴の回転が開始した時点から所定時間(例えば4.1秒)が経過するまで今回のゲームにおいて回胴の回転を開始せずに待機(ウエイト)する処理である。このため、遊技者がベットしてスタートレバー52を操作したとしても、直ちに左、中、右回胴L,M,Rが回転しないことがある。このウエイト処理に続いて後述する回胴回転処理を行い(ステップS310)、左、中、右回胴L,M,Rのそれぞれに対し図9に示すような駆動特性となるように回転処理を行う。
1相励磁または2相励磁を行う初期励磁相に対しては、駆動モータ71の回転揺れを考慮して、この実施の形態では図10に示すように10割り込み分行い、その後は1相励磁と2相励磁(または2相励磁と1相励磁)を所定の割り込み分だけ順次交互に行って加速する。回胴L、M、Rが定速回転しているときの励磁信号用データの出力タイミングは、回胴制御処理以外の処理を待たずに、上述したようにタイマー割り込み処理タイミングに同期して行われる。
回胴を加速すると共に定速回転させるときは、図16に示す他の処理ルーチン(ステップS220、ステップS230などの処理ルーチン)の処理結果を待つことなく、入出力処理回路80に、これから励磁すべき励磁相に対する励磁データが最小割り込み単位に同期して出力される。図8に示す励磁データはRAM76にストアされたデータが利用される。
続いて、左、中、右回胴用ストップボタン53,54,55のいずれかが押されて停止指令が発生したか否かを判定し(ステップS320)、停止指令が発生していないときには予め定められた最大回転時間(例えば40秒)を経過したか否かを判定し(ステップS330)、最大回転時間を経過していないときには再びステップS320へ戻り、最大回転時間を経過したときには回転中のすべての回胴を強制的に停止させる強制停止処理(ブレーキ処理)を、ブレーキ電圧とした状態で、2相励磁直後に例えば3相同時励磁に切り替えて行う(ステップS340)。停止処理したときは、その都度図柄番号および図柄オフセット用のカウンタ77(図3参照)の値(図柄番号と、図柄オフセット値)がRAM76に保存される。
一方、ステップS320で左、中、右回胴用ストップボタン53,54,55のいずれかが押されて停止指令が発生したときには回胴停止実行処理を行う(ステップS350)。この回胴停止実行処理では、左、中、右回胴用ストップボタン53,54,55のうち今回押されたストップボタンに対応する回胴を停止させる。回胴停止は上述したと同じように2相励磁直後にブレーキ電圧を印加した状態で3相励磁に切り替えて行う。3相励磁への切り替えによってストップボタン53,54,55に対応したステッピングモータ71L、71M、71Rは一種の回生モードとなる。
役の抽選で役に当選して当選フラグがセットされていたときには、RAM76のスベリテーブル格納エリアに格納されたスベリテーブルを参照して、可能な限り当選した役が所定の有効ライン上に並ぶようにする。例えば、下段水平ライン上に図柄「ベル」が並ぶという役に当選したときに、図柄「ベル」が上段水平ラインに停止するタイミングでボタンが押されたときには、図柄2つ分だけ回転させて下段水平ラインに停止するように滑らせる。但し、滑らせることのできる範囲は予め決められている(例えば最大で図柄4つ分)ため、ストップボタンを押したタイミングによっては下段水平ライン上に図柄「ベル」が停止しないこともある。なお、前出の強制停止処理においても当選フラグがセットされているときにはこれと同様の処理を行う。
続いて、今回の停止指令が第1停止指令か否かつまり3つの回胴のすべてが回転しているときにストップボタンが押されたか否かを判定し(ステップS360)、第1停止指令のときには、スベリテーブル変更処理を行う(ステップS370)。このスベリテーブル変更処理では、例えば当選した有効ライン上で役を揃えようとしたときに役の複合が発生するか否かを判定し、役の複合が発生しないときにはこの処理を抜け、役の複合が発生するときには当選した有効ラインを別の有効ラインに変更すると共に変更後の有効ラインにあったスベリテーブルに変更し、この処理を抜ける。
ここで、役の複合とは、例えば中段水平ライン上で図柄「ベル」を揃えようとしたときに左回胴にて図柄「チェリー」が下段水平ライン上に表れる場合のように複数の役が同時に発生する場合をいう。なお、図柄「チェリー」以外の図柄は所定の有効ライン上で揃ったときに役が発生するが、図柄「チェリー」は露出窓31L、31M、31Rから露出している左回胴Lの3つの図柄のうち一つが図柄「チェリー」のときには他の回胴M、Rの図柄にかかわらず役が発生する。また、スベリテーブル変更処理は役の複合を回避するとき以外にも行われることがある。
一方、ステップS360で今回の停止指令が第1停止指令でないときには、第2停止指令か否かつまり3つの回胴L、M、Rのうち1つの回胴が停止し2つの回胴が回転しているときにストップボタンが押されたか否かを判定し(ステップS380)、第2停止指令のときには停止目判定処理を行う(ステップS390)。
停止目判定処理では、2つの回胴が停止したときにその2つがボーナス図柄(例えば「7」など)で揃うか否かを判定し、揃わなかったときにはそのままこの処理を抜け、揃ったときには音声用制御装置84を介してスピーカ14,14から効果音等を発生させ、その後この処理を抜ける。この停止目判定処理ではボーナス図柄が2つ揃う以外の別の条件が成立したか否かを判定してもよいし、効果音以外の演出を行ってもよい。
そして、ステップS340の強制停止処理のあとか、ステップS370のスベリテーブル変更処理のあとか、若しくはステップS390の停止目判定処理のあとか、又はステップS380で今回の停止指令が第2停止指令でなかったときは、左、中、右回胴L,M,Rのすべての回転が停止したか否かを判定し(ステップS400)、左、中、右回胴L,M,Rのいずれかの回転が停止していないときには再びステップS320へと戻り、左、中、右回胴L,M,Rのすべての回転が停止したときには払出判定処理を行い(ステップS410)、このルーチンを終了する。払出判定処理では、役が有効ライン上に並んでいるか否かを判定し、役が有効ライン上に並んでいないときにはRAM76の払出予定数格納エリアにゼロをセットし、役が有効ライン上に並んでいるときにはその役が当選した役と一致しているか否かを判定し、一致していないときには上部ランプ13等によりエラー表示を行うと共に払出予定数格納エリアにゼロをセットし、一致しているときには払出予定数格納エリアに15枚を上限として格納する。
[メダル払出処理ルーチン]
メダル払出処理ルーチンでは、図19に示すように、制御装置70のCPU72は、まず、払出数カウンタのカウント値(払出数ともいう)と払出予定数格納エリアに格納された数値(払出予定数ともいう)とが一致しているか否かを判定し(ステップS430)、払出数と払出予定数とが一致していないときには、クレジットボタン51の操作によりクレジットスイッチ51aがオンされたか否かを判定し(ステップS435)、オンされたときにはクレジットカウンタのカウント値が上限に達しているか否かを判定し(ステップS440)、上限に達していないときにはクレジットカウントのカウント値および払出数をそれぞれ1だけインクリメントする(ステップS450)。これによりクレジット枚数表示部35および払出枚数表示部37の枚数がそれぞれ1だけインクリメントされる。一方、クレジットスイッチ51aがオフのとき、あるいは、クレジットカウンタのカウント値が上限に達しているときには、ホッパ駆動モータ65を駆動して払出装置88によりメダルをホッパ86からメダル払出口17を介してメダル受け皿18へ払い出させると共に(ステップS460)、ホッパ86に取り付けられた払出センサ64のメダル検出信号に応じて払出数を1だけインクリメントする(ステップS470)。これにより払出枚数表示部37の枚数が1だけインクリメントされる。そして、ステップS450またはステップS470で払出数を1だけインクリメントしたあと、再びステップS430に戻る。ステップS430で払出数と払出予定数とが一致したときには、ホッパ駆動モータ65を停止させ(ステップS480)、このルーチンを終了する。なお、払出数や払出枚数表示部37は次回スタートレバー52が操作されたときにリセットされる。
[特別状態処理ルーチン]
この実施の形態では、図16に示すようにサブルーチン処理の中に、特別状態処理ルーチン(ステップS245)が含まれている。以下にこの特別状態処理について説明するが、その説明に先立ち、ボーナスゲームについて説明する。
レギュラーボーナス(以下「RB」という)ゲームは、23回のJACゲームで構成されている。JACゲームは、1枚ベットのみ許されるゲームであり、JAC図柄(ここではリプレイ図柄で代用)が有効ライン上に揃う確率つまりJAC図柄成立の確率が非常に高いゲームである。JACゲームでJAC図柄が成立すると最大枚数(ここでは15枚)のメダルが払い出される。そして、JAC図柄が8回成立すると、JACゲームが12回に達する前であってもRBゲームが終了する。一方、ビッグボーナス(以下「BB」という)ゲームは、30回の小役ゲームと3回のJACインとから構成されている。小役ゲームとは高確率で小役当り(有効ライン上に図柄「ベル」などが揃う)になるゲームであり、JACインとは12回のJACゲームに突入することを意味し、小役ゲーム中にJAC図柄が有効ライン上に揃うとJACインが成立する。JACゲームはRBゲームの場合と同様である。また、3回目のJACインによるJACゲームが終了すると小役ゲームが30回に達する前であってもBBゲームは終了し、30回の小役ゲームが終了するとJACインが3回に達する前であってもBBゲームは終了する。
さて、特別状態処理では、図20に示すように、制御装置70のCPU72は、まず、遊技状態がボーナス状態か否かを判定し(ステップS500)、遊技状態がボーナス状態でないときには、ボーナス図柄・リプレイ図柄判定処理を行う(ステップS524)。このボーナス図柄・リプレイ図柄判定処理では、図21に示すように、まず、役の抽選でRBに当選してRB当選フラグがセットされたか否かを判定し(ステップS700)、セットされているときには今回有効ライン状にRB図柄(例えば図柄「BAR」)が揃ったか否かを判定し(ステップS710)、RB図柄が揃っていなかったときには不規則フラグをセットし(ステップS730)、この処理を終了する。この不規則フラグは、次回回胴の回転を開始する際に不規則な動作を行わせることを指示するためのフラグである。一方、今回有効ライン上にRB図柄が揃っていたときには、RB当選フラグ及び不規則フラグをリセットしRB設定フラグをセットしてボーナス状態の1種であるRB状態とし、(表1)のRBゲーム初期設定処理を実行し(ステップS720)、このルーチンを終了する。
ステップS700でRB当選フラグがセットされていないときには、役の抽選でBBに当選してBB当選フラグがセットされたか否かを判定し(ステップS740)、セットされているときには今回有効ライン上にBB図柄(例えば図柄「7」)が揃ったか否かを判定し(ステップS750)、BB図柄が揃っていなかったときには前記不規則フラグをセットし(ステップS730)、この処理を終了する。一方、今回有効ライン上にBB図柄が揃ったときには、BB当選フラグ及び不規則フラグをリセットしBB設定フラグをセットしてボーナス状態の一種であるBB状態とし、(表1)のBBゲーム初期設定処理を実行し(ステップS760)、このルーチンを終了する。
ステップS740でBB当選フラグがセットされていなかったときには、リプレイ図柄判定処理を実行する(ステップS770)。即ち、役の抽選でリプレイに当選してリプレイ当選フラグがセットされ、且つ有効ライン上にリプレイ図柄が揃ったか否かを判定し、否定判定されたときにはこのルーチンを終了し、肯定判定されたときにはリプレイ当選フラグをセットしてリプレイ状態としてこのルーチンを終了する。リプレイ状態では、メインフローのステップS200で前回ベットした枚数が強制的にベットされるが、遊技者のメダルは消費されない。
なお、(表1)中、残小役ゲームカウンタは小役ゲームの残りゲーム数(残小役ゲーム数ともいう)を表し、残JACインカウンタはJACイン可能な残り回数(残JACイン回数ともいう)を表し、残JAC成立カウンタはJAC図柄が成立可能な残り回数(残JAC成立数ともいう)を表し、残JACゲームカウンタはJACゲームの残りゲーム数(残JACゲーム数ともいう)を表す。残小役ゲーム数や、残JACイン回数や、残JAC成立数、残JACゲーム数は、適宜、ゲーム数表示部36に表示される。ちなみに、役の抽選で小役またはリプレイに当選して小役当選フラグまたはリプレイ当選フラグがセットされたときには、そのゲームで小役図柄またはリプレイ図柄を有効ライン上に揃えられないとこれらの当選フラグはリセットされるが、役の抽選でRBまたはBBに当選してRB当選フラグまたはBB当選フラグがセットされたときには、そのゲームでRB図柄またはBB図柄を有効ライン上に揃えられなかったとしてもこれらの当選フラグは次回に持ち越される。
さて、図20に戻り、ステップS500で遊技状態がボーナス状態のときにはそのボーナス状態がRB状態か否かを判定し(ステップS502)、RB状態でないときつまりBBゲームの小役ゲーム中のときにはJAC図柄が有効ライン上に揃ったか否かを判定し(ステップS504)、JAC図柄が有効ライン上に揃ったときにはRB状態になる(BB状態と併存)と共に(表1)のBB中RBゲーム初期設定処理を行い(ステップS506)、このルーチンを終了する。一方、ステップS504でJAC図柄が有効ライン上に揃わなかったときには、BB状態で小役ゲームが1ゲーム消化されたことになるため、残小役ゲーム数を1ディクリメントし(ステップS508)、その残小役ゲーム数がゼロになったか否かを判定し(ステップS510)、ゼロでないときにはこのルーチンを終了し、ゼロのときには各種設定フラグやBB設定フラグや各種カウンタなどを適宜リセットしたりエンディング処理を行ったりする特別遊技状態終了処理を行い(ステップS526)、このルーチンを終了する。
ステップS502で遊技状態がRB状態のときには、JAC図柄が有効ライン上に揃ったか否かを判定し(ステップS512)、JAC図柄が有効ライン上に揃ったときには残JAC成立数を1ディクリメントする(ステップS514)。その後、あるいは、ステップS512でJAC図柄が有効ライン上に揃わなかったときには、それぞれJACゲームを1つ消化したことになるため残JACゲーム数を1ディクリメントする(ステップS516)。続いて、残JAC成立数か残JACゲーム数のいずれかがゼロになったか否かを判定し(ステップS518)、いずれもゼロになっていないとき、つまりJAC図柄がまだ8回成立しておらず、JACゲームも12回消化されていないときには、そのままこのルーチンを終了する。
一方、いずれかがゼロになっていたとき、つまりJAC図柄が8回成立したかJACゲームが12回消化されたときには、JACインが1回消化されたことになるため残JACイン回数を1ディクリメントし(ステップS520)、続いてその残JACイン回数がゼロか否かを判定し(ステップS522)、ゼロのときには前出の特別遊技状態終了処理を行い(ステップS526)、このルーチンを終了する。ちなみに、役の抽選でRBに当選したあとRB図柄が有効ライン上で揃ってRB当選フラグがセットされた場合には、当初の残JACイン回数が1(表1参照)であるからステップS520でゼロになり、ステップS522で必ず肯定判定され、特別遊技状態終了処理にてRB設定フラグがリセットされる。
一方、ステップS522で残JACイン回数がゼロでないとき、つまりBB状態でJACインが3回消化されていないときには、RB設定フラグをリセットするRB状態終了処理を行ったあと(ステップS523)、今回JACインしたときに小役ゲームを1ゲーム消化しているため残小役ゲーム数を1ディクリメントし(ステップS508)、続いてその残小役ゲーム数がゼロになったか否かを判定し(ステップS510)、残小役ゲーム数がゼロのときには前出の特別遊技状態終了処理を行い(ステップS526)、このルーチンを終了する。一方、残小役ゲーム数がゼロでないときにはBB状態での小役ゲームが30回に達しておらず且つJACインも3回に達していないため、このルーチンを終了する。このとき、RB状態は解消されるがBB状態は継続される。
このようにこの発明では、複数の回胴を回転させた後、これら回胴を停止させることにより遊技を行う遊技機において、回胴駆動用ステッピングモータを停止させる回胴停止モードでは、全相以外の励磁相を用いると共に、この駆動モータに加える駆動電圧よりも低いブレーキ電圧でブレーキをかけるようにしたものである。
これによれば、全相以外の励磁相(1相以上であって、全相を除く励磁相)を用いてブレーキをかけ、しかも使用するブレーキ電圧は、通常のモータ駆動電圧よりも低い電圧であるので、自然な停止状態を実現できる。
回胴駆動モータの停止時は1相励磁を含め、多相の励磁相を使用したモードに切り替えることで、より一層スムーズな回転停止を実現できる。2相以上の励磁相を使用したブレーキ処理時は、多相同時励磁モードとなる。ブレーキが加わるたびに不自然な回転停止とはならないために、安定して停止状態を具現できるから、ゲームへの集中力が増し、遊技者の興趣を増進させることができる。多相同時励磁モードとは、2相ステッピングモータにあっては、4相未満、つまり3相以下で同時に励磁するモード(2相同時励磁あるいは3相同時励磁モード)であるが、勿論1相励磁でもブレーキ電圧が通常よりも低いので、従来よりスムーズな回転停止となる。
ブレーキ電圧は駆動モータを停止させるタイミングと同じ時点に印加する。これによれば、駆動モータを停止させるタイミングと同じ時点でブレーキをかけることで、目的の回胴回転位置でこの回胴を停止させることができる。
ブレーキ電圧は駆動モータを停止させるタイミングよりも若干時間的に先行する時点から印加することもできる。回胴回転位置よりも僅かに先行させて駆動モータにブレーキをかけるようにしたので、より正確に目的の回胴回転位置でこの回胴を停止させることができる。
駆動モータに対する駆動電圧は、駆動モータに印加する通常のモータ駆動電圧よりに低い電圧であって、遊技機内部において使用される駆動電圧を併用することが可能である。併用する場合、その最低電圧をブレーキ電圧に設定することが可能である。
具体的には、ブレーキ電圧として上記駆動電圧のほぼ1/2以下の出力電圧が利用される。1/2以下にブレーキ電圧を下げることで適切なブレーキ力とすることができ、これによって回胴が不自然な状態で停止することがなくなる。駆動電圧として24ボルト(安定化電圧)を使用する場合には例えば、15ボルト以下となる電圧をブレーキ電圧として設定することができる。ブレーキ電圧を駆動電圧の半分以下に設定することで、最適なブレーキ力とすることができ、これによって回胴が不自然な状態で停止することがなくなり、よりスムーズな回転停止(急速停止)を実現できる。
遊技機に装備された電源部から出力される駆動電圧をブレーキ電圧として併用できれば、専用の電源部を増設する必要がなくなると共に、電源部の改変などが不要になり、これに伴って装置のコストダウン、装置の内部構成の簡略化などを実現できる。ブレーキ電圧を駆動電圧の半分以下に設定することで、最適なブレーキ力とすることができ、これによって回胴が不自然な状態で停止することがなくなり、よりスムーズな回転停止(急速停止)を実現できる。
ブレーキ電圧は階段状に、例えば2段階に変化させることもできる。これによれば、最初は強いブレーキ力でブレーキをかけ、段階的にブレーキ力を弱めることで、より一層スムーズに回胴を停止させることができる。この場合でも、電源部の出力電圧を利用できるようにすれば、電源部の簡略化を実現できる。
ステッピングモータが1−2相励磁方式による2相ステッピングモータであるとき、ブレーキモードでは4相以外の多相同時励磁によって回胴を停止させる。
4相未満の励磁相であるので、3相同時励磁又は2相同時励磁となる。4相同時励磁時よりも3相同時励磁あるいは2相同時励磁の方がより強いブレーキ力が発生するので、これによって回胴を急速停止させることができると共に、そのときのブレーキ電圧は駆動電圧よりも低いので、振動などを伴って停止するような不自然な止まり方を防止できる。3相同時励磁あるいは2相同時励磁とすることで、回胴の停止位置も特定できるので、次の回転初期における微少振動などの回転揺れを効果的に抑制できる。1相励磁でもブレーキ電圧が低いので、従来よりもスムーズな回転停止を実現できる。
上述した遊技機はパチンコ機である。パチンコ機はその基本構成として操作ハンドルを備えると共に、この操作ハンドルの操作に応じて遊技球を所定の遊技領域に発射させ、遊技球が遊技領域内の所定の位置に配置された作動口に入賞することを必要条件として表示装置における図柄の変動表示が開始するようになされたものであり、また特別遊技状態発生中には、遊技領域内の所定の位置に配置された入賞口が所定の態様で開放されることによって遊技球を入賞可能として、その入賞個数に応じた有価価値が付与されるようになされた遊技機である。
有価価値は景品球として還元することもできれば、磁気カードなどのカード状記録媒体を利用して有価価値に相当する有価情報を書き込むことでもよい。パチンコ機には、少なくとも多数個の遊技球を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技球を消費する遊技者に不利な状態である通常遊技状態との2種類の遊技態様が存在する。
上述した遊技機はスロットマシンである。スロットマシンはその基本構成として、遊技状態に応じてその遊技状態を識別させるための複数の図柄からなる図柄列を変動表示した後に図柄を確定表示する表示装置を備えており、操作レバーの操作に起因して図柄の変動が開始されると共に、ストップボタンの操作に起因して、或いは所定時間経過することにより図柄の変動が停止されるようになされ、停止時の確定図柄が特定図柄であることを必要条件として遊技者に有利な特別遊技状態を発生させる特別遊技状態発生手段を備えた遊技機である。
この遊技機には、少なくとも多数個の遊技媒体を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技媒体を消費する遊技者に不利な状態である通常遊技状態の2種類の遊技態様が存在する。この種遊技機において使用される遊技媒体はコイン、メダル等がその代表例として挙げられる。
上述した遊技機はパチンコ機とスロットマシンとを融合させた遊技機である。このような遊技機(複合機)はその基本構成として、遊技状態に応じてその遊技状態を識別させるための複数の識別情報からなる図柄列を変動表示した後に図柄を確定表示する表示装置を備えており、さらに操作レバーなどの始動用操作手段の操作に起因して図柄の変動が開始されると共に、ストップボタンなどの停止用操作手段の操作に起因して、或いは所定時間経過することにより図柄の変動が停止され、その停止時の確定図柄が特定図柄であることを必要条件として遊技者に有利な特別遊技状態を発生させる特別遊技状態発生手段を備え、遊技媒体として遊技球を使用するとともに、識別情報の変動開始に際しては所定数の遊技球を必要とし、特別遊技状態の発生に際しては多くの遊技球が払い出されるよう構成された遊技機である。
この遊技機には、少なくとも多数個の遊技球を取得できる遊技者に有利な状態である特別遊技状態(大当たり状態)と、遊技球を消費する遊技者に不利な状態である通常遊技状態の2種類の遊技態様が存在する。
この発明は上述した実施の形態の遊技機に何等限定されるものではなく、この発明の技術的範囲に属する限り、種々なる形態で実施し得ることは勿論である。
例えば回胴の個数は2個以上であればよく、回胴を含む表示装置も縦型、横型を問わない。回胴の回転方向も同一方向に揃える必要はなく、互いに逆回転するような回胴を有する遊技機にもこの発明を適用できる。いわゆるAタイプのスロットマシンに限らず、Bタイプ、Cタイプ、AタイプとCタイプの複合タイプ、BタイプとCタイプの複合タイプなど、どのようなスロットマシンにこの発明を適用してもよく、さらにはスロットマシンとパチンコ機とを複合した複合機にこの発明を適用してもよく、何れの場合であっても上述した実施の形態と同様の作用効果を奏することは明らかである。駆動モータとして使用するステッピングモータは、2相ステッピングモータに限らず、4相ステッピングモータや5相ステッピングモータなどを利用することができる。